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ABSTRACT. Recently Ohtsuki [Oh2], motivated by the notion of finite type knot
invariants, introduced the notion of finite type invariants for oriented, integral ho-
mology 3-spheres (ZHS for short). In the present paper we propose another def-
inition of finite type invariants of ZH S and give equivalent reformulations of our
notion. We show that our invariants form a filtered commutative algebra and are of
finite type in in the sense of Ohtsuki and thus conclude that the associated graded
algebra is a priori finite dimensional in each degree. We discover a new set of re-
strictions that Ohtsuki’s invariants satisfy and give a set of axioms that characterize
the Casson invariant. Finally, we pose a set of questions relating the finite type
3-manifold invariants with the (Vassiliev) knot invariants.
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1. INTRODUCTION

1.1. History. In recent years there has been a lot of progress defining (geometrically
and combinatorially) knot and 3-manifold invariants. A unifying approach to these
invariants is the concept of a topological quantum field theory (T'QFT for short)
in 2 + 1 dimensions, [At]. Witten [Wi2], using path integrals with a Chern-Simons
action (a not yet defined infinite dimensional integration) gave examples of such
theories depending on a semisimple compact Lie group and an integer.

Shortly afterwards, Reshetikhin-Turaev [RT1], [RT2], (and simultaneously many
other authors [Koh], [Ku], [KR], [Po], [TW]), used equivalent initial data (namely
semisimple Lie algebra and a primitive complex root of unity) as in Witten’s Chern-
Simons theory and combinatorially defined TQFT in 2 + 1 dimensions. TQFT's
in 2 + 1 dimensions give rise to (complex valued) invariants of oriented, closed 3-
manifolds, and invariants of framed colored links in 3-manifolds.

The path integral approach to topological quantum field theories suggests the exis-
tence of nonperturbative and perturbative knot and 3-manifold invariants. Examples
of nonperturbative knot invariants are the values at roots of unity of colored Jones
polynomials of knots, [RT1]. Examples of nonperturbative 3-manifold invariants are
the Reshetikhin-Turaev invariants [RT2]. Examples of perturbative (or finite type)
knot invariants are the Vassiliev invariants, [B-N1], [BL], [Va]. For the Vassiliev
invariants of knots in S® one has:

e an axiomatic definition,

e a general existence theorem [B-N1], [Kol], [LM],

e a comparison theorem to the above mentioned nonperturbative kont invari-
ants [B-N1], [Dr], [Ka], and to the Chern-Simons theory perturbative knot
invariants [BT], and finally

e ways of calculating them, from combinatorics of chord diagrams [B-N2].

The situation with perturbative (or finite type) 3-manifold invariants is puzzling.
On the one hand perturbative Chern-Simons theory predicts the existence of invari-
ants of a pair (M, p) where M is a rational homology 3-sphere and p € Hom(x1(M), &)
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(G is a fixed compact semisimple Lie group here). In cases of acyclic p one has such
invariants [AxS1], [AxS2], [Ko2]. However, these invariants do not solve any of the
above mentioned problems,essentially due to the absence of surgery formulas.

1.2. A review of Ohtsuki’s definition. On the other hand, Ohtsuki [Ohl] re-
cently defined finite type invariants for integral homology 3-spheres (Z H S for short).
His definition was inspired by the notion of finite type knot invariants. Let us review
his definition and introduce some notation. Let M denote the vector space (over Q)
on the set of oriented integral homology 3-spheres (ZH S for short). A link L C M
in a ZHS sphere is called algebraically split if the linking numbers between any two
components vanish. A framing f = (f1,..., f.) for an n component link is a sequence
of integers associated to each component. !

A framed link (L, f) in a ZHS M is called unimodular if f; = £1 for all 7. A link
L C M is called boundary if each component bounds a Seifert surface, and the Seifert
surfaces are disjoint from each other. A framed link (L, f) is called AS (respectively
B) admissible if it is algebraically split (respectively, boundary) and unimodular.
For every framed link (L, f) in M we denote by x(L, f; M) the result of doing Dehn
surgery on L in M, [Ro]. For a framed link (L, f) in M we denote

(1) (L, f; M) = 32 (=D)FIN(L, F(L); M) € M

L'CL

Let us define two decreasing filtrations F2" (respectively, F,) on the vector space M
as follows: F2"M (respectively, F,, M) is the subspace spanned by (L, f, M) for all
B (respectively, AS) admissible unimodular links of m + 1 components. We can now
state the following definition, due to Ohtsuki [Oh1]:

Definition 1.1. [Oh1] A € F2"L is an invariant of ZH S of type m if A\(FSk, L) =0,
i.e. if for every admissible AS link L of m 4+ 1 components in a ZHS M, we have
that

(2) > (=D, AL M) =0

L'CL

Let FO'L = Umzofghﬁ. It is easy to show that FO"L is a filtered commutative
algebra (with pointwise multiplication). Let GO*£ (and more generally G,0O) denote
the associated graded algebra of F°"L (or more generally, of a filtered object F,O).

