
EXPERIMENTAL EVIDENCE FOR THE VOLUME CONJECTURE FOR THE

SIMPLEST HYPERBOLIC NON-2-BRIDGE KNOT
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Abstract. Loosely speaking, the Volume Conjecture states that the limit of the n-th colored Jones poly-
nomial of a hyperbolic knot, evaluated at the primitive complex n-th root of unity is a sequence of complex
numbers that grows exponentially. Moreover, the exponential growth rate is proportional to the hyperbolic
volume of the knot.

We provide an efficient formula for the colored Jones function of the simplest hyperbolic non-2-bridge
knot, and using this formula, we provide numerical evidence for the Hyperbolic Volume Conjecture for the
simplest hyperbolic non-2-bridge knot.
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1. Introduction

1.1. The Hyperbolic Volume Conjecture. The Volume Conjecture connects two very different ap-
proaches to knot theory, namely Topological Quantum Field Theory and Riemannian (mostly Hyperbolic)
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Geometry. The Volume Conjecture states that for every hyperbolic knot K in S3

(1) lim
n→∞

log |JK(n)(e
2πi
n )|

n
=

1

2π
vol(K),

where

• JK(n) ∈ Z[q±] is the Jones polynomial of a knot colored with the n-dimensional irreducible repre-
sentation of sl2, normalized so that it equals to 1 for the unknot (see [J, Tu]), and

• vol(K) is the volume of a complete hyperbolic metric in the knot complement S3 − K; see [Th].

The conjecture was formulated in this form by Murakami-Murakami [MM] following an earlier version due
to Kashaev, [K]. The Volume Conjecture is an analytic question that contains two parts:

(a) to show that a limit of a sequence of complex numbers exists, and
(b) to identify the limit with a known geometric invariant of a knot.

Currently, the Volume Conjecture is known for only for the simplest hyperbolic knot: the 41 (due to
Ekholm), [M]. For the 41 knot, due to special circumstances there is a 1-dimensional sum formula for
J41

(n)(e2πi/n) where the summand is a closed-form positive term. In that case, it is elementary to see that
the volume conjecture holds. There is no other known knot that exhibits similar behavior.

Despite the optimism and the belief in the conjecture within the area of Quantum Topology, there is
natural suspicion about it, due to lack of evidence.

There are several difficulties in the Volume Conjecture for a knot K: the left hand side involves a sequence
of polynomials JK(n) (for n = 1, 2, . . . ) with little understood relation to the geometry of the knot comple-
ment. In fact, a major problem is to give efficient multisum formulas for the polynomials JK(n). A naive

approach based on cables computes JK(n) in 2cn2

steps, where n is the number of crossings. An alternative
state-sum formula (see [GL, Sec.3.2]) computes JK(n) in nc steps. In either case, when c = 18 and n = 500,
these formulas are inefficient in numerically computing the left hand side of (1).

For a fixed knot, the polynomials JK(n) are not random. In [GL], it was proven that they satisfy a linear
q-difference equation. Moreover, it was explained that the results of [GL] together with the WZ algorithms
(see [WZ]) can in principle compute the above mentioned linear q-difference equation. However computing
the q-difference equation for knots with 6 crossings is already a difficult task. Thus, this method is of little
use in numerical computations of the left hand side of (1).

In [Ga] and [GG], the first author announced a program to prove the existence of the limit in the Volume
Conjecture using asymptotics of solutions of linear q-difference equations. The main idea is that asymptotics
of solutions of difference equations with a small parameter are governed by the average (on the unit circle) of
the corresponding eigenvalues. When the eigenvalues do not collide or vanish, then this analysis was carried
out in [GG]. In the Volume Conjecture, it is known that the eigenvalues collide (ven for the 41 knot), and
the analysis will be extended to cover this case in [CG]. Combined with the AJ Conjecture of [Ga], this
program might identify the limit with the hyperbolic volume.

Among the hyperbolic knots, the 2-bridge knots are a tractable family with well-understood representation
theory.

The purpose of the present paper is to provide

• An efficient formula for the colored Jones function of the simplest hyperbolic non 2-bridge knot: the
k43 knot,

• With the use of that formula, we provide numerical evidence for the Volume Conjecture for the k43

knot.

The key idea for efficient formulas for JK(n) is fusion as we explain below.
Aside from the above goals, we provide computation of numerous topological and geometric invariants of

k43, such as a presentation of its fundamental group, peripheral system, Alexander polynomial, A-polynomial,
rank of Heegaard Floer Homology, volume of special Dehn fillings, invariant trace fields, as well as a multisum
formula for the colored Jones function.

Let us end this introduction with an observation. It appears that for the knot K0 = k43, the sequence
that appears on the left hand side of Equation (1) is eventually monotone decreasing. The same behavior
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is also exhibited for several 2-bridge knots that the authors tried. Monotonicity is an important clue for
proving that the limit in the HVC exists. Let us formulate this as a conjecture:

Conjecture 1. For every knot K in S3, the sequence

log |JK(n)(e
2πi
n )|

n

is eventually decreasing, and bounded above by zero.

1.2. The knot K0. The word “simplest” does not refer to the number of crossings, but rather to the small
number of ideal tetrahedra that are needed for an ideal triangulation of its complement.

