
1-LOOP EQUALS TORSION FOR TWO-BRIDGE KNOTS
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Abstract. Motivated by the conjectured asymptotics of the Kashaev invariant, Dimofte
and the first author introduced a power series associated to a suitable ideal triangulation
of a cusped hyperbolic 3-manifold, proved that its constant (1-loop) term is a topological
invariant and conjectured that it equals to the adjoint Reidemeister torsion. We prove this
conjecture for hyperbolic 2-bridge knots by combining the work of Ohtsuki–Takata with an
explicit computation.
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1. Introduction

The celebrated volume conjecture of Kashaev predicts that the growth rate of the synony-
mous invariant of a hyperbolic knot detects the the volume of the knot complement [Kas95].
This, combined with the result of Murakami–Murakami that the Kashaev invariant is given
by an evaluation of the colored Jones polynomial [MM01] gives a deep connection between
the Jones polynomial of a knot in 3-space and hyperbolic geometry. The volume conjecture
can be extended to a stronger statement concerning the asymptotics of the Kashaev invari-
ant to all orders in perturbation theory [GL11, DGLZ09], and a natural question was to give
a direct definition of the corresponding power series. This was the motivation of [DG13],
where Dimofte and the first author introduced a power series associated to a suitable ideal
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triangulation of a cusped hyperbolic 3-manifold, proved that its constant (1-loop) term is a
topological invariant and conjectured that it equals to the adjoint Reidemeister torsion.

More precisely, the 1-loop invariant depends on an ideal triangulation that detects the
geometric representation of a cusped hyperbolic 3-manifold M (call such triangulations es-
sential), and it is an element of the invariant trace field of M , well-defined up to a sign.
Moreover, it is unchanged under 2–3 and 0–2 Pachner moves of essential ideal triangulations
(see e.g., [DG13, Sec.3] and [PW, Prop.5.1]). Since every cusped hyperbolic 3-manifold has
an essential ideal triangulation obtained by subdividing the Epstein–Penner ideal cell decom-
position, and the set of essential ideal triangulations is connected under 2–3 and 0–2 Pachner
moves, as shown by Kalelkar–Schleimer–Segerman [KSS], it follows that the 1-loop is an in-
variant of a cusped hyperbolic 3-manifold. The conjecture of [DG13] is that it equals (up to
multiplication by a sign) to the adjoint Reidemeister torsion. This conjecture is known for
fibered cusped hyperbolic 3-manifolds [DGY] and for fundamental shadow links [PW] (see
also [AW]). Our goal is to prove that it also holds for hyperbolic 2-bridge knots.

Theorem 1.1. The 1-loop equals torsion conjecture holds for hyperbolic 2-bridge knots.

Let us comment on this conjecture and our proof for hyperbolic 2-bridge knots. Both the
1-loop invariant and the adjoint Reidemeister torsion are given (up to normalization factors)
by the determinant of a matrix with coefficients in the trace field. For the 1-loop, the size
of the matrix is the number of tetrahedra of an essential ideal triangulation, and the matrix
is obtained by the Neumann–Zagier matrices of the ideal triangulation and their shapes.
Alternatively, as was shown by the second author, the 1-loop is essentially the Jacobian of
Ptolemy equations of an essential ideal triangulation [Yoo24]. On the other hand, a matrix
for the adjoint Reidemeister torsion can be obtained from a presentation of the fundamental
group of the 3-manifold M by applying Fox calculus first on a relator set of π1(M), and then
replacing π1(M) by the adjoint representation of sl2(C) using the geometric representation.
An ideal triangulation does give a presentation of the fundamental groupoid of M , and after
further choices, of π1(M). Thus, both the 1-loop and the adjoint Reidemeister torsion can
be defined from an essential ideal triangulation, but their definitions have different origins
and are not exactly compatible.

To prove our Theorem 1.1, we use an alternative approach from [DGY]. Starting from
a planar projection of a 2-bridge knot, we consider the corresponding octahedral decom-
position of its complement minus two points, then collapse some tetrahedra to obtain an
ideal triangulation of its complement (see Section 3 for details). We then eliminate a certain
number of variables and prove by an explicit calculation that the corresponding Jacobian
is given by the Ohtsuki–Takata invariant of the initial planar projection (see Section 4 for
details). Using Ohtsuki–Takata’s theorem, [OT15, Thm.1.1] for hyperbolic 2-bridge knots,
we conclude the proof of Theorem 1.1.

In theory, the proof of Theorem 1.1 should apply to essential planar projections of hyper-
bolic knots, but the intermediate calculations are not clear to us, and more fundamentally,

(a) It is not known that every hyperbolic knot has an essential open planar diagram.
(b) Although every two planar diagrams of a knot are connected by Reidemeister moves,

it is not known if this holds for the set of essential open planar diagrams, nor that
there is a canonical connected component of that set.
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In contrast, if we replace essential planar diagrams with essential ideal triangulations, both
problems are solved. For (a), one can use a subdivision of the canonical ideal cell decomposi-
tion of a cusped hyperbolic 3-manifold. For (b) one can use a canonical connected component,
namely the set of subdivisions of the canonical ideal cell decomposition [DG13], and even
better, it is now known that the set of essential ideal triangulations is connected [KSS].

On the positive side, the standard diagrams of hyperbolic 2-bridge knots are essen-
tial [OT15], and more generally, the alternating reduced diagrams of alternating hyperbolic
knots are essential [GMT, SY18]. Note that 2-bridge knots are alternating, and all of them,
with the exception of (2, b)-torus knots, are hyperbolic.

2. Two invariants from the asymptotics of the Kashaev invariant

In this section we recall the 1-loop and Ohtsuki–Takata invariants, following [DG13] and
[OT15]. They are both expected to equal to each other and to be the constant term of the
asymptotic expansion of the Kashaev invariant, but their definitions are a bit different. The
1-loop invariant is modeled on Chern–Simons perturbation theory, and is defined using an
essential ideal triangulation of a knot complement, whereas the Ohtsuki–Takata invariant
depends on a planar projection of a knot and the invariant is obtained by applying stationary
phase to a state-sum formula the Kashaev invariant.