!Usually a framing for a link is a choice of a simply closed curve 4; on the tubular neighborhood
of each component L; such that the linking number between 7; and a meridian of L; is 1. Any two
framings of a single component differ by an integer number. Since the 3-manifolds that we consider
are oriented integral homology spheres, canonical (otherwise called zero) framings exist, hence the
identification of the possible framings with the integer numbers.
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1.3. Variations for finite type 3-manifold invariants. In the present paper we
introduce another notion of finite type invariants of ZHS. We compare our definition
with Ohtsuki’s, (theorem 2) and with the finite type knot invariants (corollary 1.3)
and show that the associated graded vector space is a priori finite dimensional in
each degree. We discover a new set of restrictions that Ohtsuki’s invariants satisfy
(theorem 4). As an application, we deduce a nonexistence theorem for 3-manifold
invariants (proposition 1.4) and a characterization for the Casson invariant (theorem
5).
We begin with the following definition.

Definition 1.2. Let F,,£ denote the set of all invariants A (with values in a field,
assumed to be Q) of Z H S satisfying the following property (with the notation as in
section 1.2):

e For every oriented embedded surface ¥ — M in a ZHS M and every choice

V1. yYmsy1 Of oriented, separating, nonintersecting simple closed curves on
Y we have
(3) > II-D" MG s M) = 0

e, €{0,1} ¢

We call such A type m invariants of ZHS.

Let £L = U,,F,.L denote the space of finite type invariants of ZHS. L has an
increasing filtration F and a pointwise multiplication that respects the increasing
filtration and gives £ the structure of a filtered commutative algebra.

1.4. Statement of the results. We begin by giving an equivalent definition of
type m Z HS invariants.

Theorem 1. The following are equivalent:

(1) A € F.L (i.e. it satisfies the property of definition 1.2)

(2) X satisfies the property of definition 1.2 with the extra assumption that ¥ — M
is a surface of a Heeqaard splitting

(3) with the notation of section 1.2, for every b admissible link L C M of m + 1
components we have

(@ S (1)L (L) M) = 0
ie. A€ FnLl.

As far as comparing the two notions of finite type invariants of Z HS, we have the
following theorem:
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Theorem 2. There is a one-to-one map
(5) Fnll — For oL

Le., with the notation of 1.2 we have that F,M 2 F{h .M. Therefore, since
Ohtsuki [Oh2] proved that GO'L is a finite dimensional vector space, it follows that
s0 1s G, L.

We now introduce a map from knots to (linear combinations of) 3-manifolds defined
by K — (K,S?) := x(K,+1;5%) — (5?). Dually this map induces a map from 3-
manifold invariants to knot invariants. This map allows us to compare finite type

3-manifold invariants and knot invariants as follows:

Proposition 1.3. The above mentioned map descends to a map v - FO'L — Fr_1 V.
where F,V is the space of type m knol invariants (see section 2)

In particular, for m = 1,2 we can compare finite type ZHS invariants and knot
invariants as follows:

Theorem 3. Form =1,2
(1) the map Fo £ — F9r oL of theorem 2 factors through a map

(6) Fo L Fa, LOF

2) Furthermore, using proposition 1.3 the associated composite map F, L —
; g prop p p
FOrL — Fap 1V factors through a map F L — Forecialy) where Fyr=™y s
the space of special Vassiliev invariants.

Ohtsuki [Oh1] gave the following dimensions for the graded vector spaces FO"L:

m 011123
dimG,,LOM [ 1]0]0]1

We give a new set of restrictions that the type m invariants of Ohtsuki satisfy thus
deducing the following

Theorem 4. Every type 4 Ohtsuki’s invariant is of lype 3, i.e. GS"L = 0.

Proposition 1.4. If V is a type 3 knot invariant which can be extended to a ZHS
invariant so that it satisfies the following property:

(7) V(K) = V(x(K*;57)
(for all knots K in S®), then V is a type 2 knol invariant.
This in turn proves the following characterization of the Casson invariant:

Theorem 5. For an invariant A of ZHS the following are equivalent:
(1) A € FP"L of definition 1.2
(2) with the notation of section 1.2, \(FoM) =0
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(3) e FohL

(4) X e FOhL

(5) There are constants a,b such that A = a+bAcasson WheTe Acasson s the Casson
invariant [AM].

Remark 1.5. Ohtsuki [Oh2] had previously proved that (3) is equivalent to (5).

