KNOTS AND TROPICAL CURVES

STAVROS GAROUFALIDIS

ABSTRACT. A sequence of rational functions in a variable g is g-holonomic if it satisfies a linear recursion
with coefficients polynomials in ¢ and ¢™. In the paper, we assign a tropical curve to every g-holonomic
sequence, which is closely related to the degree of the sequence with respect to ¢. In particular, we assign a
tropical curve to every knot which is determined by the Jones polynomial of the knot and its parallels. The
topical curve explains the relation between the AJ Conjecture and the Slope Conjecture (which relate the
Jones polynomial of a knot and its parallels to the SL(2,C) character variety and to slopes of incompressible
surfaces). Our discussion predicts that the tropical curve is dual to a Newton subdivision of the A-polynomial
of the knot. We compute explicitly the tropical curve for the 41, 52 and 61 knots and verify the above
prediction.
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1. INTRODUCTION

1.1. What is a ¢-holonomic sequence? A sequence of rational functions f,(¢) € Q(¢) in a variable ¢ is
g-holonomic if it satisfies a linear recursion with coefficients polynomials in ¢ and ¢™. In other words, we
have

d
(1) > ailq",q) furilg) = 0
i=0

where the coefficients a;(M, q) € Z[M, g are polynomials for i = 0, ...,d where aq4(M, q) # 0. The term was
coined by Zeilberger in [Zei90] and further studied in [WZ92]. ¢-holonomic sequences appear in abundance
in Enumerative Combinatorics; [PWZ96, Sta97]. The fundamental theorem of Wilf-Zeilberger states that a
multi-dimensional finite sum of a (proper) g-hyper-geometric term is always g-holonomic; see [WZ92, Zei90,
PWZ96]. Given this result, one can easily construct g-holonomic sequences. Combining this fundamental
theorem with the fact that many state-sum invariants in Quantum Topology are multi-dimensional sums of
the above shape, it follows that Quantum Topology provides us with a plethora of g-holonomic sequences of
natural origin; [GLO5]. For example, the sequence of Jones polynomials of a knot and its parallels which we
will study below (technically, the colored Jones function) is g-holonomic.

The goal of our paper is to assign a tropical curve to a g-holonomic sequence. To motivate the connection
between g-holonomic sequences and tropical curves, we will write Equation (1) in operator form using the
operators M, L which act on a sequence f,(q) € Q(q) by

(M f)n(e) =q"fula),  (Lf)n(q) = frsi(a)-
It is easy to see that LM = qM L generate the q- Weyl algebra

(2) W = Z[¢*"|(M, L) /(LM — gM L)
Equation (1) becomes
(3) Pf=0
where
d
(4) P=> ai(MqL" €W.
i=0

In other words, Equation (4) says that P annihilates f. Although a g-holonomic sequence f is annihilated by
many operators P € W, it was observed in [Gar04] that it is possible to canonically choose an operator Py
with coefficients a;(M, q) € Z[M, q]. Likewise, there is a unique non-homogeneous linear recursion relation
of the form Pyf = by where by € Z[M, ¢]. For a detailed definition, see Section 2 below.

Definition 1.1. We call Py and (P}lh,bf) the homogeneous and the non-homogeneous annihilator of the
g-holonomic sequence f.

1.2. What is a tropical curve? In this section we will recall the definition of a tropical curve. For a
survey on tropical curves, see [RGST05, SS09]. With those conventions, a tropical polynomial P : R? — R
is a function of the form:

(5) P(z,y) = min{a1x + biy +c1,...,a,x + by + ¢}

where a;, b ¢; are rational numbers for i = 1,...,r. P is convex and piecewise linear. The tropical curve T (P)
of the tropical polynomial P is the set of points (z,y) € R? such that P is not linear at (z,y). Equivalently,
T (P) is the set of points where the minimum is attained at two or more linear functions. A rational graph T’
is a finite union of rays and segments whose endpoints and directions are rational numbers, and each ray has
a positive integer multiplicity. A balanced rational graph is defined in [RGSTO05, Eqn.10]: at every vertex the
sum of the slope vectors with multiplicities adds to zero. Every tropical curve is a balanced rational graph
and vice-versa; see [RGSTO05, Thm.3.6]. Tropical curves are very computable objects. For example, the
vertices of a rational curve are the points (z,y) where the minimum in (5) is attained at least three times.
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The coordinates of such points can be solved by solving a system of linear equations. An explicit algorithm
to compute the vertices and the slopes of a tropical curve is given in [RGST05, Sec.3], and a computer
implementation in Singular is available from [Mar]. This allows us to compute the tropical curves of the 44,
59 and 67 knots in Sections 5.1-5.4 below. In the case of the 6; knot, the non-homogeneous tropical curve is
defined by an explicit polynomial with r = 346 terms.

Tropical curves arise from 2-variable polynomials P;(z,y) whose coefficients depend on an additional
parameter ¢ as follows. Consider

(6) Py(w,y) = > yilt)a"y"
i=1

where ~;(t) are algebraic functions of ¢ with order at ¢ = 0 equal to ¢;. Then, the corresponding tropical
polynomial is given by (5). Pi(x,y) gives rise to two Newton polytopes:

e The 3-dimensional Newton polytope Np, i.e., the convex hull of the exponents of (x,y,t) in P;(z,y).
e The 2-dimensional Newton polygon Np, i.e., the convex hull of the exponents of (x,y) in Pi(x,y).