2.1. The 1-loop invariant. The 1-loop invariant is a function

τ : {essential triangulations} → C
× (1)

that we now recall following [DG13]. We fix an essential ideal triangulation T of an oriented,
cusped hyperbolic 3-manifold M (such as the complement of a hyperbolic knot in S3) and
denote the edges and tetrahedra of T by ei and by ∆j, respectively, for 1 ≤ i, j ≤ N . Note
that the number of edges is equal to that of tetrahedra, as M has the Euler characteristic 0.
We fix a quad type of each tetrahedron ∆j. This means that each edge of ∆j is assigned to
a shape parameter among

zj, z′j :=
1

1− zj
, or z′′j := 1− 1

zj

with opposite edges having same parameters as in Figure 1.

z′

z′

z′′
z

z
z′′

Figure 1. An ideal tetrahedron with shape parameters.

The gluing equation matrices G,G′ and G′′ are N × N integer matrices whose rows and
columns are indexed by the edges and by the tetrahedra of T , respectively. The (i, j)-entry
of G (resp., G′ and G′′) is the number of edges of ∆j with the shape parameter zj (resp.,
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z′j and z′′j ) that are identified with ei. As the name suggests, they determine the gluing
equations of T : the gluing equation of an edge ei is given as

ei :
N∑
j=1

Gij log zj +G′
ij log z

′
j +G′′

ij log z
′′
j = 2πi . (2)

It is known that the gluing equation matrices have redunancy, and we replace one of their
rows by using a meridian µ of K. Precisely, let (C,C ′, C ′′) be a triple of row vectors in ZN

that describe the completeness equation of µ as

µ :
N∑
j=1

Cj log zj + C ′
j log z

′
j + C ′′

j log z
′′
j = 0 . (3)

We replace one row of G, G′ and G′′ with C, C ′ and C ′′, respectively, and denote by Gµ, G
′
µ

and G′′
µ the resulting matrices.

One auxiliary ingredient for defining the 1-loop invariant is a flattening. It is a triple of
column vectors f, f ′, f ′′ ∈ ZN satisfying

f + f ′ + f ′′ = (1, . . . , 1)t ,

Gf +G′f ′ +G′′f ′′ = (2, . . . , 2)t .

Note that a flattening in [DG13] requires one additional condition, but it turned out to be
dispensable [Yoo24].

We now come to the assumption that M is hyperbolic and T is essential. This allows
us to find a geometric solution z◦ = (z◦1 , . . . , z

◦
N) of T , whose holonomy representation is

geometric. Here a solution means a tuple of complex numbers, other than 0 and 1, satisfying
the gluing equation (2) for all edges and the completeness equation (3).

Definition 2.1 ([DG13]). The 1-loop invariant of an essential triangulation T is defined as

τ(T ) := ±
det

(
Gµ diag(ζ) +G′

µ diag(ζ
′) +G′′

µ diag(ζ
′′)
)

2
∏

1≤j≤N

ζ
fj
j ζ ′j

f ′
jζ ′′j

f ′′
j

where the right-hand side is evaluated at the geometric solution z◦. Here

ζj :=
d log zj
dzj

=
1

zj
, ζ ′j :=

d log z′j
dzj

=
1

1− zj
, ζ ′′j :=

d log z′′j
dzj

=
1

zj(zj − 1)
,

and diag(ζ□) is the diagonal matrix with diagonal entries ζ□1 , . . . , ζ
□
N for □ ∈ { ,′ ,′′ }.

Remark 2.2. The above definition is a symmetric version of the original one given in [DG13]
and was introduced by Siejakowski [Sie21]. It is worth noting that

det
(
Gµ diag(ζ) +G′

µ diag(ζ
′) +G′′

µ diag(ζ
′′)
)
= det

(
∂(g1, . . . , gN−1, gµ)

∂(z1, . . . , zN)

)
where gi (resp., gµ) refers to the left-hand side of (2) (resp., (3)).
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It was proved in [DG13] that the 1-loop invariant τ(T ) does not depend on the choice of
a flattening (hence it is omitted in the notation) and that it is unchanged under Pachner
2–3 moves and 0–2 on essential triangulations; see [DG13, Sec.3] for the 2–3 move and [PW,
Prop.5.1] for the historically ommitted 0–2 move. Since every cusped hyperbolic manifold
has an essential triangulation, (obtained for instance by subdividing the Epstein–Penner
ideal cell decomposition as was used in [DG13]), and the set of essential triangulations is
connected under Pachner 2–3 and 0–2 moves, it follows that it is a topological invariant. By
its very definition, the 1-loop invariant is an element of the invariant trace field of the cusped
hyperbolic 3-manifold,well-defined up to multiplication by a sign.

Example 2.3. SnapPy’s default triangulation T of the knot 61 consists of 4 tetrahedra with
gluing equation matrices

Gµ =


1 1 0 0
0 0 0 1
0 1 1 0
−1 0 0 0

 , G′
µ =


0 2 0 1
1 0 1 0
1 0 0 0
1 0 0 0

 , G′′
µ =


1 0 1 1
1 2 1 0
0 0 0 1
0 1 0 0

 .

The 1-loop invariant, evaluated at the geometric solution

z◦ ≈ (0.89152− 1.55249i, 0.043315− 0.64120i, −1.50411− 1.22685i, 0.17385− 1.06907i)

with a flattening

(f, f ′, f ′′) = ((0, 1, 0, 0)t, (1, 0, 1, 1)t, (0, 0, 0, 0)t) ,

is given by τ(T ) ≈ 0.487465 + 1.738045i. This agrees with the adjoint Reidemeister torsion
of the knot 61.

2.2. Essential open diagrams and their potential. The domain of the Ohtsuki–Takata
invariant discussed below is the set of essential open diagrams of knots. An open diagram is
a planar diagram of a (1, 1)-tangle and is said to be essential if the corresponding collapsed
triangulation is essential. We postpone a detailed description of the collapsed ideal triangu-
lation to Section 3. Roughly, this is a story of how to pass from a planar diagram of a knot
to an ideal triangulation of its complement and use it to determine the complete hyperbolic
structure of a hyperbolic knot. Like so many things in hyperbolic geometry, this method
goes back to Thurston.

We here recall a potential function associated to an open diagram, introduced by Yokota
[Yok02] and motivated by the R-matrix state-sum formulas for the Kashaev invariant of a
knot.

In what follows, we fix an open diagram D̊ of a hyperbolic knot K in S3, that is, a planar
projection of a (1, 1)-tangle whose closure is K. For technical reasons, we will assume that

(†) starting from one endpoint of D̊, we overpass the first crossing, and from the other
endpoint, we underpass the first crossing.