1.5. Plan of the proof. In section 2 we review the definition and a few properties
of finite type knot invariants, otherwise known as Vassiliev invariants. In section 3.1
we review some terminology and notation from Dehn surgery of links. In section 3.2
we prove proposition 1.3, thus giving a map from finite type invariants of ZH S to
(finite type) invariants of knots in S°.In section 3.3 we prove theorem 2. In section 4.1
we show surgery properties that our and Ohtsuki’s finite type 3-manifold invariants
satisfy and in section 4.2 we prove theorem 1 that restates our definition 1.2. In
section 5 we pose a set of questions relating the finite type knot and 3-manifold
invariants. In section 6.1 we partially answer our questions and prove theorem 3 and
in section 6.2 we give a new set of restrictions that Ohtsuki’s invariants satisty, thus
showing theorem 4 and proposition 1.4. Finally, in section 7 we collect an equivalent
set of properties that characterize the Casson invariant.

1.6. Acknowledgment. We wish to thank D. Auckly, L. Kauffman, E. Lerman, J.
Levine, K. Millett and J. Roberts for many useful comments. Especially we wish to
thank D. Bar-Natan and R. Kirby for many enlightening conversations.

2. FINITE TYPE KNOT INVARIANTS

In this section we review finite type knot invariants, otherwise known as Vassiliev
invariants [B-N1], [BL], [Va]. A standard reference for the next definitions and nota-
tion is [B-N1J.

A Vassiliev invariant of type m is a knot invariant V' which vanishes whenever it
is evaluated on a knot with more than m double points, where the definition of V is
extended to knots with double points via the formula

/ N
V<) =v () -v (A
The algebra V of all Vassiliev invariants (with values in Q) is filtered, with the type
m subspace F,,V containing all type m Vassiliev invariants. The associated graded
space of V is isomorphic to the space W of all weight systems. A degree m weight
system is a homogeneous linear functional of degree m on the graded vector space

A" of chord diagrams like in figure 1 divided by the 4T and framing independence
relations explained in figures 2 and 3.

Figure 1. A chord diagram: m
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Figure 2. To get the 47T relations, add an arbitrary number of chords in arbitrary positions

(only avoiding the short intervals marked by a ‘no-entry’ sign ©) to all six diagrams in exactly

the same way.

Figure 3. The framing independence relation: any dia-
gram containing a chord whose endpoints are not separated m =0

by the endpoints of other chords is equal to 0.

A" is graded by the number of chords in a chord diagram. It is a commutative and
co-commutative Hopf algebra with multiplication defined by juxtaposition, and with
co-multiplication A defined as the sum of all possible ways of ‘splitting” a diagram.
The co-algebra structure of A" defines an algebra structure on W. The Hopf algebra
A is defined in the same way as A", only without imposing the framing independence
relation.

There are natural maps W,, : 7,V — G, W = G, A™. For a type m Vassiliev
invariant V' it is natural to think of W,, (V) as “the m’th derivative of V”. W,, is not
isomorphism, however its kernel is F,,_1V. It therefore follows that F,,V is a finite
dimensional vector space for every m.

In the present paper we are primarily interested in type 5 knot invariants about
which much more is known.

We can summarize the results in the following proposition [B-N1]:

Proposition 2.1. The dimensions of the space of lype m Vassiliev invariants of
knots are given in the following table

m 01112345
dimGW | 101|134

Let us denote by A(m)([&’) = Cﬁ% lh=oA(K)(e") the m!* derivative of the Alexander-
Conway polynomial A(K) of a knot K [Ro] with the normalization as in [B-NGJ,
example 2.8. It is clear that AU € F,.V. Let us denote by F3r¢@!}) the vector
space of special Vassiliev invariants, i.e., these whose degree m part (i.e., whose image
in G,,V) consists of products of A™) (for S, m; = m).

We also need the following lemma:

Lemma 2.2. If a degree 4 weight system W € G4W wvanishes on the chord diagram
CD[4,1] of figure 4 then W = aW (A®W) 4 bW (AD?) for some constants a,b.

Proof. A little algebra shows that the intersection of the kernel of W(A®) and of
W(A®?) is one dimensional spanned by the chord diagram CD[4,1]. The algebra
can be performed by hand or using the program NAT.m of Bar-Natan [B-N2]. O
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AN

C'D[4,1]

Figure 4. A chord diagram with 4 chords

Lemma 2.3. If a degree 5 weight system W € W vanishes on the chord diagrams of
figure 5 then W = 0.

