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Six-Functor Formalisms

Preface

These are lectures notes for a course in Winter 2022/23.

The goal of the lectures is to present some recent developments around six-functor formalisms,
in particular

(1) the abstract theory of 6-functor formalisms;
(2) the 2-category of cohomological correspondences, and resulting simplifications in the proofs

of Poincaré–Verdier duality results;
(3) the relation between 6-functor formalisms and “geometric rings”;
(4) many examples of 6-functor formalisms, both old and new.

Many thanks to all the participants for very helpful discussions!
October 2022
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1. Lecture I: Introduction

The first main goal of these lectures is to answer the question: What is a 6-functor formalism?
For a long time, the answer was “you know it when you see it”: The first such formalism was

established during the development of étale cohomology of schemes, and it was soon realized that
very similar formalisms also exist in other contexts, such as for (usual) cohomology of topological
spaces, or for D-modules on algebraic varieties in characteristic 0. But as I will discuss below, it
is a highly nontrivial task to formalize all the structure implicit in a 6-functor formalism, and the
abstract notion was only formalized recently.

To get started, we will recall the 6-functor formalism on (nice) topological spaces. For this
lecture, let us work with the category C of finite-dimensional locally compact Hausdorff spaces
X, say (for simplicity) those that can be written as locally closed subsets of some Rn. We are
interested in studying the cohomology of X, say H i(X,Z). In this generality, where X might be
a Cantor set, the good definition of cohomology is not singular cohomology, but instead the sheaf
cohomology. To define it, one starts with the abelian category Ab(X) of abelian sheaves on X and
the global sections functor

H0(X,−) : Ab(X)→ Ab.

This is a left exact functor, and one can define its right derived functors

H i(X,−) : Ab(X)→ Ab.

Applied to the constant sheaf Z on X, this defines the cohomology groups H i(X,Z) as desired.
Reflecting on this definition, one is led to also contemplate the full derived functor

RΓ(X,−) : D(Ab(X))→ D(Ab).

In particular, one is led to contemplate the derived category D(X,Z) := D(Ab(X)) of abelian
sheaves on X, for any such X. As a categorically minded person, one is also immediately led to
contemplate its functoriality in X. Namely, for any f : X → Y , there is an exact pullback functor
f∗ : Ab(Y )→ Ab(X) inducing a functor

f∗ : D(Y,Z)→ D(X,Z)

(our first functor!) which has a right adjoint

f∗ : D(X,Z)→ D(Y,Z)

(our second functor!). In the case where Y = ∗ is a point, the functor f∗ is the “constant sheaf
functor”, while f∗ = RΓ(X,−) is the functor introduced above. In particular, the cohomology of
X,

RΓ(X,Z) = f∗Z = f∗f
∗Z ∈ D(∗,Z) = D(Z),

has a simple description in terms of these functors.
What is the functor f∗ in general? It is a relative version of cohomology. Ideally, one would

like to say that it interpolates the cohomology of all the fibres. While this is not true in general, it
is true when f is proper (i.e. the preimage of any compact subset is compact):

Theorem 1.1 (Proper Base Change). Let f : X → Y be a proper map in C and let y ∈ Y with
fibre Xy = X×Y {y}, with inclusions iX : Xy → X and i : {y} → Y . Take any A ∈ D(X,Z). Then
the natural map

(f∗A)y → RΓ(Xy, i
∗A)
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is an isomorphism, where (f∗A)y := i∗f∗A ∈ D({y},Z) = D(Z) is the stalk of f∗A at y.
More generally, for any other map g : Y ′ → Y with base change f ′ : X ′ = X ×Y Y ′ → Y ′ (and

g′ : X ′ → X), the natural base change transformation

g∗f∗ → f ′∗g
′∗

of functors D(X,Z)→ D(Y ′,Z) is an isomorphism.

Here, g∗f∗ → f ′∗g
′∗ is adjoint to

f ′∗g∗f∗ = g′∗f∗f∗ → g′∗

where the latter map comes from the counit map f∗f∗ → id.
At this point, we have defined the cohomology RΓ(X,Z) of any X ∈ C. In fact, we have

also encoded the pullback maps RΓ(Y,Z) → RΓ(X,Z) for f : X → Y : There is a unit map
Z → f∗f

∗Z = f∗Z, and taking RΓ(Y,−) produces the desired map as RΓ(Y, f∗Z) = RΓ(X,Z) as
the lower-shriek functors compose.

But there are further important structures on cohomology. For example:

Theorem 1.2 (Künneth Formula). For proper X and Y , there is a natural isomorphism

RΓ(X,Z)⊗RΓ(Y,Z) ∼= RΓ(X × Y,Z).

Here, ⊗ : D(Z)×D(Z)→ D(Z) is the tensor product on D(Z), i.e. the derived tensor product.
Even the formulation of this theorem requires us to contemplate the tensor product on D(Z);

and of course one is then led to also contemplate the tensor product on D(X,Z) for any X. (This
arises from the usual tensor product on Ab(X) by deriving.) Thus, we consider

−⊗− : D(X,Z)×D(X,Z)→ D(X,Z)

(our third functor!), which again has a (partial) right adjoint

Hom(−,−) : D(X,Z)op ×D(X,Z)→ D(X,Z)

(our fourth functor!) characterized by the adjunction

Hom(A,Hom(B,C)) ∼= Hom(A⊗B,C).

How do these new functors interact with the previous ones? The pullback functors f∗ are
symmetric monoidal, i.e. commute with the tensor product, so in particular

f∗(A⊗B) ∼= f∗A⊗ f∗B.

Note that these isomorphisms here are really extra data, that ought to be subject to further
compatibilities. Fortunately, there is a theory of symmetric monoidal categories and symmetric
monoidal functors that makes it possible to express these compatibilities.

There is also a compatibility between tensor products and pushforward, again in the proper
case.

Theorem 1.3 (Projection Formula). Let f : X → Y be proper and A ∈ D(X,Z), B ∈ D(Y,Z).
Then the natural map

f∗A⊗B → f∗(A⊗ f∗B)

is an isomorphism.
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The map is adjoint to

f∗(f∗A⊗B) ∼= f∗f∗A⊗ f∗B → A⊗ f∗B.

This is enough to prove the Künneth Formula. In fact, if X and Y are proper and A ∈ D(X,Z)
and B ∈ D(Y,Z), we claim that there is a natural isomorphism

RΓ(X,A)⊗RΓ(Y,B) ∼= RΓ(X × Y,A�B)

where A�B := p∗1A⊗ p∗2B ∈ D(X × Y,Z). Here, we use the maps

X × Y
p2 //

p1
��

p

##

Y

pY

��
X

pX // ∗.

Indeed,

RΓ(X × Y,A�B) = p∗(p
∗
1A⊗ p∗2B)

= pX∗(p1∗(p
∗
1A⊗ p∗2B))

∼= pX∗(A⊗ p1∗p
∗
2B)

∼= pX∗(A⊗ p∗XpY ∗B)

∼= pX∗A⊗ pY ∗B = RΓ(X,A)⊗RΓ(Y,B).

Finally, there is one more important structural feature of cohomology: Duality.

Theorem 1.4 (Poincaré Duality). Assume that X is a compact oriented manifold of dimension
d. Then there is a natural isomorphism

RΓ(X,Z)[d] ∼= RΓ(X,Z)∨

where −∨ = Hom(−,Z) is the duality functor on D(Z).

In other words, up to shift, cohomology is self-dual. In fact, one can state a more precise version
applying to any sheaf A ∈ D(X,Z) with dual A∨ = Hom(A,Z):

RΓ(X,A∨)[d] ∼= RΓ(X,A)∨.

In fact, one can even replace the Z in the dual Hom(−,Z) by any B ∈ D(Z), thus leading to

RΓ(X,Hom(A, f∗B))[d] ∼= HomD(Z)(RΓ(X,A), B).

In categorical language, this means precisely that the functor B 7→ f∗B[d] is right adjoint to
f∗ = RΓ(X,−) : D(X,Z)→ D(Z). Even more generally:

Theorem 1.5 (Verdier duality). Let f : X → Y be a proper map that is a “manifold bundle”
(i.e. locally on X and Y of the form Y × ball → Y ) of relative dimension d. Then the functor
f∗ : D(X,Z)→ D(Y,Z) admits a right adjoint which is given by

f∗ ⊗ ωX/Y

for some sheaf ωX/Y ∈ D(X,Z) that is locally isomorphic to Z[d].
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The “oriented” assumption in Poincaré duality ensures that ωX/∗ ∼= Z[d] globally on X.
The problem with this form of Verdier duality is that the assumptions on f combine a global

assumption (“proper”) with a local assumption (“manifold bundle”); this also makes a direct proof
more complicated. Fortunately, there is a way to state a purely local form of Verdier duality.

Namely, for any map f : X → Y there is a further “proper pushforward” functor

f! : D(XZ)→ D(Y,Z)

(our fifth functor!). In this setting, this can be defined as the derived functor of the functor of
sections with proper support. In particular, there is a natural transformation f! → f∗ that is an
isomorphism when f is proper. Again, there is a right adjoint

f ! : D(Y,Z)→ D(X,Z)

(the final sixth functor!) called the “exceptional inverse image” functor. Now we can state the
local version:

Theorem 1.6 (Verdier duality). Let f : X → Y be a “manifold bundle” of relative dimension
d. Then f ! is isomorphic to f∗ ⊗ ωX/Y where ωX/Y = f !Z is locally isomorphic to Z[d].

The advantage of this local statement is that it can be formally reduced to the case that
X = Y ×ball is the product of Y with an (open d-dimensional) ball; and by induction one can also
assume that d = 1. Another advantage of introducing the functor f! is that it enables one to state
more general versions of proper base change and the projection formula. In fact, if one replaces f∗
by f! in proper base change and the projection formula, they are true without the hypothesis that f
is proper! There is however a technical problem: In this more general version of proper base change
and the projection formula, one does not have comparison maps a priori, and the isomorphisms are
instead extra data that ought to be subject to further coherence isomorphisms.

Finally, we can say what a 6-functor formalism is, roughly speaking: There is some category
C of geometric objects (topological spaces, schemes, stacks, analytic spaces, ...) and an asso-
ciation X 7→ D(X) from C to (triangulated/stable ∞-/...) categories, together with functors
(f∗, f∗,⊗,Hom, f!, f

!) satisfying several compatibilities. Notably, every second functor is the right
adjoint of the previous one; pullback is symmetric monoidal; and f! satisfies general base change
and projection formula. There are many examples: Etale cohomology (in various settings), but
also D-modules, or mixed Hodge modules, or arithmetic D-modules, or...

However, it has been an open problem how to encode all the required compatibilities, especially
if – as is the custom these days – one treats D(X) as a stable ∞-category (which leads to an
implicit infinite system of higher coherences). Moreover, establishing the foundational results of
each formalism, especially Poincaré–Verdier duality, usually requires a heavy amount of work that
is specific to each formalism.

Our goal in this course is to first define and study abstract 6-functor formalisms, following
Mann. We will then set up some general machinery applying in this abstract generality that in
particular reduces the proof of Poincaré–Verdier duality to a rather simple problem, building on
work of Lu–Zheng. Afterwards, we will discuss many different examples of 6-functor formalisms.
A curious phenomenon is that in most cases the association X 7→ D(X) can be factored as a
composite

C
F−→ {analytic stacks} Dqc−−→ Cat
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where the first functor F takes any X ∈ C to some other kind of geometric object F (X), sometimes
a scheme but often rather a stack or even an analytic stack, and the second functor is the functor
of taking the derived category of quasicoherent sheaves on an analytic stack. This gives a more
geometric perspective on a 6-functor formalisms, as a functor F between different kinds of geometric
objects. This perspective also leads to a relation between 6-functor formalisms and (analytic) “ring
stacks” i.e. (commutative) ring objects in (analytic) stacks (this was first observed by Drinfeld in
relation to prismatic cohomology).

A somewhat curious case of this phenomenon is in the context of this introductory lecture:

Exercise 1.7. For X ∈ C as above a finite-dimensional locally compact Hausdorff space,
consider the functor

Xsch : Schemesop → Sets

taking any scheme S to the continuous maps |S| → X. Show that Xsch is a “pro-étale algebraic
space”, i.e. admits a pro-étale surjection from a scheme. Moreover, show that there is a natural
equivalence

D(X,Z) ∼= Dqc(X
sch).
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2. Lecture II: Six-Functor Formalisms

In the first part of this course, we want to develop some abstract theory of 6-functor formalisms;
the second part will then discuss many examples.

For this first part, we will work in the following setup: A category C, thought of as the category
of geometric objects, and a class of morphisms E of C, which will be the class of morphisms f of
C for which the “exceptional” functors f! (and f !) functors are defined. We will always assume the
following hypotheses:

(1) The category C has all finite limits.
(2) The class of morphisms E contains all isomorphisms, and is stable under pullback and

composition.

The naive idea of a 6-functor formalism is the following:1

(1) An association X 7→ D(X) from C to (∞-)categories D(X).
(2) A symmetric monoidal structure ⊗ on D(X) for each X ∈ C.
(3) For each f : X → Y , a pullback functor f∗ : D(Y ) → D(X), compatible with the

symmetric monoidal structure, and compatible with composition of maps in C.
(4) For each f : X → Y in E, a functor f! : D(X) → D(Y ), compatible with composition,

and satisfying base change and projection formula isomorphisms.
(5) Moreover, there should right adjoints to − ⊗ A (i.e., internal Hom’s), f∗ (i.e. f∗), and f!

(i.e. f !) for f ∈ E.

It is rather easy to formalize items (1)–(3): Indeed, this is precisely encoded in a functor

Cop → CMon(Cat∞)

where Cat∞ denotes the (∞-)category of∞-categories, and CMon denotes the commutative monoids
in it (for the Cartesian product), in other words CMon(Cat∞) is the (∞-)category of symmetric
monoidal ∞-categories (with morphisms given by symmetric monoidal functors). Also, item (5) is
just a condition. The whole difficulty in formalizing a 6-functor formalism lies in formalizing the
data in (4). Let us list some of the data one would like to have:

After defining the functor f! : D(X)→ D(Y ) for each f ∈ E, one has to supply in addition:

(1) For each f : X → Y and g : Y → Z in E, with composite h : X → Z thus also in
E, an isomorphism h!

∼= g!f! of functors D(X) → D(Z) (satisfying further associativity
constraints for triple compositions).

(2) For each cartesian diagram

X ′
g′ //

f ′

��

X

f
��

Y ′
g // Y

with f in E (and thus also f ′ ∈ E), a base change isomorphism

g∗f!
∼= f ′! g

′∗

of functors D(X) → D(Y ′). Moreover, these isomorphisms should be compatible with
composing base change isomorphisms (horizontally and vertically).

1In making the notions precise, we will be led to higher categorical notions, on which we will give a brief reminder
below.
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(3) For each f : X → Y in E, and A ∈ D(X), B ∈ D(Y ), an isomorphism

f!A⊗B ∼= f!(A⊗ f∗B),

as functors
D(X)×D(Y )→ D(X).

Moreover, this isomorphism should also be compatible with compositions in f in a suitable
sense, as well as the base change isomorphisms. It should also be compatible with further
writing B as a tensor product B′⊗B′′ and the symmetric monoidal structure of f∗, etc.pp.

Especially with the projection formula, which simultaneously uses all of ⊗, f∗ and f!, one
sees that it quickly becomes tedious to explicitly write out all the compatibility isomorphisms (and
associativity-type constraints) that have to be satisfied. This problem gets accentuated when D(X)
is actually an ∞-category, in which case even the associativity constraint is not just a condition,
but a further datum that has to be subjected to a tower of higher associativity constraints (and
similar remarks apply to the base change formula and projection formula).

In the context where D(X) is an∞-category, there have been at least two formalizations of the
datum of a 6-functor formalism:

(1) By Liu–Zheng [LZ12a] in the context of étale cohomology of schemes. Their formalization
is firmly rooted in Lurie’s foundational works, but it relies heavily on the combinatorics
of specific simplicial sets.

(2) By Gaitsgory–Rozenblyum [GR17] in the context of coherent cohomology of schemes.
They propose a very nice formal structure, but their formalization makes use of the for-
malism of (∞, 2)-categories which is much less developed (and in particular, they assumed
certain statements about the formalism on faith).2

Very recently, Mann [Man22b, Appendix A.5] has found a definition that combines the best of
both worlds: Like Liu–Zheng’s work, it is firmly rooted in Lurie’s formalism, while like Gaitsgory–
Rozenblyum’s work it is a nice definition.

The goal of this lecture is to state Mann’s definition, but first we want to say a few words about
higher categories.

Very roughly, a higher category is something like a category that besides objects and morphisms
also allows 2-morphisms between morphisms, and possibly 3-morphisms between 2-morphisms, ad
infinitum. There are basically two routes leading to higher categories:

(1) The collection of all categories is naturally a 2-category: The objects are categories, the
morphisms are functors, and the 2-morphisms are natural transformations. Likewise, the
collection of all 2-categories should naturally form a 3-category, etc.

(2) In homotopy theory, one studies the category of topological spaces up to homotopy. More
precisely, the objects are topological spaces, while morphisms are homotopy classes of
morphisms. However, passing to homotopy classes loses information – often, it is important
to know how, and not just that, two maps are homotopic. This can be recorded if instead
of passing to homotopy classes, one instead introduces homotopies as 2-morphisms. But
then one is naturally led to introduce homotopies between homotopies as 3-morphisms,
and so on.

2Moreover, their functors behave somewhat differently than in the outline above – they start with ⊗, f∗ and f !,
and the latter two do not usually have left adjoints; and f ! is symmetric monoidal which is usually not the case in
our setup.
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A property of the second example is that 2-morphisms (and all higher morphisms) are invertible
(while this is not the case in the first example – there are natural transformations that are not
isomorphisms). Somewhat curiously, it turns out that it is easier to allow higher morphisms if one
insists that they are all invertible. This leads to the following very vague definition.

Slogan. For ∞ ≥ n ≥ m, an (n,m)-category is a higher category having i-morphisms for
i ≤ n, which are invertible for i > m.

In particular through the works of Lurie (but building on previous work of Boardman–Vogt
and Joyal), there is a well-developed notion of (∞, 1)-categories. In the literature, these are now
often simply called ∞-categories, and we will (reluctantly) do the same. But be warned that they
do not generalize 2-categories (which are usually understood to mean (2, 2)-categories, not (2, 1)-
categories)! Allowing non-invertible 2-morphisms, to get a theory of (∞, 2)-categories, is part of
the active area of higher category theory, and due to ignorancy we will not say anything about
it. Roughly speaking, the situation seems to be that there are now many different models of
(∞, 2)-categories, and they have recently all been proved to be equivalent (in the relevant sense).

It turns out that the language of simplicial sets is a very convenient way to capture both the
structure of categories, and the homotopy theory of topological spaces.

Definition 2.1.

(1) The simplex category ∆ is the category of nonempty finite totally ordered sets, with weakly
increasing morphisms. Equivalently, it has objects ∆n ∈ ∆ for each n ≥ 0 corresponding
to the totally ordered set {0, 1, . . . , n}, with Hom(∆n,∆m) given by the set of weakly
increasing maps {0, 1, . . . , n} → {0, 1, . . . ,m}.

(2) The category of simplicial sets sSet is the category freely generated under colimits by ∆.
Equivalently, it is the functor category

∆op → Set

which contains ∆ ↪→ Fun(∆op, Set) via the Yoneda embedding.

We want to think of simplicial sets C as modelling some kind of categories. Thinking of C as a
functor ∆op → Set, we think of Cn := C(∆n) as the set of n-simplices in C, which we think of as
functors from the category {0→ 1→ . . .→ n} to C. In other words:

(1) For n = 0, C0 is the set of objects of C.
(2) For n = 1, C1 is the set of morphisms of C, i.e. of pairs (X,Y ) of objects of C together

with a map f : X → Y .
(3) For n = 2, C2 is the set of commutative triangles in C, i.e. of triples (X,Y, Z) of C, maps

f : X → Y , g : Y → Z and h : X → Z, as well as a witness that h is the composite of f
and g.

(4) . . .

In particular, this recipee defines a (fully faithful) functor from the (strict 1-)category of cate-
gories towards simplicial sets.

A critical property of a category should be that composites of morphisms are defined. This
means that whenever we have objects X,Y, Z of C as well as maps f : X → Y and g : Y → Z,
there is a way to extend this to a whole 2-simplex of C (and in particular a composite h : X → Z).
Equivalently, denoting

Λ2
1 = ∆1 t∆0 ∆1 ⊂ ∆2
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the inner horn, any map Λ2
1 → C extends to ∆2 → C. (More generally, for any 0 ≤ i ≤ n,

one defines the horn Λni ⊂ ∆n obtained by removing the interior and the i-th face.) Moreover,
composition should be unique, at least up to homotopy (which again, should be unique homotopy,
ad infinitum). This condition of uniqueness up to all higher homotopies is that of being a trivial
Kan fibration. This leads to the following definition.

Definition 2.2.

(1) A map f : C → D of simplicial sets is a trivial Kan fibration if for all n ≥ 0 and any
diagram

∂∆n //

��

C

��
∆n // D,

there is an extension ∆n → C making both triangles commute (where ∂∆n ⊂ ∆n is
obtained by removing the interior). Equivalently, the same condition holds with ∂∆n ↪→
∆n replaced by any injection of simplicial sets.

(2) An ∞-category is a simplicial set C such that

Map(∆2, C)→ Map(Λ2
1, C)

is a trivial Kan fibration.

Here, for simplicial sets C and D, Map(C,D) is the internal mapping object, with n-simplices
given by HomsSet(C ×∆n, D). It turns out that C is an ∞-category if and only if for all 0 < i < n,
any map

Λni → C

extends to the full n-simplex ∆n.
Let us list some basic facts and definitions about ∞-categories.

(1) For any∞-category C and any simplicial set D, the mapping Map(D,C) is an∞-category;
we write Fun(D,C) and call it the functor ∞-category (especially when D itself is an ∞-
category).

(2) For an ∞-category C, one can defines its homotopy category Ho(C). Its objects are the
same as the objects of C, while morphisms are homotopy classes of morphisms in C. Here,
for objects X,Y of C and morphisms f, g : X → Y , they are homotopic if there is a
2-simplex witnessing that g : X → Y is the composite of f : X → Y and the identity
Y → Y (which is equivalent to the existence of a 2-simplex witnessing g : X → Y as the
composite of the identity X → X and f : X → Y ).

(3) A map f : X → Y in C is defined to be an isomorphism3 if it becomes an isomorphism
in Ho(C). Equivalently, there is a morphism g : Y → X and 2-simplices witnessing the
identity X → X as the composite f : X → Y and g : Y → X, and the identity Y → Y as
the composite g : Y → X and f : X → Y .

(4) An ∞-groupoid is an ∞-category C such that all morphisms are invertible; equivalently,
Ho(C) is a groupoid. This is equivalent to asking that C is a Kan complex, i.e. for all
0 ≤ i ≤ n, n > 0, any horn Λni → C extends to ∆n → C.

3sometimes called an equivalence
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At this point, recall that Kan complexes form a model for the theory of homotopy
types; for any topological space X, one can define the Kan complex whose n-simplices
are the continuous maps from the topological n-simplex towards X, and this captures all
homotopy groups of X. As discussed below, Kan complexes naturally form an∞-category,
and we will generally to refer to them as anima when they are thought of as objects of
that ∞-category.

(5) For any ∞-category C, there is a maximal sub-∞-groupoid C' ⊂ C, consisting of all
objects of C but restricting the morphisms to those that are equivalences in C.

(6) Given objects X,Y of C, one can form the pullback

MapC(X,Y ) //

��

∗

(X,Y )

����
Fun(∆1, C)

ev0,ev1 // C × C;

intuitively speaking, MapC(X,Y ) is the simplicial set of maps X → Y in C. Then
MapC(X,Y ) is a Kan complex. Roughly speaking, this makes C into a “category en-
riched in anima”. In fact, there is a natural way to treat any category enriched in anima
as an ∞-category.

(7) The ∞-category Cat∞ of ∞-categories has objects ∞-categories, and mapping anima
Fun(C,D)' ⊂ Fun(C,D) (i.e. one only allows invertible natural transformations as 2-
morphisms). The ∞-category An ⊂ Cat∞ of anima is the full sub-∞-category on anima,
i.e. ∞-groupoids.

Concerning the (non-set-theoretic) details, we note that everything in the above is precise,
except for the implicit passage from categories enriched in Kan complexes to ∞-categories.4 This
latter procedure can be defined explicitly in terms of a homotopy-coherent nerve functor.

Another notion we will need is that of a symmetric monoidal structure on an ∞-category, and
of (lax) symmetric monoidal functors; we will defer a more precise discussion of this to the next
lecture. We only note here the following points:

(1) In a symmetric monoidal ∞-category (C,⊗), one has a notion of commutative monoid,
which is roughly speaking an object X ∈ C together with a unit map 1 → X and a
multiplication map m : X ⊗X → X together with (higher) unitality, commutativity, and
associativity constraints.

(2) If C is an ∞-category admitting finite products, then C has the Cartesian symmetric
monoidal structure, where X ⊗ Y = X × Y .

(3) The ∞-category Cat∞ has finite products and thus the Cartesian symmetric monoidal
structure. A symmetric monoidal ∞-category is a commutative monoid in (Cat∞,×); we
denote their ∞-category by CMon(Cat∞).

(4) If (C,⊗) and (D,⊗) are symmetric monoidal ∞-categories, a lax symmetric monoidal
functor is a functor F : C → D together with (not necessarily invertible) maps 1D → F (1C)
and F (X)⊗F (Y )→ F (X ⊗ Y ) functorial in X,Y ∈ C, and compatible with the (higher)
unitality, commutativity, and associativity constraints. A symmetric monoidal functor is
one for which these natural transformations are equivalences.