Viewing D̊ as an embedded 4-valent graph with two univalent vertices in R2,

• a segment refers to an edge of the graph that is not adjacent to a univalent vertex,
• a region refers to a connected component of the complement of the graph, and
• a corner refers to a fan-shaped area around a crossing separated by segments.
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We assign the constant 1 to every segment of D̊ adjacent to the unbounded region. Also,
starting from an endpoint of D̊, if we underpass (resp., overpass) the first crossing, we assign
the constant ∞ (resp., 0) to each segment until we encounter an overpass (resp., underpass).
To each segment not assigned a constant, we assign a variable so that every segment receives
either a constant or a variable. For a non-alternating diagram, consecutive segments could
be assigned with ∞. If it is the case, for each crossing lying between such segments, we set
two adjacent variables, other than ∞, to be equal. We do the same for consecutive segments
assigned with 0.

Example 2.4. An essential open diagram for the 61 knot, along with an assignment of
variables to its segments is shown in Figure 2.

x1

∞

x2

x3

0 1

1

1

1

1

1

Figure 2. An open diagram of the knot 61 with 3 variables x1, x2, x3 and 8
essential corners marked in red.

We now define the potential function V of D̊, following Yokota. We associate a dilogarithm
function with each corner as in Figure 3. Such dilogarithms could be ill-defined or constant.
This happens precisely when either x or y in Figure 3 is 0 or ∞, or when both x and y are
1. We say that a corner is essential if it is not the case, i.e. if the associated dilogarithm
is well-defined and non-constant. The Yokota potential function V is defined as the sum of
those dilogarithms over all essential corners.

x y

Li2

(
x

y

) x y

−Li2

(y
x

)

Figure 3. Dilogarithm functions associated with corners.

We now discuss a key point, namely an isomorphism of the critical points of the potential
function V with the solutions to the gluing and completeness equations of the collapsed
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triangulation TD̊; see [MY18, Thm.4.1]. Here a critical point of V means a point x =
(x1, . . . , xn) ∈ Cn satisfying

exp

(
xi

∂V

∂xi

)
= 1, i = 1, . . . , n . (4)

Under this isomorphism, the essential corners of D̊ are in bijection with the tetrahedra
of TD̊, and the the variables of the Yokota potential function are related to the shapes

of the tetrahedra of TD̊ according to Figure 4. In particular, if D̊ is essential, there is
a geometric solution x◦ = (x◦

1, . . . , x
◦
n) to Equation (4) which gives rise to the complete

hyperbolic structure of TD̊.

x y

0

∞
x y

Figure 4. An ideal tetrahedron at an essential corner.

Example 2.4 continued. The diagram in Figure 2 has 8 essential corners marked by red
and the Yokota potential function is given by

V = Li2 (x1)− Li2

(
1

x1

)
+ Li2

(
x2

x1

)
− Li2 (x2)

− Li2

(
1

x2

)
+ Li2

(
x3

x2

)
− Li2 (x3)− Li2

(
1

x3

)
.

The critical point equations (4) are given by

−x1 + x2

(−1 + x1)2
= 1,

x1(x2 − x3)

−x1 + x2

= 1,
x2x3

−x2 + x3

= 1 ,

and equivalently, in the form

2− 5x1 + 6x2
1 − 3x3

1 + x4
1 = 0, x2 = 1− x1 + x2

1, x3 =
1

2
(1 + 2x1 − x2

1 + x3
1) (5)

and the geometric solution is approximately

x◦ ≈ (0.895123− 1.552491i, −1.504108− 1.226851i, −0.677958− 0.157779i) . (6)

2.3. The Ohtsuki–Takata invariant. To define the Ohtsuki–Takata invariant, we consider
two more functions associated with D̊. To define the first one, for each crossing, cup and cap
of D̊, we choose two corners around it and associate a rational function with each of them,
shown as in Figure 5. These functions are well-defined and non-zero for essential corners.
The first normalizing function Ω1 is defined as the product of these rational functions over
all essential corners among chosen ones.

To define the last function, we fix an orientation of D̊. Then choose one corner around
each crossing of D̊ and associate a rational function with the corner as in Figure 6. These
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(
1− x′

x

)
,

(
1− y

y′

)

xz

z′

(
1− z

x

)
,

(
1− z′

x

)−1

x y

x′ y′

x y

x′ y′

and xz

z′

xz

z′

(
1− x

z

)
,

(
1− x

z′

)−1

xz

z′

(
1− x

x′

)
,

(
1− y′

y

)

and

Figure 5. Rational functions associated with crossings, cups and caps.

functions are well-defined for essential corner. The second normalizing function Ω2 is defined
as the product of these rational functions over all essential corners among chosen ones.

x y

x′ y′

x y

x′ y′

(
x′

x

)2
(
y′

y

)2

Figure 6. Rational functions associated with crossings.

We now have all the ingredients to define the Ohtsuki–Takata invariant.

Definition 2.5 ([OT15]). The Ohtsuki–Takata invariant of an essential open diagram D̊ is
defined as

ω(D̊) := ±Ω1Ω2

2
det

(
xi

∂

∂xi

(
xj

∂V

∂xj

))
1≤i,j≤n

(7)

where the right-hand side is evaluated at the solution x◦.

It was proved that the Ohtsuki–Takata invariant is invariant under Reidemeister II and
III moves involving interior crossings of essential diagrams [OT15, Prop.4.3], and was con-

jectured that the invariant ω(D̊) is equal to the adjoint Reidemeister torsion associated to
the holonomy representation.
Example 2.4 continued. The normalizing functions Ω1 and Ω2 of the essential open
diagram D̊ given in Figure 2 are given by

Ω1 =

(
1− x2

x1

)(
1− x3

x2

)
, Ω2 =

1

x2
1

x2
1

1

x2
3

x2
3 = 1 .
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The Ohtsuki–Takata invariant, evaluated at the geometric solution (6) is ω(D̊) ≈ −0.487465−
1.738045i. This agrees with the adjoint Reidemeister torsion of the knot 61.

3. From planar diagrams to ideal triangulations

In this section we recall a well-known connection between planar projections of (hyper-
bolic) knots and their ideal triangulations. The history of the subject predates quantum
topology, and the sought algorithm takes as input a planar projection D of a knot K, pro-
duces as an intermediate stage an octahedral cell decomposition of its complement minus
two points, and eventually produces an ideal triangulation of its complement S3 \K. This
algorithm due to Thurston appears in the code of SnapPy in the original version due to
Weeks [CDGW]. It is described in detail in [Wee05], and forms the core method of SnapPy
for computing numerically (or exactly) the complete hyperbolic structure of a hyperbolic
knot (or more generally, link) complement.