Proof. The claim follows from the fact that the chord diagrams in figure 5 form a basis
for G5 A", a proof of which can be obtained using the program NAT.m of Bar-Natan
[B-N2]. Notice that there are 36 chord diagrams of degree 5 but the quotient space
Gs A" obtained modulo the 47" and framing independent relations is 4 dimensional. [

CD[5,1]

C'D[5,2]

(. (=

CD[5,3] CD[5,4]

Figure 5. Some degree 5 chord diargams which form a basis for G5.A"

3. COMPARISON WITH OTHER APPROACHES

3.1. Preliminaries about links and 3-manifolds. In this section we review a
few preliminaries about 3-manifolds. All 3-manifolds are oriented unless otherwise
mentioned. In this paper we will restrict our attention to integral homology 3-spheres.

Let K C M be a knot ina ZHS M. A framing f of K is a simply closed curve in
the boundary of a tubular neighborhood of K in M that intersects a meridian m of K
once positively. Recall that a canonical (otherwise called zero) framing fo of K in M
exists: indeed since K is homologically trivial in M it bounds a Seifert surface, and let
fo be a parallel of K in the surface. The result is independent of the surface chosen.
For coprime integers p, ¢ let x(K?/%; M) denote the (closed) 3-manifold obtained by
doing p/q Dehn surgery on K i.e., the result of cutting M along the boundary of a
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tubular neighborhood of K and gluing back a standard solid torus S' x D? in such
a way that the standard meridian a x S* gets identified with pm + ¢fo. One obtains
immediately that H,(x(K?/% M), Z) ~ Z/|p|Z.

If ¥ — M is an embedded surface and v C M is an oriented, simple closed curve,
we denote by x(v"; M) the 3-manifold obtained by cutting M across X, performing
n Dehn twists along 4 and gluing ¥ back.

3.2. From knots to 3-manifolds. In this section we prove proposition 1.3. We
begin by recalling the map from (framed) links to (linear combinations of) 3-manifolds
of equation (1). We can compose this map with the one that sends algebraically split
links L in S® to a pair (L, f) where f denotes the +1 framing on every component
of L. We keep denoting the composed map from links in S* to M by L — (L). In
the following lemma all links drown will be algebraically split (in S3) and will have
framing +1 on each component. With these notations following lemma

Lemma 3.1. With the notation of section 1.2 the following identities hold in GO" M :

(8) D)= = (05 €62M
(9) ) -0X) = 0egdm

(10) (KoUL) = 0€G2"M

where KogU L is the disjoint union of L with an unknot Kq. In the above equations, the
left hand side represents links of m components. In the first equation, both strands
belong to the same component, and in the second equation tqo stands of the same
component go over/under lwo strands of another component.

Proof. A proof was first given by Ohtsuki in [Oh2]. It is a simple consequence of Kirby
moves and the definition of the map (.). Note that we could also give a formula in
FO" M, rather than in the graded space G9"M, however, the above form of the
lemma suffices for our purposes. []

Proposition 1.3 now follows immediately by the first equation in (8). In the re-
maining part of the paper, it will be useful to describe the associated weight system
of the the finite type knot invariant of proposition 1.3. This can be done as follows:

Remark 3.2. Let A € FO'L, ¢y = (\) € F,,_1V the associated knot invariant of
proposition 1.3 and let Wy € G,,_1W be the associated degree m — 1 weight system.
One way to calculate the value of W) on a chord diagram C'D of m — 1 chords is as
follows: represent the chord diagram in a circle, resolve the crossing points between
chords in any way and replace each chord with an unknot as in figure 6. This way



10 STAVROS GAROUFALIDIS

we get an algebraically split m component link L(C' D) each component of which is
an unknot. By definition and using lemma 3.1 we see that

(11) Wi(CD) = \(L(CD))

Note that even though L(C'D) depends on the way we choose to resolve the crossing
points between the chords of the chord diagram, the value of ¥, is independent of
that choice as follows by lemma 3.1.

- D - D)

NI

Figure 6. Reconstructing algebraically split m component links from linear chord diagrams

of m — 1 chords. Here we take m = 4.

We believe that it is an interesting question (both for the sake of knot invariants,
but also for the sake of 3-manifold invariants) to study the map of proposition 1.3.

