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Abstract. In this note, we consider the problem of constructing an enlargement of the category
of Betti sheaves that supports an “exponential local system” on R, and a Fourier equivalence
defined on all sheaves. We show that there is a universal solution, recovering a construction of
Tamarkin known also as “enhanced sheaves”. The universality property implies that the category
of coefficients of this theory is, in a suitable sense, a nontrivial R>0-torsor over Spec(Z).

Contents

1. Introduction 1
2. The coefficients 2
3. The exponential local system 4
4. The Fourier transform 6
5. Universality of W 7
6. A canonical R>0-torsor over Spec(Z) 8
7. Outlook 10
References 10

1. Introduction

There are various sheaf theories in algebraic and arithmetic geometry, with similar properties:
The classical theory of Betti sheaves, the theory of D-modules, the theory of étale sheaves, the
theory of arithmetic D-modules, etc. . They share many common properties and in most situations
one can faithfully translate from one setting into another. Even better, one can often work with the
theory of motivic sheaves, which specializes to the other theories. However, there is one asymmetry
that sometimes comes up: Namely, in only some of these settings, it is possible to define an
interesting “exponential local system” exp on the affine line bundle A1. One way this often gets
used is to define a Fourier transform on sheaves. Namely, for any vector space V with dual vector
space V ∗, there is a natural pairing b : V × V ∗ → A1, and one can define the Fourier transform

F = pV ∗!(p
∗
V ⊗ b∗exp) : D(V )→ D(V ∗).

This turns out to (essentially) be its one inverse, giving an equivalence D(V ) ∼= D(V ∗).
The standard examples of exponential local systems are the following:

(i) In the theory of D-modules over a field k of characteristic 0. Here, the D-module exp on
A1
k is given by the free rank 1-module k[T ] ·e on A1

k with connection ∇(f ·e) = (∇(f)−f)e.
The idea is that the basis element e is given by exp(−T ).
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(ii) In the theory of ℓ-adic sheaves over a field k of characteristic p ̸= ℓ. Here, pick an embedding

ψ : Fp → Q×
ℓ , and use it to turn the Artin–Schreier cover A1

k → A1
k : x 7→ xp − x with

covering group Fp into a Qℓ-local system exp on A1
k. A priori, this may not seem related to

the exponential function, but note that ψ is a map from an additive group to a multiplicative
group, i.e. a kind of exponential; and under Grothendieck’s sheaf-function dictionary, ψ
yields exponential functions, and many applications to exponential sums in analytic number
theory.

The Fourier transform has many applications, for example Laumon’s proof of Deligne’s gener-
alization of the Weil conjectures [Lau87], and multiple applications in geometric representation
theory; see [Lau91] for an early survey. In geometric representation theory, one can often put one-
self in a situation where the sheaves are scaling equivariant under the scaling action of Gm on V .
In this case, Laumon observed that the homogeneous version of the Fourier transform can always
be defined [Lau03].

This discussion is closely related to the possibility of wild ramification. Namely, the exponential
local system exp always has a “wild” singularity at∞. In the case of D-modules, wild ramification
means irregular singularities; while for étale sheaves in positive characteristic p, it means ramifi-
cation of degree divisible by p. The Fourier transform will in general take tame sheaves to wild
sheaves.

Thus, in sheaf theories such as Betti sheaves, or étale sheaves in characteristic 0, where there are
no “wild” sheaves, this story does not seem to exist. But in fact, in any sheaf theory it is possible to
freely add an exponential local system yielding a Fourier equivalence. The goal of the present note
is to make this procedure explicit in the case of Betti sheaves. This yields a category of “wild Betti
sheaves” that contains usual Betti sheaves fully faithfully, comes with an “exponential local system”
exp on R, and supports a Fourier transform defined on all sheaves. In fact, in a slightly different
language this theory was previously constructed by Tamarkin [Tam18] and is closely related to the
irregular Riemann–Hilbert correspondence, cf. [DK16], where it is known as “enhanced sheaves”.
Tamarkin was motivated by applications in symplectic geometry: Namely, the coefficient category
is closely related to the Novikov ring (more precisely, it has a forgetful functor to complete almost
modules over the Novikov ring), and Tamarkin has shown that at least in some cases one can define
the Fukaya category already with this coefficient category [Tam15].

