
ISOPERIMETRIC INEQUALITY

STEPHAN STADLER

Abstract. We provide a proof of the classical isoperimetric in-
equality in the plane following ideas of Blaschke and Steiner.

1. Setup

We consider Jordan curves Γ in the plane, i.e. images of injective
continuous maps γ : S1 → R2. Each Jordan curve Γ is the boundary
of a Jordan domain Ω of finite area in the plane1.

The isoperimetric problem asks which Jordan curve of finite length
L bounds the largest area. Heuristic considerations quickly lead us to
believe that the answer should be the circle, so the boundary of a disc
Dr of some radius r > 0. We have

A(Dr)

L2(∂Dr)
=

πr2

(2πr)2
=

1

4π
,

for the ratio of the area of the disc and the squared length of its bound-
ary. Thus, we conjecture:

Theorem 1.1 (Isoperimetric inequality). Among all Jordan curves of
length 2π the unit disc encloses the largest area. In particular, for every
Jordan domain Ω ⊂ R2 holds

A(Ω) ≤ 1

4π
· L2(∂Ω).

1The Jordan curve theorem states that a Jordan curve divides the plane into
two components, one bounded and one unbounded.
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A Jordan domain Ω ⊂ R2 which maximizes the ratio between area
and squared boundary length is called isoperimetric region. We will
prove Theorem 1.1 in two steps: 1) Show the existence of an isoperi-
metric region, 2) Show that isoperimetric regions are discs. We need
some preparation.

2. Convex sets

Definition 2.1. A subset C ⊂ Rn is called convex, if it intersects every
line2 l ⊂ Rn in an interval.

For an arbitrary subset A ⊂ Rn we define its closed convex hull
ch(A) =

⋂
A⊂C C where the intersection is taken over all closed convex

subsets C containing A.

We collect some basics on closed convex sets. For a subset A ⊂ Rn

with will denote the distance function by

dA : Rn → R; x 7→ inf
a∈A

∥x− a∥.

Proposition 2.2. Let C ⊂ Rn be a closed convex subset. Then there
exists a unique nearest point projection, a map π : Rn → C such that
∥x − π(x)∥ = infc∈C ∥x − c∥ for x ∈ Rn. Moreover, π is 1-Lipschitz,
i.e. for any pair of points x, y ∈ Rn holds ∥π(x)− π(y)∥ ≤ ∥x− y∥.

Proof. Existence of a nearest point:
For x ∈ Rn choose a sequence (ck) in C such that ∥x− ck∥ → dC(x).

Since every closed ball in Rn is compact, after passing to a subsequence,

2A line is an affine 1-dimensional subspace in Rn.
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we may assume that (ck) converges to a point c. Note c ∈ C because
C is closed.

Uniqueness of the nearest point: Suppose c1, c2 ∈ C both satisfy
∥x− c1∥ = ∥x− c1∥ = dC(x). By Pythagoras, the midpoint m = c1+c2

2

satisfies ∥x−m∥2 = dC(x)
2 − 1

4
∥c1 − c2∥2. Since m lies in C, we must

have c1 = c2.
Thus, the map π : Rn → C is well defined.
1-Lipschitz: By definition, ∥x − π(y)∥ ≥ ∥x − p∥ for every point p

on the segment from x to y. Thus the quadrangle □(x, y, π(y), π(x))
has angles at least π

2
at π(x) and π(y). Hence ∥π(x)−π(y)∥ ≤ ∥x− y∥

holds as claimed. □

Now we concentrate on closed convex subsets in the unit square
Q := [0, 1]2 ⊂ R2.

Corollary 2.3. For closed convex subsets C1 ⊂ C2 in Q holds L(∂C1) ≤
L(∂C2). In particular, every closed convex subset C ⊂ Q satisfies
L(∂C) ≤ 4.

The following observation is crucial. It allows to restrict our search
for an isoperimetric region to convex sets.

Lemma 2.4. For every closed bounded domain Ω ⊂ R2 holds A(Ω) ≤
A(ch(Ω)) and L(∂Ω) ≥ L(∂ ch(Ω)).