In fact, Np is the image of Np under the projection map (x,y,t) — (z,y). The lower faces of Np give rise
to a Newton subdivision of Npy which is combinatorially dual to the tropical curve 7 (P); see [RGST05].

The polynomials P;(z,y) appear frequently in numerical problems of Path Homotopy Continuation where
one is interested to connect Py(x,y) to Pi(x,y). They also appear in Quantization problems in Physics, where
t (or logt) plays the role of Planck’s constant. We will explain below that they also appear in Quantum
Topology, and they are a natural companion of the AJ and the Slope Conjecture.

1.3. The tropical curve of a ¢g-holonomic sequence. In this section we associate a tropical surve to a
g-holonomic sequence. The main observation is that an element of the ¢-Weyl algebra is a polynomial in 3
variables M, L,q. Two of those g-commute (i.e., satisfy LM = qM L) but we can always sort the powers of
L to the right and the powers of M to the left. In other words, there is an additive map

(7) Zlg* (M, L) /(LM — gML) — Z[M, L,q*"]

Let us change variables (x,y,1/t) = (L, M, q) and ignore the coefficients of the monomials of x'y/t*  and
record only their exponents. They give rise to a tropical curve. Explicitly, let

(8) P= > ajxd"ML'eW
(i,9,k)€A
denote an element of the g-Weyl elgebra, where A is a finite set and a; ;1 € Z \ {0} for all (i, 7, k) € A.
Definition 1.2. There is a map
9) W — {Tropical Curves in R?}, P—Tp
which assigns to P in (9) the tropical polynomial P;(z,y) given by:
Py(z,y) = ,H}Ci)neA{i:c +jy — k}

(4,3,

T'p is the tropical curve of Py(z,y).
Combining Definitions 1.1 and 1.2 allows us to assign a tropical curve to a g-holonomic sequence f.

Definition 1.3. (a) If f is a ¢g-holonomic sequence, let I'f and I‘?h denote the tropical curves of Py (y,x,1/t)
and P}‘h (y,x,1/t) respectively, where Py(M, L, q) and P}‘h (M, L, q) are given in Definition 1.1.

The tropical curve I'y of a g-holonomic sequence f is closely related to the degree (with respect to q)
of the sequence of rational functions f,,(q). If d, = deg,(fn(q)) denotes this degree, then it was shown in
[Gar10] that for large enough n, 4, is a quadratic quasi-polynomial with slope recorded by the rays of the
tropical curve I'y.
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1.4. 3 polytopes of a ¢g-holonomic sequence. In this section we assign 3 polytopes to a g-holonomic
sequence.

Definition 1.4. (a) If P € W is given by Equation (8), it defines 3 polytopes:
e Np is the convex hull of the exponents of the polynomial P(M, L, q) with respect to the variables
(M, L,q).
e Np, is the projection of Np under the projection map (M, L,q) — (L, M).
e Np; is the convex hull of the exponents of the polynomial P(L, M, 1).
(b) If f is a g-holonomic sequence, its annihilator Py gives rise to the polytopes Np,, Np, o and Np; 1.

Note that Np is a 3-dimensional convex lattice polytope, and Np o, Np; are 2-dimensional convex lattice
polygons. Since every exponent of P(M, L, 1) comes from some exponents of P(M, L, q), it follows that

(10) Np71 C Np70
Remark 1.5. It follows by [RGSTO05] that the tropical curve I'p is dual to a Newton subdivision of Np.
We will say that P(M, L, q) is good if Np1 = Np. It is easy to see that goodness is a generic property.

1.5. The slopes of a ¢-holonomic sequence. In this section we discuss the slopes of a g-holonomic
sequence and their relation with its tropical curve. The proof of the following theorem uses differential
Galois theory and the Lech-Mahler-Skolem theorem from number theory.

Theorem 1.1. [Garl0] The degree with respect to q of a g-holonomic sequence fn(q) € Q(q) is given (for
large values of n) by a quadratic quasi-polynomial.

Recall that a quadratic quasi-polynomial is a function of the form:

n

2

where 7;(n) are rational-valued periodic functions of n. Quasi-polynomials appear in lattice point counting
problems, and also in Enumerative Combinatorics; see [BP99, BR07, Ehr62, Sta97] and references therein.

The set of slopes s(p) of a quadratic quasi-polynomial is the finite set of values of the periodic function
~v2(n). These are essentially the quadratic growth rates of the quasi-polynomial. More precisely, recall that
x € Ris a cluster point of a sequence (z,,) of real numbers if for every e > 0 there are infinitely many indices
n € N such that |z — z,| < e. Let {x,} denote the set of cluster points of a sequence (z,,). It is easy to
show that for every quadratic quasi-polynomial p we have:

(1) p:N—N,  p(n) —"yz(n)( )+%(n)n+%(n)

(12 5(p) = {p(n) In € NY C Q

Given a g-holonomic sequence f,,(q) € Q(q), let s(f) denote the slopes of the quadratic quasi-polynomial
deg, fn(q). Let s(IN) denote the set of slopes of the edges of a convex polygon N in the plane. The next
proposition relates the slopes of a g-holonomic sequence with its tropical curve. See also [Garl0, Prop.4.4].