Consider the twisted torus knot K0, obtained from the torus knot T (3, 8) by adding a full positive twist to
two strands. Actually, K0 is the second simplest hyperbolic non-2-bridge knot with 4 ideal tetrahedra. The
simplest hyperbolic non-2-bridge knot k31 is the Pretzel knot (−2, 3, 7) requiring 3 ideal tetrahedra, with
same volume as the 52 knot; see [CDW]. However, the colored Jones function of k31 is rather complicated.

K0 has braid presentation b2(ab)8, where a = σ1, b = σ2 are the standard generators of the braid group
with 3 strands.

Figure 1. The knot K0, and an involution which negates its meridian and longitude.

K0 is a positive hyperbolic knot with 18 crossings. SnapPea identifies K0 with the knot k43 of the new
census, also known as m082 in the old census.

The notation k43 reveals that K0 is a hyperbolic knot whose complement can be triangulated with 4
hyperbolic ideal tetrahedra. It is the simplest hyperbolic non-2-bridge knot, as was discovered by [CDW].

K0 belongs to a family of twisted torus knots, and this family populates the census of simplest hyperbolic
manifolds other than the family of 2-bridge knots.

The Dowker code of K0 is:

18 1 14 −16 18 −20 22 −24 −26 28 −30 32 −34 36 −12 −2 4 −6 8 −10

K0 has symmetry group Z/2. An involution that negates the meridian and longitude is shown in Figure
1.

1.3. The quantum topology of K0. Let us define the quantum integer, the quantum factorial and the
quantum binomial coefficients by:

[n] =
qn/2 − q−n/2

q1/2 − q−1/2
[n]! = [1][2] . . . [n]

[
n
k

]
=

[n]!

[k]![n − k]!
,
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where [0]! = 1. The quantum binomial coefficients satisfy the following recursion relation:
[
n
k

]
= q−k/2

[
n − 1

k

]
+ q(n−k)/2

[
n − 1
k − 1

]
,

from which follows that

[
n
k

]
∈ Z[q±1/2].

For natural numbers a, b with b ≤ a, we denote

[a, b]! =
[a]!

[b]!
,

which also lies in the ring Z[q±1/2].

Definition 1.1. Let JK(n) denote the colored Jones polynomial of a knot K in S3 using the n-dimensional
irreducible representation of sl2, normalized to equal to 1 for the unknot; see [J, Tu].

The following theorem gives a triple sum formula for JK0
(n), where the summand is proper q-hypergeometric.

Theorem 1. For every natural number n, we have:

JK0
(n + 1) =

1

[n + 1]

2n∑

k=0,2

n+k∑

l=|n−k|,2

∑

z

(−1)
k
2
+zq−

3

8
(2k+k2)+ 7

8
(2l+l2)− 51

8
(2n+n2) [k + 1][l + 1]

[ 2n+k
2 + 1]!

[
k+l−n

2
n+2k+l

2 − z

] [
n+l−k

2
3n+l

2 − z

] [
n+k−l

2
2n+2k

2 − z

]

[
k

2

]
!2

[
2n− k

2
, z −

n + k + l

2

]
!

[
z + 1,

n + k + l

2
+ 1

]
!

Here
∑b

k=a,2 means summation for k = a, a + 2, . . . , b, for even b − a. Although the z summation is
infinite, only finitely many terms contribute. Explicitly, only the terms with z ∈ N,

max

(
2n + k

2
,
n + k + l

2

)
≤ z ≤ min

(
n + 2k + l

2
,
3n + l

2
,
2n + 2k

2

)

contribute.

Remark 1.2. The denominators in the above formula come from [(2n + k)/2 + 1]! and [n + 1]. When we
evaluate the summand at q = e2πi/(n+1), the order of the pole is 2: 1 from [(2n + k)/2 + 1]! and 1 from
[n + 1].

Remark 1.3. In [GL, Sec.3.2] using properties of R-matrices, Le and the first author gave a canonical
multisum formula for the colored Jones function of a knot which is presented as the closure of a braid.
Specifically, if the braid has c crossings, then the multisum formula involves summation over c variables. In
the case of the knot K0, it involves summation over 18 variables, which makes it intractable, symbolically
or numerically.

Remark 1.4. The well-known 3-term skein relation for the Jones polynomial

q

( )
− q−1

( )
= (q1/2 − q−1/2)

( )

allows one to compute naively the Jones polynomial of a knot with c crossings in 2c steps. By taking parallels,

it allows one to compute the n-th colored Jones polynomial of a knot in 2cn2

steps. For n = 500, and c = 18,
this requires

218×5002

≈ 101354634

terms.
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2. Numerical confirmation of the HVC for K0

Let

(2) VC(n) =
2π

n
log JK0

(n)|
q=e

2πi
n

.

Using a fortran program by the second author (presented in the Appendix), we have computed VC(n)
for n up to 502.

Here is a table of Re(VC(n)) versus n:

50 100 150 200 250

3.5

4

4.5

5

5.5

Here is a table of Im(VC(n)) versus n:

50 100 150 200 250

-0.4

-0.2

0.2

0.4

Here is a table of Re(VC(n)) versus Im(VC(n)):

3.25 3.5 3.75 4 4.25 4.5 4.75

-0.4

-0.2

0.2

0.4

There is an evident 12-fold periodicity that reflects the fact that K0 is a twisted (3, 8) torus knot.
Quantum Field Theory predicts an asymptotic expansion of the form:

(3) JK0
(n)(e2πi/n) ∼n→∞ envol(K0)/(2π)+niCS(K0)n3/2

(
C0 +

C1

n
+

C2

n2
+ . . .