4We note that with the given definitions, ∞-categories with mapping Kan complexes Fun' define a 1-category
enriched in the 1-category of Kan complexes.
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Finally, we can state Mann’s definition of a 6-functor formalism. Recall that we start with
a geometric setup (C,E), consisting of an (∞-)category C admitting finite limits, and a class
of morphisms E stable under pullback and composition (and containing all isomorphisms). The
following definition will be made more precise in the next lecture; we note that even if C is a
1-category (as is usually the case), Corr(C,E) will be a (2, 1)-category.

Definition 2.3. The symmetric monoidal ∞-category of correspondences Corr(C,E) is given
as follows.

(1) The objects are the objects of C.
(2) The symmetric monoidal structure is the Cartesian symmetric monoidal structure of C.
(3) The morphisms are correspondences: HomCorr(C,E)(X,Y ) is given by the (∞-)groupoid of

objects W ∈ C together with maps

W

f~~

g

  
X Y

where g ∈ E.
(4) The composition of morphisms is given by the composition of correspondences, i.e. the

composite of two correspondences X ← W → Y and Y ← W ′ → Z is given by the long
triangle in the diagram

W ×Y W ′

zz %%
W

~~ %%

W ′

yy !!
X Y Z.

As in the naive discussion above, we will first formalize just three functors ⊗, f∗ and f!. In the
following definition, Cat∞ is endowed with the Cartesian symmetric monoidal structure.

Definition 2.4. A 3-functor formalism is a lax symmetric monoidal functor

D : Corr(C,E)→ Cat∞.

The reader should take a moment to appreciate how concise this definition is! The claim is that
this encodes the 3 functors ⊗, f∗, f!, and (all of) their relations:

(1) On objects, D defines an association X 7→ D(X).
(2) The lax symmetric monoidal structure defines a natural “exterior tensor product” functor

D(X) ⊗D(X) → D(X ×X). Together with the (diagonal) pullback defined just below,
this defines the tensor product ⊗ on D(X).

(3) For any map f : X → Y , the correspondence Y
f←− X = X defines the pullback functor

f∗ : D(Y )→ D(X).

(4) For any map f : X → Y in E, the correspondence X = X
g−→ Y defines the functor

f! : D(X)→ D(Y ).
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In particular, a correspondence X
f←− W

g−→ Y gets sent to the functor g!f
∗ : D(X) → D(Y ).

The compatibility of this with composition amounts to the base change formula. Next time, we
will also discuss how to find the projection formula.

Finally, as promised we define a 6-functor formalism.

Definition 2.5. A 6-functor formalism is a 3-functor formalism

D : Corr(C,E)→ Cat∞

for which the functors −⊗A, f∗ and f! admit right adjoints.

We note that no further coherences are necessary here: Adjoints automatically acquire all
relevant coherences.
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3. Lecture III: Symmetric monoidal ∞-categories

Let us recall the definition of 3-functor formalisms from the last lecture. Given a geometric
setting, given by an∞-category C admitting finite limits, together with some class E of morphisms
of C that is stable under pullback and composition (and contains all isomorphisms), one defines a
symmetric monoidal ∞-category Corr(C,E) of correspondences.

Definition 3.1. A 3-functor formalism is a lax symmetric monoidal functor

D : Corr(C,E)→ Cat∞.

The goal of this lecture is to unpack this definition, and in particular give some background on
symmetric monoidal ∞-categories and (lax) symmetric monoidal functors.

But first, let us give an honest definition of Corr(C,E) as an ∞-category. For any n ≥ 0, let

(∆n)2
+ ⊂ (∆n)op ×∆n

be the subset spanned by those simplices (i, j) ∈ {0, 1, . . . , n}2 with i ≥ j. For example, for n = 2,
this corresponds to the category

(2, 0)

##{{
(1, 0)

##{{

(2, 1)

##{{
(0, 0) (1, 1) (2, 2).

Varying n, this defines a cosimplicial category (∆•)2
+.

Definition/Proposition 3.2. The correspondence ∞-category Corr(C,E) is the simplicial
set whose n-simplices are maps from (∆n)2

+ to C with the following two properties:

(1) All arrows going down-right are in E.
(2) All small squares are Cartesian.

One has to prove that this is, indeed, an ∞-category, i.e. that all inner horns Λni ⊂ ∆n can be
filled, 0 < i < n. For i = 1, n = 2, this amounts to completing a diagram

W

~~   

W ′

~~   
X Y Z

in C, with W → Y and W ′ → Z in E, to a diagram

W̃

~~   
W

~~   

W ′

}}   
X Y Z
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such that the square is cartesian, and also W̃ → W ′ is in E. But this can be filled in, as C has
pullbacks, and E is stable under pullbacks. The general assertion is [LZ12a, Lemma 6.1.2].

Now we want to endow Corr(C,E) with a symmetric monoidal structure. This requires a
digression on the general notion of symmetric monoidal ∞-categories.

Recall that classically, a symmetric monoidal category is a category C together with:

(1) A unit object 1C ∈ C;
(2) A “tensor product” −⊗− : C × C → C;
(3) A “unitality constraint” uX : 1⊗X ∼= X functorially in X;
(4) A “commutativity constraint” cX,Y : X ⊗ Y ∼= Y ⊗X functorially in X,Y ;
(5) An “associativity constraint” aX,Y,Z : (X⊗Y ) ∼= Z ∼= X⊗ (Y ⊗Z) functorially in X,Y, Z,

subject to a number of commutative diagrams, like the pentagon axiom and the hexagon axiom.
What these axioms express is that for all finite sets I, and all objects Xi ∈ C enumerated by i ∈ I,
there is a well-defined ⊗

i∈I
Xi ∈ C.

Of course, one way to obtain this is to order I ∼= {1, . . . , n} and then inductively define the tensor
product. Using the commutativity and associativity constraint, any two such choices can be related
by an isomorphism, and the extra axioms ensure that if one goes around in a circle using these
constraints, one will always end up with the identity. For example, the pentagon axioms says that,
when filled in with the evident associativity constraints, the diagram

((X ⊗ Y )⊗ Z)⊗W //

��

(X ⊗ (Y ⊗ Z))⊗W // X ⊗ ((Y ⊗ Z)⊗W )

��
(X ⊗ Y )⊗ (Z ⊗W ) // X ⊗ (Y ⊗ (Z ⊗W ))

commutes.
Clearly, it would quickly become tedious to adapt this definition to higher categories, and a

more conceptual approach is required. But the idea should just be that for any finite set I and any
collection of objects Xi ∈ C for i ∈ I, one can unambiguously define

⊗
i∈I Xi.

Let us first take a step back, and use this perspective to define commutative monoids in ∞-
categories. Again, in a commutative monoidX, addition should give well-defined “sum all elements”
maps from XI to X for any finite set I.

Definition 3.3. A commutative monoid in an ∞-category C is a functor

X : Finpart → C

from the category of finite sets with partially defined maps, such that for all finite sets I the map

X(I)→
∏
i∈I

X({i}) = X(∗)I

is an isomorphism (where the map is induced by the partially defined maps I → {i} sending i to i,
and the rest nowhere).

Note that on objects, X is determined by X(∗); indeed, X(I) ∼= X(∗)I by the condition. Thus,
a commutative monoid X is given by extra structure on X(∗), and we will sometimes abuse notation
and write X = X(∗). The map ∅ → ∗ in Finpart defines a unit map ∗ = X(∅)→ X(∗); while for any
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finite set I, the projection map I → ∗ defines a map X(∗)I ∼= X(I)→ X(∗) “summing all elements”.
For a general partially defined map f : I 99K J , the induced map XI = X(I)→ XJ = X(J) is on
the j-th coordinate given by summing over

∏
i∈f−1(j)Xi.

This definition can, in particular, be applied to C = Cat∞, leading to the first definition of a
symmetric monoidal ∞-category.

Definition 3.4. A symmetric monoidal ∞-category is a commutative monoid in Cat∞.

Thus, giving a symmetric monoidal ∞-category requires us to write down functors

Finpart → Cat∞.

It turns out that it is, in general, hard to write down functors towards Cat∞ directly. This is
an issue that already occurs in classical category theory, where it was solved by Grothendieck. A
standard situation in algebraic geometry is to consider the functor

Schop → Cat

taking any scheme S to the category QCoh(S) of quasicoherent sheaves on S (or in the context of
the first lecture, the functor

Topop → Cat

taking any topological space X to the category Ab(X) of abelian sheaves on X). Any map f :
S′ → S defines a pullback functor

f∗ : QCoh(S)→ QCoh(S′).

But when one composes two morphisms, (fg)∗ is not literally identical to g∗f∗. Instead, one only
has a natural isomorphism between the two, and of course this needs to be subject to a coherence
axiom.

Grothendieck’s solution was to write down certain categorical fibrations instead. Namely, one
can define the category

QCohSch = {(S ∈ Sch,M∈ QCoh(S))} → Sch

consisting of pairs (S,M) of a scheme S and a quasicoherent sheafM on S; and where morphisms
(S′,M′) → (S,M) are pairs of a morphism f : S′ → S and a morphism f∗M → M′. It is
straightforward to define this category, and a functor to Sch which is a Cartesian fibration (for
whose definition see below). But then a theorem says that Cartesian fibrations over a category C
(e.g. C = Sch) are equivalent to functors Cop → Cat, giving the desired functor.

The following discussion can be found in [Lur09, Chapter 2, 3], see in particular [Lur09,
Proposition 2.4.2.8] for the equivalence of the following definition with other definitions.

Definition 3.5. A functor F : D → C of ∞-categories is a coCartesian5 fibration if it is an
inner fibration (i.e. any inner horn can be lifted), and

(1) Any morphism of C admits a locally coCartesian lift;
(2) Composites of locally coCartesian lifts are locally coCartesian.

Here, a morphism g : Y → Y ′ in D is a locally coCartesian lift of a morphism f : X → X ′ if it is
initial among all morphisms with source Y that lift f .

5This notion is dual to Cartesian fibrations, and classifies covariant functors to Cat∞ as opposed to contravariant
ones.
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Theorem 3.6 (Lurie, “Straightening/Unstraightening”). There is a natural equivalence between
the ∞-categories of functors C → Cat∞ and the ∞-category of coCartesian fibrations over C.

One has to be a bit careful here which morphisms of coCartesian fibrations one allows. Indeed,
one can already observe that functors C → Cat∞ form most naturally an (∞, 2)-category, and
the above theorem restricts to the underlying (∞, 1)-category here (allowing only invertible nat-
ural transformations). But coCartesian fibrations know about the non-invertible transformations.
Namely, consider two coCartesian fibrations F : D → C, F ′ : D′ → C over C, and a functor
G : D → D′ over C. For each object X of C, this induces a functor GX : DX → D′X between the
fibres. Moreover, for any map f : X → X ′, one can look at the diagram

DX

Df //

GX

��

DX′

GX′
��

D′X
D′f // D′X′ ,

where Df and D′f are the induced functors (of locally coCartesian lifts). This diagram may not
commute, but the initiality condition on locally coCartesian lifts gives a natural transformation

D′fGX → GX′Df .

This map is an isomorphism if and only if G preserves locally coCartesian lifts.
In practice, all functors to Cat∞ are constructed by constructing the corresponding coCartesian

fibration instead. With this in mind, we redefine symmetric monoidal ∞-categories:

Definition 3.7 ([Lur17, Definition 2.0.0.7]). A symmetric monoidal∞-category is a coCarte-
sian fibration

C⊗ → Finpart

such that, denoting C = C⊗∗ the fibre over the one-element set ∗ ∈ Finpart, for all finite sets I the
functor

C⊗I →
∏
i∈I

C,

induced by the partially defined maps I 99K {i} sending i to i (and the rest nowhere), is an
equivalence.

Starting with a symmetric monoidal ∞-category (C,⊗) in the old sense, C⊗ is roughly given
as follows. Objects of C⊗ are pairs (I, (Xi)i∈I) of a finite set I and objects Xi ∈ C for i ∈ I. A
map

(I, (Xi)i∈I)→ (J, (Yj)j∈J)

in C⊗ is given by a partially defined map f : I 99K J together with maps
⊗

i∈f−1(j)Xi → Yj for

all j ∈ J .
Finally, let us discuss (lax) symmetric monoidal functors. Recall that a lax symmetric monoidal

functor F : (C,⊗) → (D,⊗) is, intuitively speaking, a functor F : C → D together with natural
maps

⊗
i∈I F (Xi) → F (

⊗
i∈I Xi) for any finite I and objects Xi, i ∈ I. A symmetric monoidal

functor is a lax symmetric monoidal functor for which these maps are all isomorphisms.
It turns out that lax symmetric monoidal functors are best defined using this perspective of

coCartesian fibrations C⊗ → Finpart.
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Definition 3.8. Let (C,⊗) and (D,⊗) be symmetric monoidal∞-categories, with correspond-
ing coCartesian fibrations

C⊗, D⊗ → Finpart.

A lax symmetric monoidal functor (C,⊗)→ (D,⊗) is a functor F⊗ : C⊗ → D⊗ over Finpart such
that F⊗ preserves locally coCartesian lifts of the morphisms I 99K {i} sending i ∈ I to i and the
rest nowhere. The functor F⊗ is symmetric monoidal if it preserves all locally coCartesian lifts.

The condition on locally coCartesian lifts of the morphisms I 99K {i} is ensuring that F⊗I :

C⊗I → D⊗I is given by F I : CI → DI under the equivalences C⊗I
∼= CI , D⊗I

∼= DI . Then the
above remarks on maps between coCartesian fibrations is precisely ensuring that F⊗ induces maps⊗

i∈I F (Xi)→ F (
⊗

i∈I Xi).

Remark 3.9. Arguably, a drawback of the definition of symmetric monoidal ∞-categories in
terms of coCartesian fibrations is that the definition is not evidently selfdual – it is not clear
that if (C,⊗) is a symmetric monoidal ∞-category then so is (Cop,⊗). There is a dual notion of
colax symmetric monoidal functors, and this is nontrivial to define in this language. See however
[HHLN22] for a detailed discussion of this duality.

If C is any ∞-category that admits finite products, it acquires a unique symmetric monoidal
∞-category structure whose operation is the cartesian product.6 In particular, this applies to Cat∞.
The cartesian symmetric monoidal structure has a useful universal property.

Theorem 3.10 ([Lur17, Proposition 2.4.1.7]). Let (C,⊗) be any symmetric monoidal ∞-
category, and let D be an ∞-category admitting finite products, with its cartesian symmetric
monoidal structure. Then lax symmetric monoidal functors (C,⊗) → (D,×) are equivalent to
functors

F : C⊗ → D

such that for all finite sets I and objects Xi ∈ C, i ∈ I, the map

F ((I, (Xi)i∈I))→
∏
i∈I

F (Xi)

is an equivalence (the map induced as usual by the forgetful maps I 99K {i} for i ∈ I).

To finish the discussion of the terms appearing in the definition of a 3-functor formalism, it
remains to define Corr(C,E) as a symmetric monoidal∞-category. Conveniently, Corr(C,E)⊗ can
be defined itself as a correspondence category in

C×
′

:= ((Cop)t)op.

Here (Cop)t is the coCartesian fibration corresponding to the symmetric monoidal∞-category Cop

with coproducts (i.e., products in C). Concretely, C×
′

as objects given by pairs (I, (Xi)i∈I) as
usual, but maps

(I, (Xi)i∈I)→ (J, (Yj)j∈J)

are given by partially defined maps f : J 99K I together with maps

Xi →
∏

j∈f−1(i)

Yj

6This is actually easier to see for coproducts.
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for all i ∈ I (instead of maps in the opposite direction). Thus, C×
′

is not the coCartesian fibration
over Finpart encoding the cartesian symmetric monoidal structure on C.

Let E× be the class of morphisms of C×
′

that lie over identity morphisms of Finpart, and where
all maps Yi → Xi are in E.

Definition/Proposition 3.11 ([LZ12a, Proposition 6.1.3]). Let Corr(C,E)⊗ = Corr(C×
′
, E×).

This is naturally a coCartesian fibration over Finpart, defining a symmetric monoidal structure on
Corr(C,E).

Objects of Corr(C,E)⊗ are again pairs (I, (Xi)i∈I). Morphisms (I, (Xi)i∈I)→ (J, (Yj)j∈J) are
given by partially defined maps f : I 99K J together with correspondences∏

i∈f−1(j)

Xi ←Wj → Yj

for all j ∈ J , where the morphism Wj → Yj lies in E. We note that we needed the contravariant

maps in C×
′

to cancel the contravariance of the first map in the correspondences. We note in
particular the following three kinds of morphisms of Corr(C,E)⊗:

(1) For all X ∈ C, a map ({1, 2}, (X,X)) → (∗, X) given by the projection {1, 2} → ∗ and
the correspondence X ×X ← X = X where the first map is the diagonal.

(2) For any map f : X → X ′ in C, a map (∗, X ′)→ (∗, X) given by ∗ = ∗ and the correspon-
dence X ′ ← X = X.

(3) For any map f : X → X ′ in E, a map (∗, X)→ (∗, X ′) given by ∗ = ∗ and the correspon-
dence X = X → X ′.

Finally, we can restate the definition of a 3-functor formalism.

Definition 3.12. A 3-functor formalism is a lax symmetric monoidal functor Corr(C,E) →
Cat∞. Equivalently, it is a functor

D : Corr(C,E)⊗ → Cat∞

such that for all finite sets I and Xi ∈ C, i ∈ I, the functor

D((I, (Xi)i∈I))→
∏
i∈I

D(Xi)

is an equivalence.

In particular, on objects this gives X 7→ D(X), and the three types of morphisms above induce
the tensor product, the pullback f∗, and the exceptional pushforward f!. In general, a map

(I, (Xi)i∈I)→ (J, (Yj)j∈J)

given by f : I 99K J and correspondences∏
i∈f−1(j)

Xi
fj←−Wj

gj−→ Yj

induces the functor ∏
i∈I

D(Xi)→
∏
j∈J

D(Yj)
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whose j-th component is given by gj!f
∗
j (�i∈f−1(j)) where

�i∈f−1(j) :
∏

i∈f−1(j)

D(Xi)→ D(
∏

i∈f−1(j)

Xi)

denotes the exterior tensor product (i.e., the tensor product of the pullbacks from each factor).
Indeed, this easily follows by writing this correspondence as a composite of smaller correspondences.
Now the compatibility with composites of correspondences is encoding all the desired compatibilities
between tensor, pullback, and exceptional pushforward.

For example, we can get the projection formula

f!A⊗B ∼= f!(A⊗ f∗B)

along a morphism f : X → Y in E, by writing the correspondence

({1, 2}, (X,Y ))→ (∗, Y )

given by X × Y ← X → Y as a composite in two ways. First, as the composite of

({1, 2}, (X,Y ))→ ({1, 2}, (Y, Y ))

given by the correspondences X = X → Y and Y = Y = Y , and

({1, 2}, (Y, Y ))→ (∗, Y )

given by the correspondence Y × Y ← Y = Y ; and as the composite of

({1, 2}, (X,Y ))→ (∗, X)

given by the correspondence X × Y ← X = X, and

(∗, X)→ (∗, Y )

given by the correspondence X = X → Y . Here, the first composite unravels to

(A,B) 7→ (f!A,B) 7→ f!A⊗B,
and the second composite to

(A,B) 7→ A⊗ f∗B 7→ f!(A⊗ f∗B).

Remark 3.13. In some other formulations of 6-functor formalisms, it is stressed that the functor
f! : D(X) → D(Y ) should be D(Y )-linear (where D(Y ) acts on D(X) by tensoring with the
pullback); this is a “homotopy coherent” version of the projection formula. This structure of f! as
a D(Y )-linear functor is in fact encoded in the lax symmetric monoidal functor D : Corr(C,E)→
Cat∞. In fact, lax symmetric monoidal functors preserve algebras and modules, and the relevant
structure can be defined already on Corr(C,E). Namely, any X defines a commutative algebra
object in Cop (this is always true for the disjoint union symmetric monoidal structure, as there
is a canonical map X t X → X), and any map f : X → Y defines a map f∗ of commutative
algebras in Cop, and in particular makes X a module over Y . The symmetric monoidal functor
Cop → Corr(C,E) induces the same structure in Corr(C,E). Now any map f : X → X ′ over Y in E
induces a covariant map of the associated modules over Y in Corr(C,E). Thus, the same structure
is present after applying D, making f! : D(X)→ D(X ′) a map of D(Y )-modules, i.e. D(Y )-linear.
In particular, taking X ′ = Y , the functor f! : D(X)→ D(Y ) is naturally D(Y )-linear.

In the next lecture, we will discuss a construction principle for 3-functor formalisms, showing
how to get all these intricate coherences in practice.
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4. Lecture IV: Construction of Six-Functor Formalisms

Let us again fix a geometric setting (C,E) as before. We are interested in constructing a lax
symmetric monoidal functor

D : Corr(C,E)→ Cat∞.

Equivalently, this is described by a functor

D : Corr(C,E)⊗ → Cat∞

such that for any finite set I and Xi ∈ C for i ∈ I, the functor

D((I, (Xi)i))→
∏
i∈I
D(Xi)

is an equivalence.
In practice, it is easy to construct a functor

D0 : Cop → CMon(Cat∞)

to symmetric monoidal ∞-categories, encoding ⊗ and f∗. Note that D0 is equivalent to a lax
symmetric monoidal functor

Cop → Cat∞

by [Lur17, Theorem 2.4.3.18]. The problem is now to extend this from Cop ∼= Corr(C, isom) to
Corr(C,E).

In practice (at least in contexts of algebraic geometry), there are two special classes of mor-
phisms I, P ⊂ E of “open immersions” and “proper” maps such that for f ∈ I, the functor f! is
the left adjoint of f∗, while for f ∈ P , the functor f! is the right adjoint of f∗. Moreover, any
f ∈ E admits a factorization f = fj with j ∈ I and f ∈ P , i.e. a compactification. As f! should be
compatible with composition, we need to have f! = f !j! where the latter two functors are defined
(as the right resp. left adjoint of pullback). It is, however, far from clear that this is well-defined,
especially as a functor of ∞-categories!

Example 4.1.

(1) If C is the category of locally compact Hausdorff topological spaces, one can take for I
the open immersions, and for P the proper maps (i.e., preimages of compact subsets are
compact). Any map f : X → Y admits a compactification X ↪→ X → Y , for example
X = βX ×βY Y using the Stone-Čech compactification.

(2) If C is the category of qcqs schemes and E is the class of separated morphisms of finite
type, then one can again take for I the open immersions and for P the proper maps.
Indeed, the Nagata compactifion theorem ensures that any separated map of finite type
f : X → Y between qcqs schemes admits a compactification X ↪→ X → Y .

One might expect that in order for f! to be defined uniquely as a functor of ∞-categories, one
has to put some rather strong assumptions on C (and the classes E, I, P ) – for example, the
existence of some canonical compactification, or at least a canonical “cofinal” collection of such.
Somewhat surprisingly, it turns out that minimal hypotheses ensure that f! is canonically defined.
In fact, we will only make the following assumptions. (Only the assumptions on I and P are not
obviously necessary, but they are very weak and satisfied in all practical situations.)
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(1) Assumptions on I and P : The classes of morphisms I and P are stable under pullback
and composition and contain all isomorphisms. If f : X → Y and f ′ : X ′ → Y are both
in I (resp. in P ) and g : X → X ′ is a map over Y , then g ∈ I (resp. g ∈ P ). If f ∈ I ∩ P ,
then f is n-truncated for some n.7 Any f ∈ E is a composite f = fj with j ∈ I and
f ∈ P .

(2) For any f ∈ I, the functor f∗ admits a left adjoint f! which satisfies base change and the
projection formula.

(3) For any f ∈ P , the functor f∗ admits a right adjoint f∗ which satisfies base change and
the projection formula.

(4) For any Cartesian diagram

X ′
j′ //

g′

��

X

g

��
Y ′

j // Y

with j ∈ I (hence j′ ∈ I) and g ∈ P (hence g′ ∈ P ), the natural map j!g
′
∗ → g∗j

′
! is an

isomorphism.

Remark 4.2. In the situation of (4), assume that Y ′ ×Y Y ′ = Y ′ and that there is some
morphism Z → Y (“the complementary closed to Y ′ ⊂ Y ”) such that Z ×Y Y ′ = ∅ (i.e., an initial
object of C, and we assume D(∅) = 0) and D(Y ) → D(Y ′) × D(Z) is conservative. Then the
condition of (4) follows from the other conditions. Indeed, it becomes enough to check that the
map is an isomorphism after pullback to Y ′ and to Z. But by (2) and (3), all functors in question
commute with base change. After pullback to Z, Y ′ and X ′ become empty and there is nothing
to check. After pullback to Y ′, the map j becomes an isomorphism and again there is nothing to
check.

We note that in (2), (3) and (4), one is only asking that certain natural maps (defined by
adjunctions) are isomorphisms. For example, the last map j!g

′
∗ → g∗j

′
! is by definition adjoint to

g∗j!g
′
∗
∼= j′!g

′∗g′∗ → j′!

using the base change isomorphism for j! from (2).
In fact, in (4) one would expect to have a similar isomorphism j!g

′
∗
∼= g∗j

′
! even if the diagram is

not Cartesian. However, in that case one cannot a priori define a natural isomorphism. Fortunately,
it turns out that this is a consequence of the axioms. To see this, we make the following construction.

Construction 4.3. For any f ∈ I ∩ P , there is a natural isomorphism f!
∼= f∗ between the

left and the right adjoint of f∗.
Indeed, we argue by induction on n such that f is n-truncated. If n = −2, then f is an

isomorphism, and the claim is clear. In general, consider the cartesian diagram

X ×Y X
g //

h
��

X

f
��

X
f // Y

7This is automatic if C is a category (as opposed to an ∞-category). It means that for any g : Z → X, the
anima of lifts of g to Y is n-truncated, i.e. has πi = 0 for i > n.
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as well as ∆ : X → X ×Y X. Then g ∈ I ∩ P by pullback-stability, and hence ∆ ∈ I ∩ P as it is a
map between X and X×Y X, which have compatible projections to X that are in I ∩P . Moreover,
∆ is n− 1-truncated, so by induction we have constructed an identification ∆!