Proposition 1.6. If f is g-holonomic, then s(f) C —s(Np; o).

Proof. Let 6(n) = deg, fn(q) denote the degree of f,,(¢q) with respect to ¢, and let P denote the annihilator
of f. We expand P in terms of monomials as in Equation (8). For every monomial ¢* M7 L? and every n we
have

deg, ((¢" M7 L") fu(q)) = k + jn+ 8(n +1).
Since P annihilates f, for every n the following maximum is attained at least twice (from now on, twice will
mean at least twice as is common in Tropical Geometry):

(13) max {jn+k+d(n+1)}

(i,3,k)
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Subtracting d(n), it follows that the maximum is obtained twice:

(14) max){jn—l—k—l—é(n—l—i)—d(n)}

(i,7,k

Now d(n) is a quadratic quasi-polynomial given by

) i (m)n +70(n)

Theorem 1.1 implies that for large enough n, in a fixed arithmetic progression, we have v;(n) = 7; for i = 1, 2,
thus '
~ . ~ 1 ~ .
d(n+1i)—d(n) =7in+ 7 <2) + 711

Substituting into (14), it follows that for large enough n in an arithmetic progression, the max is obtained
twice:

. (1 .
(15) max {jn +k +y2in + 72 + 714}
(4,5,k) 2

It follows that there exists (i, j") # (4,j) such that

. -/

~ J—J

(16> 72:_1'_1'/'
This proves Proposition 1.6. O

2. THE ¢-WEYL ALEGBRA AND ITS LOCALIZATION

In this section we will discuss some algebraic properties of the ¢-Weyl algebra and its localization, which
will justify Definition 1.1.

Recall the ¢g-Weyl algebra from (2). We will say that an element P of W is reduced if it has the form (4)
where a;(M, q) € Z[M, q] for all i, and the greatest common divisor of a;(M, q) € Z[M, q] is 1.

Consider the localized q-Weyl algebra W given by

(17) Wiee = Q(Mv Q)<L>/(Lf(M7 Q) - f(Mqv Q)L)

It was observed in [Gar04] that W is not a principal left-ideal domain, but becomes so after localization; see
[Cou9s]. If f is a sequence of rational functions, consider the left ideal My

My ={P € W |Pf =0}

My is a principal ideal, which is nonzero if f is g-holonomic. Let P’ denote the monic generator of M. Left
multiply it by a polynomial in M, g so as to obtain a reduced annihilator P of f.
Now, we discuss non-homogeneous recursion relations of the form

d
> aid", @) farila) = b(d",0)
i=0
where a; (M, q),b(M,q) € Q(M, q) for all i. In operator form, we can write the above recursion as
Pf=b.
Consider the left ideal
(18) M ={P € Wi |3b € Q(M,q) : Pf =b}

It is easy to see that M}lh is a left ideal. If f is g-holonomic, M}Lh # 0. Let P” denote the monic generator
of M}lh, There exists b € Q(M, g) such that

Pl/f — b/l

There are two cases: b #£ 0 or b = 0. If b # 0, then dividing by " we obtain that 1/b- P”f = 1. We left
multiply both sides by a polynomial in M, ¢ so as to obtain P}Ihf = by where P is reduced. If b = 0 then
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multiply by a polynomial in M, ¢ so as to obtain P}lh f = 0 and define by = 0 in tha case. This concludes
Definition 1.1.

The next lemma relates the homogeneous and the non-homogeneous annihilator of a ¢-holonomic sequence.
It is well-known that one can convert an non-homogeneous recursion relation Pf = b where b # 0 into a
homogeneous recursion relation of order one more. Indeed, Pf = b where b # 0 is equivalent to

(L-1)b"'Pf=0
This implies the following conversion between (P}‘h, bs) and Ps. Fix a g-holonomic sequence f,(q) € Q(q).

Lemma 2.1. (a) If by = 0 then P}Lh = Py. If by # 0, then P}lh is obtained by clearing denominators of
(L - 1)b;1Pf by putting the powers of L on the right and the elements of Q(M, ¢) on the left.

(b) If P; is not left divisible by L — 1 in W, then Py = P}‘h and by = 0. If Py is left divisible by L — 1 in
W, then Py = (L —1)Qy and if d is the common denominator of Qy, then (dQy,d) = (P}",by).
Definition 2.2. We say that a g-holonomic sequence f is homogeneous if by = O-else f is non-homogeneous.

In other words, a g-holonomic sequence f is homogeneous if and only if Py is left-divisible by L — 1 in W.

