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Abstract. We develop an analogue of Fargues’ geometrization of the local Langlands correspon-
dence in the case of real groups. This includes a new formalism of G(R)-representations and a new
moduli space of L-parameters. Our methods rely on the theory of analytic stacks developed in our
joint work with Clausen.
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CHAPTER I

Introduction

To be written. The current version of this manuscript does not discuss the actual conjecture,
but it is clear what it should be. Rather, this manuscript aims to show how one has to set up
the formalism so that all the ingredients come together in the right way. The main result of this
draft is an analogue for the real numbers of “nonabelian Lubin–Tate theory”, giving a realization
of L-parameters in the cohomology of analogues of “local Shimura varieties”.

Acknowledgments. The ideas developed in this manuscript are coming from discussions with
Johannes Anschütz, Arthur-César le Bras and Juan Esteban Rodŕıguez Camargo on the similar
picture for locally analytic p-adic representations. Many thanks to all of them!

There has previously been a proposal by Ben-Zvi–Nadler [BZN13] for an interpretation of the
real local Langlands correspondence as a geometric Langlands correspondence on the twistor-P1,
at least for regular infinitesimal character. We will see that in a suitable sense, their conjecture is
the specialization of ours to regular infinitesimal character.
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CHAPTER II

Analytic Riemann–Hilbert

The analytic Riemann–Hilbert equivalence will be an isomorphism of analytic stacks

Xan
dR
∼= XBetti

between the analytic de Rham stack and the Betti stack of a complex manifold X. The goal of
this talk is to define both sides, identify their categories of quasicoherent sheaves with some kind
of analytic D-modules, resp. Betti sheaves, and prove the isomorphism of stacks.

II.1. Betti stacks

The theory of Betti stacks is very general. We start from the functor

ProFinlight → AnStack

taking any light profinite set S to AnSpec(Cont(S,Z)). This takes hypercovers to !-hypercovers,
and hence induces a unique colimit-preserving functor

CondAnilight → AnStack.

In particular, for any locally compact Hausdorff space S, we get an analytic stack SBetti associated
to the condensed set S. In general, it is difficult to describe the functor of points of SBetti, and its
category of quasicoherent sheaves, but this is possible when S is finite-dimensional.

Proposition II.1.1. Let S be a finite-dimensional metrizable compact Hausdorff space and let
f : S′ → S be a surjection from a light profinite set. Then f∗Z ∈ D(S,Z) is descendable.

The finite-dimensionality we need is finite cohomological dimension.

Proof. There is some d < ∞ such that for all countably generated abelian sheaves F and G
on S, one has Exti(F ,G) = 0 for i > d. Indeed, this reduces easily to the case F = j!Z for some
open immersion j : U → S, where this computes H i(U,G|U ), which has the desired vanishing.

Now descendability follows from cohomological descent for the constant sheaf Z along f (as the
corresponding derived limit must split off Z at a finite stage by the Ext-vanishing). □

Corollary II.1.2. For any analytic stack X and any finite-dimensional metrizable compact
Hausdorff space S, one has a natural equivalence

Dqc(X × SBetti) ∼= D(S,Dqc(X)).
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8 II. ANALYTIC RIEMANN–HILBERT

Proof. This is clear when S is profinite. In general, choose a surjection from a light profinite
set f0 : S0 → S, with Čech nerve f• : S• → S. For any n, we get an equivalence

Dqc(X × Sn,Betti) ∼= D(Sn, Dqc(X)) ∼= Modfn∗Z(D(S,Dqc(X))).

This is functorial in [n] ∈ ∆, and taking the limit over n, the descendability of Z→ f∗Z yields

lim←−
[n]∈∆

Dqc(X × Sn,Betti) ∼= lim←−
[n]∈∆

Modfn∗Z(D(S,Dqc(X))) ∼= D(S,Dqc(X)). □

Proposition II.1.3. Let S be a finite-dimensional compact Hausdorff space. For any analytic
stack X, maps X → SBetti are equivalent to D(Z)-linear colimit-preserving symmetric monoidal
functors

D(S,Z)→ Dqc(X)

such that there is some !-cover X ′ → X for which the composite functor

D(S,Z)→ Dqc(X)→ Dqc(X
′)

preserves connective objects.

Moreover, such D(Z)-linear colimit-preserving symmetric monoidal functors

D(S,Z)→ Dqc(X)

are equivalently given by collections of idempotent algebras AZ ∈ Dqc(X) for all closed subsets
Z ⊂ S, such that Z 7→ AZ sends limits to colimits, and finite unions to limits. This corresponds to
a map X → SBetti if and only if there is some !-cover X ′ → X such that all AZ |X′ ∈ Dqc(X

′) are
connective.

Proof. See course on Analytic Stacks. □

Proposition II.1.4. Let X be complex-analytic space. There is a natural map X → X(C)Betti,
and this map is a surjective map of analytic stacks.

Proof. By the results in the complex geometry course, any closed subset Z ⊂ X(C) gives rise
to an idempotent algebra O(Z)†, satisfying the appropriate conditions.

To prove surjectivity, take a light profinite set S = lim←−n
Sn with a map S → X(C). By definition

of X(C)Betti, the corresponding maps

AnSpec(Cont(S,Z)⊗Z C)→ X(C)Betti

are jointly surjective (as S varies). Thus, it suffices to prove that the pullback

X ×X(C)Betti
AnSpec(Cont(S,Z)⊗Z C)→ AnSpec(Cont(S,Z)⊗Z C)

is surjective. But, at least for well-chosen S, the fibre product is actually an affine analytic space
AnSpec(A). Indeed, S → X(C) can be written as a sequential limit of Xn → X(C) where

Xn =
⊔

sn∈Sn

im(S ×Sn {sn} → X(C)).

We can assume that the Xn are Stein compact. Then

A = lim−→
n

O(Xn)
†.
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But now each map

CSn = Cont(Sn,Z)⊗Z C→ O(Xn)
†

is descendable of index 0 as it admits a splitting. Thus, their sequential colimit is descendable, as
desired. □

II.2. Analytic de Rham stacks

In the setting of (smooth) schemes X (in characteristic 0), Simpson observed that one can
describe the category of D-modules on X in terms of the (derived category of) quasicoherent
sheaves on the de Rham stack

XdR = X/∆̂(X)

where

∆̂(X) ⊂ X ×X
is the formal completion along the diagonal (as an ind-scheme).

The same construction can be done if X is a complex manifold, considered as an analytic stack

over Cgas. One can still define ∆̂(X) ⊂ X ×X as the union of all the infinitesimal thickenings of
the diagonal; this is actually the same as the (automatically open) !-image of the cohomologically
smooth map ∆ : X → X ×X. We define

XdR = X/∆̂(X).

The map

πXdR
: X → XdR

is cohomologically smooth (the fibres are open subspaces of X), and in particular π!XdR
is monadic.

Making explicit this monadic structure, a standard argument identifies Dqc(XdR) with the category
of DX -modules on X, where DX is the sheaf of algebras of algebraic differential operators on X. (It
is actually best to treat DX with its left and right OX -module structure as an object of Dqc(X×X)
(supported along the diagonal), and the algebra structure of DX as living over the convolution
monoidal structure on Dqc(X ×X).)

Passing to an analytic setting, one can consider a variant where the connection has a stronger
convergence property, in that it allows one to identify fibres not just at infinitesimally close points,
but in “overconvergent” neighborhoods.

More precisely, let X be a complex manifold. For any closed subset Z ⊂ X(C), we can define
the overconvergent neighborhood of Z as

(Z ⊂ X)† := lim←−
U⊃Z

U

where U runs over open subsets of X(C) containing Z, and the limit is taken in the category of an-
alytic stacks. If Z is Zariski closed, then concretely, for any Stein compact K = AnSpec(O(K)†) ⊂
X(C), the fibre product

(Z ⊂ X)† ×X K = AnSpec(O(Z ∩K)†)

is affine, and given by the Stein compact Z ∩K ⊂ K.
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Definition II.2.1. Let X be a complex manifold. The analytic de Rham stack of X is

Xan
dR = X/∆(X)†

where

∆(X)† = (X ⊂ X ×X)† ⊂ X ×X
is an equivalence relation on X.

Our next goal is to identify Dqc(X
an
dR) with a category of D-modules. More precisely, consider

the projection

gX : XdR → Xan
dR.

Proposition II.2.2. The sheaf OXdR
is gX-proper with gX-proper dual OXdR

[−2dX ] where
dX = dim(X) is the complex dimension of X. In particular,

gX∗ ∼= gX![−2dX ]

commutes with all colimits and satisfies the projection formula.

The functor

g∗X : Dqc(X
an
dR)→ Dqc(XdR)

is fully faithful.

Proof. When X is proper, then by the discussion of Poincaré duality on de Rham stacks (see
notes on six functors), OXdR

is proper for the projection XdR → ∗ = AnSpec(Cgas), with proper
dual OXdR

[−2dX ]. As Xan
dR is itself proper, the same holds true for the map gX . In general, we

can argue locally to reduce to a ball that we can compactify; this yields the first part up to the
identification of the gX -proper dual of OXdR

[−2dX ]. This can be done by a deformation to the
normal cone.

For fully faithfulness, it suffices to prove that id → gX∗g
∗
X is an isomorphism. But the right-

hand side satisfies the projection formula, so it suffices to prove that gX∗OXdR
∼= OXan

dR
. This can

be done locally, where it reduces to a computation we will do more explicitly below for the affine
line. □

We will first do the analysis in the case of the analytic affine line, and then deduce the general
case.

Consider X = A1,an
C . This is also a group object that we will denote Gan

a,C (via addition). It has
a subgroup

G†
a,C := (0 ⊂ Gan

a,C)
† ⊂ Gan

a,C,

which is an affine analytic space

AnSpec(A)

where A is the ring of germs of holomorphic functions at 0. Then the analytic de Rham stack of
Gan

a,C is the quotient group

Gan
a,C,dR = Gan

a,C/G
†
a,C.
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The picture is now the following. The space X = Gan
a,C itself is open in the algebraic affine line,

and we have a corresponding fully faithful functor

j! : Dqc(Gan
a,C)→ D(Cgas[T ]).

The image can be identified with those modules that are killed after tensoring with the idempotent
“algebra of functions at ∞”, which is the subring of C((T−1)) of those functions converging in a
small punctured disc at ∞.

There is a similar picture for the quotient ∗/G†
a,C. It can be covered by ∗/Ĝa,C, the classifying

stack for the formal affine group. By Cartier duality,

Dqc(∗/Ĝa,C) ∼= D(Cgas[U ]),

and pullback yields a fully faithful functor

Dqc(∗/G†
a,C) ↪→ Dqc(∗/Ĝa,C) ∼= D(Cgas[U ]).

We will show below that the image can again be identified with those modules that are killed after
tensoring with a certain (idempotent) “algebra of functions at ∞”, but this time it is a slightly
different algebra.

Combining these stories for Gan
a,C and ∗/G†

a,C, one has a fully faithful functor

Dqc(Gan
a,C/G

†
a,C)→ D(Cgas[T,U ]assoc/(TU − UT − 1)).

Note that the algebra on the target is precisely the Weyl algebra of algebraic differential operators
on the affine line. The image can be identified with those modules that are killed after tensoring
with both algebras at ∞, the one for T and the one for U .

To get a sense of the picture, one can ignore for the moment the noncommutativity of the Weyl
algebra; then one would be looking at quasicoherent sheaves on the open subspace of

A2
Cgas

that is complementary to the idempotent algebras near ∞ in the direction of both T and U . In
other words, just like analytifying the affine line from the algebraic affine line to A1,an

C corresponds
to passing to the complement of some idempotent algebra near∞, we have now done the same also
with respect to “dual” coordinates of the algebra of differential operators.

Proposition II.2.3. The pullback functor

Dqc(∗/G†
a,C)→ Dqc(∗/Ĝa,C) ∼= D(Cgas[U ])

is fully faithful and identifies the image with those modules that are killed after tensoring with the
idempotent Cgas[U ]-algebra of those power series∑

n∈Z
anU

n ∈ C((U−1))

for which there is some r > 0 such that |an| r
n

n! → 0.

Proof. The map

g : ∗/Ĝa,C → ∗/G†
a,C
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has the property that the structure sheaf is g-proper, with g-proper dual the structure sheaf shifted
into cohomological degree 2. The fully faithfulness then reduces to showing that g∗O = O; equiva-
lently g!O = O[2]. Let h : ∗ → ∗/Ĝa,C be the projection. Then h!O[1] corresponds to the regular

Ĝa,C-representation, which is actually C[T±1]/C[T ] with respect to U acting as derivation, and
there is a short exact sequence

0→ h!O[1]
U−→ h!O[1]→ O → 0.

Applying g!, we get a similar triangle

(g ◦ h)!O[1]
U−→ (g ◦ h)!O[1]→ g!O.

But g ◦h : ∗ → ∗/G†
a,C is proper and so (g ◦h)∗O corresponds to the regular representation G†

a,C, on

which U (which corresponds to the derivative) is surjective, with kernel the constant representation

(which corresponds to the structure sheaf of G†
a,C). This shows that

g!O ∼= O[2],

as desired. (We leave it to the reader to check that the maps are compatible.)

The claim about the image being given by those modules killed under tensoring with some
idempotent algebra is formal from the D(Cgas)-linearity of all functors involved, see Lemma II.2.4
below. One can also compute the relevant idempotent algebra as the cone of

g∗g∗Cgas[U ]→ Cgas[U ].