Years after its discovery and its use in hyperbolic geometry, it was realized that the above
algorithm has applications to quantum topology, and more precisely to the volume conjec-
ture. The reason being obvious syntactical similarities between the octahedral decomposition
of a planar projection of a knot and the state-sum formula for its Kashaev invariant, where
the shapes of 4 tetrahedra around a crossing of the knot match with the quantum factorials
in Kashaev’s R-matrix of his invariant. This connection was discussed by D. Thurston in
relation to the Kashaev invariant and its asymptotics [Thu99], and later by Yokota [Yok02],
see also [GL11, Sec.8.2].

The algorithm consists of two steps

D̊ ⇝ (OD, s)⇝ TD̊ (8)

which we next discuss in detail.

3.1. Octahedral decomposition. Let K be a knot in S3 and D be a knot diagram of K.
Viewing D as an embedded 4-valent graph in R2, a segment refers to an edge of the graph
and a region refers to a connected component of the complement of the graph. If we add
over/under-pass information at every crossing as usual, the graph splits up into intervals,
which we call over-arcs. Reversing all the over/under-pass information, the graph splits up
into different intervals, which we call under-arcs.

Place an ideal octahedron at every crossing as in Figure 7 (left) and add an edge joining
the top and bottom vertices so that the octahedron is divided into four tetrahedra. Then
each tetrahedron is placed at a corner and has two faces glued to adjacent tetrahedra. We
record these information by triangles and dashed lines as in Figure 7 (right). Here a triangle
represents a tetrahedron, viewed from the top. We classify the edges of an octahedron into
four types:

• a C-edge is the edge joining the top and bottom vertices;
• an R-edge is an edge lying in the equator of the octahedron;
• an O-edge (resp., U-edge) is a non-equatorial edge, transverse to the overpass (resp.,
underpass) when viewed from the top.

Note that each (outer) face of an octahedron has one R-edge, one O-edge and one U-edge.
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Figure 7. An octahedron at a crossing.

A segment joins two crossings, hence two octahedra. On each side of the segment, there is
a pair of faces that face each other along the segment. See Figure 8 (left) for the alternating
case. We glue those two faces so that edges of the same type are identified. In this way,
each segment determines two face-pairings. We record them with dashed lines having signs
at the ends, shown as in Figure 8 (right). Here the sign indicates whether the face lies in
the upper or lower part of the octahedron. Then every triangle is attached with four dashed
lines: one with +, another with −, and the others with no signs. Namely, all faces of the
tetrahedra are glued. This results in an ideal cell decomposition OD of S3 \ (K ∪ {p, q})
(with p and q two points not in K) with cells being ideal octahedra, known as the octahedral
decomposition associated with D. We refer to [KKY18] for details.

+

−

+

−

Figure 8. Two face-pairings along a segment.

When we glue octahedra, edges are identified only if they have the same type. It follows
that we can classify edges of OD into four types: C, R, O and U-edges. In addition,

• a C-edge corresponds to a crossing of D;
• an R-edge corresponds to a region of D, i.e., two R-edges are identified if and only if
they lie in the same region, viewed from the top;

• an O-edge corresponds to an over-arc of D, i.e., two O-edges are identified if and only
if they are attached to the same over-arc;

• a U-edge corresponds to an under-arc of D, i.e., two U-edges are identified if and
only if they are attached to the same under-arc.

Note that if D has n crossings, then we have

#(tetrahedra of OD) = 4n , #(edges of OD) = 4n+ 2
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with n C-edges, (n+ 2) R-edges, n O-edges and n U-edges.

3.2. Collapsing the octahedral decomposition to an ideal triangulation. In this
section we discuss how to collapse the ideal cell decomposition OD of S3 \ (K ∪ {p, q}) into
an ideal triangulation TD of S3 \K. The collapsing depends on fixing an alternating segment
s of D. By alternating we mean that we overpass the diagram at one end of s and underpass
at the other end. We denote by r1 and r2 two regions adjacent to s, and by o and u the
over-arc and under-arc containing s, respectively (see Figure 9).
Recall that the octahedral decomposition OD has four edges corresponding to the regions

r1, r2, the over-arc o, and the under-arc u, respectively. We remove all tetrahedra of OD

that contain one of those four edges. When viewed from the top, they are represented by
triangles lying in r1 or r2, and ones lying beside o or u. After removing those triangles as well
as dashed lines in between, we add new dashed lines or arcs in an obvious way so that every
dashed line is connected, shown as in Figure 9. Then all faces of the remaining tetrahedra are
paired along dashed lines or arcs. This results in an collapsed ideal triangulation of S3 \K.

As the pair (D, s) is determined by the open diagram D̊ obtained by cutting D across s, we
denote the collapsed triangulation simply by TD̊. Note that s being alternating implies the

technical assumption (†) on D̊ in Section 2.3.

±

±

±

u

o

s · · ·

r1

r2
±

±

±

±

±

±

±

· · ·

±

±

Figure 9. Modified face-pairings.

Suppose that the over-arc o, the under-arc u, and the regions r1 and r2 have no, nu, nr1

and nr2 segments of D, respectively. When OD collapses into TD̊, tetrahedra lying in r1
or r2, and ones lying beside o or u disappear: total (nr1 + nr2 + 4nu + 4no − 8) disappear.
Therefore, if D has n crossings,

#(tetrahedra of TD̊) = 4n− nr1 − nr2 − 4nu − 4no + 8 .

On the other hand, when OD collapses into TD̊, edges of different types can be identified.
In this case, we keep the bigger type according to the following order.

C < R < O,U .

For instance, if a C-edge and an O-edge are identified, we call the identified one an O-edge.
Exceptionally, if an O-edge and a U-edge are identified, we retain both types: the identified
edge is both an O-edge and a U-edge.
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To describe how edges change explicitly, we denote the crossings of u and o by c1, . . . , cnu+1

and cnu , . . . , cnu+no respectively, in order so that the common ones, cnu and cnu+1, are the
crossings of s. We also denote a segment of u or o by [ci, ci+1] for 1 ≤ i ≤ no+nu− 1. When
OD collapses into TD̊,

• (nu + no) C-edges disappear. These correspond to c1, . . . , cnu+no : more precisely,
(Ca) the one corresponding to c1 is identified with the U-edge corresponding to

the under-arc of c1;
(Cb) the one corresponding to cnu+no is identified with the O-edge corresponding

to the over-arc of cnu+no ;
(Cc) the others disappear.