3.3. A comparison theorem. In this section we prove theorem 2. With the no-
tation of section 1.2 we will show that F,, M D .7::%”_'_34'\/1. In his fundamental paper
[Oh2] Ohtsuki described a (finite) generating set of the vector space GO" M. Let us
introduce some more notation before we recall his result. For m € N, let G[m] denote
the set of graphs with univalent and trivalent vertices with m edges.? We denote by
vi(I') the number of k valent vertices, e(I'), v(I') the number of edges and vertices of
such a graph I'. Let NI(I') denote the maximum number of nonintersecting edges.
For such a graph I' € G[m], Ohtsuki constructs an algebraically split link L(T") in
53 of m components (and framing +1 on each component) a follows: each edge is
represented by an unknot, and each trivalent vertex is represented by a Borromean
link). We can now state the following theorem of Ohtsuki:

Theorem 6. [Oh2] GO" M is generaled (as a vector space) by the set {L(T)}recpm]-
Theorem 2 now follows from theorem 6 and the following two lemmas:

Lemma 3.3. One has the following lower bounds for NI(I'):

o [fT' € G3m + 1] then NI(I') > m + 1.
o IfI' € G[3m + 2] then NI(I') > m.
e IfI' € G[3m + 3] then NI(I') > m.

Lemma 3.4. For every uni-trivalent graph I' we have that

(12) (L(T)) € FNinM

Zand vertex orientations, as was communicated to the author by Ohtsuki
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Proof. (of lemma 3.3) Let I' € (G[n], and let T be a spanning tree of it. Obviously we
have that e(7) = v(T) — 1 = v1(I') + v3(I") — 1. Moreover, an easy induction shows
that NI(T) > [B(Q—T)] (since T has at most trivalent vertices) and therefore that

(13) NI(T) > NI(T) >

@] _ [v1<r)+;g<r) - 1]

We need to show that [MEM;?’EB] > [ﬂ%u] +e(e(I")) where €(3k+1) = €(3k+2) =
0,¢(3k) = 0. Since I' € G[n] we have that 2e(I') = vy(I') + 3vs(I") therefore it suffices
to show that

(D) + 31)/2 - 1] T e(e(I))

(14) >

[vl(F) +o3(I") — 1
2

Now a case by case argument for each class of n mod 3 shows the result. [

Proof. (of lemma 3.4) We claim that the sublink L’ of L that consists of a set of
nonintersecting edges is a boundary sublink. In fact, we can attach discs with one
handle to each unknot that corresponds to a set of nonintersecting edges, in such a
way that each component of L’ bounds a genus 1 surface and that every two surfaces
are disjoint from each other. [

The proof of theorem 2 is complete.

Remark 3.5. In fact, the above proof shows a bit more namely,

e if I' € G[3m + 2] satisfies v1(1") # 1 then NI(I') > m + 1, and
o if I' € G[3m + 3] satisfies v1(I") # 0 then NI(T') > m +1

These lower bounds are sharp. For example the graph I' of figure 7 shows that
I' € G[15] but NI(I') =4 (and not 5).

Figure 7. An annoying graph
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4. PROPERTIES OF FINITE TYPE 3-MANIFOLD INVARIANTS

4.1. A surgery formula. In this section we prove a surgery formula for the invari-
ants A € 7, L. Let K be a knot in a ZHS M, and n € N. Let K((,) denote the
(0,n) cable of K i.e., a link of n components parallel to K with linking numbers zero.
We now have the following

Proposition 4.1. If A € F,L, K C M as above and n € N, then with the notation
of section 3.1 we have that

(15) A (K™ M) = é (:) DK (i) M)

Proof. Figure 8 shows that y(K'/"; M) and X(K(l(’ii')“’l; M) are diffeomorphic mani-
folds. Furthermore, for every 5 > 0 it follows by the definition of ¥, that

j .
i YAV
(16) OA(K Gy M) = Y (=1) k(k)A(le(i» M)
k=0

Furthermore K((;), is a boundary link of j components, therefore ¢\(K;)); M) = 0
for j > m. The result now follows by solving for A from equation (16). O

1/n 1
1)

2
2
2
pTO-C) =
<

1 1 n—2
Figure 8. Some Kirby moves relating 1/n surgery on K

Ezercise 4.2. Show that if A € F2"L and K C M a knot in a ZHS M, and n € N
then

3

(1) Ak s = 35

7=0

3

n

])%(K«j)); M)
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4.2. A restatement of definition 1.2. In this section we prove theorem 1.

Proof. (of theorem 1) Obviously, (3) implies (1) which implies (2). We will show that
(2) implies (3). Let L € M be a boundary link of m + 1 components in a ZHS M.
Let F be an imbedded surface in M of m + 1 components such that 0F = L. Fix an
identification of £ x [ with a bicollar of £ in M. Let v := (7,... ,Ym+1) be a collar
of OF in E. Then E x [ is a (disconnected) handelbody, but M \ E x I need not be.
In any case, attach 1-handles on £ x [ away from =~ x I to construct W such that
W, M \ W are both (connected) handelbodies. Let ¥ < M be the boundary of W.
Note that « x [ is a disjoint union of separating annuli in ¥, and 1/1 surgery on each
component of L corresponds to cutting M along ¥, performing 1 left-handed Dehn
twist along each component of 4 x I, and glueing back. Therefore (2) of theorem 1
implies (3). O

5. QUESTIONS

5.1. A few questions. In this section we pose some questions relating our notion
of finite type 3-manifold invariants with that of Ohtsuki (for 3-manifolds) and of
Vassiliev (for knots).