Under the equivalence, Cgas[U ] corresponds to the regular representation of Ĝa,C and above we
already computed that

g∗Cgas[U ] ∼= (g!Cgas[U ])[−2]

then corresponds to the regular representation of G†
a,C shifted into cohomological degree 1. Then

g∗g∗Cgas[U ] sits in cohomological degree 1 and corresponds to this regular representation, considered

merely as Ĝa,C-representation. In other words, it is the algebra of germs of holomorphic functions
at T = 0, considered as a module for U corresponding to derivation. The cone of

g∗g∗Cgas[U ]→ Cgas[U ]

actually becomes an extension, on which U acts invertibly. The natural basis for the algebra of
germs of holomorphic functions is given by the powers Tn of T , and in terms of the action of U
(=derivation) and U−1 (=integration) these are then given by n!U−n. Now the result follows by a
simple unraveling. □

Lemma II.2.4. Let A be a commutative analytic ring. Let B be an associative A-algebra, and let
I ⊂ D(B) be a full subcategory that is stable under all colimits and tensoring with objects of D(A).
Assume that the right adjoint R of I ⊂ D(B) is D(A)-linear. Then there is a unique idempotent
B-algebra C such that I is the collection of all M ∈ D(B) such that M ⊗B C = 0. The idempotent
B-algebra C is given by the cone of

R(B)→ B.
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Proof. Consider the Verdier quotient D = D(B)/I. The functor D(B) → D is D(A)-linear
and has a D(A)-linear fully faithful right adjoint. It follows that the image B of B in D generates
D as a D(A)-linear category and the functor D(C) → D is an equivalence, where C = EndD(B).
As D(B) → D(C) is a Verdier quotient, it follows that C is idempotent, and by construction I is
the kernel of this Verdier quotient (which conversely determines C). Moreover, one easily computes
C as the cone of R(B)→ B. □

II.3. The analytic Riemann–Hilbert isomorphism

Finally, we can state and prove the analytic Riemann–Hilbert isomorphism.

Theorem II.3.1. The map X → XBetti factors uniquely over Xan
dR and induces an isomorphism

RHan : Xan
dR
∼= XBetti.

Proof. We already know that X → XBetti is surjective. It remains to see that the equivalence
relations agree, i.e.

∆(X)† = X ×XBetti
X ⊂ X ×X.

Equivalently, the map

∆(X)† = (X ⊂ X ×X)† → (X ×X)×(X×X)Betti
XBetti

is an isomorphism. But this is clear by definition: In general, for Z ⊂ X closed,

(Z ×X)† = X ×XBetti
ZBetti

as

ZBetti = lim←−
U⊃Z

UBetti. □

II.4. Relation to usual Riemann–Hilbert

The standard form of the Riemann–Hilbert correspondence relates regular holonomic algebraic
D-modules to perverse Zariski-constructible sheaves. Recall the projection

g = gX : XdR → Xan
dR.

The Japanese school of algebraic and microlocal analysis has studied this situation in extreme
detail, in particular one very relevant paper is Kashiwara–Kawai’s [KK81]. Their results imply in
particular the following theorem.

Theorem II.4.1. On the subcategory of bounded complexes of regular holonomic D-modules

Drh
qc(XdR) ⊂ Dqc(XdR),

the functor g! is fully faithful and the induced functor

Drh
qc(XdR) ↪→ Dqc(X

an
dR)
∼= Dqc(XBetti)

has image given by the bounded complexes with Zariski-constructible cohomology. The functor
g![−dim(X)] is t-exact for the standard t-structure on the source, and the perverse t-structure on
the right.
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We note that there is a canonical isomorphism g∗ ∼= g![−2dim(X)] so the “good” shift g![−dim(X)]
is also g∗[dim(X)], i.e. the “half-way compromise” between g! and g∗.

Sketch. Both assertions can be proved locally, and after blow-ups. Then the local structure
of regular holonomic D-modules can be reduced to the case of polydiscs, with singularities at
coordinate hyperplanes. The fully faithfulness of g! can be settled by a direct computation, as
well as that RHan ◦ g! takes values in bounded complexes with Zariski-constructible cohomology.
One can also show that all Zariski-constructible sheaves are in the image, by explicitly constructing
corresponding regular holonomic D-modules locally, again in the case of polydiscs with singularities
at coordinate hyperplanes. □



CHAPTER III

Locally analytic representations of real groups

Throughout this talk, G denotes a real Lie group. We denote by Gla the corresponding group
object in analytic stacks over Cgas, realizing G as a real-analytic manifold. (In this talk, we could
use Rgas instead of Cgas as coefficients.)

III.1. Definition and first properties

Definition III.1.1. The derived category of locally analytic G-representations1 is

Dqc(∗/Gla).

The goal of this talk is to analyze this category. First, we note the following nice property of
the relevant classifying stack.

Proposition III.1.2. The projection

∗/Gla → ∗
is cohomologically smooth, and the dualizing complex is the modulus character of G concentrated
in degree 0.

More precisely,
∗/(1 ⊂ Gla)† → ∗/Gla

is a cohomologically smooth cover (of dimension dim(G)), and also

∗/(1 ⊂ Gla)† → ∗
is cohomologically smooth (of dimension dim(G)).

Proof. The map ∗/(1 ⊂ Gla)† → ∗/Gla pulls back to GBetti → ∗ which is cohomologically

smooth. Now (1 ⊂ Gla)† acts on a smooth complex analytic space G̃, a small complex-analytic
neighborhood of the real-analytic manifold G, and the quotient

G̃/(1 ⊂ Gla)† = G̃an
dR

is the analytic de Rham stack. As G̃ is smooth, so is the map

G̃/(1 ⊂ Gla)† → ∗/(1 ⊂ Gla)†,

but now the total space G̃an
dR
∼= G̃Betti is cohomologically smooth over ∗.

1The name “locally analytic” comes from the analogy with the corresponding p-adic theory, which was recently
redeveloped using analytic stacks by Rodrigues Jacinto–Rodŕıguez Camargo [RJRC23]. The basic results below are
direct translations from their work.
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16 III. LOCALLY ANALYTIC REPRESENTATIONS OF REAL GROUPS

Counting dimensions, one sees that the dualizing complex DG of ∗/Gla is an invertible sheaf
concentrated in degree 0. Let us sketch the identification with the modulus character (following
an argument of Dustin Clausen, on the “linearization hypothesis”). Assume first that G is a real
vector space V = Rn. In that case, one can show that the dualizing complex is trivial: Indeed, by
Künneth this reduces to n = 1. Then the dualizing complex yields a character of R that must be
invariant under automorphisms of R; but only the trivial character has this property. Now picking
one such trivialization of the dualizing complex of Rn, we get a map GLn(R) → C× via acting on
the dualizing complex. This is necessarily trivial on SLn(R), and then given by some character of
R×, that we can identify for n = 1. This is a computation one has to do one way or another; the
outcome is the norm character. Roughly speaking, one has to compute two pieces: The dualizing

complex for ∗/RBetti, and the dualizing complex for ∗/G†
a. On the first one, R× acts via the sign

character. On the second one, it acts via the natural character. Together, they give the norm
character.

In general, one can find a family of Lie groups, parametrized by R, degenerating G to its Lie
algebra Lie(G); indeed, this can be built from a “deformation to the normal cone”. Moreover,
it is invariant under conjugation of G. Using this, one can see that the relevant character is the
composite G → GL(Lie(G)) → R>0 where the first map is the adjoint representation, and the
second the norm of the determinant (as determined above). This is indeed the modulus character
of G. □

For some of this analysis, we will fix a maximal compact subgroupK ⊂ G, and the corresponding
affine analytic stack

(K ⊂ Gla)† = AnSpecO(K ⊂ Gla)†.

This is also the fibre product

(K ⊂ Gla)† = Gla ×GBetti
KBetti.

The quotient G/K, as a topological space, is a Euclidean space and in particular a contractible
topological manifold.

Example III.1.3. If G = R, then K = {0}. In this case, (K ⊂ Gla)† agrees with G†
a,C, the

affine analytic stack corresponding to the algebra of overconvergent holomorphic functions at 0.

We will analyze things in steps, using the intermediate steps

(1 ⊂ Gla)∧ → (1 ⊂ Gla)† → (K ⊂ Gla)† → Gla.

Here, (1 ⊂ Gla)∧ is the formal completion of Gla at the unit.

We will see that, in turn, these correspond to all representations of the Lie algebra g of G;
to a certain subcategory of “locally analytic” Lie algebra representations; to a “locally analytic”
version of (g,K)-representations, asking that the representation of the Lie algebra of K integrates
to a K-representation; and to a certain subcategory where the representation integrates to all of
G.

Proposition III.1.4. Let g be the Lie algebra of G and U(g) its universal enveloping algebra.
The map

a : ∗ → ∗/(1 ⊂ Gla)∧
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is cohomologically smooth and surjective. This induces a natural (associative) algebra structure on
A = a!a!(1), and a

! yields an equivalence

Dqc(∗/(1 ⊂ Gla)∧) ∼= D(Agas)

with the derived ∞-category of gaseous A-modules. Moreover, A is naturally isomorphic to U(g).

In particular, Dqc(∗/(1 ⊂ Gla)∧) admits a (necessarily unique) t-structure for which a∗ is t-
exact.

Proof. The cohomological smoothness of a follows from cohomological smoothness of (1 ⊂
Gla)∧ → ∗. But this is just isomorphic to the formal scheme Spf(C[[x1, . . . , xd]]) (regarded as an
ind-scheme) where d = dim(G), which is open (in the sense of the 6-functor formalism) inside the
smooth and proper d-dimensional projective space.

Thus a! and a! are linear over D(Cgas) and it is then formal from Barr–Beck that A = a!a!(1)
becomes an algebra with

Dqc(∗/(1 ⊂ Gla)∧) ∼= D(Agas).

We note that by base change, a!a!(1) can be computed as the compactly supported cohomology of
the dualizing complex on Spf(C[[x1, . . . , xd]]). This is actually canonically given by the continuous
dual of C[[x1, . . . , xd]], i.e. in terms of G by the algebra of formal distributions at 1 ⊂ G. In
particular, there is a canonical map g → A (given by the distribution of differentiation along
X ∈ g, followed by evaluation at 1). This sends the Lie bracket in g to associators, and hence
induces a map U(g)→ A. For example by Poincaré–Birkhoff–Witt, this is an isomorphism. □

Proposition III.1.5. The map

b : ∗/(1 ⊂ Gla)∧ → ∗/(1 ⊂ Gla)†

has the property that O is b-proper, with invertible b-proper dual. The functor b∗ is fully faithful.
The resulting fully faithful functor

Dqc(∗/(1 ⊂ Gla)†)
b∗−→ Dqc(∗/(1 ⊂ Gla)∧) ∼= D(U(g)gas)

identifies the source with the full subcategory of modules that are killed under tensoring with an
idempotent U(g)gas-algebra.

Being contained in the essential image of b∗ can be checked on 1-parameter subgroups. More

precisely, if X1, . . . , Xd ∈ g form a vector space basis, and (G†
a)i ⊂ Gla, i = 1, . . . , d, are the germs

of 1-parameter subgroups they generate, then an object of Dqc(∗/(1 ⊂ Gla)∧) lies in the image of

b∗ : Dqc(∗/(1 ⊂ Gla)†) ↪→ Dqc(∗/(1 ⊂ Gla)∧)

if and only if for i = 1, . . . , d, the restriction to (G∧
a )i lies in

Dqc(∗/(G†
a)i) ↪→ Dqc(∗/(G∧

a )i).

The category Dqc(∗/(1 ⊂ Gla)†) admits a (necessarily unique) t-structure making b∗ into a
t-exact functor.

Proof. The proof is analogous to the case of G†
a in the last lecture. First, C is b ◦ a-proper

and hence its smooth !-pushforward a!C is b-proper. But a!C corresponds to the regular U(g)-
representation, and the trivial representation is a perfect complex of U(g)-representations; thus,
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also the trivial representation is b-proper. One can then compute the b-proper dual to be invertible.
It follows that the right adjoint b∗ of b∗ satisfies the projection formula. Thus, to prove fully

faithfulness of b∗, it suffices to show that b∗O = O. This can be done analogous to the case of G†
a.

Moreover, it is again formal that the essential image of

Dqc(∗/(1 ⊂ Gla)†)
b∗−→ Dqc(∗/(1 ⊂ Gla)∧) ∼= D(U(g)gas)

identifies the source with the full subcategory of modules that are killed under tensoring with an
idempotent U(g)gas-algebra.

Note that the argument that b∗ is fully faithful actually proves the same for any base change.
In particular,

b̃ : (1 ⊂ Gla)†/(1 ⊂ Gla)∧ → ∗
has the property that b̃∗ is fully faithful. Moreover, one can test whether an object lies in the
essential image of b∗ by pulling back along ∗ → ∗/(1 ⊂ Gla)†, and testing instead whether the

pullback lies in the essential image of b̃∗ (as the right adjoint b∗ base changes to b̃∗). Using this, we
see that the essential image of b∗ is stable under canonical truncations, as the same is true for the

essential image of b̃∗, as O(1 ⊂ Gla)† is a flat gaseous vector space by Lemma III.1.6 below.

Finally, we need to see that being contained in the image of b∗ can be checked after restricting

to 1-parameter subgroups. For each i = 1, . . . , d, consider ((G†
a)i ⊂ Gla)∧. Then we have a cartesian

diagram

∗/(G∧
a )i

b̃i //

��

∗/(G†
a)i

��

∗/(1 ⊂ Gla)∧
bi // ∗/((G†

a)i ⊂ Gla)†.

It follows that the structure sheaf is bi-proper as the same holds for b̃i. In particular, bi∗ commutes
with base change, and with all colimits. Now we claim that the functor

b∗dbd∗ · · · b∗2b2∗b∗1b1∗ : Dqc(∗/(1 ⊂ Gla)∧))→ Dqc(∗/(1 ⊂ Gla)∧))

agrees with b∗b∗. This implies the claim, as this functor is the identity on all objects that lie in the
image of b∗i for i = 1, . . . , d, and so such objects also lie in the image of b∗. But all functors are
given by kernels, and unraveling the kernels, the claim comes down to the isomorphism

(1 ⊂ Gla)† ∼=
d∏

i=1

(G†
a)i.

Here, both sides are isomorphic to the affine analytic stack given by the algebra of germs of holo-
morphic functions at 0 ⊂ Cd, and the map is an isomorphism on tangent spaces at the origin. Such
a map is necessarily an isomorphism by the implicit function theorem. □

We used part of the following lemma. Parts (iii) and (iv) will be useful later.