)

for constants Ci (which depend on the knot K0) with C0 6= 0, and for CS(K0) ∈ R/Z.
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Fitting the data with least-squares for n = 21, . . . , 250 with log(n)/n, 1 and 1/n in Mathematica gives:

In[1]:=Fit[data, {Log[n]/n, 1, 1/n}, n]

gives

Out[1]:=

3.4750687755045777 -

5.518475184459029/n + 9.282495203373793 Log[n]/n

and plotting the data against the fit gives:

50 100 150 200 250

3.5

4

4.5

5

Here is a plot of the square of the error:

50 100 150 200 250

2 · 10 -9

4 · 10 -9

6 · 10 -9

8 · 10 -9

1 · 10 -8

This shows that the error of the fit is within 10−4.
Notice that vol(K0) = 3.474247 . . ., and 9.282495203373793/(2π) = 1.47735 . . .. Thus, the above data

provides strong numerical evidence for the terms vol(K0) and 3/2 in Equation (3).
Here is a table of Re(VC(2 + 10n)) versus n for n = 0, . . . , 50:

100 200 300 400 500

3.25

3.5

3.75

4

4.25

4.5

4.75

5
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Here is a table of Im(VC(2 + 10n)) versus n for n = 0, . . . , 50:

100 200 300 400 500

-0.3

-0.2

-0.1

0.1

0.2

0.3

Here is a table of Re(VC(n)) versus Im(VC(2 + 10n)) for n = 0, . . . , 50:

1 2 3 4 5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

3. Proofs

3.1. Fusion. The colored Jones function JK(n) ∈ Z[q±] of a knot K in S3 was originally defined using
R-matrices, that is solutions to the Yang-Baxter equations; see [J] and [Tu]. These solutions are intimately
related to the representation theory of quantum groups. In [GL] Le and the first author used the theory of
R-matrices to give formulas for the colored Jones function of a knot K. Given a braid presentation β of a
knot K (that is, a word of length c in the braid group of some number of strands), one constructs a proper
q-hypergeometric function Fβ(n, k1, . . . , kc) such that

JK(n) =
∞∑

k1,...,kc=0

Fβ(n, k1, . . . , kc).

The good thing is that for fixed n ∈ N, only finitely many terms are nonzero. Moreover, the function Fβ takes

values in the ring Z[q±1/2], i.e., it has no denominators. Thus, we can commute summation and evaluation
at an complex n-th root of unity.

The bad thing is that the above sum is multidimensional, which makes evaluation, symbolic or numerical,
impractical.

Thus, we have to find alternative form of presenting JK(n). To achieve this, we will use the Kauffman
bracket skein module, and fusion. The latter molds together pieces of a knot, producing knotted trivalent
graphs. An advantage of fusion is that it deals nicely with twists (see the figures below), and thus it cuts
down on the number of summation variables. A disadvantage of fusion is that it produces denominators
which vanish when we evaluate at complex nth roots of unity. So, fusion gains low number of summation
variables, at the cost of producing denominators. Of course, if one expands out all the terms, then the
denominators will eventually cancel out, since the colored Jones function is a Laurent polynomial. However,
expanding out denominators and canceling is too costly, and not efficient enough. The programs developed
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by the second author demonstrate that we can control fusion numerically, even when evaluating at complex
roots of unity.

3.2. A review of the Kauffman bracket of knotted trivalent graphs. Let us recall what is fusion. A
standard reference for this section is [MV] and [KL]. We will work with the Kauffman bracket skein module
of links, summarized in the following figure:

= A + A−1 , = −(A2 + A−2)

Here and below, A = q1/4. The proof of Theorem 1 will use fusion, leading to knotted trivalent graphs;
the latter are framed embedded colored trivalent graphs. Let us recall the basic rules of fusion, from [MV]
(see also [KL]):

i j
=

∑

k

〈k〉

〈i, j, k〉

i j

i j
k

ba

c
= δ(c; a, b)

c

a b a
= µ(a)

a

Here, 〈i, j, k〉 is defined below and

〈k〉 = (−1)k[k + 1] = (−1)k A2k+2 − A−2k−2

A2 − A−2

µ(k) = (−1)kAk2+2k

δ(c; a, b) = (−1)kAij−k(i+j+k+2) .

With the use of fusion one can reduce the computation of knotted trivalent graphs to the values of a
standard trihedron and tetrahedron.

Following standard skein theory conventions, a triple (a, b, c) of nonnegative integers is called admissible

if a + b + c is even and |b− c| ≤ a ≤ b + c. Given an admissible triple, let i = (b + c− a)/2, j = (a + c− b)/2
and k = (a + b − c)/2 denote the corresponding internal colors. Of importance are the values of a colored
trihedron

c

a
b = 〈a, b, c〉

and tetrahedron
AB

E
A C

F

=

〈
A B E
D C F

〉
.