Acknowledgments. It is a pleasure to dedicate this note to Gérard Laumon. We thank Dennis
Gaitsgory for comments on a preliminary version. Moreover, we are very grateful to Bingyu Zhang
for kindly pointing us to the relevant previous literature on the subject.

2. The coefficients

The key construction we use is the category introcued below that we will use as our coefficient
category. We will work ∞-categorically throughout and with sheaves of spectra, but of course one
could specialize to abelian groups, or R-modules for some ring R.

We want to find some symmetric monoidal category C so that there is a nontrivial invertible
C-sheaf on R. This necessarily means that C must be somewhat exotic: for any usual ring R,
there are no nontrivial invertible sheaves of R-modules on R, as they must be locally constant,
and then trivial as R is contractible. The same argument works more generally when C has a
compact unit. Indeed, in that case any invertible object is also compact. For any invertible object
L ∈ D(R, C) and x ∈ R, let L = Lx ∈ C be the fibre. By compactness of L, the isomorphism L = Lx
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spreads into a map L → L|U for some open neighborhood U of x, which is also an isomorphism
after shrinking U (by arguing with the inverse). Finally, the contractible nature of R ensures that
these local isomorphisms can be extended to a global one. Most categories C used in practice have
compact unit, or at least admit a family of conservative functors to such categories, so that this
argument shows that no nontrivial invertible C-sheaves on R can exist. This includes all categories
of quasicoherent sheaves on (analytic) stacks. It does not include, however, categories of almost
modules – here, the unit fails to be compact, and there are often no forgetful functors to categories
with compact unit.

Example 2.1. Let V be a rank 1 valuation ring with non-discrete valuation. Let C be the category
of almost modules over V , i.e. the quotient of the category of V -modules by the full subcategory of
k-modules, where k is the residue field of V . Then there is a nontrivial invertible C-sheaf L on R
whose fibre at r ∈ R is the almost module corresponding to the V -module {x ∈ Frac(V ) | |x| ≤ r}.

The author has long been intrigued by these interesting continuously varying families of line
bundles on almost schemes. It turns out that the previous example yields an “exponential local
system” defining a Fourier equivalence once one replaces C by the subcategory of complete mod-
ules. By Vaintrob’s equivalence [Vai17] recalled below, the following category is in some sense the
universal case of the previous example:

Definition 2.2. Let W be the symmetric monoidal stable∞-category of completely and continuously
R-filtered spectra. This is the full subcategory of the symmetric monoidal stable ∞-category of
(ascendingly) R-filtered spectra (FilrM)r, subject to:

(i) Completeness: limr→−∞FilrM = 0, and
(ii) Continuity: For all r, the map FilrM → limr′>rFilr′M is an equivalence.

The unit is given by S(0) with FilrS(0) = 0 for r < 0 and FilrS(0) = S for r ≥ 0. The tensor
product is given by taking the tensor product of R-filtered spectra and enforcing completeness and
continuity.

One can more precisely define the symmetric monoidal structure by regarding W as a Verdier
quotient of R-filtered spectra, and descending the symmetric monoidal structure.

We note that by continuity, the datum of the filtration (FilrM)r is equivalent to the datum of
the filtration (Fil<rM)r where Fil<rM = colimr′<rFilr′M , subject to the continuity condition

colimr′<rFil<r′M → Fil<rM

being an equivalence.
There is a forgetful functor

W→ Sp : (FilrM)r 7→ colimr→∞FilrM

taking the underlying spectrum. The functor is only lax symmetric monoidal, and does not preserve
colimits, as these operations in W must be followed by completion. There is another natural
forgetful functor

W→ Sp : (FilrM)r 7→ Fil0M

that is right adjoint to the unit map Sp → W and hence also lax symmetric monoidal. Note that
the composite Sp → W → Sp is the identity via the unit transformation, so Sp → W is fully
faithful.
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For any r ∈ R, one can define an invertible object S(r) ∈W whose underlying object is S, with
Filr′S(r) = S , r′ ≥ r ,

while Filr′S(r) = 0 for r′ < r. The unit S = S(0) in W is not compact, as it can be written as a
colimit of S(r) over r > 0. This colimit, computed naively in R-filtered spectra, is not continuous
at 0, but enforcing continuity at 0 yields S(0).