∼= ∆∗. Now

f! = f!g∗∆∗ ∼= f!g∗∆!
∼= f∗h!∆! = f∗

using respectively g∆ = idX , the identification ∆!
∼= ∆∗, assumption (4), and h∆ = idX .

Construction 4.4. For any commutative diagram

X ′
j′ //

g′

��

X

g

��
Y ′

j // Y

with j, j′ ∈ I and g, g′ ∈ P , there is a natural isomorphism j!g
′
∗
∼= g∗j!.

Indeed, consider the induced map h : X ′ → X×Y Y ′ with j′′ : X×Y Y ′ → X and g′′ : X×Y Y ′ →
Y ′. Then h ∈ I as it is a map between X ′ and X ×Y Y ′ both of whose projections to X are in I;
and h ∈ P as it is a map between X ′ and X ×Y Y ′ both of whose projections to Y ′ are in P . Thus,
the previous construction gives us an isomorphism h!

∼= h∗. Now

j!g
′
∗ = j!g

′′
∗h∗
∼= j!g

′′
∗h!
∼= g∗j

′′
! h! = g∗j

′
!

using respectively g′ = g′′h, the identification g!
∼= g∗, assumption (4), and j′′h = j′.

Now we can also see that if f ∈ E has two different compactifications, then the two induced
possible definitions of f! can be identified.

Construction 4.5. Let f : X → Y in E be written in two ways as f = fj and f
′
j′, with

j, j′ ∈ I and f, f
′ ∈ P . Then there is a natural isomorphism

f∗j!
∼= f

′
∗j
′
! .

Indeed, let X and X
′
be the implicit compactifications of X over Y , and consider Z = X×Y X

′
.

The projection to Y lies in P , and the diagonal map X → X×Y X → X×Y X
′
is a morphism in E

(one can check that morphisms of E also satisfy the 2-out-of-3 property). Thus, it can be factored

as X → X
′′ → X ×Y X

′
where f

′′
: X

′′ → Y still lies in P , and j′′ : X → X
′′

lies in I. It now
suffices to construct isomorphisms

f∗j!
∼= f

′′
∗j
′′
!
∼= f

′
∗j
′
! .

Restricting attention to one half, we can (renaming X
′′

as X
′
) assume there is a map g : X

′ → X
over Y . But then g∗j

′
!
∼= j! by the previous construction (in the degenerate case where one of the

maps in P is the identity), and post-composing with f∗ gives the desired isomorphism.

The previous constructions merely serve as an indication that the statement of the following
theorem (which is really a construction) is sensible.

Theorem 4.6 (Mann [Man22b, Proposition A.5.10], Liu–Zheng). Under the above assump-
tions, there is a canonical extension of D0 to a lax symmetric monoidal functor

D : Corr(C,E)→ Cat∞

such that for f ∈ I, f! is the left adjoint of f∗, while for f ∈ P , f! is the right adjoint of f∗.
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Sketch of Construction. In this sketch, we will ignore the lax symmetric monoidal struc-
ture; this can be taken care of by thinking about the functor Corr(C,E)⊗ → Cat∞ instead, where
the source is itself a correspondence ∞-category to which the constructions below apply. (Indeed,

one only has to replace C below by C×
′
.)

An important component of the construction are multisimplicial sets; more precisely, bi- and
trisimplicial sets. Note that Corr(C,E) can be constructed in two steps. First, one can define a
bisimplicial set Corr(C,E)contra,co whose (n,m)-simplices are maps

(∆n)op ×∆m → C

satisfying an analogue of the condition defining Corr(C,E); i.e., sending morphisms of the second
variable to morphisms in E, and making all squares cartesian. Now for any bisimplicial set X, one

can define a simplicial set δ∗+X whose n-simplices are given by maps ∆
(n,n)
+ → X where ∆(n,n) is

the bisimplicial set given by an (n, n)-simplex, and ∆
(n,n)
+ ⊂ ∆(n,n) denotes the sub-bisimplicial set

spanned by vertices (i, j) with i ≥ j. Unraveling the definitions, we have

Corr(C,E) = δ∗+Corr(C,E)contra,co.

There is a more standard way to pass from a bisimplicial set X to a simplicial set δ∗X, via taking

as n-simplices the maps ∆(n,n) → X. The inclusion ∆
(n,n)
+ ⊂ ∆(n,n) induces a comparison map

δ∗X → δ∗+X.

Note that in general neither δ∗X nor δ∗+X is an ∞-category; and in our case, δ∗Corr(C,E)contra,co

is not an∞-category. Thus, we are here really using the interpretation of∞-categories as simplicial
sets, and ambient simplicial sets that are not ∞-categories.

Remark 4.7. Vertices of δ∗Corr(C,E)contra,co are objects of C, while edges (from X to Y ) are
given by cartesian squares

W

  ~~
X

  

Y

~~
U
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where the right-vertical arrows are in E. But given two such composable edges, one cannot in
general compose them to a 2-simplex, which would be a diagram

W ′′

""}}
W

!!~~

W ′

  ||
X

  

Y

""}}

Z

~~
U

!!

U ′

||
U ′′.

Indeed, it is in general hard to find U ′′.

Theorem 4.8 ([LZ12b, Theorem 4.27]). For any bisimplicial set X, the map δ∗X → δ∗+X is
a categorical equivalence. In other words, for any ∞-category E, the functor

Fun(δ∗+X, E)→ Fun(δ∗X, E)

of ∞-categories is an equivalence.

Remark 4.9. One might wonder whether δ∗Corr(C,E)contra,co has enough morphisms for this
to be true, as few correspondences X ← W → Y extend to a cartesian square. But any corre-
spondence for which one of W → X and W → Y is an isomorphism naturally lifts to an edge of
δ∗Corr(C,E)contra,co (by taking U = X or U = Y ), and any correspondence can be canonically
written as the composite of two such. As composites of morphisms are unique (up to contractible
choice) in an ∞-category, any morphism in Corr(C,E) lifts canonically (up to contractible choice)
to any fibrant replacement of δ∗Corr(C,E)contra,co (i.e. any∞-category equipped with a categorical
equivalence from this simplicial set).

Using the theorem, it is thus sufficient to construct a map of simplicial sets

δ∗Corr(C,E)contra,co → Cat∞.

At this point, tri-simplicial sets enter the picture. Namely, we consider the trisimplicial set

Corr(C, I, P )contra,co,co

whose (n,m, k)-simplices are maps

(∆n)op ×∆m ×∆k → C

sending morphisms of the second variable to morphisms in I, morphisms of the third variable to
morphisms in P , and making all squares and cubes cartesian. We can turn this into a bisimplicial
set by contracting the last two factors, getting a natural map to Corr(C,E)contra,co; and then we
can turn both into simplicial sets by further diagonal restriction. In summary, denoting by δ∗ full
diagonal restriction for both tri- and bi-simplicial sets, we get a map of simplicial sets

δ∗Corr(C, I, P )contra,co,co → δ∗Corr(C,E)contra,co.
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Theorem 4.10 ([LZ12b, Theorem 5.4]). This map is a categorical equivalence.

Remark 4.11. This theorem guarantees, roughly speaking, that decomposing a map in E into
maps in I and P is “unique up to contractible choice”, and encompasses the explicit constructions
above.

In other words, it is enough to construct a map of simplicial sets

δ∗Corr(C, I, P )contra,co,co → Cat∞.

What is easy to construct is a map

δ∗Corr(C, I, P )contra,contra,contra → Cat∞.

Indeed, there is a natural functor

δ∗Corr(C, I, P )contra,contra,contra → Cop

recording the diagonal composition of morphisms; and we can compose this with the given functor
D0 to Cat∞.

The idea now is to pass to adjoints in the second and third variable. In general, for a trisimplicial
set X, giving a map δ∗X → Cat∞ means to give for each (n,m, k)-simplex ∆(n,m,k) of X a map

∆n ×∆m ×∆k → Cat∞,

functorially in the simplex of X. This is equivalent to

∆n ×∆m → Fun(∆k,Cat∞)

where the latter is (up to equivalence) given by∞-categories C0, . . . , Ck with functors Fi : Ci → Ci+1

for i = 0, . . . , k − 1. One can define a sub-∞-category FunL(∆k,Cat∞) whose objects are those
where each Fi is a left adjoint, i.e. admits a right adjoint Gi, and where the morphisms are those
maps Ci → C′i (commuting with the Fi) which also, after passing to adjoints, commute with the Gi.
On this subcategory, we can pass to adjoints, giving a functor

FunL(∆k,Cat∞)→ Fun((∆k)op,Cat∞).

In the context of the trisimplicial set, this gives a map

∆n ×∆m × (∆k)op → Cat∞,

i.e. one has reversed the arrows in the third direction. Of course, the same discussion applies if one
passes to left adjoints instead.

We apply these remarks to first pass to left adjoints in the second direction (which is made pos-
sible by condition (2) on base change (and projection formula when keeping track of the symmetric
monoidal structure)) and then pass to right adjoints in the third variable (which is made possible
by condition (3) on base change (and projection formula when keeping track of the symmetric
monoidal structure), as well as condition (4)), to turn the functor

δ∗Corr(C, I, P )contra,contra,contra → Cat∞

into a functor

δ∗Corr(C, I, P )contra,co,co → Cat∞

as desired. �
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Remark 4.12. The construction shows that if one formulates the requirement that f! is the
left (resp. right) adjoint of f∗ for f ∈ I (resp. f ∈ P ) in a suitably strong form, then the extension
is in fact unique. Indeed, the only parts of the construction that were not of propositional nature
were the parts about passing to left resp. right adjoints in the context of this tri-simplicial set, but
doing so was essentially dictated by the desired outcome.

Remark 4.13. To get a full 6-functor formalism, it remains to ask that all D(X) are closed
symmetric monoidal ∞-categories; that all f∗ admit right adjoints f∗; and that for f ∈ P , the
functor f∗ admits a further right adjoint f !.
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Appendix to Lecture IV: Passage to stacks

The main goal of the work of Liu–Zheng [LZ12a] was to extend the étale 6-functor formalism
to stacks. Some of their work has been streamlined by Mann [Man22b, Appendix A.5]. Let us
present a slightly different take on this passage to stacks. Our discussion here strongly relies on
extended discussions of the author with Clausen, who in particular suggested to use the topology
of universal ∗- and !-descent.

Start with any ∞-category C with all finite limits, and a class of morphisms E as usual. Let

D : Corr(C,E)→ Cat∞

be a 6-functor formalism. We also assume that D(X) is a presentable ∞-category for all X ∈ C,
i.e. admits all colimits and for some cardinal κ it is generated under colimits by a set of κ-compact
objects.

Our goal is to introduce a Grothendieck topology on C such that D extends to a 6-functor
formalism on all sheaves (of anima) on C. Our principle will be to work with the finest possible
topology, and try to find the largest possible class of morphisms for which the !-functors are defined.
In the process, some of the conditions we impose may look a bit artificial; we will later discuss how
to verify some of the conditions (like being a D-cover) in practice, see the second appendix to
Lecture VI.

First, we extend D to all (small) presheaves of anima on C via right Kan extension, i.e. for any

presheaf of anima X̃, we let

D(X̃) = limX→X̃,X∈CD(X).

This is still a symmetric monoidal presentable stable ∞-category. By [Man22b, Proposition
A.5.16], one can moreover extend this to a 6-functor formalism with respect to the maps of
presheaves of anima any of whose pullbacks to C are representable by a morphism in E.

Definition 4.14. Consider a family of maps {fi : Xi → Y } in C.

(1) The maps fi form a cover of Y in the canonical topology if for all objects Z ∈ C and all
pullbacks of {fi : Xi → Y } along a map Y ′ → Y in C, the functor Hom(−, Z) satisfies
descent along {fi ×Y Y ′ : Xi ×Y Y ′ → Y ′}.

(2) The maps fi satisfy universal ∗-descent if for all pullbacks of {fi : Xi → Y } along a map
Y ′ → Y in C, the functor D(−) (with maps given by ∗-pullback) satisfies descent along
{fi ×Y Y ′ : Xi ×Y Y ′ → Y ′}.

(3) Assume that all fi lie in E. The maps fi satisfy universal !-descent if for all pullbacks of
{fi : Xi → Y } along a map Y ′ → Y from a presheaf of anima Y ′ on C, the functor D(−)
(with maps given by !-pullback) satisfies descent along {fi ×Y Y ′ : Xi ×Y Y ′ → Y ′}.

The fi form a D-cover if all fi ∈ E and they form a cover in the canonical topology, satisfy
universal ∗-descent, and satisfy universal !-descent. The D-topology on C is the Grothendieck
topology generated by the D-covers.

Remark 4.15. It seems artificial that one has to impose that the D-topology is subcanonical
– one often has morphisms in C which are inverted by D, for example the morphism Xred → X
of schemes under the étale 6-functor formalism. In that case, one would expect that one can
allow Xred → X as a cover in the D-topology, but this is precluded by the requirement of being
subcanonical. One way around is to restrict to reduced schemes from the start (or even absolutely
weakly normal schemes, giving a canonical representative in each universal homeomorphism class).
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Remark 4.16. There is an apparent asymmetry between the conditions (1) and (2) on the
one hand, and condition (3) on the other: Namely (1) and (2) only ask descent after pullback to
Y ′ ∈ C, while condition (3) asks it for all presheaves of anima. The reason is that in case (1) and
(2) the given functor Hom(−, Z) resp. D(−) is defined on all morphisms, and in those cases descent
after pullback to any Y ′ ∈ C implies descent after pullback to any presheaf of anima Y ′ (simply by
writing Y ′ as a colimit of representables and using that the functors commute with limits). But in
case (3), this automatic deduction does not work, and we need to ask for the stronger condition.
It is not a priori clear how to verify these conditions in practice; for this, we refer to the second
appendix to Lecture VI.

Now let C̃ be the ∞-category of sheaves of anima on C, for the D-topology. The functor
X 7→ D(X) to symmetric monoidal presentable ∞-categories is a sheaf with respect to the D-

topology, and thus gives a functor on C̃; for all X̃ ∈ C̃, one still has

D(X̃) = limX→X̃,X∈CD(X).

Let Ẽ0 be the class of maps f̃ : X̃ → Ỹ such that for any Y ∈ C and Y → Ỹ , the pullback
f : X = X̃ ×Ỹ Y → Y satisfies X ∈ C and f ∈ E.8 The following result is an application of right
Kan extension.

Proposition 4.17 ([Man22b, Proposition A.5.16]). The 6-functor formalism D on (C,E)

extends uniquely to a 6-functor formalism on (C̃, Ẽ0) such that the associated functor from C̃op to
symmetric monoidal presentable ∞-categories is given by the above recipe

D(X̃) = limX→X̃,X∈CD(X).

We want to extend from Ẽ0 to a larger class of morphisms Ẽ. Here are some desirable conditions.

Definition 4.18. Let Ẽ ⊃ Ẽ0 be a class of morphisms of C̃ that is stable under pullback and
composition.

(1) The class Ẽ is stable under disjoint unions if whenever f̃i : X̃i → Ỹ are morphisms in Ẽ,

then also
⊔
i f̃i :

⊔
i X̃i → Ỹ is in Ẽ.

(2) The class Ẽ is local on the target if whenever f̃ : X̃ → Ỹ is a morphism in C̃ such that for

all Y ∈ C with a map Y → Ỹ , the pullback X̃ ×Ỹ Y → Y lies in Ẽ, then f̃ ∈ Ẽ.

(3) Assume that D extends uniquely from (C̃, Ẽ0) to (C̃, Ẽ). The class Ẽ is local on the source

if whenever f̃ : X̃ → Ỹ is a morphism in C̃ such that there is some map g̃ : X̃ ′ → X̃ in Ẽ
that is of universal !-descent, and such that f̃ g̃ lies in Ẽ, then f̃ ∈ Ẽ.

(4) Assume that D extends uniquely from (C̃, Ẽ0) to (C̃, Ẽ). The class Ẽ is tame if whenever

Y ∈ C and f̃ : X̃ → Y is a map in Ẽ, then there are morphisms hi : Xi → Y in E and a
morphism

⊔
iXi → X̃ over Y that lies in Ẽ and is of universal !-descent.

Remark 4.19. The condition of being local on the target may seem stricter than expected, as
after pullback to Y ∈ C, no further localization in Y is allowed. But if Ẽ is both local on the target
and local on the source, then to check whether a morphism lies in Ẽ it suffices to check it after
pullback along an Ẽ-map Y ′ → Y that is of universal !-descent. Thus, for the formulation of the
following theorem, one could also take this stronger condition of being “local on the target”.

8For this condition to make sense, we need to make the D-topology subcanonical.
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Theorem 4.20. There is a minimal collection of morphisms Ẽ ⊃ Ẽ0 of C̃ such that D extends
uniquely from (C̃, Ẽ0) to (C̃, Ẽ), and such that Ẽ is stable under disjoint unions, local on the target,
local on the source, and tame.

Proof. Consider the class A all possible collections of morphisms Ẽ such that D extends
uniquely to (C̃, Ẽ), and which are tame. Note that Ẽ0 is an example (and minimal). We note that

any filtered union of such collections is again such a collection. Given any such collection Ẽ, one
can consider the collection Ẽ′ of all morphisms f̃ : X̃ → Ỹ such that X̃ can be written as a disjoint
union of X̃i with all X̃i → Ỹ being in Ẽ. This class is stable under pullback and composition, it
stays tame, and by [Man22b, Proposition A.5.12] the 6-functor formalism D extends uniquely to

(C̃, Ẽ′). Thus, any class Ẽ ∈ A can be minimally enlarged to be stable under disjoint unions.

Also, if Ẽ ∈ A, we can define a new class of morphisms Ẽ′ as being those morphisms f̃ : X̃ → Ỹ
such that there is some Ẽ-map g̃ : X̃ ′ → X̃ of universal !-descent for which f̃ g̃ lies in Ẽ. This class
is stable under pullback and composition, and by [Man22b, Proposition A.5.14] (an application

of left Kan extension), the 6-functor formalism D extends uniquely to (C̃, Ẽ′); here, the special

class of covers is taken to be those of universal !-descent. Moreover, Ẽ′ stays tame. Iterating this
procedure countably many times, one can enlarge any Ẽ ∈ A in a minimal way to make it local on
the source. Combined with the procedure of making it stable under disjoint unions, we can also
arrange both properties in a minimal way.

Now assume that Ẽ ∈ A is stable under disjoint unions and local on the source. Consider the
class Ẽ′ of morphisms f̃ : X̃ → Ỹ such that for all Y ∈ C with a map Y → Ỹ , the pullback
X̃ ×Ỹ Y → Y lies in Ẽ. This class is clearly stable under pullback; we claim it is also stable under

composition. For this, we show more generally that if Ỹ ′ ∈ C̃ is an object that admits an Ẽ-map
Ỹ ′ → Y to an object of C, then for any map Ỹ ′ → Ỹ , the pullback X̃ ×Ỹ Ỹ

′ → Ỹ ′ lies in Ẽ. To see

this, note that by tameness there is a cover of Ỹ ′ by an Ẽ-map
⊔
i Yi → Ỹ ′ of universal !-descent

with Yi ∈ C and Yi → X in E. As Ẽ is local on the source and stable under disjoint unions, to
check that X̃ ×Ỹ Ỹ

′ → Ỹ ′ lies in Ẽ, it suffices to check after pullback to the Yi. But here it is true
by assumption.

Now let C ′ ⊂ C̃ be the full subcategory of those objects that admit an Ẽ-map towards an
object of C ⊂ C̃. Let E′ be the restriction of Ẽ to C ′. Then D restricts to a 6-functor formalism
on (C ′, E′). Now we can apply [Man22b, Proposition A.5.16] to extend D uniquely from (C ′, E′)

back to (C̃, Ẽ′), as desired. (The uniqueness assertion of this extension, applied to the extension

from (C ′, E′) to (C̃, Ẽ), ensures that this really extends the formalism on (C̃, Ẽ).) It is clear that

Ẽ′ stays tame.
Thus, given some Ẽ ∈ A that is stable under disjoint unions and local on the source, we can

find a minimal Ẽ′ ∈ A containing Ẽ that is local on the target. This process may destroy the
other stability properties, but these can be retained through further transfinitely iterating these
construction principles. �

We note that in the proof of the theorem, the 6-functor formalism is alternatingly extended
via left Kan extension and via right Kan extension; this makes it difficult to formulate a direct
universal property for this extended 6-functor formalism.
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5. Lecture V: Poincaré Duality

The goal of this lecture is to discuss, in the generality of abstract 6-functor formalisms, a notion
of Poincaré Duality, and give a simple means for establishing it.

As discussed in the first lecture, Poincaré Duality should say that for a “smooth” morphism
f : X → Y , the right adjoint f ! of f! (exists and) agrees with f∗ up to a twist. Axiomatizing this
desiratum leads to the following definition. Here, we fix (C,E) as before, and a 3-functor formalism

D : Corr(C,E)→ Cat∞.

Definition 5.1. Let f : X → Y be a morphism in E. Then f is (D-)cohomologically smooth
if the following properties are satisfied.

(1) The right adjoint f ! of f! exists, and the natural transformation

f !(1Y )⊗ f∗(−)→ f !(−)

of functors D(Y )→ D(X) is an isomorphism.
(2) The object f !(1Y ) ∈ D(X) is ⊗-invertible.
(3) For any g : Y ′ → Y with base change f ′ : X ′ = X ×Y Y ′ → Y ′ of f , properties (1) and

(2) also hold for f ′, and moreover the natural map

g′∗f !(1Y )→ f ′!(1Y ′)

is an isomorphism, where g′ : X ′ → X is the base change of g.

Here, the map f !(1Y )⊗ f∗ → f ! is adjoint to

f!(f
!(1Y )⊗ f∗(−)) ∼= f!f

!(1Y )⊗ (−)→ (−)

using the projection formula and the counit map f!f
!(1Y )→ 1Y ; and g′∗f !(1Y )→ f ′!(1Y ′) is adjoint

to

f ′! g
′∗f !(1Y ) ∼= g∗f!f

!(1Y )→ g∗(1Y ) = 1Y ′

using base change and the same counit map.

Remark 5.2. This notion was defined in [Sch17] when I failed to define a notion of smoothness
for maps of perfectoid spaces. The issue there was that the topological definition (“locally looks
like euclidean space”) did not work as not all examples were locally isomorphic; and the algebraic-
geometric definition (“lifting against nilpotent thickenings”) did not work as perfectoid spaces have
no nilpotents. Thus, in the end I simply characterized the desired cohomological properties, and
then showed that all relevant examples have this property.

Remark 5.3. In general, cohomological smoothness is weaker than smoothness; for example,
any universal homeomorphism of schemes is cohomologically smooth with respect to étale coho-
mology, as étale sheaves are insensitive to universal homeomorphisms.

Remark 5.4. It follows from the definition that the class of cohomologically smooth morphisms
is stable under base change, composition, and contains all isomorphisms. Moreover, in case the 3-
functor formalism is defined from classes of morphisms I and P as in the last lecture, all morphisms
in I are cohomologically smooth. In fact, in that case f! is left adjoint to f∗, i.e. f∗ = f !, and the
properties are clear.
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Checking that f : X → Y is cohomologically smooth seems highly nontrivial. Indeed, for any
base change of f , one needs to prove that some map is an isomorphism for all B ∈ D(Y ); and the
map involves f !B which is abstractly defined as an adjoint, so one has to compute the morphisms
from any A ∈ D(X) towards f !B.

The goal of this lecture is to show that in fact, it is enough to construct a surprisingly small
amount of data (and check the commutativity of two diagrams), and this data involves only some
very simple sheaves on X, Y and X ×Y X.

To simplify the situation, we will in the following replace C by the slice C/Y , so that we can
assume that Y is the final object of C. Moreover, we will restrict to the subcategory of objects
X ∈ C such that X → Y lies in E, and assume that all morphisms X → X ′ over Y are still in E –
this is notably satisfied in the setup of the last lecture. Thus, in fact all morphisms of C lie in E.

Theorem 5.5. Assume that all morphisms of C lie in E, and let f : X → Y be a map to the
final object Y ∈ C. Let ∆ : X → X ×Y X be the diagonal. Then f is cohomologically smooth if
and only if there is a ⊗-invertible object L ∈ D(X) and maps

α : ∆!1X → p∗2L, β : f!L→ 1Y

such that the composite

1X ∼= p1!∆!1X
p1!α−−→ p1!p

∗
2L
∼= f∗f!L

f∗β−−→ 1X

is the identity, as well as the composite

L ∼= p2!(p
∗
1L⊗∆!1X)

p2!(p
∗
1L⊗α)

−−−−−−−→ p2!(p
∗
1L⊗ p∗2L) ∼= p2!p

∗
1L⊗ L ∼= f∗f!L⊗ L

f∗β⊗L−−−−→ L.

Let us first prove the forward direction. For this, we take L = f !(1Y ), and β : f!L = f!f
!(1Y )→

1Y the counit of the adjunction. For α, we note that p∗2L = p!
1(1X) by property (3) in Definition 5.1,

and then α is adjoint to 1X = ∆!p!
2(1X).

We need to prove that these two composites are the identity. The first one is actually straightfor-
ward from the definition, but the second is more subtle. It could be done by a direct, but elaborate,
diagram chase. Let us give a more abstract argument instead, one that will actually introduce the
techniques that will be useful in the converse direction. Namely, note that if X1, X2 ∈ C and
K ∈ D(X1 ×Y X2) is an object, then it induces a “Fourier–Mukai functor with kernel K”:

D(X1)→ D(X2) : A 7→ p2!(p
∗
1A⊗K).