Using the notation of Masbaum-Vogel [MV] and also Kauffman-Lins [KL], the trihedron and tetrahedron
coefficients are given by:

〈a, b, c〉 = (−1)i+j+k [i + j + k + 1]![i + j]![i + k]![j + k]!

[a]![b]![c]!
〈

A B E
D C F

〉
=

∏3
i=1

∏4
j=1[bi − aj ]!

[A]![B]![C]![D]![E]![F ]!

(
a1 a2 a3 a4

b1 b2 b3

)
,

where
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• we assume that the triples (A, B, E), (B, D, F ), (E, D, C) and (A, C, F ) are admissible,
• Σ = A + B + C + D + E + F ,

a1 = (A + B + E)/2 b1 = (Σ − A − D)/2

a2 = (B + D + F )/2 b2 = (Σ − E − F )/2

a3 = (C + D + E)/2 b3 = (Σ − B − C)/2

a4 = (A + C + F )/2,

• and
(

a1 a2 a3 a4

b1 b2 b3

)
=

∑

max(aj)≤ζ≤min(bi)

(−1)ζ [ζ + 1]!
∏3

i=1[bi − ζ]!
∏4

j=1[ζ − aj ]!
.

3.3. Proof of theorem 1. Recall that K0 is the closure of the braid b2(ab)8 = ba−1(ab)9 = ba−1c3 where
c = (ab)3 represents a full twist. c can be obtained by first giving a full twist on the first two strands, and
then a full twist of the third strand around the first two. Thus, K0 is obtained from the closure of the
following figure:

+5

+6

We want to compute the Kauffman bracket 〈K0, n〉 colored by n, using the zero framing of K; this differs
from the blackboard framing by +18. Now, let us fuse the first two strands, and undo the +5 half twists.
We obtain that

〈K0, n〉 = µ(n)−18
∑

k

〈k〉

〈n, n, k〉

+5

+6

k =
∑

k

〈k〉

〈n, n, k〉
δ(k; n, n)5

+6

k

where the color of any noncolored edges is n. Let us isotope the fused strand above the +6 half twists, fuse
again, and then undo the +6 half-twists. We obtain that

〈K0, n〉 = µ(n)−18
∑

k,l

〈k〉

〈n, n, k〉

〈l〉

〈l, k, n〉
δ(k; n, n)5δ(l; k, n)6

k

l
k
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Now, let us close up to a tetrahedron. Taking into account two half-twists, we obtain that

〈K0, n〉 = µ(n)−18
∑

k,l

〈k〉

〈n, n, k〉

〈l〉

〈l, k, n〉
δ(k; n, n)4δ(l; k, n)7

〈
n n k
n l k

〉

Now, let us define the renormalized trihedron and tetrahedron coefficients 〈·〉′ by:
〈

A B E
D C F

〉
=

1

[A]![B]![C]![D]![E]![F ]!

〈
A B E
D C F

〉′

〈a, b, c〉 =
1

[a]![b]![c]!
〈a, b, c〉′

Since the colors on the edges of the tetrahedron cancel the colors of the edges of the trihedron, we obtain

〈K0, n〉 = µ(n)−18
∑

k,l

〈k〉

〈n, n, k〉′
〈l〉

〈l, k, n〉′
δ(k; n, n)4δ(l; k, n)7

〈
n n k
n l k

〉′

In the above expression, µ(n)−18δ(k; n, n)4δ(l; k, n)7 is a monomial of A.
The ai and bj ’s for the tetrahedron in question are given by:

a1 = a3 = (2n + k)/2

a2 = a4 = (n + k + l)/2

b1 = (n + 2k + l)/2

b2 = (3n + l)/2

b3 = n + k.

Since ai − bj are the internal colors at the vertices of the tetrahedron, it follows that 6 quantum factorials
cancel. In other words, we have:

〈k〉

〈n, n, k〉′
〈l〉

〈l, k, n〉′

3∏

i=1

4∏

j=1

[bi − aj ]! =

3∏

i=1

[bi − a1]!

3∏

i=1

[bi − a3]!

Combining the remaining 6 quantum factorials, and using the fact that

JK(n + 1) =
(−1)n

[n + 1]
〈K, n〉,

the result follows. �

Remark 1.2 follows from the fact that the quantum binomial coefficients are Laurent polynomials.

4. The classical topology and geometry of K0

In this largely independent section, we give several facts about the classical geometry and topology of K0.

4.1. The topology of K0. Torus knots can be embedded in closed surfaces of genus 1. Likewise, twisted
torus knots can be embedded in closed surfaces of genus 2. K0 is a (1, 1) knot, that is a special kind of a
tunnel number 1 knot; see for example [GMM] and [MSY]. Consequently, its fundamental group has rank 2,
i.e., is a 2-generator and 1-relator group, where the meridian is one of the generators. Note that 2-bridge
knots are also (1, 1) knots; thus from the point of view of presentation of the fundamental group, the knot
K looks similar to a 2-bridge knot, although it is not one. Dean studies which twisted torus knots are (1, 1)
knots, [De].

SnapPea reveals that the fundamental group of K0 has the following presentation:

π1(S
3 − K0) = 〈a, b|aBabaBabbaBaBabbaBaBabb〉

where the canonical meridian-longitude pair (m, l) is given by

(m, l) = (a, ABBAbABB),

where A = a−1 and B = b−1.
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The Alexander polynomial of K0 is:

t−8 − t−7 + t−5 − t−4 + t−2 − t−1 + 1− t + t2 − t4 + t5 − t7 + t8

and the sum of the absolute value of its coefficients is 13. By [GMM], and a private conversation with J.
Rasmussen, 13 is also the rank of the Heegaard Floer Homology of Oszvath-Szabo; [OS].