Lemma III.1.6. Let V be a gaseous C-vector space that can be written as a sequential colimit

V = colim(P
f0−→ P

f1−→ P
f2−→ . . .)
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of copies of the compact projective gaseous C-vector space

P = Cgas[N ∪ {∞}]/[∞]

that is free on a nullsequence, along transition maps fi that are diagonal multiplication by a termwise
nonzero sequence of (quasi-)exponential decay, or such maps followed by the shift map.

(i) Each map fi : P → P factors as a composite P → P∨ = c0(N,C) → P where both maps
are diagonal multiplication by sequences of (quasi-)exponential decay. The map P∨ → P
(and hence fi) is trace-class, in fact there is some α : 1→ P ⊗ P so that it factors as

P∨ id⊗α−−−→ P∨ ⊗ P ⊗ P ev⊗id−−−→ P

(ii) The gaseous C-vector space V is flat.
(iii) If W is a quasiseparated gaseous C-vector space, then W ⊗Cgas V is also quasiseparated. If

the quasiseparated quotient ofW is zero, then also the quasiseparated quotient ofW⊗CgasV
is zero.

(iv) Assume that V is equipped with an endomorphism T : V → V so that there are inclusions
C[T±1] ⊂ V ⊂ C((T−1)) and the n-th P above can be chosen to be generated by an
appropriate C-rescaling of the null sequence Tn, Tn−1, Tn−2, . . . in C((T−1)). Consider an
exact sequence

0→W1 →W2 →W3 → 0

of quasiseparated gaseous C[T ]-modules. Assume that W2 ⊗L
C[T ]gas

V = 0. Then

W1 ⊗L
C[T ]gas

V =W3 ⊗L
C[T ]gas

V = 0.

Proof. Taking square roots in a sequence of (quasi-)exponential decay, it still has quasi-
exponential decay, so we get the factorization P → P∨ → P . The map P∨ → P can then be
written as a composite

P∨ id⊗α−−−→ P∨ ⊗ P ⊗ P ev⊗id−−−→ P

for some map α : 1→ P ⊗P (as sequences of quasi-exponential decay are in the free gaseous vector
space).

For part (ii), we can write W ⊗L
Cgas

V as the sequential colimit of W ⊗L
Cgas

P along the maps

fn. But these factor as

W ⊗L
Cgas

P → RHom(P,W )→W ⊗L
Cgas

P,

and the middle terms are left t-exact (while of course tensoring is right t-exact), so in the sequential
colimit, we get t-exactness. Moreover, if W is quasiseparated, then also Hom(P,W ) is quasisepa-
rated: This can be checked on underlying pointed condensed sets, where W is a filtered union of
pointed compact Hausdorff spaces. Then it reduces to the assertion that the space of nullsequences
in a pointed compact Hausdorff space is quasiseparated, which is easy. Moreover, as the transition
maps fn : P → P have dense image, the induced transition maps on Hom(P,W ) are then injective.
Thus, their sequential colimit stays quasiseparated. If on the other hand W has trivial quasisepa-
rated quotient, then the same must be true for W ⊗Cgas V . Indeed, assume this has some nontrivial
quasiseparated quotient Q. Then already some W ⊗Cgas P must have a nontrivial map to Q, so
already W ⊗Cgas P has a nontrivial quasiseparated quotient Q′. But this gives a nontrivial map
from W to Hom(P,Q′), which is quasiseparated.
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In part (iv), the map

T ⊗ 1− 1⊗ T :M2 ⊗Cgas V →M2 ⊗Cgas V

is an isomorphism. We want to see that also the map

T ⊗ 1− 1⊗ T :M1 ⊗Cgas V →M1 ⊗Cgas V

is an isomorphism. But for any quasiseparated M , we have an injective map

M ⊗Cgas V →M((T−1))

commuting with the T -actions. On the target, T ⊗ 1− 1⊗ T is an isomorphism. But

M1 ⊗Cgas V = (M2 ⊗Cgas V ) ∩M1((T
−1)) ⊂M2((T

−1))

as an element in the intersection maps to 0 in M3 ⊗Cgas V ⊂ M3((T
−1)). Thus, T ⊗ 1 − 1 ⊗ T is

also an isomorphism on M1 ⊗Cgas V . □

In fact, on locally analytic Lie algebra representations, a larger algebra than U(g) acts. Namely,
the algebra U(g) of formal distributions at 1 ⊂ G can be enlarged to the algebra

D(1 ⊂ G) = (O(1 ⊂ Gla)†)∗

of locally analytic distributions (also known as hyperfunctions) at 1 ⊂ G.

Proposition III.1.7. The map

c : ∗ → ∗/(1 ⊂ Gla)†

is proper and surjective. There is a natural coalgebra structure on c∗c∗1 = O(1 ⊂ Gla)†, and
Dqc(∗/(1 ⊂ Gla)†) is naturally isomorphic to the ∞-category of comodules over O(1 ⊂ Gla)†.

There is a resulting functor from Dqc(∗/(1 ⊂ Gla)†) to the ∞-category of modules over D(1 ⊂
G). This functor

Dqc(∗/(1 ⊂ Gla)†)→ D(D(1 ⊂ G)gas)
is fully faithful, and identifies the image with those modules that are killed under tensoring with an
idempotent D(1 ⊂ G)gas-algebra.

Proof. The first part is a direct consequence of Barr–Beck. For the rest, the previous propo-
sition reduces us to showing that after applying the right adjoint to the inclusion

Dqc(∗/(1 ⊂ Gla)†) ↪→ Dqc(∗/(1 ⊂ Gla)∧) ∼= D(U(g)gas),

the algebra object

D(1 ⊂ G) ∈ Alg(D(U(g)gas))

becomes equivalent to the pullback of U(g).

But under the equivalence

a! : Dqc(∗/(1 ⊂ Gla)∧) ∼= D(U(g)gas),

the algebra D(1 ⊂ G) corresponds to b!c∗(1). Indeed, a!b!c∗(1) = c!c∗(1) is the dual of c∗c∗(1) (by
properness of c), and the latter corresponds to O(1 ⊂ Gla)†. On the other hand, U(g) corresponds
to a!(1).
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Thus, we have to see that the natural map a!(1) → b!c∗(1) (adjoint to b!a!(1) = c!(1) = c∗(1))
becomes an isomorphism after applying b∗ or equivalently b!. Equivalently, we have to see that the
map c∗(1) → b!b

!c∗(1) is an isomorphism. But b! has a fully faithful left adjoint (as up to twist b!
is the same as b∗, and b

∗ is fully faithful), thus also the right adjoint b! is fully faithful, and b!b
! is

the identity functor. □

Proposition III.1.8. The map

d : ∗/(1 ⊂ Gla)† → ∗/(K ⊂ Gla)†

is a pullback of ∗ → ∗/KBetti and in particular is proper and cohomologically smooth. The category

Dqc(∗/(K ⊂ Gla)†)

is equivalent to the ∞-category of comodules over O(K ⊂ Gla)†.

Let D(K ⊂ G) = (O(K ⊂ Gla)†)∗ be the dual algebra of K-supported locally analytic distribu-
tions on G. Then

Dqc(∗/(K ⊂ Gla)†) ⊂ D(D(K ⊂ G)gas)
is a full subcategory of gaseous D(K ⊂ G)-modules. The essential image consists of those modules
that are killed under tensoring with an idempotent D(K ⊂ G)gas-algebra, and an object lies in the
image if and only if its restriction to D(1 ⊂ G) lies in

Dqc(∗/(1 ⊂ Gla)†) ⊂ D(D(1 ⊂ G)gas)

There is a (necessarily unique) t-structure on Dqc(∗/(K ⊂ Gla)†) making d∗ into a t-exact
functor. If K is connected, then on the heart d∗ is fully faithful, identifying

Dqc(∗/(K ⊂ Gla)†)♡ ⊂ Dqc(∗/(1 ⊂ Gla)†)♡

as those objects on which the given Lie algebra representation of K integrates to a locally ana-
lytic representation of K; i.e., of those objects of Dqc(∗/(1 ⊂ Gla)†)♡ which after restriction to

Dqc(∗/(1 ⊂ K la)†)♡ lie in the essential image of

Dqc(∗/K la)♡ ↪→ Dqc(∗/(1 ⊂ K la)†)♡.

Proof. The most nontrivial statements are the ones in the last paragraph. For the existence
of the t-structure, we have to see that the image of

Dqc(∗/(K ⊂ Gla)†) ⊂ D(D(K ⊂ G)gas)
is stable under truncations. But the target admits canonical truncation functors, which in particular
make the forgetful functor to D(D(1 ⊂ G)gas) into a t-exact functor. But on the latter category, we

know that the essential image of Dqc(∗/(1 ⊂ Gla)†) is preserved, and hence the truncation functors
also preserve the image of

Dqc(∗/(K ⊂ Gla)†) ⊂ D(D(K ⊂ G)gas),
as desired.

Now assume that K is connected. The pullback d∗ has a left adjoint d♯ (given by a twist of
d!) satisfying the projection formula. As d∗ is t-exact, the left adjoint must preserve connective
objects; and truncating it to degree 0 shows that also on the abelian level,

(d∗)♡ : Dqc(∗/(K ⊂ Gla)†)♡ ⊂ Dqc(∗/(1 ⊂ Gla)†)♡
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has a left adjoint satisfying the projection formula, given by d♡♯ . But d♯d
∗ is given by tensoring

with d♯O, and one can compute that the cone of d♯O → O is 1-connective. Indeed, this can be

checked after pullback along ∗ → ∗/(K ⊂ G)la, where it amounts to the homology of KBetti → ∗;
hence, it follows from our assumption that K is connected. Thus, d♡♯ O = O, and (d∗)♡ is fully

faithful.

Moreover, the formation of the left adjoint d♯ commutes with any base change; hence, one can

check containment in the essential image also after pullback to ∗ → ∗/(K ⊂ Gla)†. Thus, one has
to check whether an object lies in the essential image of

D(∗)♡ ↪→ D(KBetti)
♡.

But the pullback here can be done in two steps:

KBetti
//

��

∗/(1 ⊂ K la)† //

��

∗/(1 ⊂ Gla)†

��
∗ // ∗/K la // ∗/(K ⊂ Gla)†.

Thus, it is also equivalent to lying in the essential image of

Dqc(∗/K la)♡ ↪→ Dqc(∗/(1 ⊂ K la)†)♡;

in other words, to the condition that the given locally analytic representation of the Lie algebra of
K integrates to a representation of K la. □

Finally, we can go to G-representations.

Proposition III.1.9. The projection

e : ∗/(K ⊂ Gla)† → ∗/Gla

is cohomologically smooth. The pullback functor

Dqc(∗/Gla)→ Dqc(∗/(K ⊂ Gla)†)

is fully faithful and admits a left adjoint satisfying the projection formula.

There is a (necessarily unique) t-structure on D(∗/Gla) for which e∗ is t-exact.

Proof. The map

f : ∗/(K ⊂ Gla)† → ∗/Gla

is cohomologically smooth, as its pullback to ∗ is the projection (G/K)Betti → ∗, where G/K is
a topological manifold. This means that a shift of f! is left adjoint to f∗; and the contractibility
of G/K implies that f∗ is fully faithful. Moreover, we also see the essential image of f∗ is stable
under truncations. Indeed, as the left adjoint also commutes with base change, it suffices to prove
the same for the pullback along (G/K)Betti → ∗, where it follows from pullback being t-exact. □
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III.2. Distribution algebras

Another perspective on G-representations is via modules over a certain distribution algebra
associated to G.

Definition III.2.1. For any compact Stein Z ⊂ G, let
D(Z ⊂ G) = (O(Z ⊂ Gla)†)∗

be the gaseous vector space of distributions on G supported on Z. Let

Dc(G) = ∪Z⊂GD(Z ⊂ G)
be the algebra of compactly supported distributions on G.

Then Dc(G) is naturally a Hopf algebra. Indeed, each D(Z ⊂ G) is naturally a coalgebra
(this uses some slightly nontrivial computation of gaseous tensor products, to see that taking duals
commutes with tensor products in this case), while convolution makes Dc(G) into an algebra (and
the algebra structure is more relevant to us).

Proposition III.2.2. The ∗-pullback functor

Dqc(∗/Gla)→ Dqc(∗) = D(Cgas)

naturally refines to a functor to the derived ∞-category of gaseous Dc(G)-modules

Dqc(∗/Gla)→ D(Dc(G)gas).

This functor is fully faithful and identifies the image with the full subcategory of those objects killed
by some idempotent Dc(G)gas-algebra. Containment in the image can be checked after restriction
to D(1 ⊂ G); it is equivalent to containment in

Dqc(∗/(1 ⊂ Gla)†) ⊂ D(D(1 ⊂ G)gas).

Proof. Via pullback to 1 ⊂ Gla, it is enough to prove the following statement about the
algebra object Dc(G) in D(U(g)gas). Restricting it to

Dqc(∗/(1 ⊂ Gla)†) ⊂ D(U(g)gas)

via applying the (colimit-preserving, by the above results) right adjoint to the inclusion, it becomes
isomorphic to the algebra object (under the convolution monoidal structure) A = f !g!O, where we
denote

f : ∗/(1 ⊂ Gla)† → ∗/Gla , g : ∗ → ∗/Gla.

Indeed, by Barr–Beck we know that Dqc(∗/Gla) can be identified with modules in D(∗/(1 ⊂ Gla)†)
over A (under the convolution monoidal structure).

By smooth base change, we can identify A with h!DGBetti
, where

h : GBetti = Gla/(1 ⊂ Gla)† → ∗/(1 ⊂ Gla)†

and DGBetti
is the (invertible) dualizing complex on GBetti. This can be written as the filtered

colimit over all compact Stein Z ⊂ Gla of

hZ!DZ⊂G = hZ∗DZ⊂G.

These terms correspond to D(Z ⊂ G), and hence their filtered colimit to Dc(G). □
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We note that there is a natural map

C[G]gas → Dc(G)

of Dirac measures, from the free gaseous C-vector space on the locally compact Hausdorff space G.
In particular, there is a natural forgetful functor

Dqc(∗/Gla) ⊂ D(Dc(G)gas)→ D(C[G]gas)
to the more naive “derived category of gaseous G-representations”. This naturally yields the
following question.