In particular, taking X1 = X and X2 = Y , the object K = 1X corresponds to the functor

F = f! : D(X)→ D(Y ),

while taking X1 = Y and X2 = X, the object K = L corresponds to the functor

G = f∗ ⊗ L : D(Y )→ D(X).

Cohomological smoothness ensures that these two functors are adjoint, so there are natural trans-
formations

α0 : idD(X) → GF

and
β0 : FG→ idD(Y ).

Now note that a composite of two functors given by a kernel is itself induced by a kernel, through
convolution of kernels. In particular FG is given by f!L ∈ D(Y ) and idD(Y ) by 1Y ∈ D(Y ), and β0
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is given by β : f!L→ 1Y . On the other hand, GF is given by the kernel p∗2L ∈ D(X ×Y X), while
idD(X) is given by the kernel ∆!(1X) ∈ D(X ×Y X). We claim that

α : ∆!(1X)→ p∗2L

induces
α0 : idD(X) → GF.

Let temporarily α′0 denote the transformation induced by α. Then

(Cat, D(X), D(Y ), f!, f
∗ ⊗ L, β0, α0, α

′
0)

satisfy the hypothesis of the following lemma, concerning a version of “left and right inverse agree”
in the context of adjunctions in 2-categories.

Lemma 5.6. Let C be a 2-category and F : X → Y , G : Y → X be 1-morphisms in C, together
with 2-morphisms

β : FG→ 1, α : 1→ GF,α′ : 1→ GF

such that the composites

F
Fα′−−→ FGF

βF−−→ F,G
αG−−→ GFG

Gβ−−→ G

are the identity. Then α = α′.

Proof. We have

1
α−→ GF = 1

α−→ GF
GFα′−−−→ GFGF

GβF−−−→ GF

= 1
α′−→ GF

αGF−−−→ GFGF
GβF−−−→ GF

= 1
α′−→ GF.

�

Thus, the unit transformation α0 : idD(X) → GF is indeed induced by α : ∆!(1X)→ p∗2L. Now
the composite

G
α0G−−→ GFG

Gβ0−−→ G

is the identity, and by unraveling the definitions one computes that this composite is induced by
the map on kernels

L ∼= p2!(p
∗
1L⊗∆!1X)

p2!(p
∗
1L⊗α)

−−−−−−−→ p2!(p
∗
1L⊗ p∗2L) ∼= p2!p

∗
1L⊗ L ∼= f∗f!L⊗ L

f∗β⊗L−−−−→ L.

In general, passing from kernels to functors loses information, but in this case L encodes the functor
G = f∗⊗L : D(Y )→ D(X) which sends 1Y ∈ D(Y ) to L ∈ D(X). Thus, knowing that the induced
transformation of functors is the identity implies that the transformation on kernels is the identity.

To prove the converse direction of Theorem 5.5, we formalize the preceding arguments through
the introduction of a certain 2-category; some version of this idea is in work of Lu–Zheng [LZ20],
and this was adapted slightly in [FS21], [HS21]. Informally, given a geometric setup (C,E) where
E consists of all morphisms, and a 3-functor formalism D, let

LZD

be the 2-category with:

• Objects given by objects of C;
• Morphism categories: HomLZD(X,X ′) = D(X ×X ′);
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• Identity morphisms: idX ∈ HomLZD(X,X) = D(X ×X) is given by ∆!(1X);
• Composition:

HomLZD(X,X ′)×HomLZD(X ′, X ′′)→ HomLZD(X,X ′′)

is given by the convolution

(A,B) 7→ A ? B = pX,X′′!(p
∗
X,X′A⊗ p∗X′,X′′B).

To turn this into a definition, one has to supply isomorphisms between (A?B)?C and A?(B?C)
satisfying the pentagon axiom for fourfould convolution (and similar isomorphisms for the iden-
tity morphisms). This becomes a bit cumbersome, so let us sketch a high-tech construction of
LZD; see [Zav23] for an elaboration of this construction. One starts with the symmetric monoidal
∞-category Corr(C,E). All of its objects are dualizable (in fact, self-dual, using diagonal corre-
spondences). Thus, this is a closed symmetric monoidal∞-category, and hence enriched over itself,
with internal mapping objects

HomCorr(C,E)(X,X
′) = X ×X ′.

Enrichments can be transferred along lax symmetric monoidal functors. Applying this to the
functor D, we turn Corr(C,E) into a Cat∞-enriched ∞-category, with internal Hom-objects given
by D(X×X ′). But Cat∞-enriched∞-categories are a model for (∞, 2)-categories, and in particular
the homotopy 2-category gives the desired 2-category LZD.

Remark 5.7. It is worth pointing out how well the definition of a 3-functor formalism fits into
this construction.

The idea behind the definition of LZD is that there is a natural functor

LZD → Cat

taking any X to D(X), and any K ∈ D(X ×X ′) into the functor

D(X)→ D(X ′) : A 7→ p2!(K ⊗ p∗1A),

i.e. the “Fourier–Mukai functor with kernel K”. In general, this passage from K to the induced
functor D(X) → D(X ′) is very lossful, and working in LZD amounts to working with kernels of
functors directly, instead of with the induced functors.

To prove cohomological smoothness, we want to show that (up to twist) f∗ is a right adjoint
of f!. What we will do instead is to prove the adjointness already in LZD. This makes sense, as
adjunctions can be defined in any 2-category:

Definition 5.8. Let C be a 2-category and F : X → Y a 1-morphism in C. A right adjoint of
F is a triple (G,α, β) of a 1-morphism G : Y → X and 2-morphisms α : 1→ GF and β : FG→ 1
such that the composites

F
Fα−−→ FGF

βF−−→ F,G
αG−−→ GFG

Gβ−−→ G

are the identity.

Some basic properties of adjunctions are:
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(1) Adjunctions are unique up to unique isomorphism. More precisely, if (G,α, β) and (G′, α′, β′)
are right adjoints of F , then we get a unique isomorphism (G,α, β) ∼= (G′, α′, β′) making
the obvious diagrams commute. For the construction, for example the map G → G′ is
defined as

G
α′G−−→ G′FG

G′β−−→ G′.

(2) Any functor of 2-categories preserves adjunctions.
(3) Adjunctions in Cat are usual adjunctions of categories.

Properties (2) and (3) are immediate from the definition. With this preparation, we can give
the proof of Theorem 5.5.

Proof of Theorem 5.5. We need to prove the backwards direction, so take (L,α, β). Con-
sider X and Y as objects of LZD, and the morphisms

F = 1X ∈ D(X) = HomLZD(X,Y ), G = L ∈ D(X) = HomLZD(Y,X).

(We recall that we assumed that Y is the final object of C.) Then F encodes the functor f! :
D(X) → D(Y ) and G encodes the functor f∗ ⊗ L : D(Y ) → D(X), and we wish to see that f! is
the left adjoint of f∗ ⊗L. We will in fact show that F is a left adjoint of G in LZD. Indeed, α and
β translate into maps

idX = ∆!(1X)→ GF = p∗2L ∈ D(X ×Y X) = HomLZD(X,X)

and

FG = f!L→ idY = 1Y ∈ D(Y ) = HomLZD(Y, Y ),

and the required commutative diagrams translate into the ones in Theorem 5.5.
In particular, it follows that the right adjoint f ! is given by a kernel, and in particular it is

D(Y )-linear, so f !(1Y ) ⊗ f∗ → f ! is an isomorphism. Moreover, we must have L = f !(1Y ), which
we assumed to be ⊗-invertible.

Finally, for any base change of f along g : Y ′ → Y , base change along g defines a functor of
2-category LZD → LZD|C/Y ′

, which hence gives the same adjunction for the base change of f , with

the base change of L as dualizing complex. �

Let us end the lecture by discussing the example of locally compact Hausdorff topological spaces.

Example 5.9. Consider the category C of finite-dimensional locally compact Hausdorff topo-
logical spaces, with the functor D : X 7→ D(Ab(X)). For the classes of open immersions I and
proper maps P , this satisfies the conditions of the last lecture, giving us a 6-functor formalism
(where E consists of all maps).

Proposition 5.10. The map f : R→ ∗ is cohomologically smooth.

Note that by compatibility with composites and base change and open immersions, this implies
that all manifold bundles are cohomologically smooth.

Proof. We take L = Z[1]. We need to construct maps α and β. But RΓc(R,Z[1]) ∼= Z giving
us α; and using the triangle 0 → ∆!Z → Z → j!Z for j : R2 \ ∆ → R2 the complementary open,
one computes

RHom(∆!Z[−1],Z) ∼= Z,
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giving us β. Indeed, the triangle shows that RHom(∆!Z[−1],Z) is the cone of

RΓ(R2,Z)→ RΓ(R2 \∆,Z),

and this map is the diagonal embedding Z→ Z2.
To finish the proof, one would like to see that an endomorphism of the constant sheaf Z on R

is the identity (if the signs of α and β are chosen compatibly). It is helpful that in this case, all
intermediate maps are isomorphisms, so it has to be true up to sign. A priori, one might worry that
these signs cannot be chosen compatibly, but here Lemma 5.6 comes to the rescue. Even better,
one has the following general principle about adjunctions. �

Lemma 5.11. Let C be a 2-category, F : X → Y , G : Y → X be 1-morphisms in C as well as
2-morphisms α : 1→ GF and β : FG→ 1. Assume that the 2-morphisms

F
Fα−−→ FGF

βF−−→ F,G
αG−−→ GFG

Gβ−−→ G

are isomorphisms. Then one can find some α′ : 1 → GF such that (G,α′, β) is a right adjoint of
F .

Proof. Changing α by an isomorphism G ∼= G, we can arrange that G
αG−−→ GFG

Gβ−−→ G is

the identity. We can also find some α′ : 1→ GF such that F
Fα′−−→ FGF

βF−−→ F is the identity. By
Lemma 5.6, we necessarily have α = α′, which then does the trick. �
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6. Lecture VI: Complements on the abstract formalism

This is the final lecture on the abstract theory of 6-functor formalisms; starting from the next
lecture, we will discuss various examples. In this lecture, I want to discuss some complements that
the 2-category from the previous lecture naturally leads to, and that give answers to the following
natural questions:

(1) For which morphisms is f∗ essentially f !? For which morphisms is f! essentially f∗?
(2) What are reasonable finiteness conditions that one can put on objects A ∈ D(X)? For

example, which conditions ensure that A maps isomorphically to its double Verdier dual?

As in the last lecture, we will fix some ∞-category C admitting all finite limits, and assume
that E consists of all morphisms of C. Let Corr(C) := Corr(C, all) be the resulting symmetric
monoidal ∞-category of correspondences, and

D : Corr(C)→ Cat∞

a lax symmetric monoidal functor. In this lecture, we will assume that it gives a 6-functor formalism,
i.e. internal Homs, and the right adjoints f∗ and f ! (of f∗ and f!) exist for all f .

As in the last lecture, we get the 2-category LZD. Note that LZD is equivalent to LZop
D (basically,

as Corr(C) ∼= Corr(C)op). Generalizing the idea of using adjunctions in LZD, we are led to consider
the following notions.9

Definition 6.1. Let Y ∈ C be the final object, f : X → Y some morphism, and A ∈ D(X).

(1) The object A ∈ D(X) is f -smooth if A ∈ HomLZD(X,Y ) is a left adjoint in LZD.
(2) The object A ∈ D(X) is f -proper if A ∈ HomLZD(Y,X) is a left adjoint in LZD.

Remark 6.2. Both properties are stable under any base change, using that base change induces
functors of 2-categories and hence preserves adjunctions. Here, if f ′ : X ′ → Y ′ is a morphism to
some other object Y ′, then we first replace C by the slice C/Y ′ and then apply the previous definition
to define f ′-smooth and f ′-proper objects A′ ∈ D(X ′).

Remark 6.3. If D : Corr(C) → Cat∞ is a 3-functor formalism, then also Dop : Corr(C) →
Cat∞, sending any X to the opposite ∞-category D(X)op, is a 3-functor formalism (as passing
to opposite ∞-categories is a (covariant!) symmetric monoidal self-equivalence of Cat∞). This
abstract procedure exchanges f -smooth and f -proper objects, and allows one to formally dualize
some statements. Note, however, that this translation turns the right adjoints f∗, f

!, etc., into left
adjoint functors; this explains some apparent asymmetries in the presentation below.

Remark 6.4. The second condition of “f -properness” was, to our knowledge, first suggested
by Mann in [Man22a].

Concretely, A is f -smooth if and only if there is some B ∈ D(X) = HomLZD(Y,X) together
with maps

α : ∆!(1X)→ p∗1A⊗ p∗2B, β : f!(A⊗B)→ 1Y
such that the composite

B ∼= p2!(p
∗
1B⊗∆!(1X))

α−→ p2!(p
∗
1B⊗p∗1A⊗p∗2B) ∼= p2!p

∗
1(B⊗A)⊗B ∼= f∗f!(B⊗A)⊗B β−→ f∗(1Y )⊗B ∼= B

9The names we give to these properties is nonstandard, but motivated by the idea that “smoothness” should
imply that (twisted versions of) f∗ and f ! agree, while “properness” should imply that (twisted versions of) f! and
f∗ agree.
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as well as the similar one with A and B exchanged, is the identity. (As in the last lecture, to check
that A is f -smooth, it suffices to check that these composites are isomorphisms, not necessarily
equal to the identity.)

We note that this data is in fact symmetric in A and B, which is a consequence of the self-
duality of LZD which ensures that the right adjoint of A is itself f -smooth, with right adjoint given
again by A. We record some of these obversations below.

Proposition 6.5. Let A ∈ D(X) be f -smooth, with right adjoint B ∈ D(X).

(1) The object B ∈ D(X) is f -smooth, with right adjoint A.
(2) There is a natural isomorphism of functors

B ⊗ f∗(−) ∼= H om(A, f !(−)) : D(Y )→ D(X).

In particular, B ∼= H om(A, f !(1Y )) = Df (A) is the (relative) Verdier dual of A.
(3) The Verdier biduality map

A→ Df (Df (A))

is an isomorphism.
(4) The formation of the Verdier dual Df (A) commutes with any base change.

In particular, (2) says that f -smooth objects A lead to isomorphisms between twisted versions
of f∗ and f !. Also note that by (1), one also has

A⊗ f∗(−) ∼= H om(B, f !(−)) : D(Y )→ D(X).

Proof. We already saw (1). For (2), note that applying the functor LZD → Cat : X 7→ D(X),
we see that B ⊗ f∗(−) is the right adjoint of f!(A⊗−); but that right adjoint is H om(A, f !(−)).
For (3), apply (2) twice; note that the maps A→ Df (B) and B → Df (A) are both induced by the

pairing β : f!(A ⊗ B) → 1Y (equivalently, A ⊗ B → f !(1Y )). For (4), use that the formation of
right adjoints (when they exist) commutes with any functor of 2-categories, in particular with base
change. �

We see that B is necessarily given by the Verdier dual Df (A) of A. If one takes this as the
definition of B, one automatically gets the map β : f!(A⊗B)→ 1Y . One can then wonder what it
takes to supply the map α : ∆!(1X)→ p∗1A⊗ p∗2B. This is analyzed in the next proposition.

Proposition 6.6. Let A ∈ D(X). Then A is f -smooth if and only if the natural map

p∗1A⊗ p∗2Df (A)→H om(p∗2A, p
!
1A)

is an isomorphism. In fact, it suffices to see that it induces an isomorphism on global sections after
applying ∆!.

Here, the natural map is the one adjoint to the natural map

p∗1A⊗ p∗2Df (A)⊗ p∗2A→ p∗1A⊗ p∗2f !(1Y )→ p∗1A⊗ p!
1(1X)→ p!

1A.

Proof. If A is f -smooth, then for any base change f ′ : X ′ → Y ′ along g : Y ′ → Y (with base
change g′ : X ′ → X) and any B ∈ D(Y ′), the map

f ′∗B ⊗ g′∗Df (A)→H om(g′∗A, f ′!B)

is an isomorphism. Applying this with g : Y ′ → Y given by f : X → Y and B = A yields the
desired isomorphism.
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For the converse, we need to find the map α : ∆!(1X) → p∗1A ⊗ p∗2Df (A). Conveniently, the

hypothesis of the proposition shows that the target is naturally isomorphic to H om(p∗2A, p
!
1A), so

it suffices to find a natural map

∆!(1X)→H om(p∗2A, p
!
1A).

By adjunction, this amounts to a map ∆!(1X)⊗p∗2A = ∆!(A)→ p!
1A, which by a further adjunction

amounts to a morphism p1!∆!A = A→ A, where we take the identity map. It remains to see that
two diagrams commute, which we leave as an exercise.

For the final sentence, note that the construction of the previous paragraph did not in fact
require that the displayed map is an isomorphism, but only that it becomes one after applying
global sections to ∆! of this map. �

Remark 6.7. This discussion may seem like formal nonsense, but when writing [FS21], I was
for a long time unsuccessfully trying to prove that certain A ∈ D(X) satisfying the condition of
Proposition 6.6 also satisfy Verdier biduality. The work of Lu–Zheng [LZ20] then trivialized this
problem!

Let us now look at the “dual” case of f -proper A ∈ D(X). In this case, the right adjoint
B ∈ D(X) comes with maps

α : p∗1A⊗ p∗2B → ∆!(1X), β : 1Y → f!(A⊗B),

satisfying similar commutative diagrams. The analogue of Proposition 6.5 is the following.

Proposition 6.8. Let A ∈ D(X) be f -proper, with right adjoint B ∈ D(X).

(1) The object B ∈ D(X) is f -proper, with right adjoint A.
(2) There is a natural isomorphism of functors

f!(B ⊗−) ∼= f∗H om(A,−) : D(X)→ D(Y ).

(3) The pairing

α : p∗1A⊗ p∗2B → ∆!(1X)

induces isomorphisms

B ∼= p2∗H om(p∗1A,∆!(1X)), A ∼= p1∗H om(p∗2B,∆!(1X)).

Of course, one could also formulate an analogue of Proposition 6.5 (4), that the dual in the
sense of (3) commutes with any base change.

Proof. The proof is identical to the proof of Proposition 6.5. To get the (first) isomorphism
in (3), apply the result of (2) to the base change of f : X → Y along the map g : Y ′ → Y given by
f : X → Y , and the sheaf ∆!(1X). �

We note that the dual in part (3) simplifies considerably in case ∆!(1X) = ∆∗(1X), as is often
the case (and conditions for which we will discuss momentarily). Indeed, in that case

p2∗H om(p∗1A,∆!(1X)) = p2∗H om(p∗1A,∆∗(1X)) = p2∗∆∗H om(∆∗p∗1A, 1X) = H om(A, 1X)

is simply the naive dual of A ∈ D(X). In particular, if A = 1X is the unit, then this naive dual is
1X .

We also have an analogue of Proposition 6.6.
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Proposition 6.9. Let A ∈ D(X). Then A is f -proper if and only if the natural map

f!(A⊗ p2∗H om(p∗1A,∆!(1X)))→ f∗H om(A,A)

is an isomorphism on global sections.

In fact, one can construct a more general natural transformation

f!(−⊗ p2∗H om(p∗1A,∆!(1X)))→ f∗H om(A,−)

of functors D(X)→ D(Y ). This is adjoint to

f∗f!(−⊗ p2∗H om(p∗1A,∆!(1X))) ∼= p1!(p
∗
2(−)⊗ p∗2p2∗H om(p∗1A,∆!(1X)))

→ p1!(p
∗
2(−)⊗H om(p∗1A,∆!(1X)))→H om(A,−)

which in turn is adjoint to

p∗2(−)⊗H om(p∗1A,∆!(1X))→ p!
1H om(A,A) ∼= H om(p∗1A, p

!
1(−))

which in turn is adjoint to

p∗2(−)⊗H om(p∗1A,∆!(1X))⊗ p∗1A→ p∗2(−)⊗∆!(1X)→ p!
1(−)

where the latter map is adjoint to the isomorphism

p1!(p
∗
2(−)⊗∆!(1X)) ∼= (−).

Proof. The proof is similar to the proof of Proposition 6.6. �

Let us now come back to the question of when f! and f∗ agree.

Definition 6.10. A map f : X → Y in C is cohomologically proper if it is n-truncated for
some n, the object 1X ∈ D(X) is f -proper, and the diagonal ∆f : X → X×Y X is cohomologically
proper (or an isomorphism).

This definition may seem self-referential, but as ∆f is n − 1-truncated, it works by induction
on n (with ∆f being an isomorphism as the base case).

Proposition 6.11. Let f : X → Y be a morphism in C such that ∆f is cohomologically proper.
Then there is a natural transformation f! → f∗ of functors D(X) → D(Y ). It is an isomorphism
if and only if f is cohomologically proper. To check that f is cohomologically proper, it suffices to
check that f!(1X)→ f∗(1X) is an isomorphism on global sections.

Proof. We argue by induction on n such that f is n-truncated. Thus, we can assume that
∆f !
∼= ∆f∗. In particular, the map of Proposition 6.9 applied to 1X ∈ D(X) reduces to a map

f!(1X) → f∗(1X), which is an isomorphism on global sections if and only if f is cohomologically
proper; and the construction in fact gives a natural transformation f! → f∗ of functors D(X) →
D(Y ). If f is indeed cohomologically proper, then it follows that f!

∼= f∗ as functors D(X) →
D(Y ). �

In particular, we see that the natural transformation f! → f∗ that often exists in practice (for
separated maps), and that often is encoded as extra data in a 6-functor formalism, notably in the
approach of Gaitsgory–Rozenblyum, can in fact be constructed directly out of the data that we
have fixed.
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To restore the symmetry, let us also single out the corresponding class of cohomologically
smooth morphisms, which we call cohomologically étale (as usually for étale morphisms, f∗ = f !

without twist).

Definition 6.12. A map f : X → Y in C is cohomologically étale if it is n-truncated for some
n, the object 1X ∈ D(X) is f -smooth, and the diagonal ∆f : X → X ×Y X is cohomologically
étale (or an isomorphism).

Proposition 6.13. Let f : X → Y be a morphism in C such that ∆f is cohomologically étale.

Then there is a natural transformation f ! → f∗ of functors D(Y )→ D(X). It is an isomorphism if
and only if f is cohomologically étale. To check that f is cohomologically étale, it suffices to check
that f !(1Y )→ 1X is an isomorphism on global sections.

Proof. This is the dual (in the sense of Remark 6.3) of Proposition 6.11. Note that Propo-
sition 6.11 refers to the right adjoint f∗ of f∗, which translates badly. But what used to be a
transformation f! → f∗ becomes a transformation from a hypothetical left adjoint of f∗ to f!; but
by passing to right adjoints, this manifests itself again as a transformation from f ! to f∗.

Alternatively, follow the steps of the proof of Proposition 6.11 and translate them accordingly.
�

As a final topic, let us discuss how the conditions of being f -smooth and f -proper relate to
finiteness conditions one can put on A ∈ D(X) as an object of the category D(X). There are two
notable conditions: As D(X) is symmetric monoidal, there is the condition of being dualizable;
and if D(X) has all colimits, one can ask that A ∈ D(X) is compact (i.e. Hom(A,−) commutes
with all filtered colimits).

Proposition 6.14. Let f : X = Y → Y be the identity. Then A ∈ D(Y ) is f -smooth if and
only if A is f -proper if and only if A is dualizable.

Proof. This is immediate from the definitions. �

Proposition 6.15. Let f : X → Y be a morphism and let A ∈ D(X) be f -smooth. Assume
that ∆!(1X) ∈ D(X ×Y X) is compact. Then A ∈ D(X) is compact.

The condition that ∆!(1X) is compact is satisfied in many, but not all, situations, and there
are important situations where f -smooth objects are quite far from compact objects.

Proof. For B ∈ D(X), we have an isomorphism

p∗1B ⊗ p∗2Df (A) ∼= H om(p∗2A, p
!
1B).

We apply Hom(∆!(1X),−) to this, getting an isomorphism

Hom(∆!(1X), p∗1B ⊗ p∗2Df (A)) ∼= Hom(∆!(1X),H om(p∗2A, p
!
1B))

∼= Hom(∆!(1X)⊗ p∗2A, p!
1B)

∼= Hom(∆!(A), p!
1B) ∼= Hom(p1!∆!(A), B) ∼= Hom(A,B).

But by assumption, the functor B 7→ Hom(∆!(1X), p∗1B ⊗ p∗2Df (A)) commutes with all filtered
colimits. �

Again, there is an analogue for f -proper objects, this time under a much weaker assumption.
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Proposition 6.16. Let f : X → Y be a morphism and let A ∈ D(X) be f -proper. Assume
that 1Y ∈ D(Y ) is compact. Then A ∈ D(X) is compact.

Proof. By f -properness, we have an isomorphism

f!(p2∗H om(p∗1A,∆!(1X))⊗B) ∼= f∗H om(A,B).

Applying Hom(1Y ,−), we get

Hom(1Y , f!(p2∗H om(p∗1A,∆!(1X))⊗B)) ∼= Hom(A,B).

But, as a functor of B, the left-hand side commutes with all filtered colimits. �

Finally, we note the following stability of these conditions under retracts.

Proposition 6.17. Let f : X → Y and f ′ : X ′ → Y be morphisms, and assume that X ′ is
a retract of X over Y , i.e. there are i : X ′ → X and r : X → X ′ over Y with ri = idX′. Let
A′ ∈ D(X ′) and A ∈ D(X) be such that there are maps i∗A → A′ and r∗A′ → A such that the
composite A′ = i∗r∗A′ → i∗A → A′ is the identity; or else that there are maps i!A

′ → A and
r!A → A′ such that the composite A′ = r!i!A

′ → r!A → A′ is the identity. Then if A ∈ D(X) is
f -smooth, also A′ is f ′-smooth.

Again, there is a similar result in the f -proper case; as usual, the two cases are swapped under
passing to opposite categories, so one should have maps A′ → i∗A and A→ r∗A′ etc.