Definition 2.3. For any topological space X, the symmetric monoidal ∞-category of wild sheaves
on X is

D(X,W) ∼= D(X,S)⊗W,

the presentable symmetric monoidal stable ∞-category of W-sheaves on X. Concretely, this is the
symmetric monoidal ∞-category of completely and continuously R-filtered sheaves, i.e. R-filtered
sheaves (FilrM)r satisfying

(i) Completeness: limr→−∞FilrM = 0.
(ii) Continuity: For all r, the map FilrM→ limr′>rFilr′M is an equivalence.

Remark 2.4. This construction is equivalent to a construction of Tamarkin [Tam18, 2.2], often
denoted T in the literature; see for example [KZ25] for a discussion of various equivalent incarna-
tions. In the literature on the irregular Riemann–Hilbert correspondence [DK16], the construction
is known as “enhanced sheaves”.

The embedding Sp ⊂W induces an embedding

D(X,S) ⊂ D(X,W)

of sheaves into wild sheaves. On locally compact Hausdorff spaces, the usual formalism of six
operations extends to wild sheaves, by repeating the usual constructions, for example using the
general formalism developed by Heyer–Mann [HM24]. More precisely, we use the classes I of open
immersions and P of proper maps, and declare f! to be left adjoint to f∗ for f ∈ I an open
immersion, and right adjoint to f∗ for f ∈ P a proper map. The general extension results for
6-functor formalisms, going back to Liu–Zheng and Gaitsgory–Rozenblyum, show that this gives a
well-defined 6-functor formalism. More concretely, f! is given by applying it naively on each Filr,
and then enforcing completeness and continuity of the resulting R-filtered sheaf of spectra.

There is a functor of (∞, 2)-categories from the category of kernels for usual sheaves towards
the category of kernels for wild sheaves, and in particular all suave or prim objects stay so in the
context of wild sheaves. For example, Poincaré duality continues to hold, with the same dualizing
objects.

3. The exponential local system

The family r 7→ S(r) is continuously varying:

Proposition 3.1. There is a (unique) invertible object

exp ∈ D(R,W)

with underlying sheaf S, whose fibre at r ∈ R is S(r).
More generally, for any topological space X and any continuous function f : X → R, there is a

unique invertible object S(f) in D(X,W) with underlying sheaf S whose fibre at x ∈ X is S(f(x)).
One has S(f)⊗ S(g) ∼= S(f + g), and in particular the inverse of S(f) is given by S(−f).
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In particular, for any “variety with potential” (X, f : X → A1), we get a wild sheaf S(Re(f)) ∈
D(X(C),W). This is closely related to the theory of exponential motives and rapid decay coho-
mology, cf. e.g. [FJ25].

Proof. First, we prove uniqueness. If there are two such sheaves, then their ratio gives some
invertible sheaf S(0)′ with underlying sheaf S, and all of whose fibres are S(0). But then each
FilrS(0)′ is determined to be S or 0 according to r ≥ 0 or r < 0, by comparing stalks.

For existence, we define S(f) with underlying sheaf S by its filtration

Fil<rS(f) = jr!S

where jr : Ur ↪→ X is the open immersion of

Ur = {x ∈ X | f(x) < r} ⊂ X.

It is clear this satisfies the continuity condition

Fil<rS(f) = colimr′<rFil<r′S(f),

so setting

FilrS(f) = limr′>rFil<r′S(f)
yields a completely and continuously R-filtered sheaf, with the correct stalks. Concretely,

FilrS(f) = ir∗i
!
rS

where ir : Zr ↪→ X is the closed immersion of

Zr = {x ∈ X | f(x) ≤ r} ⊂ X.