4.2. The geometry of K0. SnapPea numerically computes the volume of K0 to be:

vol(K0) = 3.474247 . . . .

Of importance to us is the A-polynomial of K0, which parametrizes the complex 1-dimensional part of the
SL2(C) character variety, restricted to the boundary of the knot complement. The A-polynomial of a knot
was introduced by [CCGLS], and is important in

(a) the study of deformations of the complete hyperbolic structure,
(b) the study of slopes of essential surfaces in the knot complement with nonempty boundary, and
(c) in the shape of linear recursion relations of the colored Jones function, [Ga].

Since K0 has rank 2, with a bit of work one can compute the A-polynomial of K0, as was explained in
[CCGLS]. The method of [CCGLS, Sec.7] assigns 2 by 2 matrices to the generators of the fundamental
group, and uses resultants to compute the polynomial relation satisfied by the eigenvalues of the meridian
and the longitude.

Alternatively, SnapPea provides an ideal triangulation of the knot complement of K0, and one can write
down the corresponding gluing equations and use elimination (via Groebner basis) to compute the polynomial
relation satisifed by the eigenvalues of the meridian and the longitude. Boyd has developed a few more
methods for computing the A-polynomial once its expected degree is known. Either method gives that
A(l, m) = (l− 1)B(l, m2) where B(l, m) is an irreducible polynomial of (l, m) of degree 10× 136. Explicitly,
we have:

B(l, m) = l10 + l9m13 + l9m14 − l8m25 + 4l8m26 − 8l8m27 + 3l8m28 − l8m29 − 3l7m40

−4l7m41 − l7m42 + 2l6m55 − 2l5m66 + 11l5m67 − 6l5m68 + 11l5m69 − 2l5m70

+2l4m81 − l3m94 − 4l3m95 − 3l3m96 − l2m107 + 3l2m108 − 8l2m109 + 4l2m110

−l2m111 + lm122 + lm123 + m136.

We are interested in the 10 roots λk(t) (so-called eigenvalues) of the equation

B(λ, eit) = 0.

We have that:
B(l, 1) = (l + 1)6(l − 1)4.

Since B is reciprocal with real coefficients, it follows that if λk(t) is an eigenvalue, so is the complex conjugate
λ̄k(t) and the inverse 1/λk(t). Thus, the set of the eigenvalues has 4-fold symmetry. It turns out that 6
eigenvalues λk(t) for t = 5, . . . , 10 have magnitude 1 for all t ∈ [0, 2π]. The remaining four eigenvalues are

λ1(t), λ2(t) = λ1(2π − t), λ3(t) = λ̄1(t), λ4(t) = λ̄1(2π − t),

where λ1 is chosen so that the slope of its magnitude at 0 is bigger than the slope of the magnitude of λ2 at
0.

The plot of the set {log |λk(t)| |k = 1, . . . , 10} versus t is:
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Collision of eigenvalues occurs only at t = 0, t = π and t = 2π, as follows from computing the roots of the
discriminant DisclB(l, m) which lie on the unit circle.

Using the formula for the variation of the volume in terms of the A-polynomial, it follows that
∫ π

0

log |λ1(t)| dt = V1 + V3

∫ π

0

log |λ2(t)| dt = V2 − V3

where

V1 = 3.474247 . . . , V2 = 1.962737 . . . , V3 = 0.490684 . . .

Here, Vi = vol(ρi) for i = 1, 2, 3 where

• ρ1 is the discrete faithful representation, passing through (m, l) = (1,−1).
• ρ2 is another solution, passing though (m, l) = (1, 1),
• ρ3 is a discrete faithful of the hyperbolic Dehn filling K(2, 0).

Using Snap, Boyd informs us that the invariant trace fields Ei of ρi are of type

• 6, [4, 1], −753079 for ρ1, (that is, of degree 6, with 4 real embeddings, 1 complex embedding and
conductor −753079),

• 4, [2, 1], −283 for ρ2 and ρ3.

It is a coincidence that E2 = E3, which implies that V3 = V2/4.
The entropy of a knot was defined in [GG]. Using the above information, it follows that the possible

values of the entropy (at t = 2π) are given by the areas of the following curves:

(or their reflection about t = π). These values are, respectively:

2(V1 + V3) = 7.929864 . . .

V1 + V2 = 5.436985 . . .

2(V2 − V3) = 2.94411 . . .

V1 + V3 = 3.964932 . . .

V2 − V3 = 1.472053 . . . .

Notice that none of these values equals to the volume V1 of K0.

5. Towards the AJ conjecture for the knot K0

It was proven in [GL] that the sequence JK(n) for n = 0, 1, 2, . . . of Laurent polynomials is q-holonomic,
that is it satisfies a recursion relation.

Actually, it was explained in [GL] that the colored Jones function of any knot is given as a multisum
of a q-proper hypergeometric function. Using the general theory of Wilf-Zeilberger, it follows that such
multisums always satisfy recursion relations.