Question III.2.3. Is the functor

Dqc(∗/Gla)→ D(C[G]gas)
fully faithful? Even stronger, is Dc(G) an idempotent C[G]gas-algebra?

III.3. Minimal and maximal globalization

Classically, in the representation theory of real groups, one really works with Harish-Chandra
modules, i.e. (admissible) (g,K)-modules M . One can then look for “globalizations of Harish-
Chandra modules”, i.e. representations V ofG whose associated (g,K)-module is the givenM . Such
globalizations usually correspond to different classes of function spaces: locally analytic functions;
smooth functions; continuous functions; L2-functions; measures; distributions; or hyperfunctions.
In [KS94], Kashiwara–Schmid discuss the existence of a general minimal globalization, and a
maximal globalization, corresponding to locally analytic functions, respectively hyperfunctions.2

The goal of this section is to see how these two globalizations arise naturally in our setup, via
consideration of the functors f∗ and f ! for

f : ∗ → ∗/Gla.

Example III.3.1. Let us consider the example of parabolic induction. Thus, assume that
G = Galg(R) for some (connected) reductive group Galg over R, with a parabolic P alg ⊂ Galg with
Levi Malg. Denoting P = P alg(R) and M =Malg(R), we get a diagram

∗/P la

q{{

p

##
∗/M la ∗/Gla.

Here q is cohomologically smooth and p is proper. This gives a canonically defined parabolic
induction functor

p!q
∗ : Dqc(∗/M la)→ Dqc(∗/Gla)

from M -representations to G-representations. (Note that as p! = p∗ and q! is a twist of q∗, any
other choice of functors yields essentially the same parabolic induction functor.)

We remind the reader that in the classical theory, it is difficult to construct a canonical parabolic
induction functor, as this involves a choice of function space. Let us see which choice the above

2I am a bit confused by their discussion: From their formula, it seems that by definition the compactly supported
smooth functions map to any globalization, which they do not.
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functor corresponds to, under the realizations f∗ and f !. For simplicity, let us evaluate it only on
the trivial representation of M .

By proper base change,

f∗p!q
∗(1) ∈ D(Cgas)

is given by O((G/P )la), the space of locally analytic functions on the (locally analytic) flag variety
G/P . This is classically the minimal globalization of (the (g,K)-module of) the principal series
representation IndGP (1).

On the other hand,

f !p!q
∗(1) = f !p∗(1) ∈ D(Cgas)

can also be computed via proper base change. Using that the dualizing complex on ∗/P la involves
a character, this unravels to the space of global sections on (G/P )la of the sheaf of (locally analytic)
distributions twisted by the modulus character. For simplicity, we fix a Haar measure on G; this
also yields an isomorphism f !(1) ∼= 1. There is then a natural map

f∗ → f !

and in this example this is given by embedding locally analytic functions on G/P into (appropriately
twisted) locally analytic distributions (i.e., hyperfunctions). Classically, hyperfunctions precisely
yield the maximal globalization.

In this presentation, the functors f∗ and f ! a priori forget the G-action. A different perspective
is that there is the Verdier quotient

D(Dc(G)gas)→ Dqc(∗/Gla)

and f∗ and f ! ⊗ (f !(1))−1 arise as the left and right adjoints of this functor, cf. the proposition
below. This shows that both f∗ and f ! naturally yield, in particular, objects of D(C[G]gas), i.e. rep-
resentations of the condensed group G on a complex of gaseous vector spaces.

Proposition III.3.2. The functor

f∗ : Dqc(∗/Gla)→ D(Dc(G)gas)

has a colimit-preserving right adjoint, yielding a Verdier quotient

D(Dc(G)gas)→ Dqc(∗/Gla).

This functor has a further right adjoint, whose composite

Dqc(∗/Gla)→ D(Dc(G)gas)→ D(Cgas)

is given by f ! ⊗ (f !(1))−1.

One can also read the proposition as follows. In our theory, we have replaced the theory
of (g,K)-modules by the category of quasicoherent sheaves on ∗/Gla. One way in which they are
similar is that parabolic induction is canonically defined. These things are however, again, not quite
representations of G in the usual sense. A category that really is a category of G-representations
is D(Dc(G)gas), modules over the algebra of compactly supported locally analytic distributions on
G. (If the answer to the question above is positive, it is even a full subcategory of D(C[G]gas).)
This has a natural functor to Dqc(∗/Gla), which is a quotient category thereof. So there are again
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multiple “actual G-representations realizing an object of Dqc(∗/Gla)”, and in particular a left and
right adjoint, which give the usual minimal and maximal globalization in examples.

Proof. By Proposition III.2.2, one can write

D(Dc(G)gas)→ Dqc(∗/Gla)

as the Verdier quotient killing some idempotent Dc(G)gas-algebra AG. In particular, it has a right

adjoint. To identify the underlying vector space of this right adjoint, we can pass to ∗/(1 ⊂ Gla)†.
Indeed, there is also the Verdier quotient

D(U(g)gas)→ Dqc(∗/(1 ⊂ Gla)†)

which also kills some idempotent U(g)gas-algebra Ag. Moreover, AG is the base change of Ag along
U(g)gas → Dc(G)gas, as the essential image of the left adjoint

Dqc(∗/Gla)→ D(Dc(G)gas)

can be tested after restriction to U(g), as containment in the the essential image of the left adjoint

Dqc(∗/(1 ⊂ Gla)†)→ D(U(g)gas).

In particular, the right adjoint to the Verdier quotient is computed as an internal Hom over Dc(G)
from AG, but by base change this can be computed as the internal Hom over U(g) from Ag.

But the Verdier quotient

D(U(g)gas)→ Dqc(∗/(1 ⊂ Gla)†)

can be identified with

b∗ : Dqc(∗/(1 ⊂ Gla)∧)→ Dqc(∗/(1 ⊂ Gla)†).

This is up to a certain twist the same as b!, so the right adjoint is given by a twist of b!.

In total, we find that the underlying vector space of the right adjoint can be described as a
twist of a∗b!h∗ using the maps

∗ a−→ ∗/(1 ⊂ Gla)∧
b−→ ∗/(1 ⊂ Gla)†

h−→ ∗/Gla.

But a and h are cohomologically smooth, so up to twist, this is the same as f !. The twist can now
be identified by looking at the trivial representation. □

III.4. Relation to (g,K)-modules

Finally, let us discuss the relation to the category of (g,K)-modules. In stacky language, the
latter can be understood as follows. We assume now that G = Galg(R) for some connected reductive
group Galg over R. (Beware that G may still be disconnected even when Galg is connected. If Galg

is semisimple and simply connected, then G is connected.) Then also K = Kalg(R). Note that
Galg and Kalg are defined over R, but we will momentarily (implicitly) base change them to C in
keeping with our setup that all analytic stacks are over C.

Now (g,K)-modules can be defined as objects of Dqc(∗/(Kalg ⊂ Galg)∧). (To see that this
is sensible, one can observe that this category admits compact projective generators given by
inductions of irreducible representations of Kalg, and that the maps between them are precisely
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as in (g,K)-modules.) The relation between locally analytic G-representations and (g,K)-modules
now comes from the correspondence

∗/(Kalg ⊂ Galg)∧
a←− ∗/(K la ⊂ Gla)∧

b−→ ∗/Gla.

It is easy to see that a is proper and a∗ is fully faithful; and we have essentially already proved
that b∗ is fully faithful. Indeed, b can be written as the composite

∗/(K la ⊂ Gla)∧
c−→ ∗/(K la ⊂ Gla)†

d−→ ∗/Gla

where c has the property that the unit is c-proper and c∗O = O, so c∗ is fully faithful. Moreover,
c! and c∗ agree up to twist. On the other hand, we have previously seen that d∗ is fully faithful,
with a left adjoint that is a twist of d!.

Unfortunately, the essential images of a∗ and b∗ are very different. Still, pull-push operations
make it possible to move between the two worlds. We will denote b′! = d♯c∗, which agrees with b!
up to twist, and is an inverse to b∗.

We note that the whole diagram is naturally linear over the Harish-Chandra center Z(U(g)).
As a∗ and b∗ are fully faithful, it suffices to make ∗/(K la ⊂ Gla)∧ linear over the Harish-Chandra
center; but this is a full subcategory of the category of modules over the algebra of locally analytic
distributions on G formally supported along K, and Z(U(g)) maps to its center. (Indeed, U(g)
maps naturally with dense image, so any element of the center of U(g) stays in the center of the
larger algebra.)

Theorem III.4.1. The functor

b′!a
∗ : Dqc(∗/(Kalg ⊂ Galg)∧)→ Dqc(∗/Gla)

becomes an equivalence, with inverse a∗b
∗, when localized to the bounded part of Z(U(g)). Moreover,

the resulting equivalence is t-exact.

By the bounded part of Z(U(g)), we mean the base change from AnSpec(Z(U(g))) to the
corresponding complex-analytic space (i.e., if AnSpec(Z(U(g))) was An, we base change to An,an ⊂
An).

Sketch. We will show that the composite

a∗b
∗b′!a

∗ : Dqc(∗/(Kalg ⊂ Galg)∧)→ Dqc(∗/(Kalg ⊂ Galg)∧)

is equivalent to the identity after localizing to the bounded part over Z(U(g)). It is a functor that
is linear over Z(U(g)) and also commutes with tensoring with finite-dimensional representations
of G. The source category is compactly generated by the !-pushforwards of finite-dimensional
representations of K along ∗/Kalg → ∗/(Kalg ⊂ Galg)∧; it is then enough to show that it is the
identity endofunctor on those representations (functorially in those generating objects). To do this,
we use the zig-zag

a∗b
∗b′!a

∗ → a∗b
′!b′!a

∗ ← a∗a
∗ = id,

where b
′! = (c∗)

Rd∗ denotes the right adjoint of b′! = d♯c∗, which comes with a natural transformation

b∗ = c∗d∗ → (c∗)
Rd∗ = b

′!. We will (essentially) prove that this zig-zag becomes an isomorphism
on these compact generators of the category of (g,K)-modules. As everything commutes with
tensoring with finite-dimensional representations of G, and any finite-dimensional representation
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of K is a direct summand of the restriction of a finite-dimensional representation of G, it suffices
to check this for the free (g,K)-module on the trivial representation of K.

This corresponds to the (g,K)-module D((1 ⊂ Xalg)∧) of formal distributions at 1 in the
symmetric space Xalg = Galg/Kalg. On the other hand, the above composite yields the K-finite
vectors in the compactly supported cohomology RΓc(X

la,O) of the locally analytic symmetric space
X la = Gla/K la, after fixing Haar measures on G and K. The middle term in the above comparison
essentially (but not quite – really it is the maximal globalization thereof) yields the space Dc(X)
of compactly supported locally analytic distributions on X, and indeed there are natural maps

RΓc(X
la,O)→ Dc(X)← D((1 ⊂ Xalg)∧).

Here, the first map can be understood as being obtained by applying RΓc to the map from locally
analytic functions to hyperfunctions. Now the key analytic input is that they become isomorphisms
after localizing to the bounded part of Z(U(g)) and passing to K-finite vectors, by using that the
operators of Z(U(g)) yield elliptic operators onX. The first map can be shown to be an isomorphism
on the level of sheaves on X la this way. The second map can be analyzed in terms of the Cartan
decomposition G = KA+K using which one can make the K-finite vectors on both sides explicit,
and analyze the action of the elliptic operators.

Note that this argument does not quite prove that the zig-zag from the first paragraph is an
isomorphism, but it does construct a functorial isomorphism.

In the other direction, there is a natural adjunction map a∗a∗ → id, yielding a transformation

β : b′!a
∗a∗b

∗ → b′!b
∗ ∼= id.

Together with the composite in the other direction being the identity

α : id ∼= b′!a
∗a∗b

∗,

one would like to prove (after localizing to the bounded part of Z(U(g))) that a∗b
∗ is the right

adjoint of b′!a
∗. For this, one has to see that the corresponding composites

b′!a
∗ b′!a

∗α
−−−→ b′!a

∗a∗b
∗b′!a

∗ → b′!a
∗ βb′!a

∗

−−−→ b′!a
∗

and

a∗b
∗ αa∗b∗−−−→ a∗b

∗b′!a
∗a∗b

∗ a∗b∗β−−−→ a∗b
∗

are the identity. In the first case, we note that the second map βb′!a
∗ factors as

b′!a
∗a∗b

∗b′!a
∗ → b′!a

∗a∗b
′!b′!a

∗ → b′!b
′!b′!a

∗ ∼= b′!a
∗.

This means that we only have to identify the composite

b′!a
∗ b′!a

∗α
−−−→ b′!a

∗a∗b
∗b′!a

∗ → b′!a
∗a∗b

′!b′!a
∗

and this is, by construction of α, given by the composite

b′!a
∗ ∼= b′!a

∗a∗a
∗ → b′!a

∗a∗b
′!b′!a

∗.

Now all maps are simple combinations of unit and counit transformations, so the composite is
indeed the identity.

In the other direction, a similar argument does not quite prove that the composite is the identity,
but at least that a∗b

∗ admits the correct right adjoint a∗b
′! as a retract. From here, one already sees
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that a!b
∗ is fully faithful. Once one knows that indeed a∗b

∗ = a∗b
′!, this means more prosaically

that the minimal and maximal globalization have the same K-finite vectors, for representations
with bounded infinitesimal character.

To finish the proof of the equivalence, it suffices to show that the image of b′!a
∗ generates

Dqc(∗/Gla) (after localizing to bounded infinitesimal character). This will follow from the results
on (analytic) Beilinson–Bernstein localization.

For t-exactness, we first note that the category with bounded infinitesimal character embeds
back into the full character via some j!-functor, and that the image is stable under truncations.
But a∗b

∗ is a t-exact functor as taking invariants under a compact Lie group is exact (in fact, a
direct summand). □

The following corollary shows that locally analytic G-representations with bounded infinitesimal
character automatically have extremely clean topological properties. The proof of this makes critical
use of the way the condensed formalism makes perfect sense also for non-Hausdorff vector spaces.