One gets natural maps S(f)⊗ S(g)→ S(f + g) from the construction, and they are isomorphisms
by checking on stalks. In particular, S(f) is invertible with inverse S(−f). □

Concretely, both Fil<rexp and Filrexp are the !-extension of the constant sheaf on (−∞, r).

Corollary 3.2. The sheaf exp is additive, i.e. the pullback of exp under the addition map R×R +−→
R is exp⊠ exp (uniquely in a way compatible with underlying sheaves).

Proof. This follows directly from S(f)⊗ S(g) ∼= S(f + g). □

We will need the following computation. This vanishing is the essential non-triviality property
of the exponential local system.

Proposition 3.3. Under the functor of compactly supported cohomology

π! : D(R,W)→W

one has

π!exp = 0.

Proof. For any r ∈ R, the sheaf Filrexp is the !-extension of the constant sheaf on (−∞, r), and
hence its compactly supported cohomology is given by R[−1]. But this is constant for all r (with
transition maps isomorphisms), so enforcing completeness to get an object of W kills it. □
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4. The Fourier transform

Now let V be any real vector space and let V ∗ be its dual vector space. We get the pairing

b : V × V ∗ → R

and hence the object

KV := b∗exp ∈ D(V × V ∗,W)

which one can then use to define the Fourier transform

FV = pV ∗!(p
∗
V ⊗KV ) : D(V,W)→ D(V ∗,W).

The following theorem is originally due to Tamarkin [Tam18, Theorem 3.5].

Theorem 4.1. The functor FV is an equivalence whose inverse is (−1)∗FV ∗ [d].

Proof. The statement is already true on the level of kernels: We have V
KV−−→ V ∗ and V ∗ KV ∗−−−→ V .

Their composite is given by the kernel

p13!(p
∗
12KV ⊗ p∗23KV ∗) ∈ D(V × V,W).

Using additivity of exp, this is the pullback under V × V +−→ V of

pV !b
∗exp ∈ D(V,W).

For v ∈ V , the fibre of this is given by the compactly supported cohomology of V ∗ with coefficients
in the pullback of exp under ⟨v,−⟩ : V ∗ → R. If v ̸= 0, then we can write V ∗ = R ⊕W so that
⟨v,−⟩ is given by projection to the first factor. Using the usual Künneth for compactly supported
cohomology and Proposition 3.3, we see that this compactly supported cohomology vanishes. If
v = 0, then the sheaf is the unit S(0), and the compactly supported cohomology is S(0)[−d] where
d = dimV . Thus, the composition

V
KV−−→ V ∗ KV ∗−−−→ V

is given by the kernel encoding (−1)∗[−d], which is an equivalence. The same is true for the
composition in the other direction, yielding the claim. □

As usual, one can also show that FV intertwines the convolution symmetric monoidal structure
on D(V,W) with the usual tensor product symmetric monoidal structure on D(V ∗,W).

Moreover, the Fourier transform is closely related to the Legendre transform.

Proposition 4.2. If V = R and f : R → R is a convex function, with unbounded derivatives
when x→ ±∞, then the Fourier transform of S(f) is given by S(f∗)[−1] where f∗ is the Legendre
transform of f , taking any y ∈ R to the infimum of

{f(x) + xy, x ∈ R}

(which is well-defined by our assumption on f).

Note that with our convention, f∗ is concave; the Fourier transform of S(f∗) will then stay in
degree 0.
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Proof. The value of the Fourier transform of f at a point y ∈ R is given by the R-filtered spectrum
whose < r-th term is the compactly supported cohomology of the open subspace

{x | f(x) + xy < r} ⊂ R.

This subset is always connected or empty by convexity, so homeomorphic to either R or ∅. Moreover,
it is empty for r sufficiently small (as f has unbounded derivatives), and nonempty when r is
sufficiently large. It follows that this R-filtered spectrum is of the form S(g)[−1] for some g = g(y),
and unraveling definitions, this is the Legendre transform. □

In general, when f is nonconvex, the Fourier transform of S(f) is a noninvertible sheaf, and its
fibre at 0 has contributions from all the local extrema of f .