Question 1. With the notation of section 1.2 is it true that F,, M = FORM?

Remark 5.1. Theorem 2 shows that F, M 2O F9" .M. Note that if the above ques-
tion had a positive answer, it would imply that F,, M D FO* M and that GZ" M = 0
for m not a multiple of 3.

Question 2. Does the map v : FO'L — FapiV
e actually factor through a map
(18) FRL — FonV

preserving the filtration?
o If so, is it true that the graded map

(19) GomL = GapV

is one-to-one? '
o Is it true that the image of (19) is the space GoP*'V of special Vassiliev
invariants, i.e., products of coefficients of the Conway polynomial?

Question 3. Is it true for the invariants \,, defined in [Oh2] that \,, € F,,L£? Also
that \,, € ForL?

Question 4. Do (either of the two versions of) finite type invariants of Z H S separate
them?
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5.2. A general comment. We believe that the above mentioned questions will be
helpful in understanding knot invariants as well as 3-manifold invariants. One feature
of these questions is that they are (in principle) testable on a computer, which can
decide about the fate of some of them. The experimental knowledge is small so far.
Much remains to be done in analogy with the rather well developed theory of finite
type knot invariants.

6. CALCULATIONS

6.1. Questions 1, 2 for m = 1,2. In this section we partially answer questions 1,
2 in the case of m = 1,2 and prove theorem 3.

Proof. (of part (1) of theorem 3) Following the notation and the proof of theorem 2
in section 3.3 and remark 3.5 we see that the result follows from the the following
two claims (for m = 1,2):

Claim 6.1. For every I' € G[3m + 3] with v1(I') = 0 we have NI(I') > m + 1
Claim 6.2. For every I' € G[3m + 2] with v1(I') =1 we have NI(I') > m + 1
The proof of the above claims is given in the following lemmas 6.3 and 6.4. O

Lemma 6.3. Claim 6.1 holds for m =1,2.

Proof. For m = 1 it is easy to list all elements in G[6] (see [Ohl]) and check it by
hand. For m = 2 we could also list the relevant elements in [9] and check them
by hand. Instead we prefer to give an alternative argument as follows: Let I' € G[9]
with v1(I') = 0. Then v3(I') = 6 and every spanning tree T' of it has 5 edges. The
possibilities for a spanning tree are shown in figure 9.

—<

Case 1 Case 3
Case 2 Case 4

Figure 9. All possible trees with 5 edges

We now distinguish cases:

Case 1 We are done since NI(I') = 3.
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Case 2 It is easy to see that I' has a subdiagram of the form I';; or I'; 5 as in figure

10. Therefore we can choose a spanning tree of the form 75 ; or 75 3 and in both cases
we are reduced to case 1 and the result holds.

I'yq

I'y0

7

Ty M
Tz >
Figure 10. Subgraphs of I' and alternative spanning trees

Case 3 It is easy to see that I' has a subdiagram of the form I's ; or I's ; as in figure
11. Therefore we can choose a spanning tree of the form 75; or 75, which reduces

us to case 2 or 1 and the result holds.
T3, H
Ty > <

Figure 11. Subgraphs of ' and alternative spanning trees

I'sy

F32

)

A X

Case 4 It is easy to see that I' has a subdiagram of the form I'y; or I'y 5 as in figure
12. Therefore we can choose a spanning tree of the form 7, or T}, which reduces
us to case 1 or 2 and the result holds.

-}
F

Figure 12. Subgraphs of T' and alternative spanning trees

The proof of lemma 6.3 is complete. [
Lemma 6.4. Claim 6.2 holds for m = 1,2.
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Proof. The proof is analogous to lemma 6.3. m = 1 is easy. I[f m = 2 and I' € ([§]
with v1(I') = 1, then v3(I') = 5 and a spanning tree 7" has 5 edges. The possibilities
are shown in figure 9 and the cases are shown in figures 10, 11, 13. The proof of
lemma 6.4 is complete. [

|

Figure 13. Subgraphs of T' and alternative spanning trees

We can now prove the second part of theorem 3.