• (nu + no + 2) R-edges disappear. Precisely, two R-edges corresponding to regions
adjacent to [ci, ci+1] for 1 ≤ i ≤ nu + no − 1:

(Ra) disappear if i = nu (i.e., if [ci, ci+1] = s);
(Rb) are identified with the O-edge corresponding to the over-arc of c1 if i = 1;
(Rc) are identified with the U-edge corresponding to the under-arc of cnu+no if

i = nu + no − 1;
(Rd) are identified to one R-edge, otherwise.

• (nu + no − 3) O-edges disappear. Precisely,
(Oa) the O-edge corresponding to the over-arc containing [ci, ci+1] vanishes for

1 < i ≤ nu;
(Ob) two O-edges corresponding to adjacent over-arcs at ci other than o are

identified for nu + 1 < i < nu + no.

• (nu + no − 3) U-edges disappear. Precisely,
(Ua) the U-edge corresponding to the under-arc containing [ci, ci+1] vanishes for

nu < i ≤ no + nu;
(Ub) two U-edges corresponding to adjacent under-arcs at ci other than u are

identified for 1 < i < nu.

In addition, for each segment s′ ̸= s lying in r1 or r2, an O-edge corresponding to the over-arc
containing s′ is identified with a U-edge corresponding to the under-arc containing s′. This
leads to (nr1+nr2−2) identifications between O-edges and U-edges. We refer to Appendix A
for details. Therefore, if D has n crossings,

#(edges of TD̊) = (4n+ 2)− (nu + no)− (nu + no + 2)

− (nu + no − 3)− (nu + no − 3)− (nr1 + nr2 − 2)

= 4n− nr1 − nr2 − 4no − 4nu + 8 .

This double-checks that the number of edges is equal to the number of tetrahedra.
Example 2.4 continued. For the open diagram D̊ of Figure 2, its closureD is shown on the
left of Figure 10. The diagram D has six crossings, and thus the octahedral decomposition
OD has six C-edges and eight R-edges, as well as six O-edges o1, . . . , o6 and six U-edges
u1, . . . , u6. It is convenient to label a segment of D by oi/uj where oi and uj correspond to
the over and under-arcs containing the segment, respectively.

We choose an alternating segment s as the one with o6/u1 (the leftmost one). Then, when
OD collapses into the collapsed triangulation TD̊,
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• four C-edges adjacent to the segment with o1/u1, o6/u1, or o6/u6 disappear,
• two R-edges adjacent to the segment with o6/u1 disappear,
• two R-edges adjacent to the segment with o1/u1 are identified with o1,
• two R-edges adjacent to the segment with o6/u6 are identified with u6,
• o6 and u1 disappear.

In addition, we obtain identifications

o4 = u4, o1 = u2, o2 = u2, o5 = u6, o3 = u3, o4 = u5

from segments lying in the unbounded region of D. It follows that the collapsed triangulation
TD̊ has two C-edges, two R-edges, and four O or U-edges:

{(o1 = o2 = u2), (o3 = u3), (o4 = u4 = u5), (o5 = u6)} .

To connect the 8 shape parameters of the collapsed triangulation TD̊ with the 3 variables
of the Yokota potential of Figure 2, we will eliminate five of them by solving to the gluing
equations of two C-edges and two R-edges, and completeness equation of the meridian; see
Section 4.2 for details.

o1
u1

o1
u2

R-edges

C-edges

o2
u2

o2
u3

o3
u3

o3
u4

o4
u4

o4
u5

o5
u5

o5
u6

o6
u6

o6
u1

o1

o1
u2

o2
u2

o2
u3

o3
u3

o3
u4

o4
u4

o4
u5

o5
u5

o5
u6

u6

Figure 10. Edges of OD and TD̊.

4. Proof of the main theorem

In this section we prove Theorem 4.1 below, which combined with the work of Ohtsuki–
Takata [OT15] implies Theorem 1.1. We fix an open diagram D̊ of a hyperbolic 2-bridge
knot K as in the following figure, where boxes are twist regions.

Theorem 4.1. For D̊ as above, τ(TD̊) = ±ω(D̊).
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...

or

...
...

...
...

...

Figure 11. An open diagram of a 2-bridge knot.

4.1. Flattening of the collapsed triangulation. In this subsection, we find an explicit
flattening f = (f, f ′, f ′′) of TD̊. Recall from Section 2.1 that f consists of integer triples f j =
(fj, f

′
j, f

′′
j ) ∈ Z3, one for each tetrahedron ∆j of TD̊ and is required to satisfy fj+f ′

j+f ′′
j = 1

for each ∆j and

ei :
∑
j

Gijfj +G′
ijf

′
j +G′′

ijf
′′
j = 2 (9)

for each edge ei. We denote by ⟨f , ei⟩ the left-hand side of Equation (9).
We fix a quad type of each ∆j so that fj is assigned to the vertical and horizontal edges

of ∆j (the edges 0∞ and xy in Figure 4). Denoting ∆j with a corner of D̊, we choose an
integer triple f j as follows.

f j =


(1, 0, 0) for the N and S-corners of a crossing

(0, 1, 0) for the E and W-corners of a positive crossing

(0, 0, 1) for the E and W-corners of a negative crossing .

(10)

Here N, E, S or W indicates the position of a corner with respect to the nearby crossing.
Note that each tetrahedron has two edges assigned with 1 and four edges assigned with 0.
When we compute ⟨f , e⟩, the ones with 0 have no influence, and thus it suffices to consider
the ones with 1, which are marked by red in Figure 12.

Recall from Section 3 that TD̊ has four edge-types: C, R, O and U-edges. We first compute
⟨f , e⟩ for C and R-edges. As these edges recieve contributions only from fj’s (not from f ′

j’s
and f ′′

j ’s), only N and S-corners are involved in the computation. For simplicity we call a
segment with κ ∈ {0, 1,∞} assigned a κ-segment.

Lemma 4.2. We have ⟨f , e⟩ = 2 for all C-edges e.
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Figure 12. A choice of f .