Proof. Note that ch(Ω) can be described as the intersection of all sup-
porting half-planes – closed half-planes H ⊂ R2 which contain Ω and
such that ∂H∩Ω ̸= ∅. The boundary of Ω intersects a supporting half-
plane in a closed set which is contained in a minimal interval I ⊂ ∂H.
By definition, I ⊂ ∂ ch(Ω). The endpoints ∂I define an arc α on ∂Ω
with ∂α = ∂I. The nearest point projection πH decrease the length of
α and πH ◦α lies in ∂H. In particular, L(I) ≤ L(α). The claim follows
by applying this argument to every supporting hyperplane. □
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3. Hausdorff metric

Definition 3.1. For a subset A ⊂ Rn and r > 0 we define the r-tubular
neighborhood

Nr(A) := {x ∈ Rn| dA(x) < r}.

For subsets A,B ⊂ Rn we define the Hausdorff distance

|A,B|H := inf{r > 0| A ⊂ Nr(B), B ⊂ Nr(A)}.

Set M := {A ⊂ Q| A closed}.

Theorem 3.2. (M, |·, ·|H) is a compact metric space.

Proof. It is easy to see that it is a metric space. We will only show
that it is compact. To do this we will use dyadic subdivisions of Q, i.e.
for every n ∈ N we decompose Q into 22n congruent squares. For a set
A in M we define its cubical version Pn(A) at scale

1
2n

as the union of
all squares in the n-th dyadic subdivision which intersect A. Note that
Pn+1(A) ⊂ Pn(A).

Let (Ai) be a sequence inM. To extract a limit we will use a diagonal
argument. Since for a fixed scale, there are only finitely many possible
cubical versions, we can find a subsequence (Ai1) such that the cubical
version at scale 1

2
is constant:

P1(Ai1) ≡ P1.

Proceeding in this manner, after passing to subsequences n-times, we
have a sequence (Ain) whose cubical version at scale 1

2n
is constant:

Pn(Ain) ≡ Pn.

Note that

Ain ⊂ Pn ⊂ N√
2

2n
(Ain).



ISOPERIMETRIC INEQUALITY 5

We set P :=
⋂

n∈N Pn. As an intersection of a nested sequence of
compact sets, P is an element in M. Then Aii → P :

|Aii, P |H ≤ |Aii, Pi|H + |Pi, P |H

≤
√
2

2i
+

∞∑
j=i

√
2

2j
→ 0.

□

Exercise. Let (Ci) be a sequence of closed convex sets in M which
converges to an element C ∈ M. Show that C is convex with A(Ci) →
A(C) and L(∂Ci) → L(∂C).

Hint: Consider for λ ∈ (0,∞) the scaling sλ : R2 → R2;x 7→ λx.

Solution: We only treat the case that C is non-degenerated, i.e. after
translation, we may assume that Bϵ(0) ⊂ C. For λ > 1 define C±

λ :=
sλ±1C. Then, we have C−

λ ⊂ C ⊂ C+
λ and both inclusions are strict.

Thus, for i large enough, we have C−
λ ⊂ Ci ⊂ C+

λ . For such i we obtain

1

λ2
A(C) = A(C−

λ ) ≤ A(Ci) ≤ A(C+
λ ) = λ2A(C)

and
1

λ
L(∂C) = L(∂C−

λ ) ≤ L(∂Ci) ≤ L(∂C+
λ ) = λL(∂C).

Proof of Theorem 1.1. By the compactness theorem and the above ex-
ercise, we find a closed convex set C ⊂ Q which is an isoperimetric
region. It only remains to show that C is a disc. To do this, we use
Jakob Steiner’s 4-joint argument. Choose a segment s ⊂ R2 which
cuts ∂C into arcs of equal length. Denote by C± the two halves and by
x, y the endpoints of s. If C+ is not a half-disc, then there is a point
p ∈ ∂C+\s such that the triangle △(x, y, p) does not have a right angle
at p.

This is a contradiction, as we can now produce a domain with the
same boundary length as C but strictly larger area:
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Since this is impossible, we conclude that C+ is a half-disc and there-
fore C is a disc. □
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