Proof. (of part (2) of theorem 3)

For m = 1 it is obvious. For m = 2, let A\ € FoL — F2"L, let vy € F5V be the
associated knot invariant and let Wy be the associated degree 5 weight system, (see
remark 3.2). Using remark 3.2 we see that W) vanishes on the chord diagrams of
figure 5, since the associated 5 component links of remark 3.2 have boundary sublinks
of 3 components. Therefore by lemma 2.3 we see that W, =0, i.e., vy € F4V. Now
letting W) be the associated degree 4 weight system, arguing as above, we see that
it vanishes on the chord diagram of figure 4 and therefore by lemma 2.2 we see that
the image of ), is in the space ffpecwlv of special type 4 knot invariants. [J
6.2. A new set of restrictions for Ohtsuki’s invariants. In this section we
prove theorem 4 and proposition 1.4 by introducing a new set of restrictions that the
finite type invariants of Ohtsuki have to satisfy. The main idea is to study the map
Y of 1.3.

Proof. (of theorem 4) Let us assume that A\ € G?"L. Let ¢y be the associated type
3 knot invariant as in remark 3.2 and in proposition 1.3. It follows from theorem
6 of Ohtsuki that A € G¢"L is determined by its value on the graph — »— (with
the two possible vertex orientations). Choosing the counter clock-wise orientation
on each vertex of it, and recalling the discussion of section 3.3 (in particular, uni-tri
valent graphs correspond to algebraically split links in S® which correspong to linear
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combinations of ZH S, using +1 framing on each component) we have the following
equality:

(20) M) = A 8%) = AT 5%) + A(5%)

(21) = a(Ko) — 29 (T4)

where K denotes the knot (in S%) obtained by blowing down the three components
. of —¢»—and T, denotes the knot in S* obtained by blowing down (with +1

framing) any two components of ﬁ< (indeed, each component of —¢ »—is unknotted
(with linking numbers zero with the other components and with framing +1) and
remains unknotted after blowing down the other components. This shows that T,
exists). In fact, T is the right handed trefoil.

In other words, X is determined by the type 3 knot invariant ¢». We can now finish
the proof of theorem 4 as follows: A basis for type 3 knot invariants is 1,.J®), J©)
(where J(™(K) := %MZOJ(K)(&) is the m' derivative of the Jones polynomial).
A calculation shows that J™(Ky) = 2J0(T,) for m = 2,3.3

Therefore, t\(— 3»—) = 0. Similarly, had we chosen a different vertex orientation

of the graph — -, KpandTy would be replaced by their mirror image and still
Uy (—>—) = 0. Therefore, G4L°" =0. O

Proof. (of proposition 1.4) Let V = aJ® 4 5J®) € FV be a type 3 knot invariant
satisfying the assumptions of proposition 1.4. Figure 15 shows two knots K3 and
K4 with the property that —1 surgery on them gives diffeomorphic ZHS. The knots
appear in [Li] as an example of distinct knots in S® whose —1 surgery gives diffeomor-
phic Z homology spheres. We are indebted to R. Kirby for pointing out this reference
to us. Since x(K3';S%) and x(K;';S®) are diffeomorphic ZH S, after a change of
the orientation we obtain that x(rKi'; S%) and y(7K;'; 5®) are dlffeomorphlc ZHS,
where 7K is the mirror image of a knot K in S2. Therefore we have that

(22) aJB(1K3) + bJO(1K3) = aJD (7 K,) + b (1 Ky)
The Jones polynomials of them are given as follows:

(23) J(TK3)(q) = —q¢ > +2¢7°-2¢""+3-2¢+2¢°—¢°
(24) JrK)g) = ¢7 ¢ ¢ +14+¢+ ¢ —q" +¢" = ¢°

from which we can deduce that J@(K3) = J®)(K,) = —6 (this is not a surprise,
since the Casson invariant exists!) but J(B)(Kg) =0+# J(S)(K4) = —180. Therefore,

3There are various programs [B-N2], [EM], [Och] that calculate the Jones polynomial of knots.
As a check, we used all of the above mentioned and got the same results. We thank D. Dar-Natan,
L. Kauffman, K. Millet and M. Ochiai for their help in distibuting and running the programs.
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b=0 and V is a type 2 knot invariant. Needless to say, we do not understand why
this happens. O

Remark 6.5. Note that proposition 1.4 implies in order to show theorem 4 it suffices

to check that J®)(Ky) = 2J3)(T,).

Fzercise 6.6. (after a conversation with L. Kauffman) Show that K3 = 7 K3, which
actually explains why J(7K3)(q) = J(7K3)(¢~") and therefore that J®) (7 K3) = 0.

B

Figure 14. Two different views of the same two component link

220

Figure 15. The result of figure 14 after blowing down K5 (left) or Ky (right)

7. UNIQUENESS OF THE CASSON INVARIANT

In this section we collect our results to show theorem 5. The first statement (1) is
equivalent to (2) because of theorem 1. (2) implies (3) (by theorem 3) which implies
(4). (4) implies (5) (by theorem 4) and finally (5) implies (1) by Casson, [AM].