3. QuANTUM TOPOLOGY

3.1. The tropical curve of a knot. Quantum Topology is a source of g-holonomic sequences attached to
knotted 3-dimensional objects. Let Jx .(q) € Z[g™!] denote the colored Jones polynomial of a knot K in
3-space, colored by the (n + 1)-dimensional irreducible representation of sly and normalized to be 1 at the
unknot; [Jon87, Tur88]. The sequence Jx ,(q) for n = 0,1,... essentially encodes the Jones polynomial of a
knot and all of its parallels; see [Tur88]. In [GL05, Thm.1] it was shown that the sequence Jg ,,(q) of colored
Jones polynomials of a knot K is g-holonomic.

Definition 3.1. (a) If K is a knot, we denote by Ax (M, L, q) and (A% (M, L, q), Bk (M, q)) the homogeneous
and the non-homogeneous annihilator of the g-holonomic sequence Jg ,(q). These are the non-commutative
and the non-homogeneous non-commutative A-polynomials of the knot.

(b) If K is a knot, let I'x and I'¥* denote the tropical curves of Ak and A respectively.

The non-homogeneous non-commutative A-polynomial of a knot appeared first in [GS10].

3.2. The AJ Conjecture. The AJ Conjecture (resp. the Slope Conjecture) relates the Jones polynomial
of a knot and its parallels to the SL(2,C) character variety (resp. to slopes of incompressible surfaces) of
the knot complement. We will relate the two conjectures using elementary ideas from Tropical Geometry.

The A-polynomial of a knot is a polynomial in two commuting variables M and L that essentially encodes
the image of the SL(2, C) character variety of K, projected in C* x C* by the eigenvalues of a meridian and
longitude of K. It was defined in [CCGT94].

Conjecture 3.2. [Gar04] The AJ Conjecture states that
(19) A (M,L,1) = Bg(M)Ag (M'/? L)

where Ax (M, L) is the A-polynomial of K and Bx (M) € Z[M] is a polynomial that depends on M and of
course K.

The AJ Conjecture is known for infinitely many 2-bridge knots; see [L&06].

It is natural to ask whether the ¢g-holonomic sequence Jg ,(¢) is of non-homogeneous type or not. Based
on geometric information (the so-called loop expansion of the colored Jones polynomial, see [Gar08]), as well
as experimental evidence for all knots whose non-commutative A-polynomial is known (these are the torus
knots in [Hik] and the twist knots in [GS10]) we propose the following conjecture.

Conjecture 3.3. For every knot K, Jk ,(¢) is non-homogeneous.

The above conjecture implies that By (M, q) € Z[M,q] \ {0} is an invariant which is independent and
invisible from the classical A-polynomial of the knot. There is a close connection between the By (M, q)
invariant of a knot and the torsion polynomial of the knot introduced in [DGa]. We will discuss this in a
future publication.
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3.3. The Slope Conjecture. The Slope Conjecture of [Garll| relates the degree of the colored Jones
polynomial of a knot and its parallels to slopes of incompressible surfaces in the knot complement. To recall
the conjecture, let dc(n) = deg,Jx n(q) (resp. 03 (n) = deg, Jk »(q)) denote the maximum (resp. minimum)
degree of the polynomial Jr ,,(q) € Z[g™!] (or more generally, of a rational function) with respect to g.

For a knot K, define the Jones slopes jsy by:

. 2
(20) jsic = {gxc(n) In € N
(b) Let bsxg € QU {1/0} denote the set of boundary slopes of incompressible surfaces of K; [Hat82, HO89].

Conjecture 3.4. [Garll] The Slope Conjecture states that for every knot K we have
(21) 2jsi C bsk.

Note that the Slope Conjecture applied to the mirror of K implies that 2jsj C bsk. The Slope Conjecture
is known for alternating knots and torus knots (see [Gar11]), for adequate knots (which include all alternating
knots; see [DF]), for (—2,3,n) pretzel knots (see [Garll]), and for 2-fusion knots; see [DGb]. A general
method for verifying the Slope Conjecture is discussed in [Gar, DGb].

3.4. The AJ Conjecture and the Slope Conjecture. In this section we will see how the AJ Conjecture
relates to the Slope Conjecture, expanding a comment of [Garll, Sec.2]. We will specialize Definition 1.4 to
knot theory when P = A is the non-commutative A-polynomial of a knot K, and we will denote by Nk,
Nk, and N 1 the three polytopes associated to Ax. Proposition 1.6 implies that

(22) sk C =Nk

Let bsf} denote the slopes of the A-polynomial of K. The AJ Conjecture implies that up to possibly excluding
the slope 1/0 from 2N 1, we have:

(23) 2Nk = bsiy.

For a careful proof, see Proposition 3.5 and Remark 3.6 below. Culler and Shalen show that edges of the
Newton polygon of the A-polynomial of K give rise to ideal points of the SL(2,C) character variety of K;
see [CS84, CGLS87, CCG194]. For every ideal point, Culler and Shalen construct an incompressible surface

whose slope is a boundary slope of K; see [CS84, CCGT94]. bsﬁ is the set of the so-called strongly detected
boundary slopes of K, and satisfies the inclusion:

(24) bsfe C bsk.
If Ax(M,L,q) is good, then
(25) NK70 = NK,l'

If K* denotes the mirror of K, then Jx+ ,(¢) = Kk (¢~*) which implies that —Ng g = Ng+ 9. Combining
Equations (22)-(25), it follows that

2jsg C bsg-
which is the Slope Conjecture, up to a harmless mirror image. This derivation also explains two independent
factors of 2, one in Equation (20) and another one in Equation (19).