Proof. Recall that a C-edge corresponds to a crossing with no adjacent 0 and ∞-segments.
Thus a corner around it is essential, unless adjacent segments are both 1-segments. Given
that D̊ is given as in Figure 11, both the N and S-corners are essential and contribute 1 to
⟨f , e⟩. This proves that ⟨f , e⟩ = 2. □

Lemma 4.3. We have ⟨f , e⟩ = 2 for all R-edges e.

Proof. Let us consider a region of D̊ that corresponds to an R-edge e. The S-corner of the
topmost crossing contributes 1 to ⟨f , e⟩. Similarly, the N-corner of the bottommost crossing
contributes 1 to ⟨f , e⟩. The other crossings that are neither top nor bottom ones have no
contribution; see Figure 12. This proves that ⟨f , e⟩ = 2. □

We now compute ⟨f , e⟩ for O and U-edges. Recall that O and U-edges correspond to

over and under-arcs of D̊, respectively. In what follows, for simplicity we confuse an over
or under-arc of D̊ with the corresponding O or U-edge of TD̊. In addition, we assume that

starting from the top endpoint of D̊, we underpass the first crossing (thus from the bottom
endpoint, we overpass the first crossing). The opposite case can be proved similarly by
exchanging the roles of ∞ and 0.

The diagram D̊ has one cap, and we choose one crossing c∞ and one segment s∞ around
it shown as in Figure 13. Similarly, we choose one crossing c0 and one segment s0 around
the cup of D̊ as in Figure 13. We denote by oκ and uκ for κ = 0,∞ the over and under-arcs
containing the segment sκ, respectively.

c∞

c0 c0

s0 s0

s∞

or

Figure 13. Cap and cup of D̊.
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Lemma 4.4. For an O or U-edge e, we have

⟨f , e⟩ =


3 if e = u∞ or o0 ,

1 if e = o∞ or u0 ,

2 otherwise .

Proof. Following the diagram from the top endpoint, we encounter all over and under-arcs.
Thus for each O and U-edge we can think of a crossing where it starts or ends. Except
for the four edges u0, u∞, o0 and o∞, every O and U-edge e, ⟨f , e⟩ receives one from the
crossing where it starts and another one from where it ends; see Figure 12. This proves that
⟨f , e⟩ = 2. Note that this includes the case when an O-edge and a U-edge are identified.
Such identification happens when they meet at the W or E-corner lying in the unbounded
region, and the fact that we do not have a tetarhedron at that corner preserves the fact
⟨f , e⟩ = 2.
For e = u∞, it receives one from the crossing where it starts and another one from where

it ends, as before. However, as the face-gluing around c∞ is different from other crossings,
i.e., as the vertical edge at c∞ is identified with u∞, it receives one additional contribution
from c∞.

It follows that ⟨f , e⟩ = 3. We deduce the same for e = u0 similarly.
For e = o∞, ∞-segments make corners around the crossing where it starts not essential.

This results in a tetrahedron being missing at the E or W-corner of its start crossing, and
thus ⟨f , e⟩ = 1. We deduce the same for e = u0 similarly. □

Lemma 4.5. Let ei and ej be two edges of TD̊ that correspond to consecutive under or
over-arcs. Then there is a triple g = (g, g′, g′′) of vectors such that gj + g′j + g′′j = 0 and

⟨f + g, e⟩ − ⟨f , e⟩ =


−1 if e = ei
1 if e = ej
0 otherwise .

In addition, such g can be chosen independently of f .

Proof. Let a1 and a2 be the over or under-arcs corresponding to the edges ei and ej, respec-
tively. As they are adjacent, there is a common crossing. If a1 and a2 are under-arcs, then
we define g by assigning integer triples to the corners at the common crossing as in Figure 14
(left); if a1 and a2 are over-arcs, then as in Figure 14 (right). Then one can easily check that
g satisfies the desired condition.

a2

(0, 1,−1)(0, 1,−1)(0,−1, 1)(0,−1, 1)

a1 a2a1

Figure 14. A choice of g.

□
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Remark 4.6. In the proof of Lemma 4.5, we used two tetrahedra that are below the arcs a1
and a2, but one may use two tetrahedra that are above the arcs. This implies that a choice
of g is not unique. However, regardless of a choice of g, the product

ζg :=
∏
j

ζ
gj
j ζ ′j

g′jζ ′′j
g′′j

is invariant: if there are two choices g1 and g2, then for any flattening f of TD̊, f + g1 − g2

is also a flattening, and thus

ζf+g1−g2 = ζf ⇒ ζg1 = ζg2 .

Explicitly, ζg agrees with z1z2 for Figure 19 (left) and with 1/(z1z2) for Figure 19 (right)
where z1 and z2 are shape parameters placed at the corners shown as in Figure 19.

Roughly speaking, Lemma 4.5 allows us to take one contribution from an arc, either over
or under, and give it to the next arc, and thus to any arc by applying the lemma multiple
times. We take one contribution from o0 (resp., u∞) and give it to o∞ (resp., u0). This
results in a triple g such that (see Lemma 4.4)

⟨f + g, e⟩ = 2

for all edges e. Namely, f + g is a flattening of TD̊.

4.2. Variable reduction. In this subsection, we reduce the number of shape parameters
by solving the gluing equations for the C and R-edges, and the completeness equation. The
following lemma will be used repeatedly.

Lemma 4.7. Let f1, . . . , fk be functions in variables x1, . . . , xk and fix a solution to

exp(f1) = · · · = exp(fk) = 1 .

Suppose that exp(fk) is of the form g(x1, . . . , xk−1)xk so that we can substitute xk with
1/g(x1, . . . , xk−1) by solving exp(fk) = 1. Then we have

det

(
∂(f1, . . . , fk)

∂(x1, . . . , xk)

)
=

1

xk

det

(
∂(f ′

1, . . . , f
′
k−1)

∂(x1, . . . , xk−1)

)
(11)

where f ′
i is obtained from fi by substituting xk with 1/g(x1, . . . , xk−1).

Proof. It follows from exp(fk) = g(x1, . . . , xk−1)xk that the (k, j)-entry of the Jacobian
matrix ∂(f1, . . . , fk)/∂(x1, . . . , xk) is 1/xk for j = k, and g−1 ∂g/∂xj for 1 ≤ j < k. Keeping
the last row, we make the i-row for i ̸= k have the last entry 0 by employing elementary row
operations. Then the (i, j)-entry becomes

∂fi
∂xj

− xk

g

∂g

∂xj

∂fi
∂xk

=
∂fi
∂xj

− 1

g2
∂g

∂xj

∂fi
∂xk

=
∂fi
∂xj

+
∂g−1

∂xj

∂fi
∂xk

=
∂fi
∂xj

+
∂xk

∂xj

∂fi
∂xk

.