Corollary III.4.2. Let V ∈ Dqc(∗/Gla)♡ be a locally analytic G-representation with bounded
infinitesimal character, regarded as a gaseous Dc(G)-module (via the minimal globalization). Con-
sider the associated (g,K)-module V K-fin.

(i) Sending a locally analytic G-subrepresentation with bounded infinitesimal character W of
V to WK-fin sets up a bijection between the subrepresentations with bounded infinitesimal
character of V and the sub-(g,K)-modules of V K-fin with bounded infinitesimal character.

(ii) The condensed vector space V is quasiseparated if and only if V K-fin is quasiseparated.
In this situation, the closed G-stable subspaces W ⊂ V all come from locally analytic
subrepresentations of V with bounded infinitesimal character. Thus, there is a bijection
between closed G-stable subspaces W ⊂ V and closed (g,K)-submodules WK-fin ⊂ V K-fin.
In particular, the subspace V K-fin ⊂ V is dense.

(iii) If V K-fin is an admissible (g,K)-module on which Z(U(g)) acts via a finite-dimensional
quotient, then V is a quasiseparated dual nuclear Fréchet space, the maximal globalization
V max is concentrated in degree 0 and a quasiseparated nuclear Fréchet space, and the map
V → V max is injective, has dense image, and induces an isomorphism on K-finite vectors.

We note that if Z(U(g)) acts on V via a finite-dimensional quotient, then also any subrepre-
sentation of V has this property, so the condition of having bounded infinitesimal character can be
dropped on the subrepresentations.

Proof. The first part is a direct consequence of the equivalence of categories, and its t-
exactness. For the second part, we note that as an object of D(Dc(G)gas)

♡, any V admits a

maximal quasiseparated quotient V and the kernel V ◦ ⊂ V of V → V . Just like the image of
D(∗/Gla) → D(Dc(G)gas) is stable under truncations, one can also show that it is stable under

the operations V 7→ V and V 7→ V ◦; this uses that tensoring with gaseous vector space of over-
convergent functions on a compact Stein space is not only flat, but also preserves the maximal
quasiseparated quotient, by Lemma III.1.6 (iii). Moreover, these operations also commute with the
functor a∗b

∗, as the K-finite vectors are a direct sum of direct summands (and both direct sums
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and direct summands commute with these operations). Thus, V is quasiseparated if and only if
V K-fin is quasiseparated.

Now letW ⊂ V be a closedG-stable subspace. As C[G] ⊂ Dc(G) has dense image, it follows that
W acquires the structure of a Dc(G)-module. Also V/W is quasiseparated and a Dc(G)-module,
so get a short exact sequence

0→W → V → V/W → 0

of quasiseparated Dc(G)-modules, where the middle term lies in

D(∗/Gla)♡ ⊂ D(Dc(G)gas)
♡,

and has bounded infinitesimal character. This implies the same for the other pieces using Lemma III.1.6 (iv)
to check that tensoring with various idempotent algebras kills W and V/W . Thus, the bijection in
(ii) follows from the bijection in (i), noting that the equivalence preserves closed subspaces (as it is
exact and preserves the property of being quasiseparated).

For part (iii), we already know from part (ii) that V is quasiseparated. Making explicit the
functor b!a

∗ applied to an admissible (g,K)-module, one sees that V is necessarily a complex of
dual nuclear Fréchet spaces, but being concentrated in degree 0 and quasiseparated, it is itself a
dual nuclear Fréchet space. The inverse a∗b

∗ also commutes with Verdier duality, and the maximal
globalization is the dual of (the underlying vector space of) the minimal globalization of the dual.
Using this, one sees that the maximal globalization is the derived dual of a dual nuclear Fréchet
space concentrated in degree 0, and thus itself concentrated in degree 0 and a nuclear Fréchet space.
We have already seen that the map from minimal to maximal globalization induces an isomorphism
on K-finite vectors as part of the proof of the theorem. The K-finite vectors will still be dense,
and then the map V → V max is injective as V is a quasiseparated dual nuclear Fréchet space and
V ∗,K-fin ⊂ V ∗ is dense. □



CHAPTER IV

Analytic Beilinson–Bernstein

The classical Beilinson–Bernstein localization theory allows one to relate representations of Lie
algebras to (twisted) D-modules on the flag variety. One key aspect of this is that the interesting
Lie algebra representations are typically infinite-dimensional, while the corresponding D-modules
are very finitary, namely regular holonomic.

Applied to the category of (g,K)-modules, this yields K-equivariant algebraic D-modules on
the flag variety. On the other hand, we will see that a version of their theory can also be applied
directly to locally analytic G-representations, yielding instead G(R)-equivariant (twisted) Betti
sheaves on the flag variety. Above, we have seen that (g,K)-modules are essentially equivalent to
locally analytic G(R)-representations; in this picture, this is a combination of the Riemann–Hilbert
correspondence and the Matsuki correspondence. Here, the Matsuki correspondence is a bijection
between the K(C)-orbits on the flag variety and the G(R)-orbits; it has been upgraded to the level
of derived categories of equivariant sheaves by Mirković–Uzawa–Vilonen [MUV92].

Without further ado, let us state the main theorem of this section, for trivial infinitesimal
character (where the category of sheaves is untwisted).

Theorem IV.0.1. Let Galg be a connected reductive group over R, let G = Galg(R), and let Fl
be the associated flag variety. Consider the correspondence

∗/Gla a←− Fl/Gla b−→ Fl(C)Betti/GBetti.

Then the functor a∗b
∗ induces an equivalence

Dqc(FlBetti/GBetti) ∼= D(∗/Gla)χ=1

where χ=1 denotes the datum of trivial infinitesimal character, i.e.

D(∗/Gla)χ=1 = D(∗/Gla)⊗Z(U(g)) C

where the tensor product on the right is along the map Z(U(g)) → C given by the action of g on
the trivial representation.

Concretely, the functor a∗b
∗ takes a Betti sheaf F on the topological stack Fl(C)/Galg(R) to

RΓ(Fl,F ⊗O)
with its natural Gla-action. Here Fl denotes the incarnation of the flag variety as a projective
scheme over C, or equivalently by GAGA as a complex-analytic space, and O denotes the sheaf of
holomorphic functions thereon.

Example IV.0.2. In the case Galg = SL2, the flag variety is P1, and it has three SL2(R)-orbits:
The upper half-plane, the lower half-plane, and P1(R). For simplicity, let us also fix the central
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trivial character; otherwise the whole discussion just gets doubled. (Note that this is not the same
as working with PSL2(R), as the latter is disconnected.)

In this case, everything is built from three basic sheaves: The extensions by zero of the constant
sheaves on the upper or lower half-space; and the constant sheaf on P1(R). They correspond,
respectively, to the two discrete series representations, and to a principal series representation.1

We will see later that in general, there are only finitely many G = Galg(R)-orbits on Fl, and that
there are as many open orbits U as there are discrete series representations with trivial infinitesimal
character. In fact, sending U to the compactly supported cohomology

RΓc(U,O)
of the sheaf of holomorphic functions, with the naturalG-action, yields the bijection. More precisely,
this compactly supported cohomology sits in a single degree, where it is the minimal globalization
of a discrete series representation. (The maximal globalization admits a similar description as (the
complex conjugate of) RΓ(U, ωU ).)

IV.1. Algebraic Beilinson–Bernstein

To get started, we give an account of the algebraic Beilinson–Bernstein localization theory. Let
g be a reductive complex Lie algebra. Roughly speaking, Beilinson–Bernstein localization theory
asserts that in a suitable sense, all g-representations are in the principal series. However, the
different Borel subalgebras b ⊂ g are not g-conjugate (as g only allows infinitesimal conjugation)
so one has to consider the totality of them. So in one direction one is taking the Jacquet functor of
u-coinvariants where u is the unipotent radical of b; this yields a family of t-representations over the
flag variety, which is actually equipped with a connection (remembering that at least infinitesimally,
all b’s are conjugate under g). In the other direction, for any family of t-representations over the
flag variety, equipped with a connection, one can construct a g-representation, “by taking global
sections”. As usual in parabolic induction, these two processes are not quite inverse, but a Weyl
group-ambiguity comes up. If one fixes a regular infinitesimal character, this can be killed.

Thus, let Fl be the flag variety of all Borel subalgebras b ⊂ g. Over it, one has the universal
Cartan quotient b → t, giving a sheaf of commutative Lie algebras over Fl, which is constant, so
there is a canonical commutative Lie algebra h over C (“the universal Cartan”) with an isomorphism
h|Fl ∼= t.

Also note that g integrates to a smooth formal group Ĝ (on the level of functions, dual to U(g)),

and Dqc(∗/Ĝ) gives the derived category of g-modules. We get the map

Fl/Ĝ→ ∗/Ĝ,

which is a universal version of ∗/B̂ → ∗/Ĝ where B̂ ⊂ Ĝ denotes the integrated form of b ⊂ g. We
want another map

Fl/Ĝ→ ”Fl/(Ĝ/Û)”

which should be a universal version of ∗/B̂ → ∗/T̂ = ∗/(B̂/Û).

1There is another principal series representation with trivial central and infinitesimal character. Like the other
principal series, it is reducible, but with the irreducible pieces arranged in the other order. Under the localization
equivalence, it corresponds to a certain nontrivial complex of sheaves.
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Lemma IV.1.1. Let Û ⊂ B̂ ⊂ Ĝ × Fl denote the universal formal unipotent and formal Borel
subgroup. The action map

Ĝ× Fl→ Fl

factors canonically over a map

(Ĝ× Fl)/Û → Fl,

and together with the projection map this yields a unique groupoid

(Ĝ× Fl)/Û ⇒ Fl

under Ĝ× Fl ⇒ Fl.

In fact, the action factors over

(Ĝ× Fl)/B̂ → Fl,

and there is a unique groupoid

(Ĝ× Fl)/B̂ ⇒ Fl

under Ĝ× Fl ⇒ Fl.

The lemma applies more generally for any group G acting via conjugation on a space X of
subgroups B ⊂ G, and any characteristic subgroup U ⊂ B; in such a situation one can always find
a groupoid

(G×X)/U ⇒ X,

leading to a quotient ”X/(G/U)” (with a map X/G→ ”X/(G/U)” whose fibres are ∗/U). Is there
a better description of this?

Proof. The first part is just saying that the universal Û ⊂ Ĝ×Fl acts trivially on Fl, which is

clear (as Û normalizes the universal B̂ ⊂ Ĝ×Fl, being a subgroup). To check that all the maps in the

groupoid structure of Ĝ×Fl ⇒ Fl factor, necessarily uniquely (and thus, in a commuting manner),
to the quotient, it remains to check that the composition maps of the groupoid structure descend.

At the level of moduli problems and for Fl× Ĝ× Ĝ → Fl× Ĝ, this is taking a triple (B̂1, B̂2, B̂3)

and elements g1 ∈ Ĝ1 and g2 ∈ Ĝ2 with B̂2 = g1B̂1g
−1
1 and B̂3 = g2B̂2g

−1
2 to the pair (B̂1, B̂3)

and the element g2g1 ∈ Ĝ which satisfies B̂3 = g2g1B̂1(g2g1)
−1. Upon passing to the quotient, g1

can be multiplied by an element u1 ∈ Û1 and g2 by an element u2 ∈ Û2. This multiplies g2g1 by

g−1
2 u2g2u1 where g−1

2 u2g2 ∈ g−1
2 Û2g2 = Û1, so g

−1
2 u2g2u1 ∈ Û1, giving a well-defined composition

map on (Fl× Ĝ)/Û .

The same argument applies to B̂. □

By abuse of notation, we denote by Fl/(Ĝ/Û) and Fl/(Ĝ/B̂) the resulting stack quotients.

Lemma IV.1.2. The map

Fl/(Ĝ/Û)→ Fl/(Ĝ/B̂)

is a Ĥ-gerbe. Moreover, there is a unique isomorphism

Fl/(Ĝ/B̂) ∼= FldR

under Fl.
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Proof. The first statement is immediate from the presentation. For the second statement, one
has to show that

(Fl× Ĝ)/B̂ → Fl× Fl

is injective with image the formal completion of the diagonal (as an ind-scheme). This is a simple
computation: There is certainly a map to this formal completion, and then one has a map of
formally smooth formal schemes that is an isomorphism on reduced subschemes and on the first
infinitesimal neighborhood, thus an isomorphism. □

Using this Ĥ-gerbe, any character χ : Ĥ → Gm of Ĥ gives rise to a twisted form of D-modules
on Fl.

Thus, we get the correspondence

∗/Ĝ a←− Fl/Ĝ
b−→ Fl/(Ĝ/Û).

Here, a is proper and (cohomologically) smooth (as the flag variety Fl is), while b is cohomologically
smooth and has the property that the structure sheaf is b-proper with invertible b-proper dual (as

the fibres are ∗/Û).

We want to know to what extent pull-push along this correspondence, for example a∗b
∗ or any

of the twists, is an equivalence. One difference between the two sides is that Dqc(Fl/(Ĝ/Û)) is

naturally linear over U(h), while Dqc(∗/Ĝ) is only linear over Z(U(g)) ∼= U(h)W . Here, W denotes
the Weyl group, acting via the dot operation on h.

These two actions are actually compatible. More precisely, the above correspondence is encoded
in the object

(a, b)!OFl/Ĝ
∈ Dqc(∗/Ĝ× Fl/(Ĝ/Û)),

and the category is linear over Z(U(g))⊗U(h). The object (a, b)!OFl/Ĝ
is actually concentrated in a

single degree: After pullback to the flag variety, its fibres are the compactly supported cohomology

of Ĝ/Û , which sits in degree dim(G/U). Now one verifies that the Z(U(g))-action agrees with the
restriction of the U(h)-action; arguably, this is how the map Z(U(g))→ U(h) is defined in the first
place.

It follows that the functor a∗b
∗ lifts to a functor

Dqc(Fl/(Ĝ/Û))→ Dqc(∗/Ĝ)⊗Z(U(g)) U(h),

which has a left adjoint b♯a
∗.