Proposition 3.5. If the non-commutative A-polynomial of K is good, and if the AJ Conjecture holds, then
Tk is dual to the Newton subdivision of the A-polynomial of K (multiplied by a polynomial in M ).

Proof. Let P denote the non-commutative A-polynomial of a knot K. I'k is dual to Npg. If P is good,
then Npo = Np;;. With the notation of Conjecture 3.2, the AJ Conjecture implies that
P(M,L,1) = Ag (M2 L)B (M)

where By (M) is a polynomial of M, and Ak is the A-polynomial of A. The Newton polygon of of the product
of two polynomials is the Minkowski sum of their Newton polygons. Moreover, the Newton polygon of Bx (M)
is a vertical line segment in the (L, M)-plane. It follows that the Newton polygon of Ax (M2 L)By (M) is
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the Newton polygon of the A-polynomial of K and its translation by a vertical segment. On the other hand,
the Newton polygon of P(M,L,1) is Np1. The result follows. O

Remark 3.6. Note that the Newton polygon of Ax (M'/2?, L) By (M) is the Newton polygon of A (M2 L)

and its shift by a vertical line segment. It follows that the slopes of the Newton polygon of A (M'/2, L) B (M)
are the slopes of Ax(M'/2 L) plus the slope of a vertical segment (i.e., 1/0). For concrete examples, see

Section 5 where the Newton polygons of the non-homogeneous A-polynomials of 41,55, 61,8; is shown and

it differs from the Newton polygon of the A-polynomial by a shift by a vertical segment.

The only knots with explicitly known non-commutative A-polynomials (homogeneous and non-homogeneous)
are the handful of twist knots K, of [GS10] for p = —8,...,11. An explicit check shows that these non-
commutative A-polynomials (both the homogeneous and the non-homogeneous) are good. For details, see
Section 5.

4. QUANTIZATION AND TROPICALIZATION

Quantization is the process of producing the non-commutative A-polynomial of a knot from the usual
A-polynomial. In other words, Quantization starts with Py (x,y) and produces P;(z,y) as in Equation (6).
On the other hand, Tropical Geometry expands P;(z,y) at t = 0 (or equivalently at ¢ = oco) and produces a
tropical curve. Schematically, we have a diagram:

non-commutative
A-polynomial
q
Quantization is a map reverse to the Classical Limit map in the above diagram. Both sides of the above
diagram (i.e., the limits at ¢ = 1 and ¢ = o) are classical dual invariants of the knot. Indeed, the tropical
curve ought to be dual to a Newton subdivision of the A-polynomial of K. This duality is highly nontrivial,
even for the simple case of the 4; knot, computed in Section 5.1 below.

This conjectured duality may be related to the duality between Chern-Simons theory (i.e., colored U(N)
polynomials of a knot) and Enumerative Geometry (i.e., BPS states) of the corresponding Calabi-Yau 3-fold.
For a discussion of the latter duality, see [ADKT06, DGKV03, LMV00, DV02] and references therein.

Physics principles concerning Quantization of complex Lagrangians in Chern-Simons theory suggest that
the A-polynomial of a knot should determine the non-commutative A-polynomial. In particular, it should
determine the polynomial invariant By (M, q) of Definition 1.1, and it should determine the tropical curves
I'x and Th2.

Aside from duality conjectures, let us concentrate on a concrete question. It is well-known that the A-
polynomial of a knot is a triangulated curve in the sense of algebraic K-theory. In other words, if X is the curve
of zeros A (M, L) = 0 of the A-polynomial then there exist nonzero rational functions z1,...,z, € C(X)*
in X such that

( A-polynomial ) Classical limit
—

Tropicalization Tropical curve
—
q = 1

q =00

T
(26) MAL=2Y zA(1-z)€ A (CX))
i=1
where C(X) is the field of rational functions of X and M, L € C(X)* are the eigenvalues of the meridian
and the longitude. For a proof of (26) (which uses the symplectic nature of the so-called Neumann-Zagier
matrices), see [Cha03, Lem.10.1]. For an excellent discussion of triangulated curves X and for a plethora
of examples and computations, see [BRVD]. Geometrically, a triangulation of X comes from an ideal
triangulation of the knot complement with r ideal tetrahedra with shape parameters z1, ..., z,. which satisfy
some gluing equations. The symplectic nature of these gluing equations, introduced and studied by Neumann
and Zagier in [NZ85], implies (26). The triangulation of X has important arithmetic consequences regarding
the volume of the knot complement and its Dehn fillings, and it is closely related to the Bloch group of the
complex numbers. It is important to realize that X has infinitely many triangulations, and in general it is
not possible to choose a canonical one. In addition, triangulations tend to work well with hyperbolic knots.
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On the contrary, the non-commutative A-polynomial and its corresponding tropical curve exist for every
knot in 3-space, hyperbolic or not. Let us end with some questions, which aside from its theoretical interest,
may play a role in the Quantization of the A-polynomial.