As the last term is equal to ∂f ′
i/∂xj, we deduce Equation (11). □
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Recall that the gluing equation of an edge ei of TD̊ is of the form

N∑
j=1

Gij log zj +G′
ij log z

′
j +G′′

ij log z
′′
j = 2πi .

We denote by gi the left-hand side so that exp(gi) = 1. By rearranging the index of edges,
we may assume that the first n + 1 equations g1, . . . , gn+1 are for O and U-edges and the
rest, say gn+2, . . . , gN , are for C and R-edges. By replacing the (n+1)-st equation gn+1 with
gµ, the logarithm form of the completeness equation of a meridian, the 1-loop invariant is
given by (see Remark 2.2)

τ(TD̊) = ± 1

2ζf+g
det

(
∂(g1, . . . , gn, gµ, gn+2, . . . , gN)

∂(z1, . . . , zN)

)
(12)

where f + g is the flattening of TD̊ chosen in Section 4.1.
In what follows, we solve all C and R-edge equations gn+2, . . . , gN as well as the complete-

ness equation gµ. This eliminates N − n shape parameters, and we may assume that those
are zn+1, . . . , zN by rearranging the index of shape parameters.

• Recall that a C-edge corresponds to a crossing of D̊. Given that D̊ is given as in
Figure 11, one of E and W-corners at the crossing is non-essential, and thus the
gluing equation of the C-edge is either

zNzEzS = 1 or zNzW zS = 1 .

where zX means the shape parameter at the X-corner. Employing Lemma 4.7, we
eliminate the shape parameter zS of the S-corner.

• Similarly, an R-edge corresponds to a region of D̊, and its gluing equation is of the
form zi1 · · · zik = 1 where the S-corner of the topmost crossing and the N-corner
of the bottommost crossing contribute one shape parameter. Using Lemma 4.7, we
eliminate the shape parameter at the N-corner of the bottommost crossing.

• Lastly, the completeness equation for a meridian is given as z±1
i1
zi2 = 1 where zi1 and

zi2 are shape parameters placed at corners shown as in Figure 15. We eliminate the
shape parameter zi2 by employing Lemma 4.7.

...

zi1
zi2

Figure 15. A completeness equation for a meridian.
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As mentioned earlier, the above variable reduction eliminates N − n shape parameters
zn+1, . . . , zN , and Lemma 4.7 implies that

det

(
∂(g1, . . . , gn, gµ, gn+2, . . . , gN)

∂(z1, . . . , zN)

)
=

1

zn+1 · · · zN
det

(
∂(g′1, . . . , g

′
n)

∂(z1, . . . , zn)

)
(13)

where g′i is obtained from gi by eliminating the N − n shape parameters zn+1, . . . , zN . A
simple calculation shows that the number n of the remaining variables is equal to the number
of variables that are assigned to the open diagram D̊. Namely, the matrix in the right-hand
side of Equation (13) has the same size as the matrix in (7).

Lemma 4.8. We have

det

(
xi

∂

∂xi

(
xj

∂V

∂xj

))
1≤i,j≤n

= ±z1 . . . zn det

(
∂(g′1, . . . , g

′
n)

∂(z1, . . . , zn)

)
where V is the potential function of D̊.

Proof. It is proved in [MY18, Theorem 4.1] that the system of equations xi∂V/∂xi is equiv-
alent to the system of equations g′i. Hence we have

det

(
∂

∂xi

(
xj

∂V

∂xj

))
= ± det

(
∂(g′1, . . . , g

′
n)

∂(z1, . . . , zn)

)
det

(
∂(z1, . . . , zn)

∂(x1, . . . , xn)

)
.

If we label the indices of zi and xi from the top of the diagram D̊ to the bottom, we have
z1 = x1 and zi = xi/xi−1 or xi−1/xi for i ≥ 2. A simple induction argument shows that

det

(
∂(z1, . . . , zn)

∂(x1, . . . , xn)

)
= ± z1 · · · zn

x1 · · ·xn

.

Combining the above two equations, we conclude the lemma. □

Lemma 4.9. We have

Ω1Ω2 = ±ζ1 · · · ζN
ζf+g

where Ω1 and Ω2 are the normalizing functions of D̊.

Proof. Recall that the second normalizing function Ω2 depends on a choice of the orientation
of D̊. If we reverse the orientation of D̊, the contribution of the left (resp., right) crossing

in Figure 6 to Ω2 becomes (y/y′)2 (resp., (x/x′)2). Considering both orientations of D̊, one
can define Ω2 without an orientation choice: Ω2 is defined as the product of x′y/xy′ for the
first crossing in Figure 5 and xy′/x′y for the second crossing. It follows that Ω1Ω2 is given

by the product of (x
′

x
− 1) and ( y

y′
− 1) for the first crossing, and ( x

x′ − 1) and (y
′

y
− 1) for

the second crossing. From Figure 12 we easily computes that this product is equal to 1/ζf .
This proves that Ω1Ω2 = 1/ζf .

On the other hand, a product of any three zetas around one crossing is 1. Given that D̊
is given as in Figure 11, we have

ζ1 · · · ζN = ζ1ζN =
1

z1zN
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where z1 and zN are the shape parameters that appear first from the top and bottom,
respectively, of the diagram. From Remark 4.6, we deduce that z1zN is equal ζg. This
completes the proof. □

Remark 4.10. We expect that a similar lemma to the one above holds for all essential
diagrams obtained from braid closures of knots; see Appendix B.

Proof of Theorem 4.1. Combining Equations (12) and (13) together with Lemmas 4.8 and 4.9,
we obtain

τ(TD̊) = ± 1

2ζf+g
det

(
∂(g1, . . . , gn, gµ, gn+2, . . . , gN)

∂(z1, . . . , zN)

)
= ±ζn+1 · · · ζN

2ζf+g
det

(
∂(g′1, . . . , g

′
n)

∂(z1, . . . , zn)

)
= ±ζ1 · · · ζN

2ζf+g
det

(
xi

∂

∂xi

(
xj

∂V

∂xj

))
= ±Ω1Ω2

2
det

(
xi

∂

∂xi

(
xj

∂V

∂xj

))
= ω(D̊) ,

which concludes the proof of Theorem 4.1. □

Appendix A. Further discussion on collapsing

In this section we illustrate the collasping process explained in Section 3.2. For simplicity,
we only consider alternating diagrams, but the non-alternating case can be described in a
similar way.