Proof. We consider the case first scenario. Let e = ir : X → X be the idempotent endomor-
phism of X. We note that A comes equipped with a map h : e∗A → A given as the composite
r∗i∗A→ r∗A′ → A; and this map is idempotent in the sense that the composite

e∗A = e∗e∗A
e∗h−−→ e∗A

h−→ A

agrees with h. Conversely, given A with such an “idempotent” h : e∗A → A, we get an actual
idempotent endomorphism i∗h : i∗A = i∗e∗A → i∗A, and letting A′ be the corresponding retract
of i∗A, we get a map A′ → i∗A as well as a map r∗A′ → r∗i∗A → A. This way, the datum of A
and A′ and the maps i∗A → A′ and r∗A′ → A is equivalently captured in the datum of A and
h : e∗A→ A.

In other words, in LZD (where as usual we assume that C has final object Y ), we have the 1-
morphism A : X → Y and e : X → X as well as the 2-morphism h : Ae⇒ A. If B is the f -Verdier
dual of A (i.e., the right adjoint morphism B : Y → X), then h corresponds to a 2-morphism
e ⇒ BA. If we denote the self-anti-equivalence of LZD by a transpose −t, then this is also the
same as a morphism et ⇒ AtBt (recall that −t is contravariant for 1-morphisms but covariant for
2-morphisms). Now At is right adjoint to Bt, so this can be further translated into Btet ⇒ Bt.
Concretely, this is a morphism h′ : e!B → B in D(X). Again, this morphism is “idempotent”, and
can equivalently be described in terms of B′ ∈ D(X ′) with maps i!B

′ → B and r!B → B′ whose
composite B′ = r!i!B → r!B → B′ is the identity. We note that this whole process could also be
reversed, starting from the second type of data and producing the first on the Verdier dual side.

It is now some formal 2-categorical nonsense to obtain the adjunction between A′ : X ′ → Y
and B′ : Y → X ′ as a “retract” of the adjunction between A : X → Y and B : Y → X. �
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Appendix to Lecture VI: Uniqueness of f!

In Lecture IV, we stated a construction principle for 3-functor formalisms, or more precisely for
constructing f! when given ⊗ and f∗. The results of this lecture should actually give a uniqueness
result for it.

Let us assume that C is some ∞-category admitting all finite limits, and that all morphisms of
C are n-truncated for some n (which may depend on the morphism). Let

D : Corr(C)→ Cat∞

be a 3-functor formalism, where implicitly E is the class of all morphisms of C. We can then define
the class of cohomologically proper morphisms, and the class of cohomologically étale morphisms.
These classes are automatically stable under base change, composition, contain all isomorphisms,
and satisfy the 2-out-of-3-property. In fact, given the others, the 2-out-of-3-property reduces to
stability under diagonals, which is part of the definition of cohomologically étale (resp. proper). The
only thing we did not verify in the lecture is stability under composition; we leave this as a simple
exercise. If all morphisms of C factor as a cohomologically étale map followed by a cohomologically
proper map, we are thus precisely in the setting of the construction from Lecture IV.

Slightly more abstractly, let us fix classes of morphisms I and P satisfying the conditions of
Lecture IV (for the class E of all morphisms). We can then consider the following two∞-categories.

(1) The ∞-category of functors

D0 : Cop → CMon(Cat∞)

(i.e., “2-functor formalisms”) satisfying the properties from Lecture IV; and where mor-
phisms D0 → D′0 are those natural transformations that also commute with the functors j!
for j ∈ I and f∗ for f ∈ P (which is just a condition, as these are adjoints). Here, we recall
that the morphisms of CMon(Cat∞) are the symmetric monoidal natural transformations.

(2) The ∞-category of lax symmetric monoidal functors

D : Corr(C)→ Cat∞

(i.e., 3-functor formalisms) with the property that all morphisms in I are cohomologically
étale, and all morphisms in P are cohomologically proper; and morphisms D → D′ are lax
symmetric monoidal natural transformations.

Then there is a forgetful functor from (2) to (1), and the construction of Lecture IV gives a
splitting of this functor, going from (1) to (2). We conjecture that these are inverse equivalences,
and we believe that the methods we have introduced are sufficient to prove this. In other words,
given the classes I and P , the functors ⊗ and f∗ determine the functors f! uniquely.



48 SIX-FUNCTOR FORMALISMS

Appendix to Lecture VI: Smooth or proper descent

Assume that D(X) is a presentable ∞-category for all X ∈ C. Let f : X → Y be a map in E.
If 1X is f -smooth or f -proper, one can prove strong descent properties of X 7→ D(X). (Usually,
when discussing things like Artin stacks, one uses a smooth topology; but the results here show
that one could also allow proper covers, at least as far as the dicussion of 6 functors is concerned.)

Proposition 6.18. Let f : X → Y be an E-morphism such that 1X is f -smooth. Then

f∗ : D(Y )→ D(X)

is conservative if and only if the natural map

colim[n]∈∆opfn!f
!
n(1Y )→ 1Y

is an isomorphism (where fn : Xn/Y → Y are the fibre products), and this condition passes to any
base change. In that case, the pullback functors

(f∗n)n : D(Y )→ lim[n]∈∆D(Xn/Y ), (f !
n)n : D(Y )→ lim[n]∈∆D(Xn/Y )

are equivalences. In particular, if f is a canonical cover, then it is a D-cover, and of universal
!-descent.

Recall here that if 1X is f -smooth, then f ! = f∗ ⊗ f !(1Y ), and f∗ = H om(f !(1Y ), f !).
In particular, f∗ admits a left adjoint f!(f

!(1Y ) ⊗ −), and the resulting counit transformation
f!(f

!(1Y )⊗f∗)→ id agrees with the counit transformation f!f
! → id. These will be used implicitly

in the proof.

Proof. Assume first that
(f∗i )i : D(Y )→

∏
i

D(Xi)

is conservative. If f has a section, then the map

colim[n]∈∆opfn!f
!
n(1Y )→ 1Y

is an isomorphism for formal reasons. But under the conservativity assumption, we can in general
reduce to this situation, using that the formation of f ! commutes with any pullback when 1X is
f -smooth.

In the converse direction, assume that this map is an isomorphism. In that case, the projection
formula implies that

colim[n]∈∆opfn!f
!
nA→ A

is an isomorphism for all A ∈ D(Y ). In particular, if f∗A = 0, then f !A = f∗A⊗ f !(1Y ) = 0, and
the isomorphism implies A = 0.

The pullback functor
(f∗n)n : D(Y )→ lim[n]∈∆D(Xn/Y )

admits a left adjoint, such that the counit of the adjunction is precisely the map

colim[n]∈∆opfn!f
!
nA→ A

This is an equivalence, yielding fully faithfulness. On the other hand, both functors in this ad-
junction commute with any base change in Y , so to check that the unit transformation is also an
equivalence, we can check after pullback along f : X → Y . But there, the cover admits a splitting,
and the claim is automatic. The similar argument applies to !-pullback. �
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The f -proper analogue is the following result, related to the notion of descendability of Mathew
[Mat16]. (Roughly speaking, the reason we have to impose stronger conditions here is that D(X)
is presentable, but D(X)op is not, so we have to ensure that all limits and colimits that are implicit
in the previous proof stay finite.)

Proposition 6.19. Assume that for all X ∈ C, the presentable ∞-category D(X) is stable.

Let f : X → Y be an E-morphism such that 1X is f -proper, with fn : Xn/Y → Y the fibre product.
Assume that the map

1Y → “lim”[n]∈∆ fn∗1Xn/Y

is an isomorphism in Pro(D(Y )); equivalently (by base change and the projection formula), f∗1X ∈
CAlg(D(Y )) is descendable. (This condition passes to any base change of f .)

Then the pullback functors

(f∗n)n : D(Y )→ lim[n]∈∆D(Xn/Y ), (f !
n)n : D(Y )→ lim[n]∈∆D(Xn/Y )

are equivalences. In particular, if f is a canonical cover, then it is a D-cover, and of universal
!-descent.

Recall that if 1X is f -proper, with dual object A ∈ D(X), then f∗ = f!(A ⊗ −) and f! =
f∗H om(A,−). In particular, f∗ satisfies the projection formula and commutes with any ∗-base
change. Similarly, f! commutes with any !-base change. Moreover, one has

f!f
! = f∗H om(A, f !) = H om(f!A,−) = H om(f∗1X ,−).

Proof. The functor (f∗n)n has a right adjoint taking a collection (An)n ∈ lim[n]∈∆D(Xn/Y ) to
limnfn∗An. The unit of the adjunction is the natural map

A→ limnfn∗f
∗
nA.

We claim that this is an isomorphism, by showing that in fact the map

A→ “lim”n fn∗f
∗
nA

in Pro(D(Y )) is an isomorphism. But this latter map is obtained by tensoring the given isomor-
phism 1Y → “lim”[n]∈∆ fn∗1Xn/Y with A (by the projection formula).

In fact, more generally, the same argument applies to A ∈ Pro(D(Y )), and shows that f∗ :
Pro(D(Y )) → Pro(D(X)) is conservative. We now claim that the counit map is an isomorphism,

for which we have to see that for all (An)n ∈ lim[n]∈∆D(Xn/Y ), the map

f∗limnfn∗An → A0

is an isomorphism. Again, we in fact claim that the map

f∗ “lim”n fn∗An → A0

in Pro(D(X)) is an isomorphism. But pullback under one projection map Pro(D(X))→ Pro(D(X×Y
X)) is conversative (we proved this above for f∗, but the hypotheses pass to any base change of
f∗), so we can check this after base changing everything along f : X → Y . But now the cover is
split, so descent is automatic.

Now consider the case of !-descent; here, (f !
n)n has a left adjoint taking (An)n ∈ lim[n]∈∆D(Xn/Y )

to colimnfn!An. The counit of the adjunction is now given by

colimnfn!f
!
nA→ A.
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This is an equivalence by taking the internal Hom from the Pro-isomorphism 1Y → “lim”n fn∗1Xn/Y

towards A. In fact, this shows the slightly more precise claim that the map

“colim”n fn!f
!
nA→ A

is an isomorphism in Ind(D(Y )), and in fact this holds for all A ∈ Ind(D(Y )). In particular, this
implies that f ! : Ind(D(Y ))→ Ind(D(X)) is conservative.

To show that the unit of the adjunction is an isomorphism, we need to show that for all
(An)n ∈ lim[n]∈∆D(Xn/Y ), the natural map

A0 → f !(colimnfn!An)

is an isomorphism. Again, we make the more precise claim that the map

A0 → f !(“colim”n fn!An) = “colim”n f
!fn!An

is an isomorphism in Ind(D(X)). We conclude as in the case of ∗-descent: It suffices to prove this
after applying !-pullback to X ×Y X, where it reduces to the similar descent for the split cover
X ×Y X → X. �
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7. Lecture VII: Topological spaces

Let us come back to the first example, of locally compact Hausdorff spaces. So C is the category
of locally compact Hausdorff spaces; equivalently, these are those topological spaces that can be
written as open subsets of compact Hausdorff spaces (for example, their one-point compactification).
We take E to be the class of all morphisms.

In general, there are several slightly different possible definitions of the derived (∞-)category
of abelian sheaves D(X,Z) on X.

(1) One can literally take the derived∞-category D(Ab(X)) of the abelian category of abelian
sheaves on X. This is obtained from the category of chain complexes by inverting weak
equivalences (in the ∞-categorical sense).

(2) One can look at the∞-category of sheaves Shv(X,D(Z)) (in the sense of Lurie [Lur09]) on
X with values in D(Z). This is the∞-category of contravariant functors F from open sub-
sets of X towards D(Z), such that F(∅) = ∗ and the following two conditions are satisfied.
First, if U = U1 ∪U2, then F(U)→ F(U1)×F(U1∩U2) F(U2) is an isomorphism. Second, if
U is a filtered union of subsets Ui ⊂ U , then F(U)→ limiF(Ui) is an isomorphism (where
all limits are taken in the ∞-category D(Z)).

(3) The ∞-category HypShv(X,D(Z)) of hypersheaves on X with values in D(Z), which is
the localization of Shv(X,D(Z)) at the morphisms that induce isomorphisms on all stalks.

(4) The versions bounded to the leftD≥n(Ab(X)) and Shv(X,D≥n(Z)) = HypShv(X,D≥n(Z))
(as being bounded to the left implies being hypercomplete), and the left-completions

D̂(Ab(X)) = limnD
≥n(Ab(X)), Ŝhv(X,D(Z)) = limnShv(X,D≥n(Z)).

Let us compare the various possibilities.

Proposition 7.1. The composite functor Ch(Ab(X)) → Shv(X,D(Z)) → HypShv(X,D(Z))
factors over D(Ab(X)) and induces a t-exact equivalence

D(Ab(X)) ∼= HypShv(X,D(Z)).

In particular, one gets an equivalence of left-completions

D̂(Ab(X)) ∼= Ŝhv(X,D(Z)).

If X is paracompact and has finite covering dimension, then the functors

Shv(X,D(Z))→ HypShv(X,D(Z))→ Ŝhv(X,D(Z))

are equivalences.

Remark 7.2. In general, the three variants

Shv(X,D(Z))→ HypShv(X,D(Z))→ Ŝhv(X,D(Z))

are different. The latter two agree when X has “locally finite cohomological dimension”. Hyper-
sheaves always form a Bousfield localization of sheaves, but the left-completion in general does not.

The functor HypShv→ Ŝhv (given by taking F to the system (τ≤nF)n) has a right adjoint, taking
a truncation-compatible sequence Fn to F = limnFn. But in general the map τ≤nF → Fn is not
an isomorphism. For example, if Fn =

∏n
i=1 Z[i], then F =

∏∞
i=1 Z[i] and π0F is the sheafification

of U 7→
∏∞
i=1H

i(U,Z), which is in general nontrivial.



52 SIX-FUNCTOR FORMALISMS

Proof. A map in HypShv(X,D(Z)) is an isomorphism if and only if it induces an isomorphism
on all stalks. Indeed, passing to cones, it suffices to see that a hypercomplete sheaf F on X is trivial
as soon as all of its stalks vanish. But if all stalks vanish, then in particular all sheaves πiF vanish,
and hence F is ∞-connective, and thus trivial if hypercomplete.

Thus, to show that Ch(Ab(X)) → HypShv(X,D(Z)) factors over D(Ab(X)), it suffices to see
that quasi-isomorphisms induce isomorphisms on stalks (valued in D(Z)). But this is clear, as the
stalks are unchanged under the sheafification implicit in the functor Ch(Ab(X))→ HypShv(X,D(Z)):
The functor Ch(Ab(X))→ HypShv(X,D(Z)) is the composite of the functor to presheaves, taking
any open U ⊂ X to the value at U of the complex of sheaves, and hypersheafification.

When restricted to K-injective complexes, it turns out that the hypersheafification step is
unnecessary. In other words, if U ⊂ X has a hypercover U• → U , and C ∈ Ch(Ab(X)) is K-
injective, then the map

C(U)→ limC(U•)

in D(Z) is an isomorphism. This follows by noting that the hypercover induces a resolution of j!Z
(where j : U ⊂ X is the open immersion), and taking the associated RHom into C (which vanishes
by assumption that C is K-injective).

This implies that for any j : U ⊂ X and any C ∈ D(Ab(X)), the map

HomD(Ab(X))(j!Z, C)→ HomHypShv(X,D(Z))(j!Z, C̃)

is an isomorphism (where C̃ ∈ HypShv(X,D(Z)) is the associated hypersheaf). Indeed, we can
take a K-injective representative for C, and use that morphisms in D(Ab(X)) can be computed
via K-injective resolutions, as well as the previous paragraph.

As the objects j!Z generate D(Ab(X)) as well as HypShv(X,D(Z)) under colimits (and shifts),
this proves the desired equivalence. Moreover, for all i, the i-th homology functor on D(Ab(X))
corresponds under this equivalence to πi on hypersheaves – on K-injective representatives, this is
even true on the level of presheaves of abelian groups, and thus after sheafification. In particular,
the equivalence is t-exact.

The equivalence on left-completions is a corollary. For the final statement, see [Lur09, Theorem
7.2.3.6, Proposition 7.2.1.10, Corollary 7.2.1.12]. �

In [Sch17], the author preferred left-completed versions. The reason are the very strong descent

properties of X 7→ Ŝhv(X,D(Z)).

Proposition 7.3. Endow C with the Grothendieck topology where a family of maps fi : Xi →
X, i ∈ I, form a cover if for any compact subset K ⊂ X there is some finite index set J ⊂ I and
compact subsets Kj ⊂ Xj for j ∈ J such that K =

⋃
j fj(Kj).

Then X 7→ Ŝhv(X,D(Z)) defines a hypersheaf of ∞-categories on C, which agrees with the
sheafification of X 7→ Shv(X,D(Z)).

Proof. As Ŝhv = limnShv(X,D≥n(Z)), it suffices to prove that Shv(X,D≥n(Z)) defines a
hypersheaf of∞-categories for all n; and by shifting we can assume n = 0. Let us write D≥0(X,Z) =
Shv(X,D≥0(Z)), recalling that in this case all possible definitions agree.

Let f• : X• → X be a hypercover of X. One reduces easily to the case that X and all Xn are
compact. We get the pullback functor

f∗• : D≥0(X,Z)→ limD≥0(X•,Z)
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which has a right adjoint f•∗ given by a totalization of the pushforwards along fn : Xn → X.
The formation of these functors commutes with any base change in X, by proper base change
(Theorem 7.6 below) and noting that the totalization is a finite limit in any bounded range of
degrees (using critically that all sheaves lie in D≥0). Thus, to check that the unit and counit
transformations are equivalences, we can base change to points of X, where the hypercover splits
and the desired descent is automatic.

For the last part, it suffices to show that the functor Shv(X,D(Z)) → Ŝhv(X,D(Z)) is an
equivalence locally in the Grothendieck topology. But any X admits a cover by a disjoint union
of profinite sets (which have covering dimension 0), where it is an equivalence by Proposition 7.1.
(Note that to get an equivalence of sheafifications, one should check more precisely that this also
gives an equivalence on all terms of the corresponding Cech cover; but the terms there are all
closed inside such disjoint unions of profinite sets, and thus themselves disjoint unions of profinite
sets.) �

Now we state the theorem on the existence of a 6-functor formalism. Note that taking a topos
to its ∞-category of D(Z)-valued sheaves defines a functor to symmetric monoidal ∞-categories,
so we have

Cop → CAlg(Cat∞) : X 7→ Shv(X,D(Z)).

For the classes I and P , we take the open immersions and the proper maps, respectively.

Theorem 7.4. In this situation, the conditions of Theorem 4.6 are satisfied, and one gets a
resulting 6-functor formalism

X 7→ D(X) := Shv(X,D(Z)).

Remark 7.5. We work with D(Z)-coefficients here, but everything works in a similar way with
coefficients in the ∞-category of spectra (or other coefficients). See Volpe’s thesis [Vol21] for a
much more detailed and general discussion. Moreover, Kashiwara–Shapira have done a lot of work
on topological 6-functor formalisms, see for example [KS90].

Proof. Condition (1) on the morphisms in I and P is easy to check. Note that if f : X → Y is
any map in C, then by choosing a compactification X0 and and letting X ⊂ X0×Y be the closure
of the graph of f , one gets factorization of f into an open immersion j : X → X and a proper map
f : X → Y .

Condition (2) is essentially automatic. Roughly speaking, whenever D(X) is some category of
sheaves on X with respect to a topology for which the morphisms j ∈ I are open immersions, the
pullback functors j∗ automatically acquire left adjoints j! having good properties.

Condition (3) is the hardest work and stated separately as Theorem 7.6 below. Condition (4)
is then actually automatic by Remark 4.2. �

Theorem 7.6 (Proper Base Change). Let f : X → Y be a proper map of locally compact
Hausdorff spaces.

(1) The functor f∗ : D(X)→ D(Y ) commutes with all colimits.
(2) For A ∈ D(X) and B ∈ D(Y ), the projection formula map

f∗A⊗B → f∗(A⊗ f∗B)

is an isomorphism.
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(3) For any other map g : Y ′ → Y of locally compact Hausdorff spaces and pullback f ′ : X ′ =
X ×Y Y ′ → Y ′, g′ : X ′ → X, the base change map

g∗f∗ → f ′∗g
′∗ : D(X)→ D(Y ′)

is an isomorphism.

Proof. Choosing compactifications, we can assume that Y (and hence X) is compact Haus-
dorff. For part (1), it is convenient to give a different description of D(X) = Shv(X,D(Z)). Given
F ∈ D(X), to any closed subset K ⊂ X one can associate F(K) which are the global sections of
the pullback to K; equivalently,

F(K) = colimU⊃KF(U)

is the colimit over all open neighborhoods U of K. Then D(X) is equivalent to the ∞-category
of contravariant functors F taking closed subsets K of X to D(Z), with the properties that if
K = K1 ∪K2, then

F(K)→ F(K1)×F(K1∩K2) F(K2)

is an isomorphism, and if K =
⋂
iKi is a cofiltered intersection, then

F(K) = colimiF(Ki).

Indeed, one can recover F(U) = limK⊂UF(K), noting that relatively compact open subsets are
cofinal with relatively compact closed subsets. See also [Lur09, Corollary 7.3.4.10].

In this alternative description, the pushforward is given by (f∗F)(K) = F(f−1(K)), noting
that this does in fact satisfy all required conditions. Moreover, arbitrary colimits in F also respect
the conditions, yielding (1).

Now for (2), as all functors commute with colimits, it suffices to check the result on generators,
so we can assume B = j!Z for an open immersion j : Y ′ → Y . The result is clearly true over Y ′ (as
base change to open subsets always holds true), so we need to show that f∗(A⊗ f∗j!Z) vanishes on
the closed complement Z ⊂ Y of Y ′. But j!Z can be written as a colimit of ji!Z for open immersions
Y ′i → Y such that Z admits an open neighborhood Zi that does not meet Y ′i . This implies that
f∗(A ⊗ f∗ji!Z) vanishes upon restriction to Zi, and in particular to Z; and hence the colimit also
vanishes on Z.

For (3), we can also assume that Y ′ is compact. If g is injective (i.e., a closed immersion), then
the result is part of the description of pushforward given in (1). In general, to prove the result, it
suffices to check that the sections over all compact subsets of Y ′ agree. Replacing Y ′ by such a
compact subset, we see in particular that it suffices to prove the result after applying g∗. Now

g∗g
∗f∗ ∼= f∗ ⊗ g∗Z

by the projection formula (i.e., part (2)) for g; while

g∗f
′
∗g
′∗ ∼= f∗g

′
∗g
′∗ ∼= f∗(−⊗ g′∗Z)

by the projection formula for g′. Finally, the projection formula for f reduces us to showing

g′∗Z ∼= f∗g∗Z,

i.e., up to switching the factors, the isomorphism of (3) restricted to the constant sheaf. But now
Z ∈ D≥0, so to check this isomorphism, we can check on stalks. This means we can reduce to the
case that Y ′ is a point, which we have already handled. �
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Finally, we discuss a few things regarding cohomological smoothness, and f -proper and f -
smooth objects. The following proposition was observed before:

Proposition 7.7. Let f : X → Y be a topological manifold bundle. Then f is cohomologically
smooth.

Proof. Cohomological smoothness can be checked locally on the source, and is stable under
pullback and passage to open subsets. This reduces the question to R → ∗, which we handled
directly in Proposition 5.10. �

Conversely, one can ask the following question. Say X is some compact Hausdorff space. When
is f : X → ∗ cohomologically smooth? Recall that cohomological smoothness is equivalent to Z
being f -smooth, with invertible dualizing sheaf. The first condition is actually satisfied in large
generality.

Proposition 7.8. Let X be a locally compact Hausdorff space that is a euclidean neighborhood
retract, i.e. a retract of an open subset of Rn for some n. Then Z is f -smooth for f : X → ∗.

Proof. This is a consequence of the stability under retracts, see Proposition 6.17. �

In particular, if X is a euclidean neighborhood retract, then f : X → ∗ is cohomologically
smooth if and only if the dualizing complex f !Z is invertible. This can actually be tested pointwise.
Note first that if X is a euclidean neighborhood retract, then the homology of X is given by f!f

!Z
(where f : X → ∗ denotes the projection). Indeed, this is true for topological manifolds, and then
passes to retracts. (Also note that the dual of this is given by cohomology f∗H om(f !Z, f !Z) = f∗Z
(using Proposition 6.5 (3)).) It follows that the stalk (f !Z)x at a point x ∈ X is given by the
relative homology of the pair (X,X \ {x}).

Proposition 7.9. Let X be a euclidean neighborhood retract. Assume that there is some d
such that for all x ∈ X, the relative homology group Hi(X,X \ {x};Z) vanishes for i 6= d, and is
given by Z for i = d. Then f !Z is locally isomorphic to Z[d], and hence invertible.

Proof. The assumption ensures that f !Z = F [d] for some sheaf of abelian groups F all of whose
stalks are isomorphic to Z. Moreover, Proposition 6.5 (3) ensures that (the derived) H om(F ,F) =
Z. We will show that these properties force F to be locally isomorphic to Z. Take any x ∈ X and a
local section s ∈ F(U) that is a generator at the stalk at some x ∈ U ⊂ X. We can assume that U
is connected (as X is locally connected, as a euclidean neighborhood retract); our goal is to show
that s induces an isomorphism Z→ F|U . We can replace X by U . Moreover, it suffices to see that
it induces an isomorphism modulo p for any prime p. The image of the map Fp → F/p is given by
some quotient of the constant sheaf Fp, and hence is of the form i∗Fp for some closed immersion
i : Z → X. We get an exact sequence

0→ i∗Fp → F/p→ j!j
∗F/p→ 0;

note that indeed the quotient is of the form j!F ′ for some sheaf F ′, which must be the restriction
of F/p to U . But the projection map splits naturally, so i∗Fp is a summand of F/p. But the
endomorphisms of F/p are just Fp, so in particular it is irreducible, and thus i∗Fp → F/p is an
isomorphism, so that Z = X and F/p = Fp. �

Such X are classically known as (ENR) homology manifolds, and they have been intensely
studied. Let me highlight some of their fascinating theory.
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(1) If X is any (connected) homology manifold, one can define an invariant I(X) ∈ 1 + 8Z
known as the Quinn index, [Qui87]. (The strange value group 1 + 8Z is justified by the
multiplicativity property I(X × Y ) = I(X)I(Y ).)