Theorem IV.1.3 (Beilinson–Bernstein [BB81]). The functor

b♯a
∗ : Dqc(∗/Ĝ)⊗Z(U(g)) U(h)→ Dqc(Fl/(Ĝ/Û))

is fully faithful, and so its right adjoint

a∗b
∗ : Dqc(Fl/(Ĝ/Û))→ Dqc(∗/Ĝ)⊗Z(U(g)) U(h)

is a Verdier quotient identifying the target as the quotient of the source by the full subcategory of

all M ∈ Dqc(Fl/(Ĝ/Û)) with RΓ(Fl,M |Fl) = 0. Moreover:

(i) Restricting to regular weight, these functors become equivalences.
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(ii) Restricting to weakly dominant weight, the functor a∗b
∗ is t-exact. Here, we endow

Dqc(Fl/(Ĝ/Û)) with the t-structure that arises by writing it as the tensor product from
D(C) to D(Cgas) of the corresponding category for the algebraic stack.

In particular, in weakly dominant regular weight, both functors are t-exact equivalences.

Here, a weight λ is called weakly dominant if there is no w in the Weyl group W such that the
element w · λ− λ is nonzero and a sum of positive roots with Z≥0-coefficients.

Proof. We give a sketch. See [BZN19] for a related ∞-categorical account, in particular
their Proposition 3.8. For the first assertion, we have to see that the unit of the adjunction is an
equivalence. As all functors commute with colimits, we can check this on the regular representation
U(g). Applying b♯a

∗ and pulling back to the flag variety yields the sheaf on the flag variety whose
fibres are U(g)⊗U(u)C; we denote this by U(g)⊗U(u)OFl (here u is the universal unipotent subalgebra
parametrized by the flag variety). The goal now is to show that the natural map

U(g)⊗Z(U(g)) U(h)→ RΓ(Fl, U(g)⊗U(u) OFl)

is an isomorphism. This is attributed to Miličić [Mil93, Lemma 3.1] in [BZN19, Proposition 3.7].
Roughly, one filters both sides so that the associated gradeds become commutative U(h)-algebras;
on the left-hand side this yields the nilpotent cone in g∗ and on the right hand side one ends up
with the cotangent bundle of Fl, both base changed to U(h). Now the result follows from the fact
that the Springer resolution T ∗Fl of the nilpotent cone is a rational resolution.

Now we use the key lemma of Beilinson–Bernstein. Let V be any finite-dimensional represen-

tation of Ĝ, with highest weight λ. Then after pullback to Fl/Ĝ, it acquires a filtration such that

Û acts trivially on the graded pieces, so for any object M ∈ Dqc(Fl/(Ĝ/Û)), M |
Fl/Ĝ

⊗ V |
Fl/Ĝ

is

filtered by objects of the form (M ⊗ Vχ)|Fl/Ĝ for various Vχ; here Vχ is a finite-dimensional vector

space on which Ĥ acts via the weight χ. In particular, after pushforward to ∗/Ĝ, we see that
a∗b

∗M ⊗ V is filtered by objects of the form a∗b
∗(M ⊗ Vχ).

If M has regular weight µ, with w · µ dominant, then one can isolate the term for M ⊗ Vw−1·λ
inside a∗b

∗M ⊗ V , using the infinitesimal character. Thus, if a∗b
∗M = 0, then also a∗b

∗(M ⊗
Vw−1·λ) = 0 for all highest weights λ. But this means that the cohomology of M |Fl twisted by
various line bundles vanish; but those line bundles generate D(Fl), so this implies M |Fl = 0.

If M has dominant weight µ, we instead use that a∗b
∗(M ⊗ V−w0λ)⊗ V is filtered by objects of

the form a∗b
∗(M ⊗ V−w0λ+χ) for weights χ of V (which still has highest weight λ). Here w0 ∈ W

is the longest Weyl group element. Now one can isolate the term for χ = w0λ using infinitesimal
characters, and we see that a∗b

∗M is a summand of a∗b
∗(M ⊗ V−w0λ) ⊗ V , for any λ. Thus, we

can twist M by very ample line bundles, and this can be used to kill any given cohomology class
in positive degree. □

IV.2. Analytic Beilinson–Bernstein

Now let us move to the analytic setting. In fact, Ĝ integrates uniquely to an overconvergent
group G† (given by (1 ⊂ G)† in practice), and we can repeat the above constructions, leading to a
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correspondence

∗/G† a†←− Fl/G† b†−→ Fl/(G†/U †).

Here

Fl/(G†/U †)→ Fl/(G†/B†)

is a gerbe for H†, and

Fl/(G†/B†) ∼= FlandR
∼= Fl(C)Betti

is the analytic de Rham stack of the flag variety, which is also the Betti stack by analytic Riemann–
Hilbert. Thus, locally analytic representations are naturally linked to analytic D-modules, or Betti
sheaves.

We get a commutative diagram

∗/Ĝ

p1
��

Fl/Ĝ
aoo

p2
��

b // Fl/(Ĝ/Û)

p3
��

∗/G† Fl/G†a†oo b† // Fl/(G†/U †)

where the left square is cartesian, and all vertical maps induce fully faithful pullback functors on

Dqc. Moreover, by proper base change, the pullback of a†∗b
†∗ under p1 is the same as a∗b

∗ applied
to the pullback under p3.

Corollary IV.2.1 (Analytic Beilinson–Bernstein). The functor

b†♯a
†∗ : Dqc(∗/G†)⊗Z(U(g)) U(h)→ Dqc(Fl/(G

†/U †))

is fully faithful, and so its right adjoint

a†∗b
†∗ : Dqc(Fl/(G

†/U †))→ Dqc(∗/G†)⊗Z(U(g)) U(h)

is a Verdier quotient identifying the target as the quotient of the source by the full subcategory of
all M ∈ Dqc(Fl/(G

†/U †)) with RΓ(Fl,M |Fl) = 0. Moreover, restricting to regular weight, these
functors become equivalences.

In particular, restricting to trivial infinitesimal character, it induces an equivalence

Dqc(Fl(C)Betti) ∼= Dqc(∗/G†)⊗Z(U(g)) C.

We leave out a statement about t-exactness here, as the t-structure on the left is weird: Con-
nectivity is tested by taking sections over an algebraic affine cover of the algebraic flag variety.

Proof. It suffices to prove that all functors commute with the fully faithful embeddings into
the corresponding categories in the algebraic version of Beilinson–Bernstein. For a∗b

∗ this is clear
by proper base change. In the other directoin, we need to see that b♯a

∗ maps Dqc(∗/G†) into

Dqc(Fl/(G
†/U †)). The fibres of this sheaf are given by the homology of Û , but the representation

comes via restriction from U † ⊂ G†, and thus agrees with the homology of U †; this yields the
result. □
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Finally, assume we start with a connected reductive group Galg over R, and G = Galg(R) as a
real Lie group. Slightly irritatingly, every point of the (complex!) flag variety Fl still defines an
overconvergent bit of a unipotent radical U † ⊂ G† ⊂ Gla. We can then still define the correspon-
dence

∗/Gla ala←−− Fl/Gla bla−→ Fl/(Gla/U †).

Moreover, there is the projection

Fl/(Gla/U †)→ Fl/(Gla/B†)

which is a gerbe for H†, and

Fl/(Gla/B†) ∼= FlandR/(G
la/G†) ∼= Fl(C)Betti/GBetti

by analytic Riemann–Hilbert.

This sits in a diagram

∗/G†

q1
��

Fl/G†a†oo

q2
��

b† // ”Fl/(G†/U †)”

q3
��

∗/Gla Fl/Glaalaoo bla // ”Fl/(Gla/U †)”

where both squares are cartesian. Thus, we formally get the following result.

Corollary IV.2.2 (Analytic Beilinson–Bernstein, group version). The functor

bla♯ a
la∗ : Dqc(∗/Gla)⊗Z(U(g)) U(h)→ Dqc(Fl/(G

la/U †))

is fully faithful, and so its right adjoint

ala∗ b
la∗ : Dqc(Fl/(G

la/U †))→ Dqc(∗/Gla)⊗Z(U(g)) U(h)

is a Verdier quotient identifying the target as the quotient of the source by the full subcategory of
all M ∈ Dqc(Fl/(G

la/U †)) with RΓ(Fl,M |Fl) = 0. Moreover, restricting to regular weight, these
functors become equivalences.

In particular, restricting to trivial infinitesimal character, it induces an equivalence

Dqc(Fl(C)Betti/GBetti) ∼= Dqc(∗/G†)⊗Z(U(g)) C.

Remark IV.2.3. The same arguments apply for p-adic Lie groups, by building on the work
of Rodrigues Jacinto–Rodŕıguez Camargo [RJRC23] on locally analytic p-adic representations in
terms of ∗/Gla, and the work of Rodŕıguez Camargo [RC24] on analytic de Rham stacks over
p-adic fields. In this case, this recovers (and slightly extends) work of Ardakov [Ard21].

IV.3. Matsuki correspondence

Originally, the algebraic version of Beilinson–Bernstein was used to study (g,K)-modules. This
uses the correspondence

∗/(Kalg ⊂ Galg)∧
aalg←−− Fl/(Kalg ⊂ Galg)∧

balg−−→ Fl/((Kalg ⊂ Galg)∧/Û)
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where now one has the Ĥ-gerbe

Fl/((Kalg ⊂ Galg)∧/Û)→ Fl/((Kalg ⊂ Galg)∧/B̂)

over

Fl/((Kalg ⊂ Galg)∧/B̂) ∼= FldR/((K
alg ⊂ Galg)∧/Ĝ) ∼= FldR/K

alg
dR .

Corollary IV.3.1 (Beilinson–Bernstein, (g,K)-version). The functor

balg♯ aalg∗ : Dqc(∗/(Kalg ⊂ Galg)∧)⊗Z(U(g)) U(h)→ Dqc(Fl/((K
alg ⊂ Galg)∧/Û))

is fully faithful, and so its right adjoint

aalg∗ balg∗ : Dqc(Fl/((K
alg ⊂ Galg)∧/Û))→ Dqc(∗/(Kalg ⊂ Galg)∧)⊗Z(U(g)) U(h)

is a Verdier quotient identifying the target as the quotient of the source by the full subcategory of all

M ∈ Dqc(Fl/((K
alg ⊂ Galg)∧/Û)) with RΓ(Fl,M |Fl) = 0. Moreover, restricting to regular weight,

these functors become equivalences.

In particular, restricting to trivial infinitesimal character, it induces an equivalence

Dqc(FldR/K
alg
dR )
∼= Dqc(∗/(Kalg ⊂ Galg)∧)⊗Z(U(g)) C.

On the level of group representations, we have the correspondence

∗/(Kalg ⊂ Galg)∧
agroup←−−−− ∗/(K la ⊂ Gla)∧

cgroup−−−→ ∗/(K la ⊂ Gla)†
dgroup−−−−→ ∗/Gla.

This is mirrored by the correspondence

Fl/((Kalg ⊂ Galg)∧/Û)
aloc←−− Fl/((K la ⊂ Gla)∧/Û)

cloc−−→ Fl/((K la ⊂ Gla)†/U †)
dloc−−→ Fl/(Gla/U †)

on the localized version. In particular, at trivial infinitesimal character, this is

FldR/K
alg
dR

aloc,1←−−− FldR/K
la
dR

cloc,1−−−→ FlandR/KBetti
dloc,1−−−→ FlandR/GBetti.

Proposition IV.3.2. Under the Beilinson–Bernstein functor a∗b
∗ in its various incarnations,

the functor dgroup,♯cgroup∗a
∗
group is intertwined with dloc,♯cloc,∗a

∗
loc. More precisely, there is a natural

equivalence

dgroup,♯cgroup∗a
∗
groupa

alg
∗ balg∗ ∼= ala∗ b

la∗dloc,♯cloc,∗a
∗
loc

of functors

Dqc(Fl/((K
alg ⊂ Galg)∧/Û))→ Dqc(∗/Gla).
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Proof. Contemplate the diagram

∗/(Kalg ⊂ Galg)∧ Fl/(Kalg ⊂ Galg)∧
aalgoo balg // Fl/((Kalg ⊂ Galg)∧/Û)

∗/(K la ⊂ Gla)∧

agroup

OO

cgroup
��

Fl/(K la ⊂ Gla)∧ //oo

OO

��

Fl/((K la ⊂ Gla)∧/Û)

aloc

OO

cloc
��

∗/(K la ⊂ Gla)†

dgroup
��

Fl/(K la ⊂ Gla)† //oo

��

Fl/((K la ⊂ Gla)†/U †)

dloc
��

∗/Gla Fl/Glaalaoo bla // Fl/(Gla/U †).

We can first apply proper base change in the upper left square, then move the pullback path around
the upper right square, then move the (twisted) lower-!-path around the middle left square, then

apply proper base change and the agreement of Û - and U †-cohomology in the middle right square,
then move the (twisted) lower-!-path around the lower left square, and finally around the lower
right square. □

Theorem III.4.1 is then mirrored by the following result of Matsuki and Mirković–Uzawa–
Vilonen [MUV92].

Theorem IV.3.3 (Matsuki correspondence). Consider the actions of Kalg and of G = Galg(R)
on Fl.

(i) There are finitely many Kalg-orbits on Fl.
(ii) Sheaves on Kalg-orbits.
(iii) There are finitely many G-orbits on Fl.
(iv) Sheaves on G-orbits.
(v) Bijection between Kalg- and G-orbits.
(vi) Equivalence of sheaves on orbits.
(vii) After restricting to the bounded part of U(h), the functor

dloc,♯cloc,∗a
∗
loc : Dqc(Fl/((K

alg ⊂ Galg)∧/Û))→ Dqc(Fl/(G
la/U †))

is an equivalence.

Proof. To be written (like the full theorem statement). For (vii), we can restrict to some fixed
ball inside AnSpec(U(h)), and by twisting with O(λ) for very dominant λ ∈ X∗(H), we can assume
that this whole ball is inside the dominant regular locus. In this case, we can apply Beilinson–
Bernstein on both sides, under which the functor gets identified with the functor of Theorem III.4.1,
which we already know to be fully faithful. Thus it only remains to see essential surjectivity, which
can be done by induction on strata. □

The following corollary finishes the proof of Theorem III.4.1.
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Corollary IV.3.4. After restricting to bounded infinitesimal character, the image of the func-
tor

b′group,!a
∗
group = dgroup,♯cgroup,∗a

∗
group : Dqc(∗/(Kalg ⊂ Galg)∧)→ Dqc(∗/Gla)

generates the whole category under colimits.