In general, the multisums in [GL] use as many summation variables as the number of the crossings of the
knot, which makes things impractical to compute. In our case, we may use Theorem 1 which is a triple sum
only.

What can one say about a recursion relation for JK0
? It was conjectured in [Ga] (as part of the AJ

Conjecture) that JK0
satisfies a degree 11 recursion relation of the form:

(4)

11∑

j=0

aj(q
n, q)JK0

(n + j) = 0

where

• aj(u, v) ∈ Q(u, v) are rational functions with rational coefficients,
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• the recursion relation is a q-deformation of the A-polynomial. That is,

11∑

j=0

aj(M
2, 1)Lj = A(L, M).

•
∑11

j=0 aj(Q, q)Ej is reciprocal in the sense that

aj(Q, q) = εja11−j(q
−11Q−1, q)

for all j = 0, . . . , 11 where εj = ±1.

These properties cut down a guess for a recursion relation considerably.
Using Theorem 1, we have computed explicitly JK0

(n) for n = 1, . . . , 19. It is a challenging question to
guess a formula for the so-called noncommutative A polynomial of the knot K0.

5.1. Acknowledgement. Many people contributed to the ideas and the computations of this paper. We
wish to thank D. Boyd, A. Champanerkar and N. Dunfield (for counseling on the A-polynomial), T. Morley
(for Mathematica tutoring), M. Thistlethwaite (for the symmetry of K) and TTQ. Le (for discussions on a
triple sum formula for the colored Jones function).

Appendix A. The numerical computation of VC(n)

A.1. A recursive computation of VC(n). In this appendix, we discuss the numerical evaluation of the
colored Jones polynomial J(n + 1) := JK0

(n + 1) at q = q0, where q0 = exp(i 2π
n+1 ). Let us begin by writing

the formula in Theorem 1 in a numerically more efficient form

J(n + 1) =
1

[n + 1]

2n∑

k=0,2

n+k∑

l=|n−k|,2

q−
3

8
(2k+k2)+ 7

8
(2l+l2)− 51

8
(2n+n2) [k + 1][l + 1]

[
k
2

]
!

[ 2n+k
2 + 1, k

2 ]!
Z ,

with

Z =
∑

z

(−1)
k
2
+z

[
k+l−n

2
n+2k+l

2 − z

][
n+l−k

2
3n+l

2 − z

] [
n+k−l

2
2n+2k

2 − z

] [
2n− k

2
, z −

n + k + l

2

]
!

[
z + 1,

n + k + l

2
+ 1

]
! ,(5)

so that all the factors in Z have z dependence.
If we define B = q1/2, then Z in Equation (5) is an explicit rational function of B. We know that J(n+1)

is a finite sum with integer coefficients of integer powers of q, so it is also a finite sum of even powers of B.
From Theorem 1 and Remark 1.2, we know that as a function of B, J(n+1)(B) has an apparent second order
pole at B = B0 = exp(i π

n+1 ). To verify the Volume Conjecture, we need to evaluate the Jones polynomial
of the form:

(6) J(n + 1)(B0) =
f(B)

(B − B0)2
|B=B0

,

where f(B) = g(B)(B−B0)
2 with g(B) an analytic function at B = B0. Apparently, J(n+1)(B0) = g(B0).

On the other hand

(7) g(B0) =
1

2

d2

dB2
f(B)|B=B0

.

The next Equation will be the basis of our numerical computation:

(8) J(n + 1)(B0) =
1

2

d2

dB2
f(B)|B=B0

.

In other words, we have to separate the factor (B−B0)
2 in the denominator in Equation (5), differentiate the

rest part twice and evaluate at B = B0. Considering the three summations and the complicated structure
of the summand, we would expect that for large n, the computation load is huge. This is true if we employ
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symbolic manipulations using Mathematica or Maple, but numerically, we can do it much more efficiently if
recursion relation is used both for the quantum numbers and their derivatives.

We have to evaluate the quantum integer, the quantum factorial and the quantum binomial coefficients

etc. defined just before Theorem 1. Then the quantum integer is

(9) [n] =
Bn − B−n

B − B−1
,

which has first derivative

(10) [n]′ =
n(Bn−1 + B−n−1)

B − B−1
−

Bn − B−n

(B − B−1)2
(1 + B−2) ,

and second derivative

(11) [n]′′ =
n((n − 1)Bn−2 − (n + 1)B−n−2)

B − B−1
−

2n(Bn−1 + B−n−1)

(B − B−1)2
(1 + B−2) +

2(Bn − B−n)

(B − B−1)3
(1 + 3B−2) .

In numerical calculations, three vectors may be used to store these values.
The quantum factorial satisfies the recursion relation

(12) [n]! = [n][n − 1]! ,

which induces recursion relations for its first derivative

(13) [n]!′ = [n]′[n − 1]! + [n][n − 1]!′

and second derivative

(14) [n]!′′ = [n]′′[n − 1]! + 2[n]′[n − 1]!′ + [n][n − 1]!′′ .

Starting from [1]! = 1, these factorials can be calculated simultaneously with the quantum integers and also
stored in three vectors.