(2) If X is a topological manifold, then I(X) = 1.
(3) Conversely, if I(X) = 1 and satisfies the “disjoint disks property” (any two maps D2 → X

admit small perturbations that are disjoint), then X is a topological manifold.
(4) A theorem of Bryant–Ferry–Mio–Weinberger [BFMW96] states that (in dimension ≥ 6)

there are homology manifolds with any given Quinn index.

Unfortunately, the construction of homology manifolds with I(X) 6= 1 is extremely indirect,
relying on a lot of (high-dimensional) surgery theory. It is an open problem to give explicit con-
structions of homology manifolds, and whether there are local “model spaces” like euclidean space.

A consequence of Proposition 7.8 is that “constructible” sheaves are f -smooth.

Proposition 7.10. Let X be a euclidean neighborhood retract, and let A ∈ D(X) be such that
there is a locally finite stratification of X into locally closed subsets Xi ⊂ X whose closures Xi ⊂ X
are neighborhood retracts, and such that A|Xi is a constant sheaf on a perfect complex of abelian
groups. Then A is f -smooth for f : X → ∗.

We assume here that a closure of a stratum is a union of strata.

Proof. The condition of being f -smooth is local on X, and stable under triangles. Now A
is locally in the stable subcategory generated by the pushforwards of perfect complexes under the
closed immersion pi : Xi → X. (This uses that the closure of a stratum is a union of strata.) Now
Xi is a euclidean neighborhood retract, hence the constant sheaf and therefore any perfect complex
is fi-smooth for fi : Xi → ∗; and proper pushforwards preserve this property. �

It seems hard to give a complete characterization of the f -smooth objects. In the f -proper
case, a complete characterization can be given.

Proposition 7.11. Let X be a locally compact Hausdorff space and A ∈ D(X), and denote
f : X → ∗. Then A is f -proper if and only if A is compact if and only if A is locally isomorphic to
the constant sheaf on a perfect complex and supported on a compact subset of X.

Thus, this class of sheaves is very small, which also explains why that notion has not been
much studied before (in contrast to f -smooth objects). In fact, even the relative setting of a map
f : X → Y can be analyzed completely, and f -proper objects are exactly those that are locally
isomorphic to the constant sheaf on a perfect complex, and supported on a subset of X that is
compact over Y . Indeed, by base change compatibility, one can assume that Y is compact. Then
Proposition 6.16 ensures that any f -proper A must be compact, and Proposition 7.11 applies.

Proof. By Proposition 6.16, if A is f -proper, then A is compact. The hard part is to show that
A being compact implies that A is locally isomorphic to the constant sheaf on a perfect complex
and supported on a compact subset of X. Indeed, such objects are easily seen to be f -proper.

Thus, let A be compact. It is enough to show that A is dualizable: Indeed, the dualizable
objects are known to be locally isomorphism to the constant sheaf on a perfect complex, and the
support must also be compact as A is compact. (One way to show that any dualizable A must be
locally constant is to show this first on profinite sets, where sheaves are equivalent to modules over
C(X,Z), and then descend.)
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As the support of A must be compact, we can assume that X is compact. Then D(X) is
rigid dualizable as a presentable symmetric monoidal stable ∞-category, and in such categories
dualizable and compact objects agree. Let us explain one direct way of arguing: One way to
characterize “rigid dualizable” is that the unit is compact, it is ω1-compactly generated, and that
any ω1-compact B can be written as a sequential colimit of objects Bn such that for all other
objects C, the natural map

H om(C,Z)⊗B → colimnH om(C,Bn)

is an isomorphism. This is in fact not hard to see in our case; the ω1-compact generators can
be taken as B = j!Z for open immersions j : U → X that are sequential unions of open subsets
jn : Un → X along embeddings Un ⊂ Un+1; then Bn = jn!Z works. Applied to a compact B, the
sequential colimit of Bn’s must necessarily be pro-constant, and then taking C = B shows that B
is dualizable. �



58 SIX-FUNCTOR FORMALISMS

Appendix to Lecture VII: Étale Sheaves

Étale sheaves on schemes behave in many ways quite similar to the case of abelian sheaves on
locally compact Hausdorff spaces, at least with torsion coefficients (prime to the characteristic).
Let us recall these results.

For the category C, we take qcqs schemes. Most naturally, one would take for E the separated
maps of finite type, but actually one can be a tiny bit more general, following Hamacher [Ham19]:
we take for E the class of separated morphisms f : X → Y of “finite expansion”, i.e. such that on
open affines Spec(A) ⊂ X, mapping to Spec(B) ⊂ Y , there is a finite set of elements X1, . . . , Xn ∈ A
such that the map B[X1, . . . , Xn] → A is integral. (In particular, this includes separated maps of
finite type, but it is slightly more general, and in particular it allows perfections of maps of finite
type. It also includes things like pro-(finite étale) maps.) As I, we take the open immersions, while
for P we take the proper maps in E, i.e. the ones that satisfy the valuative criterion of properness
(equivalently, are universally closed).

The Nagata compactification theorem extends to this setting; this ensures that the condition
on morphisms in Theorem 4.6 is satisfied.

Proposition 7.12 ([Ham19, Proposition 1.8, Theorem 1.17]). Let f : X → Y be a morphism
in E.

(1) The morphism f can be written as the composite of an integral map X → X ′ and a
separated map of finite presentation X ′ → Y .

(2) If f ∈ P , then f can be written as the composite of an integral map X → X ′ and a proper
map of finite presentation X ′ → Y .

(3) The morphism f can be written as the composite of an open immersion X ↪→ X and a
morphism X → Y in P .

Following the discussion for topological spaces, one can again consider several slightly different
versions of the derived category of étale sheaves; effectively,

(1) sheaves Shv(Xét, D(Z)) in the sense of Lurie;
(2) hypersheaves HypShv(Xét, D(Z)); this agrees with the derived category of the abelian

category of étale sheaves of Λ-modules;

(3) the left-completion Ŝhv(Xét, D(Z)), which agrees with the left-completion of hypersheaves.

Under mild assumptions, all three notions agree by the following theorem of Clausen–Mathew.

Theorem 7.13 ([CM21, Corollary 1.10, Corollary 4.40]). Let X be a qcqs scheme of finite
Krull dimension that has a uniform bound on the virtual cohomological dimension of its residue
fields; e.g., X is of finite type over Z or an algebraically closed field. Then

Shv(Xét, D(Z)) = HypShv(Xét, D(Z)) = Ŝhv(Xét, D(Z)).

Most sources in the literature either work with D+, i.e. sheaves bounded to the left (as in
the original SGA setting), or with left completions (for example this is what we did in our own
work [Sch17]). This has the advantage of guaranteeing extremely strong descent theorems, most
generally v-descent or even descent for universal submersions, see [HS21, Theorem 5.7]. On the
other hand, considering all sheaves has the advantage that one can reduce to schemes of finite type:

Proposition 7.14. The contravariant functor X 7→ Shv(Xét, D(Z)) from qcqs schemes to pre-
sentable stable ∞-categories takes cofiltered limits X = limiXi along affine transition maps to
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filtered colimits. Equivalently, cf. Lemma 7.17 (1), the functor of ∞-categories

Shv(Xét, D(Z))→ limiShv(Xi,ét, D(Z)),

induced by pushforward along the maps X → Xi, is an equivalence.

Proof. This follows easily from the presentation of Shv(Xét, D(Z)): It is generated by the free
abelian sheaves on quasicompact separated étale maps to X, and for any étale cover between such,
one gets a corresponding relation given by Cech descent. The generators and relations both satisfy
noetherian approximation. �

In the case of schemes, some finiteness conditions on the morphisms have to be enforced in any
case (as there is no scheme-theoretic compactification of infinite-dimensional affine space), and it
turns out that proper base change holds for any choice. But as usual in the étale setting, we have
to restrict to torsion sheaves, or at least profinitely complete sheaves. Thus, we take coefficients in
the full subcategory

D̂pf(Z) ⊂ D(Z)

of profinitely complete complexes, i.e. all A such that A → limnA/
Ln is an isomorphism. This is

also a Verdier quotient of D(Z) by D(Q), and acquires a symmetric monoidal structure. It is also
equivalent to the full subcategory Dtor(Z) ⊂ D(Z) of torsion complexes.

Theorem 7.15. Any of the functors

X 7→ Shv(Xét, D̂pf(Z)), X 7→ HypShv(Xét, D̂pf(Z)), X 7→ Ŝhv(Xét, D̂pf(Z))

satisfies the hypotheses of Theorem 4.6 with respect to the classes I and P , and hence defines a
6-functor formalism. Moreover, the natural functors

Shv(Xét, D̂pf(Z))→ HypShv(Xét, D̂pf(Z))→ Ŝhv(Xét, D̂pf(Z))

commute with the respective ⊗, f∗ and f! functors.

Proof. We already discussed the conditions (1) on the classes of morphisms I and P . For
condition (2) regarding open immersions j, one has indeed the left adjoint j! of extension by zero,
which satisfies base change and projection formula formally. Condition (3) is Theorem 7.16 below.
Finally, for (4), we note that if j : U → X is an open immersion with closed complement i : Z → X,
then one gets an excision triangle

j!j
∗A→ A→ i∗i

∗A

for any A ∈ D(X) (for any choice of D(X)). Indeed, the projection formula and commutation
with colimits reduce to the image of Z in profinitely complete sheaves (which is also the colimit
of 1/nZ/Z[−1]), where all objects are bounded to the left, and the exactness can be checked after
pullback to geometric points, where it is evident. In particular Remark 4.2 applies to establish (4).

The functors between the different theories are by definition compatible with ⊗ and f∗, and
it is easy to see that they commute with j! for open immersions, while the proof of Theorem 7.16
shows that proper pushforwards also commute with these functors. �

Again, the key input is the proper base change theorem.

Theorem 7.16 (Proper Base Change). Let f : X → Y be a universally closed separated map
of finite expansion. Let D(X) denote any of three options in Theorem 7.15.

(1) The functor f∗ : D(X)→ D(Y ) commutes with all colimits.



60 SIX-FUNCTOR FORMALISMS

(2) For A ∈ D(X) and B ∈ D(Y ), the projection formula map

f∗A⊗B → f∗(A⊗ f∗B)

is an isomorphism.
(3) For any other map g : Y ′ → Y of schemes and pullback f ′ : X ′ = X ×Y Y ′ → Y ′,

g′ : X ′ → X, the base change map

g∗f∗ → f ′∗g
′∗ : D(X)→ D(Y ′)

is an isomorphism.

Proof. We first handle the case that D(X) = Shv(Xét, D̂pf(Z)). We can write f as the com-
posite of an integral map and a finitely presented proper map, and it suffices to handle both cases
separately. By Lemma 7.17 (1), one reduces to the case that f is finitely presented proper. Then
f arises via base change from a similar map where Y is of finite type over Z, and Lemma 7.17 (2)
reduces us to the case that Y is of finite type. Then all possible notions of D(X) agree by The-
orem 7.13. Moreover, f∗ has finite cohomological dimension (bounded by twice the dimension of
the geometric fibres of f), and one can reduce to D+(X) by Postnikov limits, or then to sheaves of
abelian groups. Part (1) is then a general consequence of the étale sites of X and Y being coherent.
Part (2) can be checked on geometric fibres, where it reduces to part (3) and part (1) (noting that
D(Y ) is generated by the unit when Y is a geometric point). Part (3) is then the usual proper base
change theorem in étale cohomology.

In the case of hypercomplete sheaves, it suffices to prove all isomorphisms after pullbacks to
geometric points. After base change to geometric points, sheaves and hypersheaves agree, and
the assertions reduce to the case of sheaves. For example, for part (1), take any collection Ai ∈
Shv(X,D(Z)), i ∈ I, of sheaves, and assume that all Ai are already hypersheaves. Let

⊕
iAi denote

the direct sum as sheaves, and
⊕̂

iAi its hypercompletion. We want to know whether the map⊕̂
i
f∗Ai → f∗(

⊕̂
i
Ai)

is an isomorphism, where we note that f∗ preserves hypersheaves. To check this, take the base
change to any geometric point g : y → Y . Note that base change taken in hypersheaves commutes
with direct sums taken in hypersheaves. Also, pullback commutes with pushforwards as taken
in sheaves (by the case of sheaves already established), but sheaves and hypersheaves agree after
pullback. In the end, this reduces the displayed isomorphism to the case where Y is a geometric
point, where it was already established.

In the case of left-completed sheaves, one uses that f∗ has bounded cohomological dimension
to show that it commutes with Postnikov limits, and then any question can be reduced to the case
of bounded sheaves by passing to suitable truncations. �

Lemma 7.17. Let I be an ∞-category.

(1) Let i 7→ Di be a covariant functor to presentable ∞-categories, so that all transition
functors fij : Di → Dj have right adjoints gij : Dj → Di. Then the colimit D = colimiDi

in presentable ∞-categories is given by the limit limiDi in ∞-categories, where the limit
is taken along those right adjoint functors.

If I is filtered and all gij commute with filtered colimits, then the induced endofunctors

Di → D → Di are given by the colimit over j ≥ i of the composite functors Di
fij−−→ Dj

gij−−→
Di.
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(2) Let i 7→ (fi : Ci → Di) be a covariant functor to the ∞-category of maps of presentable
∞-categories. Assume that fi admits a colimit-preserving right adjoint gi : Di → Ci
that commutes with the transition functor Ci → Cj, Di → Dj. Then the functor f :
C = colimiCi → colimiDi given by the colimit of the fi admits the right adjoint g : C =
colimiCi → colimiDi given as the colimit of the gi.

Proof. The first assertion of (1) is the general description of colimits of presentable ∞-
categories, see [Lur09, Theorem 5.5.3.18, Corollary 5.5.3.4]. The other assertion is also stan-
dard, but we do not know the correct reference, so we sketch the argument. Namely, one shows
that the left adjoint to D = limjDj → Di is the functor Di → D = limjDj taking Xi to
colimj′≥i,jgj′j(fij(Xi)), noting that this indeed lands in limjDj , and that one can easily write
down the unit and counit of the adjunction.

Part (2) again follows by noting that one can write down the unit and counit of the adjunction
between f and g, as the colimit of the ones for fi and gi. �

Let us also prove Poincaré duality in this setting (modulo identifying the dualizing complex).

Proposition 7.18. In any of the 6-functor formalisms from Theorem 7.15, all étale morphisms
of schemes are cohomologically étale.

Proof. By construction, open immersions are cohomologically étale. If f : X → Y is étale,
then its diagonal is an open immersion, so ∆f is cohomologically étale. As all categories satisfy
étale descent, checking whether f is cohomologically étale is an étale local question. We can thus
base change f along itself, yielding X ×Y X → X. This decomposes into two components, one
of which is an isomorphism (the diagonal X ↪→ X ×Y X → X). By induction on the maximal
cardinality of a geometric fibre of f , we can thus prove the desired result. �

We note that this implies that f! is canonically a left adjoint of f∗ when f is étale, even if we
did not make this part of the definition.

Theorem 7.19. Let f : X → Y be a smooth morphism of schemes. Assume that a prime ` is
invertible on Y . Then f is cohomologically smooth in the `-completions of the 6-functor formalisms
from Theorem 7.15.

In Zavyalov’s paper [Zav23], it is explained how one can moreover canonically identify the
dualizing complex as a Tate twist (using a deformation to the normal cone).

Proof. The question is étale local on the source, so using Proposition 7.18 one reduces to the
case of affine space, and then to the affine line f : A1

Z[
1
` ]
→ SpecZ[1

` ]. We take the sheaf L = Z`(1)[2]

on A1. One constructs a map
α : ∆∗Z` → p∗2L

using the first Chern class of the line bundle O(∆) on A2. (Indeed, O(∆) defines a Gm-torsor
trivialized outside ∆, i.e. a map ∆∗Z→ Gm[1]. Passing to derived `-completions gives the desired
map α.) It is a standard computation that f!L ∼= Z`, where the isomorphism comes from the first
Chern class of the Cartier divisor of a section. Combined, this suffices to construct the desired
datum for Theorem 5.5. See Zavyalov’s paper [Zav23] for a more detailed account. �

In [HS21] it is shown how the classical arguments of Deligne on Verdier duality and nearby
cycles can be rephrased in terms of f -smooth objects. In particular, f -smooth objects are exactly
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the “universally locally acyclic” (ULA) objects in the sense of Deligne. Over a geometric point, this
coincides with the constructible sheaves, i.e. the compact objects. In particular, Verdier duality
is a perfect duality on constructible sheaves on finite type schemes X over an algebraically closed
field k.
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8. Lecture VIII: Coherent sheaves

Let us now consider a rather different kind of sheaves, namely coherent sheaves. As our category
of geometric objects, we would like to take schemes X, and as D(X) the quasicoherent derived
category Dqc(X). There are two possible definitions: Either this is the full subcategory of the
derived category of sheaves of OX -modules such that all cohomology sheaves are quasicoherent; or,
∞-categorically, it is defined via descent from affine schemes, i.e.

Dqc(X) = limR,Spec(R)→XD(R).

There is of course a version of Poincaré duality in coherent cohomology, which is Grothendieck–Serre
duality.

Theorem 8.1. Let f : X → Y be a proper smooth map of schemes of relative dimension d.
Then

f∗ : Dqc(X)→ Dqc(Y )

has a right adjoint given by Ωd
X/Y [d]⊗ f∗.

This indicates that proper smooth maps should be cohomologically smooth in the formalism
we seek. Moreover, the dualizing object has a description that is local on X; this would most
naturally be explained if in fact all smooth morphisms are cohomologically smooth. We will see,
however, that in the coherent setting things behave somewhat differently. In the next lecture, we
will explain a way to modify Dqc so as to recover a 6-functor formalism that feels much closer to
the topological ones.

Before getting started, we must note that base change theorems for coherent sheaves tend to
have some flatness or Tor-independence assumptions in them. The underlying reason is that when
forming fibre products of schemes, on affine pieces one takes the corresponding tensor product of
rings, but really this should be a derived tensor product. For this reason, any discussion of a
coherent 6-functor formalism has to work with derived schemes.

8.1. Reminders on derived schemes. As our model, we take here the ones modeled on
animated commutative rings, but one could also work with (connective) E∞-rings. This is the
model also studied by Toën–Vezzosi [TV08]. Recall that the∞-category of animated commutative
rings is freely generated under sifted colimits by polynomial algebras Z[X1, . . . , Xn]; equivalently, it
is obtained from the category of simplicial commutative rings by inverting weak equivalences. (This
procedure of animation is a classical operation, first introduced by Quillen as a non-abelian derived
category (but see also the work of Illusie), and ∞-categorically the theory has been written up by
Lurie [Lur09, Section 5.5.8]. The name animation is due to Clausen, and a general discussion of
this procedure in this language is in [ČS19, Section 5.1.4].)

Definition 8.2. A derived scheme is a pair (X,OX) consisting of a topological space X and
a sheaf of animated commutative rings OX such that (X,π0OX) is a scheme, and each πiOX is
a quasicoherent π0OX -module. A morphism of derived schemes (X,OX) → (Y,OY ) is a map
of topological spaces f : X → Y along with a map f ] : f−1OY → OX of sheaves of animated
commutative rings that induces a map of classical schemes upon passing to π0 (i.e., induces local
maps on local rings).

A derived scheme (X,OX) is affine if the classical scheme (X,π0OX) is affine.
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(To define this rigorously as an ∞-category, one first defines an ∞-category of topological
spaces equipped with a sheaf of animated commutative rings, and then restricts the objects and
the 1-morphisms as above.) Then the ∞-category of affine derived schemes is equivalent to the ∞-
category of animated commutative rings, and general derived schemes are glued from affine derived
schemes along open covers. Also, there is an alternative definition of derived schemes in terms of
their functor of points.

One can define flat maps of derived schemes (e.g., as those where any base change to a classical
scheme becomes classical), and then étale resp. smooth maps as those maps that are flat and induce
étale resp. smooth maps on the classical truncations.

Thus, we take for C the ∞-category of derived schemes; for simplicity, we restrict to qcqs
objects, i.e. |X| is a quasicompact and quasiseparated topological space. For any X ∈ C, one can
define the quasicoherent∞-category Dqc(X), for example via descent (along open covers) from the
affine case. This defines a contravariant functor from C to symmetric monoidal presentable stable
∞-categories. We will have occasion to consider some subcategories of Dqc(X).

Theorem 8.3 (Thomason–Trobaugh, [TT90]). The ∞-category Dqc(X) is compactly gener-
ated, and the compact objects agree with the dualizable objects, which are also the perfect complexes
Perf(X), i.e. on open affine subsets in the subcategory generated by A under direct sums, cones,
and retracts.

Proof. Let us recall the argument briefly. First, if X = Spec(A) is affine, then A is a compact
generator of Dqc(X) = D(A), and thus all compact objects are perfect complexes, and thus dual-
izable. Conversely, as the unit is compact, all dualizable objects are compact. Now in general one
can classify the dualizable objects as the perfect complexes, as dualizable objects satisfy Zariski
descent. Moreover, the unit on Dqc(X) is compact, and thus all dualizable objects are compact. It
remains to show that the dualizable (i.e., perfect) objects generate Dqc(X). This follows from the
following general categorical lemma (applied first to separated X with basis of open affines, and
then to general X with basis of separated open subsets), together with the observation that for
X = Spec(A) affine and a constructible closed subset Z of X, given as the vanishing locus of some
f1, . . . , fn ∈ A, the subcategory Dqc(X on Z) ⊂ Dqc(X) of those complexes that vanish outside Z
is compactly generated by the Koszul complex

A/L(f1, . . . , fn) = A⊗LZ[X1,...,Xn] Z ∈ Perf(X on Z). �

Lemma 8.4. Let X be a spectral space equipped with basis B of quasicompact open subsets
stable under finite intersections. Consider a sheaf of presentable stable ∞-categories U 7→ CU on
X. Assume that for all U ∈ B, the ∞-category CU is compactly generated, that for all U ′ ⊂ U
with U ′ ∈ B, the functor CU → CU ′ is a Bousfield localization that preserves compact objects, with
compactly generated kernel.

Then for all quasicompact open U ⊂ X, the ∞-category CU is compactly generated, and for all
quasicompact open U ′ ⊂ U , the functor CU → CU ′ is a Bousfield localization that preserves compact
objects, and its kernel is compactly generated.

Proof. Note first that U 7→ CωU ⊂ CU is also a sheaf of ∞-categories on B (as an object that is
locally compact is in fact compact, by computing Hom’s via descent, which is finitary on a spectral
space). It thus extends to a sheaf U 7→ Cω(U) for all quasicompact open U ⊂ X, which comes with
a functor

Ind(Cω(U))→ CU
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which is in fact fully faithful.
One proves that this is an equivalence by induction on B, the starting point being the case that

U is a quasicompact open subset of X that can be written as a union U = U1∪U2 with U1, U2 ∈ B.
To show that the functor is an equivalence, it suffices to show that for any A ∈ CωU1

the object
A⊕A[1] lifts to an object of (Cω)(U). This is equivalent to the similar lifting from U1 ∩ U2 to U2.
But by assumption CU2 → CU1∩U2 is a left Bousfield localization of compactly generated presentable
stable ∞-categories whose kernel is also compactly generated; thus, the compact objects of CU1∩U2

are the idempotent completion of the Verdier quotient

CωU2
/ker(CωU2

→ CωU1∩U2
).

(Indeed, taking the Verdier quotient on the level of compact objects first and passing to Ind-
categories produces the Verdier quotient on the level of the big categories. But the compact
objects of the Ind-category give the idempotent completion.) By Proposition 8.5 below we see that
the desired lifting is possible for any object with trivial K0-class, such as A⊕A[1]. The rest of the
proof is some routine verification. �

Proposition 8.5 (Thomason–Trobaugh). Let C be a small stable ∞-category and let C′ be its
idempotent completion. Then K0(C) injects into K0(C′), and an object X ∈ C′ lies in C ⊂ C′ if and
only if its K0-class [X] ∈ K0(C′) lies in K0(C) ⊂ K0(C′).

Here, K0(C) is generated by elements [X] for all X ∈ C, subject to [X] = [X ′] + [X ′′] for any
distinguished triangle X ′ → X → X ′′ in C.

Proof. Let us first show what we really need, namely that for any A′ ∈ C′, the object A′⊕A′[1]
lies in C. By definition, A′ is determined by an object A ∈ C with an idempotent endomorphism

e : A→ A. But then the cone of A
1−e−−→ A is A′ ⊕A′[1], as desired.

This implies that the relations defining K0(C′) are generated by the relations [X] + [X ′] =
[X ⊕X ′], and the relations coming from K0(C). Indeed, any distinguished triangle X ′ → X → X ′′

can be modified into one of the form X ′ ⊕X ′[1] → X ⊕X ′[1] ⊕X ′′[1] → X ′′ ⊕X ′′[1] making the
first and last term in C, and thus also the middle term. This easily implies that K0(C) → K0(C′)
is injective. Moreover, it shows that for X ∈ C′, one has [X] ∈ K0(C) if and only if there is some
X ′ ∈ C such X ⊕X ′ ∈ C. But then X ∈ C as the cone of X ′ → X ⊕X ′ is. �

Definition 8.6. Let A be an animated commutative ring. An object K ∈ D(A) is pseudoco-
herent if for any n there is a perfect complex Kn and a map Kn → K whose cone sits in homological
degrees ≥ n. An object K ∈ D(A) is coherent if it is pseudocoherent and bounded.