Remark 7.1. Tt is surprising that we only used nonintersecting, bounding, simply
closed curves in surfaces to characterize the Casson invariant.



ON FINITE TYPE 3-MANIFOLD INVARIANTS 1 19

REFERENCES

[AM] S. Akbulut, J. C. McCarthy, Casson’s invariant for oriented homology 3-spheres: an ex-
position, Princeton Math Notes, Princeton, 1990.
[At] M. F. Atiyah, Topological Quantum Field Theories, LH.E.S. Publ. Math. 68 (1988) 175-
186.
[AxS1] S. Axelrod, I. M. Singer, Chern-Simons pertrubation theory, Proc. XXth DGM Conference
(New York, 1991) World Scientific, (1992) 3-45.
[AxS2] S. Axelrod, I. M. Singer, Perturbative aspects of Chern-Simons topological quantum field
theory II, Jour. Diff. Geom. 39 (1994) 173-213.
[B-N1] D. Bar-Natan, On the Vassiliev knot invariants, preprint 1992, (to appear in Topology).
[B-N2] Computer data files available via anonymous file transfer from math.harvard.edu, user
name ftp, subdirectory dror. Read the file README first.
, Non-associative tangles, to appear in the Georgia Inter. Topology Conference
proceedings.
[B-NG] D. Bar-Natan, S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, preprint 1994,
submitted to Inventiones.
[BL] J. Birman, X-S-Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math. 111 (1993)
225-270.
[BT] R. Bott, C. Taubes, On the self linking of knots, preprint 1994.
[Dr] V. G. Drinfeld, On quasitriangular quasi Hopf algebras and a group closely connected with
Gal(Q/Q), Leningrad Math. J. 2 (1991) 829-860.
[EM] B. Ewing, K. Millett, poly.c, available at millett@math.ucsb.edu.
[Ka] C. Kassel, Quantum groups, to appear in GTM, Springer-Verlag, Heidelberg 1994.
[KR] L. Kauffman, Invariants of 3-manifolds derived from finite dimensional Hopf algebras,
hep-th preprint 9406065.
[KM1] R. Kirby, P. Melvin The 3-manifold invariants of Reshetikhin-Turaev for s((2,C), Inven-
tiones, 105 (1991) 473-545.
[Koh] Kohno, Topological invariants of 3-manifolds using representations of mapping class groups
I, Topology, 31 (1992) 203-230.
M. Kontsevich, Vassiliev’s knot invariants, Adv. in Sov. Math., 16(2) (1993), 137-150.
, Graphs, homotopical algebra and low dimensional topology, preprint 1992.
G. Kuperberg, Non-involutory Hopf algebras and 3-manifold invariants, preprint 1994.
T. Q. T. Le J. Murakami, The universal Vassiliev- Kontsevich invariant for framed oriented
links, Max-Plank-Institut Bonn preprint, 1993.
[Li] W.B.R. Lickorish Surgery on knots, Proc. Amer. Math. Society, 60 (1976) 296-298.
[Mul] H. Murakami, Quantum SU(2) invariants dominate Casson’s SU(2) invariant, preprint
1993.

[Kol
[Ko2

[Ku
(LM

[Mu2] Quantum SO(3) invariants dominate SU(2) invariants of Casson and Walker,

preprint 1993.

[Och] M. Ochiai, Knot theory by compuler, available at ochai@ics.nara-wu.ac.jp.
[Oh1] T. Ohtsuki, A polynomial invariant of integral homology spheres, preprint 1993.
]
]

[Oh2 Finite type invariants of integral homology 3-spheres, preprint 1994.
[Po] M. Polyak, A graphical approach to the 3-manifold invariants of Turaev and Viro, J. Knot
Theory 1 (1992) 219-240.
[RT1] N. Reshetikhin, V. Turaev, Ribbon graphs and their invariants derived from quantum
groups, Commun. Math. Phys. 127 (1990) 1-26.
, Invariants of 3-manifolds via link polynomuals and quantum groups, Invent. Math.

[RT2]




20 STAVROS GAROUFALIDIS

103 (1991) 547-597.
[Ro] D. Rolfsen, Knots and links, Publish or Perish, 1976.
[TW] V. Turaev, H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple
Lie algebras, Inter. J. Math. 4 (1993) 323-358.
[Va] V. A. Vassiliev, Complements of discriminanis of smooth maps, Trans. of Math. Mono. 98
Amer. Math. Society., Providence, 1992.
[Wa] K. Walker, An extension of Casson’s invariant, Princeton Univ. Press 1993.
[Wi2] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121
(1989) 360-376.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE,
MA 02139

FE-mail address: stavros@math.mit.edu