5. Universality of W

We see that with the choice of W used above, things work. This raises the question whether
other choices of W would have been possible. Note that we certainly need a family of invertible
objects S(r) for r ∈ R, as the fibres of the exponential local system on R. However, in W we
additionally have maps S(r)→ S(r′) when r ≥ r′. These are not forced on us: Indeed, at the very
least we could swap the direction of the filtration, and have such maps instead when r ≤ r′.

We will show here that in fact up to this change in direction of the filtration, W is universal, using
some ideas of Vaintrob [Vai17]. In the process, we get a different presentation of W, showcasing
its relation to the Novikov ring. Related ideas have also recently been expressed in [Efi24, Section
4.4], [KZ25].

For any presentable symmetric monoidal ∞-category C, we might hope to find an invertible

L ∈ D(R, C) = D(R,S)⊗ C

that is moreover equipped with an isomorphism add∗L ∼= L⊠L and suitable coherence data. (This
does, in fact, guarantee invertibility, if one adds the unit isomorphism 0∗L ∼= 1.) The datum of L
is in fact equivalent to the datum of a symmetric monoidal functor

(D(R,S), ⋆)→ C

where the source is endowed with the convolution product ⋆.

Proposition 5.1 ([Vai17, variant of Theorem 2]). There is an equivalence of symmetric monoidal
∞-categories

(D(R,S), ⋆) ∼= (Dqc(P̃1,a/G̃m),⊗)
where

P̃1 = lim←−
n,x 7→xn

P1

is the infinite root version of P1, with its action of the infinite root version

G̃m = lim←−
n,x 7→xn

Gm

of the multiplicative group, and P̃1,a is the almost scheme, with respect to the almost structure at 0
and ∞ given by the infinite roots.
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Sketch. This can be glued from several equivalences. In fact, quasicoherent sheaves on Ã1,a/G̃m

are equivalent to sheaves on R with nonnegative singular support (cf. below), and similarly for the

complementary Ã1,a and nonpositive singular support. The two charts meet in G̃m/G̃m = ∗, and
quasicoherent sheaves are just spectra, which are also equivalent to local systems of spectra on R.

For the equivalence of quasicoherent sheaves on Ã1,a/G̃m with sheaves on R with nonnegative

singular support, one first recalls that quasicoherent sheaves on Ã1/G̃m are equivalent to Q-filtered
spectra. Passing to the almost category gives the equivalence with continuously R-filtered spectra
(noting that continuity lets one pass from Q- to R-indexed filtrations uniquely). Now R-filtered
spectra are equivalent to sheaves on R with nonnegative singular support by taking a sheaf F to
the system of RΓc((−∞, r),F). □

Thus, possible candidates for an exponential local system L with coefficients in C are parametrized
by symmetric monoidal functors

Dqc(P̃1,a/G̃m)→ C.
In order for this to induce a Fourier equivalence, one needs the vanishing of Proposition 3.3, and
this means in particular that L can nowhere be trivial. Thus, C must be trivial after restriction to

∗ = G̃m/G̃m ⊂ P̃1,a/G̃m.

But then C becomes linear over the resulting quotient category

Dqc(P̃1,a/G̃m)/Dqc(G̃m/G̃m).

But this decomposes into a product of two categories, one at 0 and one at ∞. The category at 0
is precisely the category W of completely and continuously R-filtered spectra! The category at ∞
is the same, up to reversing filtrations. This proves universality of W.

At the same time, this discussion identifies W with the subcategory of complete (at 0) modules
on the almost stack

Ã1,a/G̃m.

In this sense, the category W is the universal case of the construction of Example 2.1. In particular,
forgetting the G̃m-equivariance, this gives a symmetric monoidal functor from W to T -complete
almost modules over S[[T 1/∞]]. This is a version of the Novikov ring. In particular, by base change,
the results of this paper also apply to sheaves with coefficients in complete almost modules over
the Novikov ring, or complete almost modules over any rank 1 valuation ring.