Question 4.1. Is the tropical curve I of a hyperbolic knot K related to a triangulation of its A-polynomial
curve?

To formulate our next question, recall that the tropical curve ' is dual to a Newton subdivision of
the 2-dimensional Newton polytope of the polynomial Ax (M, L,q) with respect to the variables L and M.
Assuming that Ax (M, L,q) is good, and assuming the AJ Conjecture, it follows that T'x is dual to the
Newton polygon of the A-polynomial of K. I'x is a balanced rational graph that consists or edges and
rays, and the above assumptions imply that the slopes of the rays are negative inverses of the slopes of the
A-polynomial of K. Consequently, Culler-Shalen theory (see [CS84]) implies that the slopes of the rays of
I'x are negative inverses of boundary slopes of K, appropriately normalized by a factor of 2.

Question 4.2. What is the geometric meaning of the vertices of ' (those are points in Q?) and of the
slopes of the edges of I'x?

5. COMPUTATIONS OF TROPICAL CURVES OF KNOTS

5.1. The homogeneous tropical curve of the 4; knot. The non-commutative A-polynomial Ay, (M, L, q)
of 4; was computed in [GL05, Sec.6.2] and also [Gar04, Sec.3.2] using the WZ method of [WZ92, Zei90]
implemented by [PR] in Mathematica. The non-commutative A-polynomial is given by

2t (P —y) (B —y) v’ +y) (t-y°) (£~

Ay (y,2,1/t) =

t14
(—y) L+ (B +y) (£ —9*) (° —9?)
+ t15
_ tlisx2 (t2 _y)? (t2 +y) (t_yQ) (tS _yQ) (tS —2t6y+t7y—t3y2 +t4y2 —t5y2 +ty3 —2t2y3 +y4)

+ tlL?:c(t —v) (t2 —y) (t+y) (tS - y2) (t5 - y2) (t4 +yt —Py2+y) -ty (1 +2y) + 2y (1+y+ yQ))
Notice that
A (2,9, 1) = (=14 2) (=1 +9)* 1+ y)°(~z + 2y +y° + 20y® + 2%y + 2y° — xy?)
confirms the AJ Conjecture, since the last factor is the geometric component of the A-polynomial of 41, the
first term is the abelian component of the A-polynomial, and the remaining second and third terms depend
only on y = M. Expanding out the terms, we obtain that:

Ay, (y,2,1/t) = t%s Pyt 4 ;—1 cadyd + % Ca2yt0 4 ;1_% oyt 4 —1;r1t3+t2 CaSy8 + 7173-15;4;2-1537154 Ca2y® +
t% Cayl0 4 1+2»tjl-'gt3—t4 T4 —1+3.t—tt21-é-3-t3+2»t5 2yS 4 1+§;—t4 oy + l—t—tt132—2.t4 - a3yf 3_2.t:r13;t2+t4 .
:c2y7+ —1—t—tt21;t3—2»t4 -:cy8 + t% -y9+ —2—ttT0ta+t4 .x3y5 + 1—3»t—2»tt£*3_t4_2.t6 ,$2y6 + _1_t2_tﬁ_t4_t6 .$y7+
;_51, .ys + 71+ttg~t2+t4 .$3y4 + 727t2721;f‘;’73~t5+t6 -x2y5 + 1+t2+t342123:t4+t5+t6 .xyG + 71?27:52 .y7 + 14?_;152 .

3,3 | 143t2—2.¢343.¢* 2,4 | 14t42-2 4341140 5  14+t+t> 6 | —1 3,2 | 243234341 —¢° 2,3
23y +%.xy +++t%'xy _|_+t+.y + = -2ty —I—%-Iy—l—

. Igy

—1—t2—3—¢1 48 4 14t+t2 5 | —1424—3t2—t* 2 92 | —2—t—t2—3—¢t 3 —1—t—t> 4, =34+t .2
et =t Ly ++t—8+'y ++tf'x y? 4 =l gt S Ly +t_2+.x Y+

4 _ —
L oy’ + F P+’ + 5oyt 5P+ e
Inspection of the above formula shows that Ay, (y,z,1/t) is good. Using the drawing polymake program
of [Mar| implemented in Singular one can compute the vertices of the tropical curve:

(37_1/2)7 (_17_1/3)7 (_3/47_1/2)> (_270)7 (27_1)7 (_1/27_1)7 (17_3/2)7 (07_3/2)7
(=1/2,-5/4), (1/2,-7/4), (-1,-3/2), (1/2,-2), (2,-3), (3/4,-5/2), (1,-8/3), (—2,—2), (—3,—5/2)

The tropical curve (with the convention that unmarked edges or rays have multiplicity 1) is:
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N I

The reader may observe that the above Newton polygon is the Minkowski sum of the Newton polygon of
the A-polynomial of 4; with a vertical segment.