Similarly, for quantum binomial coefficients, the recursion relations are

(15)

[
n
k

]
= B−k

[
n − 1

k

]
+ Bn−k

[
n − 1
k − 1

]
,

(16)

[
n
k

]
= B−k

[
n − 1

k

]′

+ Bn−k

[
n − 1
k − 1

]′

− kB−k−1

[
n − 1

k

]
+ (n − k)Bn−k−1

[
n − 1
k − 1

]
,

and
[
n
k

]
= B−k

[
n − 1

k

]′′

+ Bn−k

[
n − 1
k − 1

]′′
− kB−k−1

[
n − 1

k

]′

+ (n − k)Bn−k−1

[
n − 1
k − 1

]′

+ k(k + 1)B−k−2

[
n − 1

k

]
+ (n − k)(n − k − 1)Bn−k−2

[
n − 1
k − 1

]
,

with the starting condition

[
n
n

]
= 1.

The recursion relations related to [n, k]! are given by

(17) [n, k]! = [n][n − 1, k]! ,

(18) [n, k]!′ = [n]′[n − 1, k]! + [n][n − 1, k]!′ ,

and

(19) [n, k]!′ = [n]′′[n − 1, k]! + [n][n − 1, k]!′′ + [n]′[n − 1, k]!′ ,

with starting condition [k, k]! = 1. Notice that for the quantum binomial coefficients

[
n
k

]
and [n, k]!, n ≥ k

has to be satisfied. So, their numerical values can be put together to form a square matrix.
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We need to take special care of the denominator D in each summand. It has the form

(20) D = [
2n + k

2
+ 1,

k

2
]![n + 1] = [

2n + k

2
+ 1, n + 1]![n,

k

2
]!P ,

where P = [n + 1]2. Note that D is factorized to three factors. The first two with their first and second
derivatives are readily evaluated by previous calculations and do not have q = q0 as zeros. All the zero
factors are contained in the third factor P. We have to extract the factor B − B0 and evaluate the rest. we
may write

(21) [n + 1] =
Bn+1 − B−n−1

B − B−1
= TS(B − B0) ,

where

T =
B−n−1

B − B−1
, S = B2n+1 + B2nB0 + · · · + B2n+1

0 .

It is straight forward to compute that

S(B0) = 2(n + 1)B−1
0

S′(B0) = (n + 1)(2n + 1)B−2
0

S′′(B0) =
4

3
n(n + 1)(2n + 1)B−3

0 ;

and

T ′(B) =
−(n + 1)B−n−2

B − B−1
−

B−n−1

(B − B−1)2
(1 + B−2)

T ′′(B) =
(n + 1)(n + 2)B−n−3

B − B−1
+

2(n + 1)B−n−2

(B − B−1)2
(1 + B−2) +

2B−n−1

(B − B−1)3
(1 + 3B−2) .

Now, we are in a position to compute the first and second derivatives of the summand of Equation (5), by
invoking the values which we have. Finally, g(B0) is computed by multiplication and addition of the terms.

A.2. The multiprecision algorithm. Using the above scheme, we can go up to n ∼ 200 with double
precision in Fortran. Beyond that, the calculation overflows. The sequence VC(n) decreases until n ∼ 60,
where we reach a minimum, then it starts to increase. Of course, this is only an illusion due to the numerical
round-off error. We checked the magnitude of the terms in the sum, it could go beyond that of the final
result, which suggests that there could be significant cancellations among terms and the precision of our
calculation is below the required one. We have to use multi-precision algorithm.

We take advantage of the multiprecision program by Bailey [Ba] (available at http://crd.lbl.gov/

d̃hbailey/mpdist/). We used MPFUN90 (Fortran-90 arbitrary precision package) to do our calculation.
Using 40 digits, the series reaches a minimum at n = 131. With 80 digits, the summation can be easily done
if n ∼ 250. The results shown in section 2 are obtained with 80 digits. we also tried 200 digits and calculated
values up to n = 550. Beyond that, the computer ran out of memory. We believe that with larger memory,
it is easy for us to go beyond n = 1000. With the increase of digits, we can go higher and higher values of n
but with the price that the computation is done slower and slower.

All the calculations that we have done suggest that the results in section 2 is true with high credibility.
We may use more digits to calculate the VC(n) to ever-higher precision if necessity arises.

Appendix B. The colored Jones function of K0

Using Theorem 1 we can compute the colored Jones function J(n) := JK0
(n) for n = 1, . . . , 19. The

polynomials become large soon, and we list here the first few of them.
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J(1) = 1

J(2) = −
1

q19
+

1

q18
−

1

q17
+

1

q10
+

1

q8

J(3) =
1

q53

(
1 − q + q2 − 2q4 + 2q5 − 2q7 + q8 + q9 − q10 + q12 − q13 − q14 + q15 − q17

+q19 − q20 − q21 + q22 − q24 + q25 − q27 + q28 − q30 + q31 + q34 + q37
)

J(4) =
1

q100

(
− 1 + 2q2 − 4q4 + q5 + 4q6 − 5q8 + 6q10 − 5q12 + 4q14 + q15 − 4q16 + 3q18

+q19 − 3q20 − q21 + 2q22 + q23 − q24 − 2q25 + q26 + q27 − q29 − q30 + q31 + q32

−q34 + q36 − q38 + q40 − q41 − q42 + 2q44 − q45 − q46 − q47 + 2q48 − q50 − q51

+q52 − q54 + q56 − q58 + q60 − q62 + q64 − q66 + q68 + q72 + q76
)