Proof. It suffices to prove the same for the composite dgroup,♯cgroup,∗a
∗
groupa

alg
∗ balg∗. By the pre-

vious result, this is the same as the composite ala∗ b
la∗dloc,♯cloc,∗a

∗
loc. But a

la
∗ b

la∗ yields a Verdier quo-
tient, so the result follows from the sheaf-theoretic Matsuki correspondence, Theorem IV.3.3 (vii).

□

IV.4. Discrete Series

Let us briefly discuss the discrete series representations from this perspective. Discrete series
exist only when the infinitesimal character χ agrees with that of a finite-dimensional representation;
we lift it to the corresponding dominant weight. We get a G-equivariant line bundle O(χ) on Fl,
which actually trivializes the relevant gerbe at this infinitesimal character; thus, for all such χ, we
have an equivalence

Dqc(Fl(C)Betti/GBetti) ∼= D(∗/Gla)⊗Z(U(g)),χ C.
The functor takes a Betti sheaf F to

RΓ(Fl,F ⊗O(χ))
with its G-action.

Proposition IV.4.1. For any complex of constructible sheaves F on Fl(C)Betti/GBetti, any
cohomology group

H i(Fl,F ⊗O(χ))
is a quasiseparated dual nuclear Fréchet space, the K-finite vectors are dense, and the associated
(g,K)-module is admissible.

Proof. This follows from Corollary III.4.2 and the Matsuki correspondence. □

Now let U ⊂ Fl be an open G-orbit.

Proposition IV.4.2. One has H i
c(U,O(χ)) = 0 unless i = .... In this degree, it is a discrete

series representation of G. One can describe explicitly the K-types. One can also compute the
Harish-Chandra character on the regular semisimple elements of K.

Proof. Compute on the Matsuki dual, where the Beilinson–Bernstein equivalence is t-exact.
For the Harish-Chandra character, use the theory of smooth objects and the corresponding abstract
notion of characteristic cycle, which in this case gives a G-invariant hyperfunction on G. This can
be computed by a trace formula. On regular semisimple elements of K, the contributions come
from the finitely many fixed points on the flag variety, but only those in (the closure of) U can
contribute. This precisely cuts down the Weyl character formula to the desired terms. □



CHAPTER V

Families of twistor-P1’s

The goal of this talk is to introduce the test category of “totally disconnected” C-algebras A, and
to define for each A a “family of twistor-P1’s” XR,A, analogous to the families of Fargues–Fontaine
curves XQp,A for perfectoid A in p-adic geometry.

V.1. Twistor-P1

Let us start by recalling the definition of the twistor-P1, and some of its properties.

Definition V.1.1. The twistor-P1 is the projective R-scheme XR = P̃1
R that is obtained by

descending P1
C to R via the map z 7→ −1

z .

The idea is that the twistor-P1 is the R-analogue of the Fargues–Fontaine curve. However,
unlike the Fargues–Fontaine curve which admits some moduli interpretation in terms of untilts, no
corresponding moduli-theoretic meaning of the twistor-P1 is known. Still, Simpson [Sim97] showed
that Hodge theory can be usefully reinterpreted and generalized in terms of vector bundles on the
twistor-P1 in a way that is very similar to the way that, later, p-adic Hodge theory was usefully
reinterpreted and generalized in terms of vector bundles on the Fargues–Fontaine curve.

Let us list some properties. A good reference is Jaburi’s Master Thesis [Jab19].

(i) All residue fields of XR at closed points are isomorphic to C.
(ii) The points {0,∞} ⊂ XC descend to a distinguished C-valued point denoted ∞ ∈ XR.
(iii) The automorphism group of XR is the projectivized group of invertible Hamilton quater-

nions H×/R×. The action can be normalized so that, under the standard embedding C =
R+ iR ⊂ H, the subgroup C×/R× ⊔C×/R× · j ∼= O(2) is the stabilizer of ∞ ∈ XR, where
the action on the residue field at ∞ is via the component map O(2)→ Z/2=Gal(C/R).

(iv) All vector bundles on XR are direct sums of stable vector bundles. The stable vector
bundles are classified by their slope, which is an arbitrary half-integer λ ∈ 1

2Z. Here, the

line bundle OXR(1) pulls back to OP1
C
(2), while O(12) is a stable rank 2 bundle that is the

pushforward of OP1
C
(1).1

(v) There is an equivalence of categories between U(1)-equivariant semistable vector bundles
on XR and pure R-Hodge structures. More generally, Simpson’s slogan is that “Hodge
theory is U(1)-equivariant twistor theory”.

1The normalization here is inspired by the one used on the Fargues–Fontaine curve; there, pullback to the
Fargues–Fontaine curve for a finite extension of Qp multiplies the degree of a line bundle by the degree of the field
extension.

41
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(vi) For any linear-algebraic group G/R, the set of isomorphism classes of G-torsors on XR
is given by Kottwitz’ set B(R, G). This uses Kottwitz’ extension of his theory of “G-
isocrystals” from nonarchimedean local fields to all local and global fields [Kot14]. In-
terpreting G-Hodge structures in terms of G-twistor structures, one can then translate
Shimura data in terms of triples (G, b, µ) consisting of a reductive group G, a minus-
cule conjugacy class µ, and a basic element b ∈ B(R, G) satisfying suitable compatibility
conditions.

Let us change notation slightly from now on, and denote by G a reductive group over R. Our
goal is to define a “moduli space BunG of G-bundles on the twistor-P1” such that its derived
category enlarges the category of G(R)-representations in a way analogous to [FS21]. As we have
defined G(R)-representations as

Dqc(∗/G(R)la),
it is thus natural to hope for an open embedding of analytic stacks

∗/G(R)la ↪→ BunG,

as the locus of fibrewise trivial G-bundles.2

In particular, the automorphism group of the trivial G-torsor should be G(R)la; and using this
for Ga, this means that the functor of global sections of the twistor-P1 should be Rla.

This already means that something strange has to happen: Most naively, one would look at the
functor taking any A to G-bundles on the base change XR⊗A, but then the global sections would
be A, and so as a functor give the affine line A1. Similarly, the automorphism group of the trivial
G-bundle would be the algebraic group G; but then we would only see the algebraic representation
theory of G, not its locally analytic representation theory.

In the p-adic case, the same issue appears, where we want the global sections of the Fargues–
Fontaine curve to yield Qp and not A1. There it is resolved by the definition of the test category
as being that of perfectoid spaces of characteristic p, and the families being defined in a nontrivial
way. Our task thus becomes to find the correct test category, and the correct families.

Another remark is that we are now intending to define concrete moduli problems; but so far, we
did not have moduli-theoretic descriptions of the analytic stacks we considered (like the analytic
de Rham stack). In fact, we believe that it is difficult to give a moduli description on all analytic
rings, but Rodŕıguez Camargo [RC24] has found a subclass of analytic rings on which the moduli
problem can be described, and which is general enough to determine the stacks via Yoneda.

V.2. Bounded Rgas-algebras

Let A be a gaseous R-algebra. (For the present discussion, we can assume that A is static –
in general, being bounded depends only on the static truncation.) Any element f ∈ A(∗) defines a

2This presupposes that the sheaf theory we will use on BunG is just quasicoherent sheaves. This may seem
strange, as usually one would take something like étale sheaves or D-modules. Our philosophy is, however, that
all of these theories arise via “transmutation” as quasicoherent sheaves on some stack (like the de Rham stack for
D-modules). So the reader may think that our BunG here is analogous to the transmutation of the BunG considered
in other settings.
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map
|f | : AnSpec(A)→ [0,∞].

In particular, we can define a subset (in fact, subring) of bounded elements of A as those f such
that |f | takes image in [0,∞) ⊂ [0,∞]. Similarly, one can define the norm-zero-elements of A as
those such that |f | takes image in {0} ⊂ [0,∞]. The norm-zero elements will then define an ideal
in the bounded elements.

Example V.2.1. If A = R[T ], then the only bounded functions are the constant functions.
The issue is that A injects into R((T−1)), and any function involving a positive power of T will be
unbounded there. On the other hand, if A is the algebra of overconvergent functions on a compact
Stein space, then all elements of A are bounded.

Unfortunately, it is not obvious how to extend this definition to f ∈ A(S) for light profinite
sets S, in order to define a condensed subalgebra Abd ⊂ A. Fortunately, Rodŕıguez Camargo has
figured out just that. The definitions below are direct adaptations from the solid to the gaseous
case.

V.2.1. Subspaces of AS. Let S be a light profinite set. The S-dimensional affine space AS

over Rgas, sending any analytic Rgas-algebra A to A(S), is represented by

AS
R = AnSpec(R[N[S]]gas);

here R[N[S]]gas is the free gaseous commutative ring on S. We will define subspaces

AS,†
R ⊂ AS,◦◦

R ⊂ AS,◦
R ⊂ AS,an

R ⊂ AS
R.

For S = ∗ these are given by

N−1({0}) ⊂ N−1([0, 1)) ⊂ N−1([0, 1]) ⊂ N−1([0,∞)) ⊂ A1
R

where
N : P1

R → [0,∞]Betti

is the norm on Rgas (uniquely characterized, as a norm, by N(12) = {
1
2}).

The starting point is an analogue of the space

AnSpec(R[T̂ ]gas)→ AnSpec(R[T ]gas) = A1
R

defined by the algebra on a free topologically nilpotent element T̂ . Writing R[T ] = R[N], we have

R[T̂ ]gas = R[N ∪ {∞}]gas/R[∞]. In an analogous manner, we set

R[N̂[S]]gas = R[N[S] ∪ {∞}]gas/R[∞],

where N[S]∪{∞} is the one-point-compactification of the light locally profinite set N[S] =
⊔

n≥0 S
n/Σn.

Thus, we can consider the space

DS
R = AnSpec(R[N̂[S]]gas)→ AnSpec(R[N[S]]) = AS

R,

a naive version of the S-dimensional unit disc.

On AS
R, we can act through multiplication by any λ ∈ R. If |λ| ≤ 1 these endomorphisms of AS

R
lift to endomorphisms of DS

R.

Definition/Proposition V.2.2. The following definitions yield subspaces of AS
R.
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(i) The intersection

AS,†
R = limλ>0λDS

R.

(ii) The union

AS,◦◦
R = colimλ<1λDS

R.

(iii) The intersection

AS,◦
R = limλ>1λDS

R.

(iv) The union

AS,an
R = colimλ<∞λDS

R.

Proof. It suffices to consider case (iii); one can rearrange the formulas in (i), (ii) and (iv) in

terms of intersections or unions of AS,◦
R in place of DS

R.

We have

AS,◦
R = AnSpec(colimλ>1R[ ̂N[λ−1S]]gas).

Thus, we must verify that

colimλ>1R[ ̂N[λ−1S]]gas

is an idempotent R[N[S]]gas-algebra.
[COMPUTATION TO BE WRITTEN.] □

Definition V.2.3. Let A be a gaseous R-algebra. We define condensed subsets

Nil†(A) ⊂ A◦◦ ⊂ A◦ ⊂ Abd ⊂ A

whose S-valued are, respectively,

AS,†
R (A) ⊂ AS,◦◦

R (A) ⊂ AS,◦
R (A) ⊂ AS,an

R (A) ⊂ AS
R(A) = A(S).

Proposition V.2.4. The previous definitions yield the following structures.

(i) The condensed subset Abd ⊂ A is a condensed R-algebra that is moreover gaseous.

(ii) The subset Nil†(A) ⊂ Abd is an ideal of Abd that is also gaseous.
(iii) The subset A◦ ⊂ A is stable under multiplication and convex linear combinations: For all

x1, . . . , xn ∈ R with
∑n

i=1 |xi| ≤ 1, and all a1, . . . , an ∈ A◦, one has
∑n

i=1 aixi ∈ A◦. The
same is true for A◦◦ ⊂ A, which is also stable under multiplication by A◦.3

Moreover, the map of gaseous R-algebras Abd ⊂ A induces an isomorphism on Nil†, −◦◦, −◦

and −bd.

In part (iii), one could probably formulate a better property about infinite sums, or even of a
version of being gaseous. We will actually not need A◦ and A◦◦ much, so we do not discuss this
further.

3In Durov’s language [Dur07], A◦ is a generalized ring, and an algebra over ..., and the subset A◦◦ ⊂ A◦ is an
ideal.
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Proof. All relevant structures can already be constructed on the moduli problems; for exam-

ple, AS
R is a ring object in analytic stacks (using the coordinatewise ring structure), and AS,an

R ⊂ AS
R

is a subring, while AS,◦
R ⊂ AS

R is a multiplicative submonoid. Checking these things is a matter of
showing that certain maps of idempotent algebras exist, which is a simple verification. [DETAILS
TO BE WRITTEN.] □

Definition V.2.5. A gaseous R-algebra is bounded if Abd = A. In this case, the †-reduction of
A is A†-red = A/Nil†(A), and A is †-reduced if Nil†(A) = 0, or equivalently A = A†-red.

We extend these notions to the animated setting by pulling everything back from the static
truncation π0. In particular, †-reduced algebras are automatically static.

V.2.2. Nil-perfectoids. In p-adic geometry, it has become a standard technique to study
classical geometric objects like rigid-analytic varieties by covering them by perfectoid spaces. The
resulting Čech descent then involves spaces that are Zariski closed in a perfectoid space; these are
so-called semiperfectoid spaces.

We will use this technique also over the complex numbers. The goal of this subsection is to
define the relevant analogue of (semi)perfectoid C-algebras.

Definition V.2.6. A totally disconnected C-algebra is a gaseous animated C-algebra A that is
bounded and such that for all s ∈ π0Spec(A▷(∗)), the corresponding

As = colimU∋sA(U),

which is again a bounded C-algebra, has †-reduced quotient A†-red
s

∼= C.