5.2. The non-homogeneous tropical curve of the 4; knot. The non-homogeneous A-polynomial of the
4; knot was computed in Theorem 1 of [GS10] (with the notation A_;(F,Q,q) where E = L and Q = M).
It has 22 terms and it is given by:

ApN(M,Lq) = L*M?q* (=14 M?q) (=1 + Mq*) + (=1 + M)M?q* (-1 + M?¢)
—L(=1+ Mq)*(1+ Mq) (1 — Mq— M?q— M?¢* — M°¢* + M'q")
By, (M,L) = Mq(1+ Mq) (=1+ M?q) (=1+ M?¢®)

It follows that: , ,
Ay, 1/t) = F oy + % 2?2 + & oy + F 2yt + S ey’ + 2yt S oyt E
2 2
Y+ gty + S Syt e+ 2 ey oyt
It is easy to see that the above polynomial is good. The vertices of the corresponding tropical curve are:

(1,-1/2), (-1/2,-1/2), (-2,0), (0,-1), (2,-2), (1/2,-3/2), (—1,-3/2)

The tropical curve is:
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The Newton subdivision of the Newton polygon is:

This example exhibits that the non-homogeneous tropical curve is much simpler than the homogeneous one.

5.3. The non-homogeneous tropical curve of the 55 knot. The non-homogeneous non-commutative
A-polynomial A2"(M,L,q) has 98 terms, and it is given by [GS10] (with the notation A3"(E,Q,q) where
E=L,Q=M):

Agf(y,:z:,l/t) _ t—Té Cayt? t% L 22yl0 4 t% oyt tlis yt2 4 t—l_g a2y + 1—ti-lt;+t4 Caylo 4 t—l_; oy
—1—t+tt126+t3—t4 .$2y8+—2—2.t+t:1;2-t3—3»t4 .$y9+—tllzt.y10+2+2-t—tt211-t3+2»t4 .$2y7+1—2»t—tt125+t3—t5 ,$y8+%'y9+
%G -x3y5+ 17t7t2+tt134+t472~t5 _x2y6+ 27t+t2+4-t3t41r52~t47t5+2-t6 -;Ey7—|— %9 -y8+;—31 -x3y4+ 72+t7t274~t:’1;2-t4+t572-t6 .
2y + 71+t+t2;tjft4+2't5 -xy6+;—91 -yﬂ-% -x393+—71+2'tt§27t3+t5 -:E2y4+—7272't+tt1217t372't4 -;vy5+%-x3y2+
TERACR T 28 4 LIS Dl gyt Lyt
The vertices of the tropical curve are:

—14t—t3-¢* 2.2, 2 3_ .3, =32 -1 2,1, .2
tig'll? y +t—6213y —X +t—3217 y+t—5:z:y +?ZZ?

(1,-1/2), (-1,0), (-1/2,-1/2), (17/2,-1/2), (-1,-1), (0,—1), (—6,-2),

(6,—1), (—17/2,-5/2), (0,—2), (1,-2), (=1,-5/2), (1/2,—5/2), (1,-3)

The Newton subdivision of the tropical curve is:
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The tropical curve is:

5.4. The non-homogeneous tropical curve of the 6; knot. The non-homogeneous non-commutative

A-polynomial AZ"(M, L, q) has 346 terms, and it is given by [GS10] (with the notation A™(E, Q, q) where
E=L,Q=M):

Aglh(y,:v?l/t):% 215_,’_—115 :CB 13+—103t 214+—1 iL‘ylS—f— 1 411+1+3t+t 312_,’_

3
,1,t+2.t2+t23~§€’7t47t57t6 22 13+ ;vy14—|—— 4 10+ 142442 t2+t3tt4 2424245447 23 11+
1+4-t+3~t27t3t<2F92~t5+4-t6+3-t7 $2y12+ 1— t t2+t4+t +t6 :L“y13—|— —1— t1 t? :1:4y9—|— —1—4-t—4 tzf?;g;fz.tﬁfatﬂtg,
2310 4 1—2-t—3-t2+3»t4+3-g;}-t6 447~ t8+t9+t1° 2yl =22 t2—2t-12£:—2-t5—2-t6 ay'? 4 1+tlJ7rt2 B+
—1-24—24243¢* 246447 84342441011 3.9 | —1-3.44¢%-3t*—6-t°—6-t5-4.47 44512241034 22y10
25 - xY” + o +
1+2~t7t3+t5+2;i+t77t87t97t10 -;Eyll + 14?513152 -;E4y7 + 1+3-t+3~t2+2-t3+2-t5+51~6263+5-t7+3~t87t1°+t11+t12 -;v3y8 +
1+t—2-t2—2-t3—2-t4+2»tt5—t7—3»t8—3»t9+2-t11—t12 22y + 1—3»t—t2+3»t3+3-t4+t5—t22ét6—2»t7+2-t8+2»t9+2»t10 Caylo 4 t%ﬁ
y11+ 1 - t2 $4y6_|_ 1+t—t2—2.t3+t4+3»t5+4»t6—52»37—4»158—2»t9+t10+2»t11—2-t13 -x3y7+
1424424243434 13 ,;2;3 t0434743-t54¢° ¢!t -x2y8 + 7272-15374-t474~t572~tt;5+t77t972~t107t11+t13 -xyg + ;2_% -ylo +
;_% ~x4y5 + 7272~t374-t474-t572-;5169+t77t972-t107t11+t13 ':1:3y6 + 1+2-t+2~t2+3-t3+t4+3-£8L3~t6+3-t7+3~t8+t9+t11 .
$2y7 + 1+t—t2—2-t3+t4+3»t5+4»t6—32»27—4»158—2»t9+t10+2»t11—2-t13 a2y + —lt—2tl—t2 0+ t% -x4y4 +

