ISOPERIMETRIC INEQUALITY
STEPHAN STADLER

ABSTRACT. We provide a proof of the classical isoperimetric in-
equality in the plane following ideas of Blaschke and Steiner.

1. SETUP

We consider Jordan curves I' in the plane, i.e. images of injective
continuous maps 7 : S' — R% Each Jordan curve I' is the boundary
of a Jordan domain €0 of finite area in the planeH.

v

The isoperimetric problem asks which Jordan curve of finite length
L bounds the largest area. Heuristic considerations quickly lead us to
believe that the answer should be the circle, so the boundary of a disc
D, of some radius » > 0. We have

A(D,) 72 1

L2(0D,)  (2nr)®  4x’
for the ratio of the area of the disc and the squared length of its bound-
ary. Thus, we conjecture:

Theorem 1.1 (Isoperimetric inequality). Among all Jordan curves of
length 27 the unit disc encloses the largest area. In particular, for every
Jordan domain Q0 C R? holds

A®) < - 12(09).

™

IThe Jordan curve theorem states that a Jordan curve divides the plane into
two components, one bounded and one unbounded.
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A Jordan domain © C R? which maximizes the ratio between area
and squared boundary length is called isoperimetric region. We will
prove Theorem in two steps: 1) Show the existence of an isoperi-
metric region, 2) Show that isoperimetric regions are discs. We need
some preparation.

2. CONVEX SETS

Definition 2.1. A subset C' C R" is called conwvex, if it intersects every
lind] [ ¢ R” in an interval.

For an arbitrary subset A C R"™ we define its closed convex hull
ch(A) = N4 C where the intersection is taken over all closed convex
subsets C' containing A.

We collect some basics on closed convex sets. For a subset A C R”
with will denote the distance function by

dy :R" = R; z — inf ||z — df.
acA

Proposition 2.2. Let C C R" be a closed convexr subset. Then there
exists a unique nearest point projection, a map © : R" — C such that
|z — 7(z)|| = infeec ||z — || for x € R™. Moreover, 7 is 1-Lipschitz,
i.e. for any pair of points x,y € R™ holds ||7(z) — n(y)|| < ||z —y||.

Proof. Fxistence of a nearest point:
For z € R" choose a sequence (c¢) in C' such that ||z —cx|| — de(x).
Since every closed ball in R™ is compact, after passing to a subsequence,

2A line is an affine 1-dimensional subspace in R”.
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we may assume that (cg) converges to a point ¢. Note ¢ € C' because
C' is closed.

Uniqueness of the nearest point: Suppose ci,co € C both satisfy
|z — ci|l = ||z — e1]| = de(z). By Pythagoras, the midpoint m = 432
satisfies ||z — m||* = de(x)? — 1]ler — ¢of|?. Since m lies in C', we must
have ¢; = ¢s.

Thus, the map 7 : R” — C' is well defined.

1-Lipschitz: By definition, ||z — w(y)|| > ||z — p|| for every point p
on the segment from z to y. Thus the quadrangle O(z,y, 7(y), 7(z))
has angles at least % at 7(x) and 7(y). Hence ||7(x) —7(y)| < ||z —y|
holds as claimed. U

Now we concentrate on closed convex subsets in the unit square

Q=012 C R2.

Corollary 2.3. For closed convex subsets C; C Cy in Q holds L(0C}) <
L(0Cy). In particular, every closed conver subset C' C @ satisfies
L(0C) < 4.

The following observation is crucial. It allows to restrict our search
for an isoperimetric region to convex sets.

Lemma 2.4. For every closed bounded domain Q@ C R? holds A(2) <
A(ch(€2)) and L(02) > L(0ch(2)).

ch(Q)

Proof. Note that ch(€2) can be described as the intersection of all sup-
porting half-planes — closed half-planes H C R? which contain 2 and
such that 9H N # (). The boundary of € intersects a supporting half-
plane in a closed set which is contained in a minimal interval I C 0H.
By definition, I C dch(2). The endpoints 9/ define an arc a on 02
with da = 0I. The nearest point projection 7y decrease the length of
a and Ty o lies in OH. In particular, L(I) < L(«). The claim follows
by applying this argument to every supporting hyperplane. U
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3. HAUSDORFF METRIC

Definition 3.1. For a subset A C R™ and r > 0 we define the r-tubular
neighborhood

N.(A) :={z € R"| da(z) < r}.
For subsets A, B C R" we define the Hausdorff distance
|A, Blg :=inf{r > 0| A C N,.(B),B C N,(A)}.
Set M :={AC Q| A closed}.
Theorem 3.2. (M, |-,:|y) is a compact metric space.

Proof. 1t is easy to see that it is a metric space. We will only show
that it is compact. To do this we will use dyadic subdivisions of @), i.e.
for every n € N we decompose () into 22" congruent squares. For a set
A in M we define its cubical version P,(A) at scale 55 as the union of
all squares in the n-th dyadic subdivision which intersect A. Note that
P,1(A) C P,(A).

N

=/
/

(N

g

Let (A;) be a sequence in M. To extract a limit we will use a diagonal
argument. Since for a fixed scale, there are only finitely many possible
cubical versions, we can find a subsequence (A;;) such that the cubical
version at scale % 1s constant:

Pl(Ail) = Pl-

Proceeding in this manner, after passing to subsequences n-times, we
have a sequence (A;,) whose cubical version at scale 2% is constant:

Note that
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We set P := [),cny Pn- As an intersection of a nested sequence of
compact sets, P is an element in M. Then A;; — P:
|Aiis Plr < [Aii, Pl + [P, Plu

V2 V2
<% +;7—>0.

g

Exercise. Let (C;) be a sequence of closed convex sets in M which
converges to an element C' € M. Show that C' is convex with A(C;) —
A(C) and L(0C;) — L(0C).

Hint: Consider for A € (0,00) the scaling sy : R? — R?; 2 — \z.

Solution: We only treat the case that C' is non-degenerated, i.e. after
translation, we may assume that B.(0) C C. For A > 1 define Cf :=
sy+1C. Then, we have C5 C C' C O and both inclusions are strict.
Thus, for i large enough, we have C; C C; C Cy. For such ¢ we obtain

SAC) = A(Cy) < A(C)) < A(CY) = NA(C)

and

%L(@O) — L(CS) < L(OCy) < L(ACY) = AL(AC).

Proof of Theorem[1.1. By the compactness theorem and the above ex-
ercise, we find a closed convex set C' C () which is an isoperimetric
region. It only remains to show that C'is a disc. To do this, we use
Jakob Steiner’s 4-joint argument. Choose a segment s C R? which
cuts AC into arcs of equal length. Denote by C* the two halves and by
x,y the endpoints of s. If CT is not a half-disc, then there is a point
p € OCT\ s such that the triangle A(z, y, p) does not have a right angle

at p.
p
\ v

This is a contradiction, as we can now produce a domain with the
same boundary length as C' but strictly larger area:
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Since this is impossible, we conclude that C" is a half-disc and there-
fore C is a disc. O
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