Let D be an alternating diagram of a knot K ⊂ S3 and D̊ be an open diagram obtained
fromD by cutting a segment s ofD. Recall from Section 3 thatOD is an ideal triangulation of
S3\(K∪{±∞}) with tetrahedra placed at corners of D and that TD̊ is an ideal triangulation
obtained from OD by removing some tetrahedra lying around s and changing some face-
pairings.

Chopping off the vertices of the tetrahedra, we obtain a compact 3-manifold whose bound-
ary consists of one triangulated torus ν(K) and two triangulated spheres ν(±∞). When OD

collapses to TD̊, the boundary surfaces ν(K) and ν(±∞) are glued after losing some triangles
around s. In what follows, we describe how these surfaces change.

• For the boundary torus ν(K), three cylinders around s are removed, shown as in
Figure 16 (right). There are six boundary circles, but the face-pairing results in four
of them being paired; see dashed arrows in Figure 16 (right). The resulting surface
ν ′(K) is a cylinder that wraps around K except for the segment s.

• For the triangulated sphere ν(+∞), the removed triangles are described in Fig-
ure 17 (left). We divide the removed area into three sections: the body, which is
the union of two regions of D adjacent to s; the tail, on the left side of the body; and
the head, on the right side of the body. After the gluing, the tail is closed up, and
both the head and body become discs; see dashed arrows in Figure 17 (left). Namely,
the sphere ν(+∞) becomes a sphere ν ′(+∞) with two holes.
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• Similarly, the other sphere ν(−∞) also becomes a sphere ν ′(−∞) with two holes; see
Figure 17 (right). Note that topologically, both ν ′(±∞) are cylinders.

· · ·
−

− +

+

· · ·

· · · · · ·

α β

s

Figure 16. Modified face-pairings and ν ′(K)

· · ·

· · ·

· · ·

· · ·

p

q

q p

p

q

β α
γ

γ

Figure 17. ν ′(+∞) and ν ′(−∞).

Two cylinders ν ′(±∞) are glued along the boundary circles coming from their body parts
and form one cylinder. This leads to identifications between U-edges and O-edges. More
precisely, for each segment s′ lying in the body part, the U-edge corresponding to the under-
arc containing s′ is identified with the O-edge corresponding to the over-arc containing s′.
The two remaining boundary circles, coming from heads, are glued to the boundary circles
of ν ′(K). Given that +∞ and −∞ are points far above and below the diagram, respectively,
the union of ν ′(K) and ν ′(±∞) form a tubular neighborhood of the knot K. This shows
that the underlying space of TD̊ is the knot complement S3 \K.

Appendix B. Braid closures

In this section we explain how to find a flattening of the collapsed triangulation TD̊ when

D̊ is given by a closure of a braid, more precisely, when D̊ is an open diagram obtained
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x1

∞

x5

x2

x3

x4

01

1

1

1

Figure 18. An open diagram of the knot 61.

from a braid by taking the closure of all strands except the first one. See Figure 18 for an
example.

The triple f given in Equation (10) still satisfies Lemma 4.2, but not Lemma 4.3. Precisely,
if we repeat the proof of Lemma 4.3, we obtain the following: for an R-edge e, we have
⟨f , e⟩ = 0 if e corresponds to the innermost region, created by closing up the last strand of
the braid; otherwise, ⟨f , e⟩ = 2. See, for instance, Figure 18 that the innermost region does
not have a crossing whose N or S-corner lies in the region.

To make ⟨f , e⟩ = 2 hold for all R-edges e, we use the following lemma.

Lemma B.1. Let ei and ej be two edges of TD̊ that correspond to adjacent regions. Then
there is a triple h = (h, h′, h′′) of vectors such that hj + h′

j + h′′
j = 0 and

⟨f + h, e⟩ − ⟨f , e⟩ =


−1 if e = ei
1 if e = ej

0 otherwise

In addition, such h can be chosen independently of f .

Proof. Let ri and rj be the regions corresponding to the edges ei and ej, respectively. As
they are adjacent, we can find two adjacent corners, with one lying in ri and the other in rj.
If these corner are separated by an underpass, then we define h by assigning integer triples
to the corners as in Figure 19 (left); if by an overpass, as in Figure 19 (right).
Then from the first coordinate of triples, we deduce that

⟨f + h, ei⟩ = ⟨f , ei⟩ − 1, ⟨f + h, ej⟩ = ⟨f , ej⟩+ 1 .

The change of the second and third coordinates affects two edges, one U-edge and one O-edge,
but both receive one +1 and one −1, resulting in a total of 0. □

Remark B.2. Adjacent regions have a segment in common, and the proof of Lemma B.1
works for any pair of corners at one end of the segment. In particular, a choice of h may



1-LOOP EQUALS TORSION FOR TWO-BRIDGE KNOTS 23

ri rj ri rj

(1, 0,−1)(−1, 1, 0)(1,−1, 0)(−1, 0, 1)

Figure 19. A choice of h.

not be not unique. However, regardless of a choice of h, the product ζh is invariant (see
Remark 4.6). Moreover, ζh for Figure 19 agrees with the inverse of what Ohtsuki and Takata
referred to as α in [OT15] that is assigned to the segment.

Roughly speaking, Lemma B.1 allows us to take one contribution from a region and give
it to an adjacent region, and thus to any region, by applying the lemma multiple times. We
take one contribution from a region adjacent to an ∞-segment and give it to the innermost
region. This can be done by (a) following ∞-segments to reach the unbounded region and
then (b) by passing through the caps, illustrated as in Figure 20. Similarly, we take one

∞
(a)

(b)
· · ·

...

Figure 20. From a region adjacent to s∞ to the innermost region.

contribution from a region adjacent to a 0-segment and give it to the innermost region, by
following 0-segments and passing through the cups. This results in a triple h such that
⟨f + h , e⟩ = 2 for all C and R-edges e.
For O and U-edges, we can use Lemma 4.4 as we did in Section 4.1. This results in another

triple g such that

⟨f + h+ g, e⟩ =

{
⟨f + h, e⟩ if e is a C or R-edge

2 if e is an O or U-edge
.

Namely, f + h+ g is a flattening of TD̊.
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