J(5) =
1

q160

(
2 − q − q2 − 2q3 + 5q5 + q6 − 3q7 − 6q8 + 7q10 + 4q11 − 3q12 − 8q13 − 2q14

+7q15 + 6q16 − 2q17 − 8q18 − 2q19 + 6q20 + 4q21 − 2q22 − 6q23 − 2q24 + 6q25

+3q26 − q27 − 5q28 − 2q29 + 5q30 + 2q31 − 3q33 − 2q34 + 3q35 + q36 + q37 − q38

−2q39 + q40 + q42 + q43 − q44 − q46 + q48 + q49 − q51 − q52 + q54 + q56 − q57

−q58 − q60 + 2q61 − 3q65 + 2q66 + q68 + q69 − 3q70 + 2q71 − q72 + q73 + q74

−3q75 + 2q76 − q77 + q78 + q79 − 3q80 + q81 − q82 + q83 + q84 − 2q85 + q86

−q87 + q88 − 2q90 + q91 + q93 − 2q95 + q98 − q100 + q103 − q105 + q108 − q110

+q113 − q115 + q118 + q123 + q128
)

J(6) =
1

q235

(
− 1 + q3 + q4 − q7 − 2q8 − q9 + 5q11 + 4q12 − q13 − 5q14 − 6q15 − q16

+6q17 + 9q18 + 2q19 − 6q20 − 9q21 − 4q22 + 4q23 + 9q24 + 6q25 − 5q26 − 8q27

−4q28 + 3q29 + 8q30 + 3q31 − 4q32 − 7q33 − 3q34 + 4q35 + 7q36 + 2q37 − 3q38

−6q39 − 3q40 + 3q41 + 5q42 + 2q43 − 2q44 − 3q45 − 3q46 + q47 + 3q48 + 2q49

−q51 − 2q52 − 3q53 + q54 + 2q55 + 2q56 + q57 − q58 − 4q59 − 2q60 + q61 + 3q62

+3q63 + q64 − 3q65 − 3q66 − 2q67 + 2q68 + 4q69 + 2q70 − 3q72 − 3q73 + 2q75

+2q76 + 2q77 − q78 − 2q79 − q81 + q82 + q83 + q86 − q87 − q90 + q92 + q94

−q96 − q99 + q100 − q102 + 2q103 − q105 − q107 − 2q108 + 2q109 + q110 + q112

−q113 − 2q114 + q116 + q118 − q120 + q122 − q126 + q128 − q132 + q134 − q136

−q138 + q140 + q141 − q142 − q144 + q147 − q148 + q153 − q154 − q155 + q159

−q161 + q165 − q167 + q171 − q173 + q177 − q179 + q183 + q189 + q195
)
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J(7) =
1

q323

(
1 + q2 − 3q3 + 3q7 − q8 − 5q10 + 3q11 + 2q12 + q13 + 3q14 − 6q15 − 5q16

−5q17 + 9q18 + 8q19 + 3q20 + 3q21 − 11q22 − 13q23 − 8q24 + 12q25 + 12q26 + 9q27

+7q28 − 12q29 − 17q30 − 13q31 + 9q32 + 11q33 + 10q34 + 12q35 − 9q36 − 16q37 − 13q38

+8q39 + 10q40 + 8q41 + 9q42 − 9q43 − 14q44 − 11q45 + 9q46 + 10q47 + 8q48 + 7q49

−9q50 − 12q51 − 11q52 + 7q53 + 8q54 + 7q55 + 6q56 − 6q57 − 8q58 − 11q59 + 4q60

+6q61 + 6q62 + 7q63 − 3q64 − 5q65 − 11q66 − q67 + 3q68 + 6q69 + 8q70 + q71 − 2q72

−11q73 − 4q74 − q75 + 5q76 + 8q77 + 4q78 + 2q79 − 9q80 − 6q81 − 4q82 + 2q83 + 6q84

+5q85 + 5q86 − 4q87 − 5q88 − 6q89 − q90 + 2q91 + 4q92 + 6q93 − 2q95 − 4q96 − 2q97

−2q98 + q99 + 4q100 + q101 − q103 − 2q105 − q109 + 2q111 + 2q113 − 3q116 − 2q117

+q118 + 3q120 + q121 + 3q122 − 2q123 − 3q124 − 2q126 + q127 + 4q129 − q131 + q132

−q133 − 3q135 + 3q136 − q137 − q138 + 2q139 + q140 + q141 − 3q142 + 3q143 − 2q144

−2q145 + q146 + q147 + q148 − 3q149 + 4q150 − 2q151 − q152 + q153 + q154 + q155

−3q156 + 3q157 − 3q158 − q159 + q160 + q161 + q162 − q163 + 3q164 − 3q165 − q166

−q170 + 3q171 − 2q172 + q174 − q177 + q178 − 2q179 + q181 + q183 + q185 − 2q186

+q188 − q189 + q190 + q192 − 2q193 + q195 − q196 + q197 + q199 − 2q200 + q202

−q203 + q206 − 2q207 + q209 + q213 − 2q214 + q220 − q221 − q228 + q233 − q235

+q240 − q242 + q247 − q249 + q254 − q256 + q261 + q268 + q275
)
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