1-3-t—t243-t3 43t 415 — tﬁ 24742484249 42.410 23 + 1+t—2»t2—2»t3—2-t4+2»t5—t7—3-t8—3»t9+2-t11—t12 2,6
716 7y “xtYy” +

1+3-t+3~t2+2-t3+2~t5+5;1+5-t 434810441t 412 xy + lththJlrt y 4 12t t3+t5+2 t6+t7 8 1% 10 x3y4 +
—1—3»t+t2—3»t4—6»t5—6-ttf7—4-t7+t8—t9—2-t10—3-t11 25 4 —1-2t-2t243.¢t% 2tt'3 —4-t7— t8+3 410 ¢t 2yl + 14?51?:2 .
y7 + —2+2»t2—2t-116§—2-t5—2-t6 ~x3y3 + 1—2-t—3-t2+3»t4+3»ﬁ2-t6—4»t7—t8+t9+t10 'x2y4 + —1—4-t—4-t2—11-115:—2-156—3-167—168 .
zy® + 71?57:52 S+ 17t7t2t$4+t5+t6 Cady? + 1+4-t+3~t27t3t<1F12-t5+4-t6+3.t7 a2yt 1+2-t+2-t2+t3;t472-t5+2~t6+t7 .

4, -1 2 —1—t42-4%242.43 1P >4 2 2 | 143.1412 1 .4 —1—
ay'+ oy’ ey = a?y? + HEE wyt 4 gyt e+ SR ey + =t ay? 4 o
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The vertices of the tropical curve are:
(27 _1/2>7 (_17 _1/2)7 (57 _1/2)7 (_3/2, _1/2), (_4, 0)7 (17 _1)7 (_1/2a _1)a
(_17 _2/?’)7 (47 _1)7 (1/27 _3/2), (3, _3/2), (1/57 _8/5)7 (_1/2a _5/4)a
(1/2,-11/4), (-1/5,-12/5), (=3,-5/2), (4,-4), (1/2,-3), (1,—10/3), (3/2,-7/2),
(-1/2,-5/2), (—4,-3), (-1,-3), (=5,-7/2), (1,-7/2), (-2,-7/2)
The tropical curve is:

The Newton subdivision of the tropical curve is:

5.5. The non-homogeneous tropical curve of the 8; knot. The non-homogeneous non-commutative
A-polynomial Aglh (M, L, q) has 2112 terms, which we not present here. The vertices of the tropical curve
are:

(37_1/2)7 (_17_1/2)7 (6a_1/2)a (_2a_1/2)a (9,—1/2), (2a_1)a (_17_1)7 (_5/27_1/2)7
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(=6,0), (5,—1), (=2,-3/5), (8,—1), (3/2,-3/2), (4,-3/2), (—=1/2,-3/2), (—3/4,—11/8),
(7,-3/2), (1,-2), (3,-2), (0,=2), (6,-2), (0,-5/2), (5/2,-5/2), (5,=5/2), (1,-3), (0,-3),
(—=5,=7/2), (0,=7/2), (=1,-3), (=5/2,—7/2), (3/4,-37/8), (0,—4), (1/2,-9/2), (—6,—4),
(6,—6), (1,—5), (2,—-27/5), (5/2,—11/2), (=3,—4), (=1,—4), (=7,-9/2), (—4,-9/2),
(—3/2,-9/2), (=8,—5), (=5,—5), (=2,—5), (=9,—11/2), (2,—-11/2), (—6,—11/2), (1,—-11/2),
(—3,-11/2)

The tropical curve is:

5.6. The number of terms of the non-homogeneous A-polynomial of twist knots. In [GS10] we
explicitly computed the non-homogeneous A-polynomial (A?(’; , Bk, of the twist knots I, forp = —=8,.. ., 11.
K, is the knot obtained by 1/p surgery on one component of the Whitehead link. This includes the following
knots in the Rolfsen notation:

K1 =31,K2 =52, K3 =73, K4 = 93, K 1=4,K 2=06,K 3=28;,K_4=101.
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The computations reveal that for p =1,...,11, A?{}; has (L, M, q) degree equal to

17

The total number of terms of the 3-variable polynomial A’}(Z is given by
139976, 80252, 41996, 19402, 7406, 2112, 346, 22
forp=-8,...,—1, and by
4,98, 908, 4100, 12236, 28978, 58668, 106800, 179814, 284998, 430652

for p=1,...,11. Using the data from [GS10], the author has computed the tropical curves (homogeneous
or not) of all twist knots K, with p = —8,...,11. Needless to say, the output of the computations it too
large to be displayed in the paper.
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