These notions satisfy Zariski descent and thus globalize to conditions on K ∈ Dqc(X). On
general derived schemes, one always has many perfect and pseudocoherent complexes, but not
always coherent ones. One would like to obtain them by truncating pseudocoherent complexes, but
this may not preserve pseudocoherent complexes. It is true, however, under mild conditions on the
derived scheme (X,OX).

Proposition 8.7. Assume that (X,π0OX) is a coherent scheme, i.e. locally the spectrum of a
coherent ring, and πiOX is a coherent π0OX-module for all i. Then A ∈ Dqc(X) is pseudocoherent
if and only if all πiA are coherent π0OX-modules. In particular, any truncation of A is again
pseudocoherent.

Finally, we have the following finiteness condition on maps A→ B.
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Definition 8.8. A map f : A → B of animated commutative rings is almost of finite presen-
tation if there is some factorization A → A[X1, . . . , Xn] → B such that B is pseudocoherent as
A[X1, . . . , Xn]-module.

One can check that this condition is independent of the chosen map A[X1, . . . , Xn]→ B as long
as it induces a surjection on π0. Moreover, one can show that it globalizes to a notion for maps
f : X → Y of derived schemes. We will use the following terminology.

Definition 8.9. A map f : X → Y of derived schemes is proper if it is almost of finite
presentation and the map of underlying classical schemes is proper.

This definition is in particular relevant for the finiteness results in coherent cohomology:

Theorem 8.10. Let f : X → Y be a proper map of derived schemes. Then f∗ takes pseudo-
coherent objects of Dqc(X) to pseudocoherent objects of Dqc(Y ), and coherent objects to coherent
objects. If f is of finite Tor-dimension, then f∗ takes Perf(X) to Perf(Y ).

We will give a direct proof in the next lecture, using the formalism of solid modules. It can also
be deduced from the usual finiteness results in coherent cohomology.

8.2. Right and left adjoints to pullback. We would like to extend X 7→ Dqc(X) to a
6-functor formalism. To do so, we need to define classes of morphisms I and P , and these classes
are restrained by the existence of suitable left and right adjoints to pullback. First, right adjoints
actually always satisfy base change:

Proposition 8.11. Let f : X → Y be any map in C, i.e. a map of qcqs derived schemes. Then
f∗ admits a colimit-preserving right adjoint f∗ satisfying projection formula and base change.

Proof. Once one has proved the result for affine Y , it follows in general (as the then locally
defined right adjoints commute with base change and thus globalize to the desired adjoint). Thus,
assume that Y is affine. One can then moreover reduce to the case that X is affine, by first
deducing the case of separated X, and then general X, using finite covers by open affine subsets.
If X = Spec(A) and Y = Spec(B) are affine, then f∗ corresponds to the tensor product functor
−⊗BA : D(B)→ D(A), whose right adjoint D(A)→ D(B) is the forgetful functor, and commutes
with all colimits, and satisfies the projection formula. Base change is also immediate, noting that
everything is suitably derived. �

Thus, in principle we could take for P the class of all maps. Before turning to the discussion
of such possibilities, let us analyze a case when f∗ admits a left adjoint.

Proposition 8.12. Let f : X → Y be a proper map of finite Tor-dimension. Then f∗ ad-
mits a left adjoint f] satisfying projection formula and base change. Concretely, it is the func-
tor taking a filtered colimit colimiPi of perfect complexes Pi ∈ Dqc(X) to colimi(f∗P

∨
i )∨ where

P∨i = H om(Pi,OX) denotes the naive dual (and the second −∨ denotes the naive dual on Y ).

Proof. We have the adjunction between f∗ and f∗ on Dqc = Ind(Perf). But both functors
preserve Perf, so we get an adjunction there. On the other hand, Perf is selfdual (with the naive
duality) and so one gets an adjunction the other way between the naive duals of f∗ and f∗ on Perf.
But f∗ commutes with the duality, so one gets a left adjoint of f∗ : Perf(Y ) → Perf(X). Passing
to Ind-categories again, we get the desired left adjoint, with the given formula. This shows that it
commutes with base change and satisfies the projection formula. �
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Something weird happens here: In the other formalisms, it were the open immersions where f∗

admits a left adjoint; here is it is the proper maps (of finite Tor-dimension). And indeed, for open
immersions like Spec(A[1

g ]) ↪→ Spec(A), the pullback functor

−⊗A A[1
g ] : D(A)→ D(A[1

g ])

does not admit a left adjoint, as it does not commute with products. We will see in the next lecture
a way to change the setting so that it does, by working with some kind of topological modules, and
remembering the product topology.

Today, however, we will stick with abstract modules, and see what we can do.

8.3. Option 1: All maps are proper. The first option is to simply allow all maps to lie in
P (and hence in E) and for I just take the isomorphisms. By Proposition 8.11 and Theorem 4.6,
this defines a 6-functor formalism on C with values in presentable stable ∞-categories.

Theorem 8.13. In this 6-functor formalism, for any proper map f : X → Y of finite Tor-
dimension the sheaf OX is f -smooth.

In particular, we get a dualizing object ωX/Y ∈ Dqc(X) as the Verdier dual of OX , i.e. f !OY
with respect to the !-functor of this formalism. (We are reluctant to denote this by f ! in general, as
f ! has a standard meaning in coherent cohomology, but for proper maps it is the correct functor.)

Proof. Using Proposition 6.6, it suffices to see that the formation of f !OY commutes with
any base change. But f ! commutes with all colimits by Theorem 8.10 and is thus Dqc(Y )-linear,

and the resulting Dqc(Y )-linear adjunction between f∗ and f ! base changes to a similar adjunction
after any base change Y ′ → Y , noting that Dqc(X ×Y Y ′) = Dqc(X)⊗Dqc(Y ) Dqc(Y

′). �

If f is smooth, we can say more:

Proposition 8.14. Let f : X → Y be a proper smooth map of derived schemes. Then f and its
diagonal ∆ are cohomologically smooth. The dualizing sheaf ωX/Y = f !OY is inverse to the sheaf

∆!OX×YX and thus local on X.

This argument goes back to Verdier [Ver69].

Proof. Let p1, p2 : X ×Y X → X be the two projections. We compute, using the base change
compatibility of f !OX and Theorem 8.13 applied to ∆ (which is still of finite Tor-dimension):

OX = ∆!p!
1OX ∼= ∆!p∗2f

!OY ∼= ∆∗p∗2f
!OY ⊗∆!OX×YX

∼= f !OY ⊗∆!OX×YX . �

If X and Y are classical, it is not hard to define a canonical isomorphism ∆!OX×YX
∼=

(Ωd
X/Y [d])∨ by working with local coordinates, and checking that the isomorphism does not de-

pend on the choice of coordinates. If Y is derived, this does not work, but instead one can use a
deformation to the normal cone as in [CS22, Lecture 13] to define this isomorphism.

8.4. Option 2: I consists of the proper maps of finite Tor-dimension, P consists of
the open immersions. If we want to allow some morphisms in I, then it has to be the proper
maps of finite Tor-dimension. We restrict P to consist of the open immersions. The class E should
then consist of the separated maps that are almost of finite presentation and of finite Tor-dimension.
(We note that the discussion of Lecture 4 also applies if instead of asking that all maps in E factor
as P ◦I, they factor as I ◦P . In fact, one can formally deduce it by replacing all D(X) by D(X)op.)
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For this discussion, one needs a derived version of Nagata compactifications, see also [GR17,
Chapter 5, Proposition 2.1.6].

Theorem 8.15. Let f : X → Y be a separated map of qcqs derived schemes that is almost of
finite presentation. Then f can be factored as the composite of an open immersion j : X ↪→ X and
a proper map f : X → Y .

More precisely, any such Nagata compactification on the level of classical schemes can be lifted
to the derived level, up to universal homeomorphism.

Proof. Let f0 : X0 → Y0 be the map of underlying classical schemes, and fix a compact-
ification X0 ↪→ X0. We will lift the given compactification to the derived level, up to universal
homeomorphism. This problem is local on X0. (More precisely, we make X0 inductively larger, and
the resulting extension is local on X0.) We can thus assume that Y and X0 are affine. Replacing
Y by AnY , we can moreover arrange that the map X0 → Y0 is finite. Now we apply the following
lemma. �

Lemma 8.16. Let A be an animated commutative ring, and let U be a derived scheme over
Spec(A) of almost finite presentation together with an open embedding of the corresponding classi-
cal scheme U0 into Spec(B0) for some classical π0A-algebra B0 that is finitely presented as π0A-
module. Then there is a pseudocoherent A-algebra B with a map π0B → B0 that is a universal
homeomorphism, and an open embedding of U into Spec(B) lifting the given open embedding of
classical schemes.

Proof. One can argue by inductively modifying A by first adjoining further elements, so as
to generate π0OU and make π0A → B0 surjective up to universal homeomorphism, and then
quotienting by elements in degree 0 (so that U0 becomes an open subscheme of Spec(π0A)), and
then by elements in higher homotopy groups, giving the desired B in the limit. �

However, in the current setting, we actually need to preserve the property of finite Tor-
dimension. We do not know whether this property can be preserved under Nagata compactifi-
cations, so for the moment we do not know how to construct a 6-functor formalism of the desired
type. This would actually have the further problem that P does not satisfy the 2-out-of-3 property,
and neither does E. This is not actually really required for the machinery of Liu–Zheng [LZ12b],
but it is required for some of our machinery like the notions of cohomologically étale (or proper)
maps.

Still, let us check that the maps I and P would satisfy axiom (4) from Lecture IV:

Proposition 8.17. Consider a cartesian diagram of derived schemes

X ′
f ′ //

g′

��

X

g

��
Y ′

f // Y

where f is an open immersion, and g is a proper map of finite Tor-dimension. Then the natural
map

g]f
′
∗ → f∗g

′
] : Dqc(X

′)→ Dqc(Y )

is an isomorphism.
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Proof. The claim is local on Y , so we can assume that Y = Spec(B) is affine. Moreover,
we can use descent along open immersions in Y ′ to reduce to the case that Y ′ = Spec(B[ 1

h ]) is a
standard open affine. All functors commute with colimits, so it suffices to check the isomorphism
on perfect complexes on X ′; moreover, we can assume that they arise via pullback from X. In this
case, it follows from the base change compatibility of g] upon inverting h. �

Thus, if we would have the required Nagata compactifications of finite Tor-dimension (and
suitably generalize the construction principle of Lecture IV to allow situations where P does not
satisfy the 2-out-of-3 property), we would get a 6-functor formalism

X 7→ Dqc(X)

on all derived schemes, with values in presentable stable ∞-categories. The class E would conists
of separated maps of finite Tor-dimension.

This time, Grothendieck–Serre duality is encoded not in terms of f -smoothness, but in terms
of f -properness.

Theorem 8.18. In this 6-functor formalism, any map f : X → Y in E that is a local complete
intersection has the property that OX is f -proper, with f -proper dual being invertible, and the
inverse of ωX/Y .

One could wonder whether in fact OX is f -proper for all f ∈ E, but this turns out to be wrong.
In Option 5, we will later correct this.

There is something very mind-bending about this situation. There is a way to make things more
intuitive by passing to opposite categories, so we will prove the theorem after a reinterpretation.

8.5. Option 3: Replace Ind(Perf) by Pro(Perf). Recall that replacing D(X) by D(X)op

replaces cohomologically étale maps by cohomologically proper maps. As in Option 2, there is an
apparent mismatch between geometric notions and the abstract notions defined in terms of D, it
may be psychologically useful to switch from

Dqc(X) = Ind(Perf(X))

to its opposite, which is Pro(Perf(X)) (noting that Perf(X) is self-dual, via the naive duality
functor). A formalism of this type (or maybe rather the next option below) was first investigated
by Deligne in the appendix of [Har66]. This has the disadvantage that Pro(Perf(X)) is no longer
presentable, so we will generally have to be content with a 3-functor formalism (with occasionally
defined right adjoints).

The formalism from Option 2 then dualizes to a 3-functor formalism on Pro(Perf(X)). Let us
use the standard notation f! for the functors for f ∈ E. Then f! = f∗j! as usual, where j! is a left

adjoint of j∗ and f∗ is a right adjoint of f
∗

(and j is an open immersion and f ∈ E is proper).

Example 8.19. Assume that Y = Spec(k) is the spectrum of a field. Then the category of
Pro-objects of finite-dimensional k-vector spaces is the category of linearly compact k-vector spaces.
For any separated scheme of finite type X over k and any E ∈ Perf(X), the object

RΓc(X,E) := f!E ∈ Pro(Perf(k))

defines a bounded complex of linearly compact k-vector spaces. Concretely, to compute it take any
compactification X ⊃ X whose boundary is a Cartier divisor D ⊂ X. Assume that E extends to
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E on X (which always happens up to retracts). Then

RΓc(X,E) = limnRΓ(X,E(−nD)) ∈ Pro(Perf(k)).

In this language, Theorem 8.18 becomes the following result.

Theorem 8.20. Let f : X → Y be any map in E that is a local complete intersection. Then f
is cohomologically smooth.

We can then define ωX/Y = f !OY ∈ Perf(X) (which is then defined). We note that this is
automatically local on X.

Proof. In this formalism, open immersions are cohomologically étale, so we can localize (on X
and Y ), and hence assume that X and Y are affine. By the assumption that f is a local complete
intersection, and using base change compatibility, one can in fact reduce further to the case of
A1
Z → Spec(Z) or its zero section. The case of A1 can be reduced to P1. In those cases, the right

adjoint f ! to f! = f∗ actually exists, preserves perfect complexes, and commutes with any base
change (using Proposition 8.14, upon restricting from Ind(Perf) to Perf, and extending back to
Pro(Perf)). Thus, OX is f -smooth, but by Proposition 8.14 the object f !OX is invertible. �

As we observed above, it is very annoying that the maps in E have to be restricted to be of
finite Tor-dimension; this precludes in particular the 2-out-of-3 property. The underlying reason is
that in Theorem 8.10 this restriction appears in relation to perfect complexes.

8.6. Option 4: Replace Pro(Perf) by Pro(Coh). However, we can artificially replace Perf
by Coh, the coherent complexes, at least for noetherian schemes X (i.e. the underlying classical
scheme is noetherian, and πiOX is a coherent π0OX -module for all i).

Remark 8.21. I believe the theory of this section also works with general derived schemes, if
one uses the following interpretation of Pro(Coh(X)) that makes sense in general.

Proposition 8.22. Assume that X is a noetherian derived scheme. Let Coh(X) ⊂ D+
qc(X) be

the subcategory of coherent complexes. Then the image of the fully faithful functor

Pro(Coh(X))op ↪→ Pro(D+
qc(X))op ∼= Funex(D+

qc(X), Sp)

is given by those exact functors D+
qc(X)→ Sp of stable ∞-categories that commute with all filtered

colimits in D≥0
qc (X).

Proof. By formal nonsense, the image consists of those functors D+
qc(X) → Sp that are left

Kan extended from Coh(X). All such commute with filtered colimits in D≥0 as for K ∈ Coh(X) the
functor Hom(K,−) commutes with filtered colimits in D≥0. In the converse direction, it suffices
to observe that D+

qc(X) is generated under filtered colimits by Coh(X), in fact by such filtered
colimits that stay bounded to the left. �

Restricting to noetherian derived schemes, we send anyX to the stable∞-category Pro(Coh(X)).
We note that by restricting the symmetric monoidal ∞-category Dqc(X) to Coh(X), one still has
an ∞-operad, which after passage to Pro(Coh(X)) is again a symmetric monoidal ∞-category.
Concretely, the tensor product of two objects of Coh(X) need not itself lie in Coh(X) (in general,
it just lies in PCoh(X)), but it still defines a pro-object of Coh(X) (the Pro-system of its trunca-
tions τ≤n). Similar remarks apply to pullback functoriality. We note that the resulting pullback
and tensor product functors on Pro(Coh) automatically commute with all limits.
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We let I be the class of open immersions, and P the class of proper maps; then E is the class
of separated maps of almost finite type (of noetherian derived schemes).

Theorem 8.23. The functor X 7→ Pro(Coh(X)) satisfies the hypotheses of Theorem 4.6 with
respect to I and P , and hence defines a 3-functor formalism on noetherian derived schemes.

The proof is a variation on the same observations as before. Compared to the previous option,
there are many more f -smooth objects. In particular, we get a stronger result on biduality.

Proposition 8.24. Let f : X → Y be a separated map of noetherian derived schemes of almost
finite type and assume that K ∈ Coh(X) ⊂ Pro(Coh(X)) is of finite Tor-dimension over Y . Then
K is f -smooth.

In particular, if Y is a regular classical scheme, then all objects K ∈ Coh(X) are f -smooth,
and Coh(X) is self-dual with respect to the Verdier duality Df (K) = H om(K, f !OY ).

We note in particular that if f is itself of finite Tor-dimension, we get the dualizing complex
ωX/Y = f !OY ∈ Coh(X), in a way that localizes on X, fulfilling a promise made in Option 1 to
show that the dualizing complex is of local nature in general.

Proof. The assertion is local on X and Y , so we can assume that they are affine. Replacing
Y by an affine space over Y , which is cohomologically smooth, one can then assume that f is a
closed immersion. In that case K becomes perfect as an object of Coh(Y ), and its naive Y -dual
(with induced OX -module structure) defines the desired f -smooth dual. �

8.7. Option 5: Replace Pro(Coh) by Ind(Coh). Finally, we can dualize again, and replace
Pro(Coh(X)) by its opposite ∞-category Ind(Coh(X)op). If one restricts to schemes almost of
finite type over a classical regular base scheme Y (e.g., a field k), one can use the self-duality from
Proposition 8.24 to identify Ind(Coh(X)op) with Ind(Coh(X)). Now the ∞-categories are again
presentable (and all 3 functors commute with colimits), so one gets a full 6-functor formalism. This
gives exactly the 6-functor formalism constructed by Gaitsgory–Rozenblyum [GR17].

Working over a classical regular base scheme Y , we note that under this identification

Ind(Coh(X)op) ∼= Ind(Coh(X)),

the pullback, tensor product, and exceptional functors on Ind(Coh(X)) are Verdier dual to the
usual pullback, tensor product, and lower shriek functors; they are thus denoted by f !, ⊗!, and
f∗ in the work of Gaitsgory–Rozenblyum, even while they play the role of f∗, ⊗ and f! in this
6-functor formalism.

As we have seen, there are many possible 6-functor formalisms in the coherent setting. Our
notational choice is thus to explicitly include the 6-functor formalism in the notation, i.e. we denote
these functors as f∗IndCoh, ⊗IndCoh, f!,IndCoh, so

f∗IndCoh = f !
GR,⊗IndCoh = ⊗!

GR, f!,IndCoh = f∗,GR,

using a subscript GR to refer to Gaitsgory–Rozenblyum’s choice of notation.
Let us end with a remark on the relation between Dqc and Ind(Coh). As in [GR17], take as

our category C the affine derived schemes almost of finite type over a field k (of any characteristic,
for now). We have two functors to symmetric monoidal presentable stable ∞-categories

X 7→ Dqc(X), X 7→ Ind(Coh(X))



72 SIX-FUNCTOR FORMALISMS

from Option 2 and Option 5, respectively. We note that both theories satisfy Zariski descent, so in
the limit above it suffices to restrict to affine X. In [GR17], sometimes a restriction to truncated
X is made. This does not change Ind(Coh(X)), in the following sense: If X = Spec(A) is affine,
then the functor

Ind(Coh(A))→ limnInd(Coh(τ≤nA))

is an equivalence. (To see this, note that the pullback functors here are concretely realized as
!-functors, and have the forgetful functors Coh(τ≤nA) → Coh(A) as left adjoints. Thus, this limit
can also be computed as the colimit of presentable stable ∞-categories along these left adjoint
functors that preserve compact objects. Then it follows from

colimnCoh(τ≤nA)→ Coh(A)

being an equivalence of small stable ∞-categories, i.e. on a bounded complex the A-action always
factors (uniquely) over τ≤nA for large enough n.) This means that in the limit defining IndCoh(X̃),
one can even restrict to affine X = Spec(A) for which A is n-truncated for some n.

We note that there is a symmetric monoidal natural transformation

Dqc(X)→ Ind(Coh(X))

given by

Dqc(X) = Ind(Perf(X)) ∼= Ind(Perf(X)op)→ Ind(Coh(X)op) ∼= Ind(Coh(X)) = IndCoh(X),

where the first equivalence is naive duality, and the last equivalence is Serre duality (over k). (The
composite functor is actually just tensoring with the dualizing complex of X, which is the tensor
unit of IndCoh(X).) If X is truncated (i.e. πiX = 0 for i � 0) then this comparison functor is
fully faithful.

Remark 8.25. We note that the arguments of this lecture give in particular a construction of
the 6-functor formalism IndCoh of Gaitsgory–Rozenblyum that does not rely on difficult properties
of the Gray tensor product of (∞, 2)-categories; in fact, it makes use of no (∞, 2)-categorical
machinery at all.
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Appendix to Lecture VIII: D-modules

As in the work of Gaitsgory–Rozenblyum [GR17], one can recover the 6-functor formalism of
D-modules (on algebraic varieties over a field k of characteristic 0), originally developed by Sato,
Kashiwara, Bernstein, ... 10

Before starting to use the formalism from the lecture, let us announce directly a way to introduce
the formalism. Fix a field k of characteristic 0,11 and consider the category C of separated schemes
of finite type over k, with all morphisms allowed in E. To any X ∈ C, we can associate the category
of crystals on the infinitesimal site; concretely,

Crys(X) = limR,Spec(Rred)→XD(R)

as R runs over k-algebras of finite type.12 This gives a contravariant functor from C to symmetric
monoidal presentable stable ∞-categories.

Theorem 8.26. The functor X 7→ Crys(X) satisfies the hypotheses of Theorem 4.6 with respect
to the classes I of proper maps and P of open immersions, and hence extends to a 6-functor
formalism.

Our approach in this appendix is actually to construct the 6-functor formalism directly and ver-
ify that proper maps are cohomologically étale while open immersions are cohomologically proper;
this proves Theorem 8.26. To do so, we use the extension of the coherent 6-functor formalism to
stacks. By Theorem 4.20, the formalism X 7→ Ind(Coh(X)) extends to stacks on C (i.e. sheaves of

anima), sending any stack X̃ to

IndCoh(X̃) = limX∈C,X→X̃Ind(Coh(X̃)).

In this generality, this is not anymore compactly generated, so for stacks IndCoh 6= Ind(Coh).

We can similarly define Dqc(X̃), and note that there is a natural symmetric monoidal transfor-
mation

Dqc(X)→ IndCoh(X),

which is usually fully faithful.
One way to motivate the upcoming definition of D-modules is to observe that one respect in

which the coherent 6-functor formalisms differ from the previous ones is that they are not nil-
invariant: If Spec(A) → Spec(B) is a nilpotent immersion, i.e. π0B → π0A is surjection with
nilpotent kernel, then D(B)→ D(A) is not usually an equivalence.

There is a universal way to make a theory nil-invariant. Namely, for any derived scheme X, let
XdR denote the prestack taking an animated commutative ring A to

colimI⊂π0AX(π0A/I)

as I runs over nilpotent ideals of π0A (i.e., there is some n such that In = 0). If X is almost of
finite type over k, then XdR is also left Kan extended from k-algebras A that are almost of finite

10Caveat: I am only just learning about D-modules, and (as the rest of the notes) this section is still being
revised, and further material will be added.

11We actually do not use the assumption of characteristic 0 for a long time. It is only used in the identification
with modules over the ring of differential operators, and in the discussion of Poincaré duality – in characteristic p the
resulting theory is a 6-functor formalism but does not satisfy Poincaré duality.

12One can also allow animated k-algebras almost of finite type; it is not hard to see that the two results are
equivalent, via a cofinality argument.
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type, so there is no harm restricting to our category C of affine derived schemes almost of finite
type over k as above. Note also that if A is almost of finite type, then the nilradical of π0A is
nilpotent, and hence

XdR(A) = X(Ared)

where Ared is the reduced quotient of π0A. For a nil-invariant theory, the pullback functor
D(XdR)→ D(X) is an equivalence; and in general X 7→ D(XdR) is nil-invariant.

Definition 8.27. Let k be a field of characteristic 0 and let X be a derived scheme almost of
finite type over k. The symmetric monoidal presentable stable ∞-category of left D-modules on X
is

DmodL(X) := Dqc(XdR),

while that of right D-modules is

DmodR(X) := IndCoh(XdR).

Thus, Crys(X) = DmodL(X) for the above definition of Crys(X). Regarding the names
“left/right D-modules”, we follow here the terminology of [GR17]. From the general compari-
son map Dqc → IndCoh, we get a colimit-preserving symmetric monoidal functor

DmodL(X)→ DmodR(X)

and we will see below that this is actually an equivalence. We can already see now that it is fully
faithful – this follows as in the limit defining XdR, classical schemes are cofinal.

Remark 8.28. From the definition it follows that if X is a derived scheme almost of finite
type with underlying reduced classical scheme Xred, the map Xred,dR → XdR is an isomorphism,

hence DmodL(X) = DmodL(Xred) (and similarly for DmodR). Thus, in the following we can often
restrict attention to (reduced) classical schemes.

Our first goal is to prove the following theorem. Together with the equivalence DmodL(X) =
DmodR(X), it will prove Theorem 8.26.

Theorem 8.29. For any map f : X → Y of schemes of finite type over k, the !-functors on
IndCoh are defined for fdR : XdR → YdR. Moreover, if f is étale, then fdR is cohomologically
proper, while if f is proper, then fdR is cohomologically étale.

To get started, we have the following proposition regarding “formal completions”.