6. A canonical R>0-torsor over Spec(Z)

In fact, this discussion proves more. Namely, if one extends the framework of algebraic geometry
to encompass instead of commutative rings all presentable symmetric monoidal stable∞-categories,
then it turns out

Spec(W)→ Spec(S)
is a torsor under R>0,Betti := Spec(D(R>0, S)). Namely, there is an action of R>0 on W via
multiplicative rescaling of the filtration, encoded in a coaction

W→W⊗D(R>0, S) = D(R>0,W)

sending (FilrM)r to the sheaf with stalk at t ∈ R>0 given by (FilrtM)r.
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Proposition 6.1. The preceding functor induces an equivalence

W⊗S W ∼= D(R>0,W).

Geometrically, this is an isomorphism

R>0,Betti ×Spec(S) Spec(W) ∼= Spec(W)×Spec(S) Spec(W).

This equivalence can be proved directly, but it follows from the universal property of W. Namely,
the Fourier equivalence yields a W-linear symmetric monoidal equivalence

(D(R,W), ⋆) ∼= (D(R,W),⊗)

which, when combined with the base change of Vaintrob’s equivalence to W, yields a W-linear
symmetric monoidal equivalence

(Dqc(P̃1,a/G̃m),⊗)⊗S W ∼= (D(R,W),⊗).

Under this equivalence, G̃m/G̃m ⊂ P̃1,a/G̃m corresponds to {0} ⊂ R. Removing this part, both
sides decompose into two pieces (sheaves near 0/∞ resp. sheaves on R>0/R<0), and we get the
desired equivalence

W⊗S W ∼= D(R>0,W)

that can be unraveled to be the construction above.

Warning 6.2. There are two interpretations of W now: One as sheaves on R with nonnegative
singular support and a certain completeness condition (endowed with the convolution symmetric
monoidal structure), and another as a twisted form of sheaves on R>0 (endowed with the usual
tensor product of sheaves). These two interpretations are quite different. After base change to W,
they are Fourier dual under the Fourier equivalence on R: Namely, nonnegative singular support
is swapped with physical support in R≥0 under the Fourier equivalence, and the completeness
condition amounts to taking the quotient by sheaves supported at {0} ⊂ R≥0.

The perspective that W is a twisted form of D(R>0,S) explains some features of the situation.
First, it explains that the unit of W is not compact (as R>0 is noncompact). It also explains the
fully faithfulness of Sp → W (as R>0 is contractible). Indeed, both of these statements can be
proved by descent along Spec(W) → Spec(S), and then follow from the paranthetical statements.
It also says that wild sheaves on X are a twisted form of sheaves on X × R>0, again in the sense
that after pullback along Spec(W)→ Spec(S), they become equivalent.

The existence of a canonical nontrivial R>0,Betti-torsor over Spec(S) (thus, over Spec(Z)) is quite
surprising. It gives a new general direction to localize in, in algebraic and arithmetic geometry. For
example, Spec(W) has something like a norm in the sense developed by Clausen and the author
(as a multiplicative “norm” map | · | : P1

W → [0,∞]Betti with some properties; however, here, the

norm is defined only on an infinitely ramified version P̃1 of P1). This still implies that for any
(affine, for simplicity) perfect Fp-scheme X = Spec(A), its base change to Spec(W) has a canonical
map XW → M(A) to the Berkovich space of A. After base change to Spec(W), one can localize
in algebraic geometry not just over spectral spaces like the topological space Spec(A), but over
compact Hausdorff spaces!
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7. Outlook

The construction works much more generally. Assume you have any sheaf theory encoded in
a ring stack R over some base Spec(A). One can then parametrize additive line bundles on R
which induce a Fourier equivalence. Working in a suitable general kind of algebraic geometry, as
in the previous section, this always defines over Spec(A) a quasi-torsor under the group of units
R×. Indeed, R× acts on choices of additive line bundles via pullback under the multiplication on
R. Once one has such an additive line bundle, this action is simply transitive – this follows from
the same argument as in the previous section.

This paper deals with the case of the ring stack RBetti over Spec(S); already this case yields
highly nontrivial structures.

This way, any kind of sheaf theory encoded in a ring stack, yielding a realization of usual motives,
can be upgraded to a sheaf theory which yields a realization of exponential motives (taking a variety
with potential (X, f : X → A1) to the cohomology of f∗exp).
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