Proposition 8.30. Let X be a derived scheme almost of finite type over k and let Z ⊂ X be a
closed subscheme. Let X∧Z ⊂ X be the subfunctor of those maps Spec(A)→ X that set-theoretically
factor over Z. Then the map j : X∧Z ↪→ X admits !-functors in the IndCoh-formalism, and is
cohomologically étale. In fact, one can identify X∧Z ⊂ X as the image of the cohomologically étale
map Z → X.

Proof. The question is local on X, so we can assume that X is affine, and Z is the vanishing
locus of some functions f1, . . . , fn; and by induction on n and stability under pullback, we can
assume that n = 1. In that case, the situation comes via pullback from X = Spec(k[T ]) and
Z = Spec(k) embedded as T = 0. The map Z → X is cohomologically étale (like any proper map),
and hence its image (in the sheaf-theoretic sense) admits a !-functor and is a cohomologically étale
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monomorphism. Indeed, this image admits a cohomologically étale surjection from Z (as any base
change agrees with a base change of Z → X) and Z → X is cohomologically étale.

We claim that the image of Z → X is given by X∧Z ⊂ X. It is clearly contained in X∧Z ⊂ X.
Conversely, if Y = Spec(B) is some affine derived scheme mapping towards X∧Z , then it factors over
Spec(k[T ]/Tn) for some n, so it suffices to see that Spec(k[T ]/Tn)→ X = Spec(k[T ]) is contained
in the image of Z → X, i.e. Spec(k)→ Spec(k[T ]/Tn) is a cover in the D-topology. But this follows
from Proposition 6.18 noting that Ind(Coh(k[T ]/Tn))→ Ind(Coh(k)) = D(k) is conservative. But
k[T ]/Tn has an n-step filtration whose graded pieces are k. �

It may be useful to describe what happens in terms of the derived categories.

Proposition 8.31. In the situation of Proposition 8.30, the functor

j! : IndCoh(X∧Z)→ IndCoh(X)

is fully faithful and its essential image is given by IndCoh(X on Z), i.e. those objects that vanish
outside Z.

Proof. For any cohomologically étale monomorphism j, the functor j! is fully faithful as
j∗j! = id by base change. As Z → X∧Z is surjective, the kernel of j∗ agrees with the kernel of
IndCoh(X)→ IndCoh(Z); and IndCoh(X on Z)→ IndCoh(Z) is known to be conservative. (The
point is that if the base change of a complex to the vanishing locus of some function f is zero, then
f acts invertibly on that complex, and hence lives on the open subset where f is invertible.) �

Proposition 8.32. For a finite type k-scheme X, the map X → XdR admits !-functors in the
IndCoh-formalism and is cohomologically étale and surjective.

Proof. The question is local on X, so we can restrict first to affine X, but then by a compact-
ification we can also restrict to proper X. We have to see that for any derived scheme Y almost of
finite type over k with a map Y → XdR, the fibre product X×XdR

Y → Y admits !-functors, and is
cohomologically smooth and surjective. We note that as we work everywhere with sheaves of anima
for the D-topology, the map Y → XdR is a map to the sheafified version of XdR; but because the
condition of admitting !-functors is local on source and target, we can assume that Y = Spec(B) is
affine and the map Y → XdR arises from a map Yred → X.

Now we first claim that the monomorphism X ×XdR
Y → X ×k Y admits !-functors and is

cohomologically étale. In fact, the graph of the map Yred → X gives a closed subset Z ⊂ X ×k Y
and then

X ×XdR
Y = (X ×k Y )∧Z ,

so the result follows from Proposition 8.30. But the projection X×k Y → Y is also cohomologically
étale (as X is proper). It is easy to see that the map X → XdR is surjective. �

At this point, we can prove Theorem 8.29.

Proof of Theorem 8.29. First, fdR : XdR → YdR admits !-functors. Indeed, it suffices to
check this over the cohomologically étale cover X → XdR, and then it is the composite of X → Y
and Y → YdR, both of which are allowed. Moreover, if f is proper, then fdR is cohomologically
étale. Indeed, X → XdR is a cohomologically étale cover, and over this cover it is the composite
of the cohomologically étale maps X → Y and Y → YdR. Finally, if f is étale, then fdR is
cohomologically proper. Indeed, this can be checked after pullback along the cohomologically
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étale surjection Y → YdR, and then we get the cohomologically proper map f : X → Y , as
X = XdR ×YdR Y if f : X → Y is étale (using the infinitesimal lifting property of étale maps). �

This finishes the construction of the D-module 6-functor formalism, but it stays a bit abstract,
and the relation to actual D-modules remains unclear. Let us address these issues.

First, the D-module 6-functor formalism actually has a property stronger than nil-invariance:
Namely, it satisfies excision. This result is classically known as “Kashiwara’s lemma”.

Proposition 8.33. Let X be a finite type k-scheme with a closed subscheme j : Z ⊂ X and
open complement i : U ⊂ X.13 For any A ∈ DmodR(X), the triangle

j!j
∗A→ A→ i∗i

∗A

is exact, yielding a semi-orthogonal decomposition of DmodR(X) into DmodR(Z) and DmodR(U).

Proof. It suffices to check this after pullback along the cohomologically étale surjection X →
XdR, and then the strata become X ×XdR

UdR = U and X ×XdR
ZdR = X∧Z . The result follows

from Proposition 8.31. �

Using this, we can finally show the equivalence DmodL ∼= DmodR. This also finishes the proof
of Theorem 8.26.

Theorem 8.34. For all finite type k-schemes X, the natural symmetric monoidal functor

DmodL(X)→ DmodR(X)

is an equivalence.

Proof. We claim that if X is smooth, then the map of prestacks X → XdR is of universal
descent for Dqc. We can assume X = Spec(A) is affine. Consider any affine Y = Spec(B) with a
map Y → XdR; we want to show that Y ×XdR

X → Y is of universal Dqc-descent. But Y → XdR

factors over some classical Y , so we can assume that Y is classical. The map Y ×XdR
X → Y splits

over Yred. But Yred → Y is of universal Dqc-descent as it is descendable in the sense of Mathew
[Mat16, Proposition 3.35]; and if a refinement over a morphism satisfies universal descent, so does
the original morphism.

Now start with any X, without loss of generality affine, and embed into a smooth X̃. By
descent along X̃ → X̃dR, it suffices to show that the image of

DmodR(X) = IndCoh(XdR)→ IndCoh(XdR ×X̃dR
X̃)

lies in Dqc(XdR ×X̃dR
X̃). But XdR ×X̃dR

X̃ = X̃∧X , and

IndCoh(X̃∧X) = IndCoh(X̃ on X) = Dqc(X̃ on X) = Dqc(X̃
∧
X),

where the middle equation uses smoothness of X̃. �

Finally, we can explain the name of left and right D-modules. Their names really only make
sense when one restricts to smooth X. In the case of left D-modules, the proof of the theorem
shows that one can describe objects of DmodL(X) = Dqc(XdR) in terms of their pullback to an
object M ∈ Dqc(X) together with a descent datum, which exactly amounts to a left OX -linear
action on M of the algebra DX of differential operators on X.

13We apologize for the nonstandard notation; it is however dictated by the 6-functor formalism, where the closed
immersion j is cohomologically étale and the open immersion i is cohomologically proper.
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On the other hand, if one describes objects of DmodR(X) = IndCoh(XdR) in the similar way,
one gets by pullback an object M ∈ Ind(Coh(X)), with a similar-looking action. If as in the
proof one identifies Ind(Coh(X)) with Dqc(X) via twisting with the dualizing sheaf, this action
is precisely a left action of DX again, yielding the equivalence. But if one uses the more naive
equivalence Ind(Coh) = Dqc(X) coming from Coh(X) = Perf(X), then this action unravels to a
right OX -linear DX -action.

Moreover, we have the following important result on duality.

Theorem 8.35. For all finite type k-schemes X, the presentable stable ∞-category Dmod(X)
is compactly generated, and the compact objects agree with the fDmod-proper objects for f : X →
Spec(k). In particular, duality for fDmod-proper objects gives a selfduality on the compact objects
of Dmod(X).

Moreover:

(1) If X is smooth of dimension d, then the fDmod-proper dual of 1Dmod(X) is isomorphic to
1Dmod(X)[−2d].

(2) If f : X → Y is a proper map, then f!,Dmod preserves compact objects, and commutes with
proper duality.

Under the identification of Dmod(X) with the derived category of left DX -modules (for X
smooth), the compact objects are of course the DX -coherent objects. Assertion (1) is encoding
Poincaré duality.

Proof. The map X → XdR induces a cohomologically étale map, and hence the (colimit-
preserving) pullback IndCoh(XdR)→ IndCoh(X) has a left adjoint, which thus preserves compact
objects. As IndCoh(X) is compactly generated (and pullback is conservative), so is Dmod(X).
Moreover, any K ∈ Coh(X) is f -proper in the IndCoh-formalism for f : X → ∗. As coho-
mologically étale pushforwards (like g : X → XdR) preserve proper objects, this implies that
g!,IndCohK ∈ IndCoh(XdR) is fdR-proper, i.e. as an object of Dmod(X) it is fDmod-proper. These
generate all compact objects, so all compact objects are fDmod-proper. The converse follows from
Proposition 6.16.

In part (1), one first shows that it is locally isomorphic to 1Dmod(X)[−2d]; this reduces to a

computation on A1 (and is the only place we use characteristic 0). Then there are various ways
to conclude a global isomorphism, for example using a deformation to the normal cone. Part (2)
follows from the preservation of proper objects under cohomologically étale pushforward (and the
preservation of proper duality). �

Remark 8.36. There is yet another interpretatation of Dmod(X), or rather of its opposite
Dmod(X)op. Namely,

Dmod(X)op = ProPerf(XdR) = limR,Spec(Rred)→XPro(Perf(R))

∼= ProCoh(XdR) = limR,Spec(Rred)→XPro(Coh(R)),

using the formalisms from Option 3 and 4 in the lecture. In this interpretation, the étale maps
are cohomologically étale and the proper maps are cohomologically proper. Moreover, the excision
triangle takes the usual form: If X has an open subscheme j : U ⊂ X with closed complement
i : Z ⊂ X, then for all A ∈ ProPerf(XdR), one has an exact triangle

j!j
∗A→ A→ i∗i

∗A.
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Another advantage of this realization is that the comparison between ProPerf and ProCoh is naive.
Moreover, in this realization, Theorem 8.35 says that all co-compact objects of Dmodop are f -
smooth over the point, the duality becomes actual Verdier duality, and part (1) says that the map
X → ∗ is cohomologically smooth if X is smooth (with dualizing complex 1Dmodop(X)[2d]).

Example 8.37. Let us give some examples ofD-modules, and discuss their different realizations.
Let us take the affine line X = A1

k = Spec(k[T ]) with its closed point Z = Spec(k) = {0} ⊂ A1
k = X;

let U = Spec(k[T±1]) be its open complement. Following our previous terminology, we write
j : Z → X and i : U → X for the morphisms, and we want to understand the different realizations
of the exact triangle

j!,Dmod(1Dmod(Z))→ 1Dmod(X) → i∗,Dmod(1Dmod(U)).

Here i∗,Dmod is, as in any 6-functor formalism, the right adjoint to i∗Dmod; but because i is open
and thus cohomologically proper, it also agrees with i!,Dmod. The functor j!,Dmod is the left adjoint
of j∗Dmod, as j is proper and thus cohomologically étale.

Let us first realize under the functor Dmod(X) → Dqc(X); this is the usual realization as left
D-modules. This functor is symmetric monoidal for the usual tensor product. Also, i∗,Dmod pulls
back to the the functor i∗,Dqc as U = X ×XdR

UdR. Thus, we can identify the last two terms of the

sequence above as k[T ]→ k[T±1], and thus the whole exact triangle must be

(k[T±1]/k[T ])[−1]→ k[T ]→ k[T±1].

In particular,

j!,Dmod(1Dmod(Z)) = (k[T±1]/k[T ])[−1].

We note that this module can also be written as the local cohomology of the structure sheaf.
Now let us analyze the realization via IndCoh. More precisely, we consider the realization

Dmod(X) ∼= DmodR(X) = IndCoh(XdR)→ IndCoh(X) = Dqc(X)

where the functor is the general functoriality of IndCoh, and the last equality comes from the equal-
ity Coh(X) = Perf(X). This functor sends 1Dmod(X) to the dualizing complex ωX = (k[T ]dT )[1].
The functor i∗Dmod for an open immersion i is actually the naive pullback in any possible realization

(in Gaitsgory–Rozenblyum’s notation, i∗IndCoh = i!GR = i∗GR), and so its right adjoint i∗,Dmod is the
naive pushforward. Thus, the triangle above becomes

(k[T±1]/k[T ])dT → (k[T ]dT )[1]→ k[T±1]dT [1].

In fact, in general this realization is just the first realization tensored by ωX (which is (k[T ]dT )[1]
in this case).

Finally, let us analyze the realization via ProPerf = ProCoh. In this realization, maps within
the category go the other way, so the triangle rather becomes a triangle

j!,Dmodop(1Dmodop(U))→ 1Dmodop(X) → i∗,Dmodop(1Dmodop(Z)),

where also now switched to j : U ⊂ X and i : Z ⊂ X. Under Dmodop(X) = ProPerf(XdR) →
ProPerf(X), this realizes to

(k[[T ]]/k[T ])[−1]→ k[T ]→ k[[T ]],

where k[[T ]] denotes the pro-object (k[T ]/Tn)n.
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Example 8.38. Continuing our previous example, we note that all objects involved are D-
coherent, so we also get a triangle of their duals. Let us write DX for the duality on the compact
objects of Dmod(X). We have D(1Dmod(X)) = 1Dmod(X)[−2] and

D(j!,Dmod(1Dmod(Z))) = j!,Dmod(1Dmod(Z)).

(This equation may look confusing, but recall that D is proper duality, and this commutes with j! for
cohomologically étale maps. Alternatively, think in terms of the ProPerf-picture, where j! would be
denoted i! = i∗, and Verdier duality commutes with (cohomologically) proper pushforward.) Thus,
the triangle dualizes to a triangle

D(i∗,Dmod(1Dmod(U)))→ 1Dmod(X)[−2]→ j!,Dmod(1Dmod(Z)).

In the first realization, this becomes a triangle

M → k[T ][−2]→ (k[T±1]/k[T ])[−1]

for some M ∈ D(k[T ]). In fact, any such triangle is split, so M = (k[T ] ⊕ k[T±1]/k[T ])[−2], but
the D-module structure is more subtle. More precisely, on any basis element (Tn, 0) or (0, T−n)
with n > 0 the derivative ∂T does the same as the direct sum of the two D-modules, but instead
of killing (T 0, 1), it sends it to (0, T−1).

The second realization via IndCoh is again just the twist by ωX = (k[T ]dT )[1]. Finally, the
ProPerf-realization becomes a triangle

k[[T ]]→ k[T ][2]→ N.

Remark 8.39. We should also translate between the functors f∗Dmod, ⊗Dmod and f!,Dmod from
the 6-functor formalism Dmod constructed above, and the usual functors from the literature. We
take Bernstein’s notes [Ber] as our reference. Bernstein takes the perspective of left D-modules as
the primary one, and we would like to follow him. However, Bernstein also identifies left and right
D-modules on any smooth variety X, but he does so by twisting with Ωd

X , not by ωX = Ωd
X [d].

This means that his identification between left and right D-modules differs from our identification
by a shift by d = dim(X). Unfortunately, naively identifying left D-modules in our theory and in
Bernstein’s theory is not compatible with the functors he defines – they will involve degree shifts.
Thus, for the purposes of the comparison between the theories, we use the perspective of right
D-modules.

This way, the functor f∗Dmod = f !
GR matches the functor f !

Be (Be for Bernstein). For him, this is
a functor of left D-modules that is a shift by dim(X)−dim(Y ) of the naive pullback functor, but his
identification of left and right D-modules undoes this twist. Moreover, the functor f!,Dmod = f∗,GR

agrees with the functor f∗,Be. We note that Bernstein also occasionally writes f+,Be, but this is
just f∗,Be on the level of abelian categories instead of derived categories. The tensor product on
D-modules introduced in [Ber, p. 28] agrees with ⊗.

If we would use the more natural identification between Dmod(X) and left D-modules, then

f∗Dmod would correspond to Bernstein’s naive pullback functor f4Be, while f!,Dmod corresponds to
f∗,Be[dim(Y )− dim(X)].

Remark 8.40. Continuing the previous remark, the usual discussion of D-module 6 functors
proceeds in the following way. First, one has the big category of all D-modules, on which functors
f ! and f∗ are introduced. Then one restricts to the coherent D-modules, which have a selfduality D,
and then tries to dualize f ! and f∗ to get functors f∗ and f!. These are in general only well-defined
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as functors to the Pro-category, yielding Pro(Dmod(X)ω) with ⊗, f∗ and f!-functors. We note that
this exactly agrees with the ⊗, f∗ and f! we defined on Dmod(X)op ∼= Pro(Dmod(X)ω).

Then one defines the class of holonomic D-modules and shows that this is stable under ⊗, f∗,
f! and their right adjoints (which, for abstract reasons, are also Verdier duals of f! and f∗). The
resulting 6-functor formalism of holonomic D-modules will then satisfy excision, étale maps are
cohomologically étale, proper maps are cohomologically proper, and smooth maps are cohomolog-
ically smooth, so is a “usual” 6-functor formalism. In particular, in our above example of X = A1

k
with i : Z = {0} ⊂ X and open complement j : U → X (using standard notation now!), the
triangle

j!(1)→ 1→ i∗(1)

realizes in the IndCoh-realization to

(k[T ]⊕ k[T±1]/k[T ])dT [−1]→ k[T ]dT [−1]→ (k[T±1]/k[T ])dT,

with the D-module structure on k[T ] ⊕ k[T±1]/k[T ] discussed in Example 8.38 (with ∂T (T 0, 0) =
(0, T−1)). We note that all modules are concentrated in one degree, so the shifted sequence

i∗(1)→ j!(1)[1]→ 1[1]

is exact for the standard t-structure on IndCoh. That same sequence would also be exact in the
perverse t-structure on constructible sheaves; this is of course related to the original emergence of
the perverse t-structure in the context of D-modules.

As another example, the Verdier dual sequence

i∗i
!(1)→ 1→ j∗(1)

realizes to
(k[T±1]/k[T ])dT [−2]→ k[T ]dT [−1]→ k[T±1]dT [−1].

Note that i!(1) ∼= 1[−2]; we see that the shifted sequence

1[1]→ j∗(1)[1]→ i∗i
!(1)[2]

is exact for the standard t-structure on IndCoh.
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9. Lecture IX: Solid Modules
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10. Lecture X: Ring Stacks
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11. Lecture XI: Motivic sheaves
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12. Lecture XII: A formalism related to arithmetic D-modules
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13. Miscellaneous

This section consists of some remarks and examples of 6-functor formalisms that did not really
fit anywhere.

13.1. C = ∗. As a first example, let us take for C = ∗ the trivial category with just one object
(and one morphism). A 3-functor formalism is a symmetric monoidal ∞-category D. There seems
to be nothing to say in this case, but actually there is something to say once one passes to stacks.
Namely, the category of sheaves of anima on C is just the ∞-category of anima An, and if D is
presentable, then D determines uniquely a 6-functor formalism on An, taking any X ∈ An to

D(X) = Fun(X,D),

i.e. “X-parametrized objects of D”. If D is the symmetric monoidal ∞-category of spectra, this is
the notion of parametrized spectrum of May-Sigurdsson [MS06].

Exercise 13.1. Show that the class of morphisms Ẽ allowed by Theorem 4.20 is the class of
morphisms f : X → Y of anima that on every connected component of X are n-truncated for some
n.

Exercise 13.2. Show that in the 6-functor formalism from Theorem 4.20, all maps in Ẽ are
cohomologically étale.

One can in fact directly construct a 6-functor formalism on An by sending X to D(X) =
Fun(X,D) and taking for I all maps (so also E consists of all maps), while P consists only of
isomorphisms. This makes f! in general the left adjoint of f∗, and it extends the formalism coming
from Theorem 4.20 to not necessarily truncated morphisms.

The class of cohomologically proper morphisms depends on a lot on D. In general, if D is stable
(or just preadditive), then all 0-truncated maps with finite fibres are D-cohomologically proper,
and this is a way of saying that finite coproducts agree with finite products in D. This means that
1-truncated maps whose fibres have finite automorphism groups are “cohomologically separated”,
yielding a natural transformation f! → f∗ for such f . In particular, for a finite group G and
f : BG→ ∗, one has an identification between D(BG) and G-equivariant objects in D (in practice,
this is the derived category of G-representations), and f! is G-homology, f∗ is G-cohomology, and
f! → f∗ yields the norm map from G-homology to G-cohomology. If the order of G is invertible
in EndD(1D), this is an isomorphism, but there are also other situations, notably if D is the ∞-
category of K(1)-local spectra, where this is related to the telescopic Tate vanishing, see for example
[CM17] for a quick proof. If this map is an isomorphism, one gets resulting comparison maps for
2-truncated maps, etc.

In particular, a phenomenon known as “ambidexterity” in algebraic topology gives the following
theorem:

Theorem 13.3 (Hopkins–Lurie, [HL13]). Let D be the symmetric monoidal ∞-category of
K(n)-local spectra for n ≥ 1 (and some implicit prime p). Then any n-truncated map f : X → Y
of anima all of whose fibres have finite πi, for i = 0, . . . , n, is D-cohomologically proper.

On another note, one can wonder for which X ∈ An the object 1X ∈ D(X) is f -proper for the
projection f : X → ∗. Note that after Proposition 6.9, we constructed a general transformation

f!(−⊗ DX)→ f∗
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for a certain object DX ∈ D(X) which is in fact exactly the Spivak–Klein dualizing object when
D = Sp, and the map is exactly the twisted norm map; see [NS18, Section I.4] for an account.
Here, the left-hand side is in fact the colimit-preserving approximation to f∗, and so the map is an
isomorphism if and only if f∗ preserves all direct sums. This is the case, in particular, if X is a
compact object of An. More generally, for any “finitely dominated” map of anima f : X → Y , the
sheaf 1X is f -proper.

A lot of work in (parametrized) homotopy theory can then be recast in this language, and I
will not attempt to do the vast literature justice due to ignorance on my side. Let me just cite,
as an one example with a similar point of view to these notes, the paper by Cnossen [Cno23]; see
also its introduction and extended bibliography.

Remark 13.4. Generalizing this example, one can take for C the category of transitive G-sets,
for some (abstract, say) group G, where one again takes for I all morphisms (so also E consists of
all morphisms), while P consists only of isomorphisms. In that case, Elmendorf’s theorem [Elm83]
says that the ∞-category of presheaves of anima on C is exactly the ∞-category of “G-spaces”.
Moreover, 6-functor formalisms on C with values in PrL are G-symmetric monoidal presentable∞-
categories, i.e. functors from Cop to symmetric monoidal presentable ∞-categories. One can then
again extend such 6-functor formalisms to all “G-spaces”. I believe much of the previous discussion
can then be generalized, and is related to a lot of work on (genuine) G-equivariant homotopy theory.

13.2. C = ProFin. Next, let us consider C = ProFin. As morphisms, we take for P all maps
(so also E consists of all maps), while for I we could in principle allow open immersions, but we
could also just restrict to isomorphisms. There are many possible 6-functor formalisms, so let us
restrict to the case of the functor taking any S ∈ ProFin to the stable ∞-category D(S, k) of
sheaves on S with values in modules over some E∞-ring k. Note that sheaves on S are just functors
taking any open closed subset U ⊂ S to the value on S, subject to taking finite disjoint unions to
finite products. This is very much a finitary condition, and using this it is trivial to prove proper
base change, so this functor indeed extends to a 6-functor formalism.

Moreover, the functor S 7→ D(S, k) is a hypersheaf for the Grothendieck topology used in
condensed mathematics, i.e. covers are generated by finite families of jointly surjective maps. We
can thus extend X 7→ D(X, k) to all condensed anima; and if one possibly slightly restricts the
Grothendieck topology (we did not know whether all covers in condensed mathematics satisfy
universal !-descent) we also get an extended 6-functor formalism. This applies in particular to
locally profinite sets, and for open immersions of such, the functor f! is defined and agrees with
the left adjoint of f∗ (i.e. they are cohomologically étale). To see this, cover locally profinite sets
via open and closed subsets of profinite sets, and use that f! commutes with all direct sums to see
that it must be the expected functor.14

We also note that one can show that the morphism from the Cantor set to the interval is
of universal !-descent, in fact it satisfies the hypotheses of Proposition 6.19. Thus, for finite-
dimensional compact Hausdorff spaces, the !-functors are defined, and behave as expected. On the
other hand, for a Hilbert cube, the !-functors are not defined.

13.3. C = CHaus. Now consider C = CHaus, compact Hausdorff spaces. All morphisms are
in P , but only isomorphisms in I, and we again use the functor X 7→ D(X, k), the ∞-category of

14Thanks to Clausen for explaining this!
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sheaves on X with values in D(k), for some E∞-ring k. Again, we could also start with locally
compact Hausdorff spaces, but on the level of sheaves of anima, the distinction disappears.

In this case, the resulting D-topology in fact depends on k, and certainly not all covers in the
sense of condensed mathematics are allowed; for example, the cover of the Hilbert cube by a Cantor
set is not allowed. However, if X is finite-dimensional, then one can cover it by a Cantor set in the
D-topology. Thus, the formalism from this section and the previous section agree when specialized
to finite-dimensional spaces, but in general they differ.

We note that in both formalisms, with C = ProFin and C = CHaus, the∞-category of sheaves
of anima mixes purely homotopy-theoretic spaces with actual topological spaces. So for a manifold
X, one also has its associated anima |X|, with a map f : X → |X|, and then D(X) consists
of all sheaves on X, while D(|X|) is equivalent, via pullback along f , to the locally constant
sheaves in D(X). Moreover, the truncated map fn : X → τ≤n|X| is also such that fn! is defined.
Unfortunately, we do not currently see how to define f!.
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