Here, U runs over open and closed neighborhoods of s in Spec(A▷(∗)), so each A(U) is a direct
factor of A (and hence is bounded, as is the filtered colimit).

If A is a totally disconnected C-algebra, then we get the profinite set

S = π0Spec(A
▷(∗)) = Hom(A,C)

and a map A → CS whose kernel is Nil†(A). Moreover, the map A → CS factors, in the sense of
condensed C-algebras, over Cont(S,C) ⊂ CS .

Definition V.2.7. A strongly totally disconnected C-algebra is a totally disconnected C-algebra
A for which the map A→ Cont(S,C) is surjective.

Equivalently, A†-red ∼= Cont(S,C).

Proposition V.2.8. Let A be a totally disconnected C-algebra such that S = Hom(A,C) is

light. There is a descendable map A→ Ã of totally disconnected C-algebras such that Ã is strongly

totally disconnected and the map S → S̃ = Hom(Ã,C) is an isomorphism.

In particular, all Ã⊗A Ã⊗A . . .⊗A Ã are strongly totally disconnected.

Remark V.2.9. The tensor products appearing here are wildly inexplicit; the prototype is the
gaseous tensor product

Cont(S,C)⊗L
Cgas

Cont(S′,C).
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This is very difficult to describe, and likely not concentrated in degree 0. It is some totally discon-
nected C-algebra with π0 given by S×S′, but the map to Cont(S×S′,C) is very far from surjective
if S and S′ are infinite. However, despite the inexplicit nature, this will not cause trouble. (This is
analogous to the semiperfectoid algebras appearing in descent from perfectoid covers; they are also
often rather inexplicit, but this does not lead to much trouble.)

Proof. The assertion is stable under base change, as A 7→ S = Hom(A,C) takes colimits
to limits. Thus, it suffices to consider the case A = colimiCont(Si,C) where S = limiSi is a

presentation as a limit of finite quotients Si of S. We claim that A→ Ã = Cont(S,C) is descendable.
Indeed, each Cont(Si,C) → Cont(S,C) splits, hence is descendable of index 0, so the sequential
colimit is descendable of index 1.

The final observation results from the relevant S being unchanged, and already one factor
surjecting onto Cont(S,C). □

Definition V.2.10. Let A be a totally disconnected C-algebra, with S = Hom(A,C). The
family XR,A of twistor-P1’s parametrized by A is the pushout

AnSpec(Cont(S,C))

��

∞ // XR ×AnSpec(R) AnSpec(Cont(S,R))

��
AnSpec(A) // XR,A.

The upper line here is the base change of AnSpec(C) ∞−→ XR to Cont(S,R). The vertical map
is the natural map AnSpec(Cont(S,C)) → AnSpec(A). Note that we are using here that algebras
of continuous functions descend canonically from C to R. This is one reason that we are only able
to make this definition of a family of twistor-P1’s under some restriction on A.

In other words, XR,A is away from ∞ isomorphic to the simple base change XR ×AnSpec(R)
AnSpec(Cont(S,R)). Only at ∞, the algebra A itself becomes relevant, where it leads to a modifi-
cation.

Remark V.2.11. At least for strongly totally disconnected A, one can formulate a universal
property ofXR,A. One defines an∞-category of “abstract families of twistor-P1’s” as being profinite
sets S together with a †-nilthickening of XR ×AnSpec(R) AnSpec(Cont(S,R)). This has a forgetful
functor to strongly totally disconnected spaces over C by taking the fibre over ∞. The above
construction yields the left adjoint to this forgetful functor.

It would in some sense be more natural to use as test category this ∞-category of “abstract
families of twistor-P1’s”, but this yields a small further increase in technical complexity without
any strong benefit for our purposes here.

V.3. Stacks on totally disconnecteds

In order to avoid set-theoretic problems and to match our restriction to the light condensed
setting, we restrict to countably presented objects in the following. If A is a totally disconnected
C-algebra such that A is countably presented as a gaseous C-algebra, then S = Hom(A,C) is
automatically light.
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Definition V.3.1. Let TotDisc be the ∞-category of countably presented totally disconnected
C-algebras, and let TDStack be the ∞-category of functors

X : TotDisc→ Ani

such that X commutes with finite products, and for any augmented cosimplicial object A→ A• such
that AnSpec(A•)→ AnSpec(A) is a !-hypercover satisfying !-descent, the map

X(A)→ limX(A•)

is an isomorphism.

For A ∈ TotDisc, there is the associated

TDSpec(A) : B 7→ Hom(A,B)

in TDStack.

Thus, TDStack is an∞-topos, between sheaves and hypersheaves on TotDisc endowed with the
descendable Grothendieck topology. The functor taking any A to AnSpec(A) defines the pullback
functor in a morphism of ∞-topoi AnStackCgas → TDStack. In particular, via this pullback, any
moduli problem we define on totally disconnecteds yields an analytic stack over Cgas.

Remark V.3.2. One would like to say that by Proposition V.2.8, the subcategory StrTotDisc ⊂
TotDisc of strongly totally disconnected objects generates the whole ∞-topos, so one can equiv-
alently describe TDStack as a stack on the category of strongly totally disconnecteds. This is
essentially true, except that the strongly totally disconnected objects are not countably presented
(as Cont(S,R) is not countably presented as a gaseous real vector space). This is not a real issue
as one can write any totally disconnected A as an ℵ1-filtered colimit of countably presented totally
disconnected Ai, and for each X ∈ TDStack declare X(A) = colimiX(Ai). Then a map X → Y is
an isomorphism if and only if for all strongly totally disconnected A, the map X(A)→ Y (A) is an
isomorphism.

In practice, we can describe the moduli problem on all totally disconnected algebras, and observe
that it commutes with ℵ1-filtered colimits, and hence defines an object of TDStack.

We have to see that the class of totally disconnected algebras is sufficiently large to !-cover the
analytic stacks of interest; in particular, real- or complex-analytic spaces. This is ensured by the
following proposition, which applies in particular to algebras of the form O(K)† for some Stein
compact K.

Proposition V.3.3. Let A be a countably presented bounded gaseous animated C-algebra. As-
sume that there is some finite-dimensional metrizable compact Hausdorff space S and a map

AnSpec(A)→ SBetti

determined by idempotent A-algebras AZ for all closed Z ⊂ S, with the following property: Each
point has a neighborhood basis of closed Z ⊂ S that are connective and bounded, and for all s ∈ S
the stalk As has †-reduced quotient A†-red

s
∼= C.

Then for any light profinite set S̃ with a surjection S̃ → S, the fibre product

AnSpec(A)×SBetti
S̃Betti
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is an affine analytic stack AnSpec(Ã), the gaseous C-algebra Ã is totally disconnected, and A→ Ã

is descendable. Moreover, all Ã⊗A Ã⊗A . . .⊗A Ã are totally disconnected.

Proof. Writing S̃ as a limit of finite disjoint unions of closed subsets Z of S for which AZ

is connective and bounded, it is clear that the fibre product is affine, and representable by some

bounded gaseous C-algebra Ã. Moreover, all fibres of AnSpec(Ã)→ S̃Betti are given by AnSpec(As)

for some s ∈ S, so the hypothesis on As implies that Ã is totally disconnected. By Proposition II.1.1,

we also see that A → Ã is descendable. The final assertion is just the previous one applied to

S̃ ×S S̃ ×S . . .×S S̃, which is still a light profinite set. □

In particular, this means that AnSpec(A) comes from some totally disconnected stack:

Corollary V.3.4. For A as in the previous proposition, the functor

TotDisc→ Ani : B 7→ Hom(A,B)

is an object of TDStack whose pullback to AnStack is AnSpec(A).

We will sometimes abusively denote this object by TDSpec(A) ∈ TDStack even while A is not
an object of TotDisc. It is the direct image of AnSpec(A) under AnStackCgas → TDStack.

Proof. Given A → Ã as in the proposition, the functor is covered by B 7→ Hom(Ã, B), and
the resulting Čech nerves in analytic rings and in totally disconnecteds agree. □

Corollary V.3.5. The functor

TotDisc→ Ani : A 7→ A(∗)

realizes to the analytic stack A1,an
Cgas

, the analytic affine line.

Note that the similar functor on analytic rings would define the algebraic affine line! However,
the restriction to bounded analytic rings means that the functor A 7→ A is not representable
anymore.

Proof. As all totally disconnected algebras are by definition bounded, the realization maps
into A1,an

Cgas
⊂ A1

Cgas
. Corollary V.3.4 ensures that this map is an isomorphism after pullback to each

Stein compact, and hence is an isomorphism. □

There are some other functors that one can understand.

Proposition V.3.6. The functor

TotDisc→ Ani : A 7→ (Nil†(A))(∗)

is an affine object of TDStack. It realizes to the analytic stack A1,†
Cgas

.

Proof. Indeed, this is just TDSpec of the algebra of germs of holomorphic functions at 0. □
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V.3.1. Relation to condensed anima. The ∞-topos TDStack is closely related to the ∞-
topos of light condensed anima CondAni. First, the “Betti stack” functor CondAni→ AnStackCgas

actually factors canonically over

π∗ : CondAni→ TDStack,

giving the pullback functor in a morphism of ∞-topoi π : TDStack → CondAni. On the level of
the generating sites, this takes a light profinite set S to

π∗(S) = SBetti = TDSpec(LocConst(S,C)).

Something new happens in TDStack: Namely, there is also the functor taking any totally
disconnected A to the light profinite set S = Hom(A,C). This also commutes with finite limits
and preserves covers, and hence defines a morphism of ∞-topoi ψ : CondAni → TDStack, which
is a section of π. Even more, the functors ψ∗ = π∗ agree. Indeed, the functor TDSpec(A) 7→ S =
Hom(A,C) is both a continuous and a cocontinuous functor of sites, with right adjoint taking S to
SBetti; then this follows from the general yoga of (co)continuous functors.

In particular, id = ψ∗π∗ = ψ∗ψ∗ and hence π∗ = ψ∗ is fully faithful.

For any X ∈ TDStack, we get a natural map X → π∗ψ∗(X) = ψ∗(X)Betti, so |X| := ψ∗(X) ∈
CondAni may be regarded as the “underlying condensed anima”. Another description of |X|
is as the sheafification of the functor taking a light profinite set S to X(Cont(S,C)), i.e. it is
the condensed anima of C-valued points of X. If there were enough extremally disconnected
light profinite sets (there aren’t!), then we would get a left adjoint to ψ∗, taking an extremally
disconnected S to TDSpec(Cont(S,C)). (There is also the issue that Cont(S,C) is not countably
presented.)

A particular instance of this discussion is the following proposition.

Proposition V.3.7. For any condensed anima X, the functor

TotDisc→ Ani : A 7→ X(Hom(A,C))

is an object of TDStack. It realizes to the analytic stack XBetti.

Proof. Indeed, this is the object ψ∗(X) = π∗(X). The final statement follows by taking the
composite pullback along

AnStackCgas → TDStack→ CondAni. □

In this language, analytic Riemann–Hilbert for A1,an has the following shape.

Proposition V.3.8. The sequence

0→ Nil†(A)→ A→ Cont(Hom(A,C),C)→ 0

is a short exact sequence of sheaves on TotDisc. It realizes to the exact sequence

0→ A1,† → A1,an → CBetti → 0

in AnStackCgas.
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Proof. We have to see that the natural injective map

A/Nil†(A)→ Cont(Hom(A,C),C)
is an isomorphism after sheafification. But this follows from Proposition V.2.8. □

In the following, we will often denote by A1,an, CBetti etc. the canonical lifts to objects of
TDStack.

V.4. Banach–Colmez spaces

Our goal was that the functor of global sections of the structure sheaf yields Rla. The goal of
this section is to prove this result.

More generally than the structure sheaf, let M be a coherent sheaf on XR.

Definition V.4.1. The Banach–Colmez space BC(M) ∈ TDStack is the functor taking any
totally disconnected A to

BC(M)(A) = Γ(XR,A,M |XR,A),

considered as valued in anima.

Of course, the functor even takes values in D≥0(Rgas), but we forget at least the condensed
structure, yielding an animated R-vector space object in sheaves on totally disconnecteds.

Proposition V.4.2. The realization of BC(O) as an analytic stack over C is Rla.

Proof. From its definition, we see that for a strongly totally disconnected A with S =
Hom(A,C), we have

BC(O)(A) = A×Cont(S,C) Cont(S,R),
as

Γ(XR ×AnSpec(R) AnSpec(Cont(S,R)),O) = Cont(S,R).
In other words, this is the kernel of the composite map

A→ A†-red = Cont(S,C) Im−→ Cont(S,R).
But A 7→ A realizes to A1,an while A 7→ Cont(S,R) realizes to RBetti. Thus, the kernel of

A→ A†-red = Cont(S,C) Im−→ Cont(S,R)
realizes to the kernel of

A1,an Im−→ RBetti

which is precisely Rla, as desired. □



CHAPTER VI

The Picard stack

The goal of this chapter is to describe the stack Pic of line bundles on the twistor-P1, and the
stack Div1 of degree 1 Cartier divisors.

VI.1. Vector bundles on analytic stacks

This section contains some reminders on vector bundles on analytic stacks.

Definition VI.1.1. Let A be an analytic ring. A finite projective A-module is an object of
D(A) that can be written as a direct summand of An for some n. Equivalently, it is a perfect
complex of A-modules of amplitude [0, 0].

Note that finite projective A-modules only depend on the underlying condensed ring A▷, and
in fact only on its underlying ring A▷(∗).

Proposition VI.1.2. Let A→ B be a map of analytic rings such that −⊗L
AB : D(A)→ D(B)

is conservative; for example, a !-descendable map. If M is a static finitely generated A▷(∗)-module
such that the nonderived tensor product M ⊗A B = 0 vanishes, then M = 0.

Proof. If M is nonzero, we can find a nonzero quotient of M that is generated by a single
element, so we can assume M = A/I for some ideal I ⊂ A▷(∗). In particular, M acquires the
structure of an algebra. Then, if M ⊗A B = 0, this means that in the algebra M ⊗L

A B, one has

1 = 0, and henceM⊗L
AB = 0. But by assumption −⊗L

AB is conservative, so this meansM = 0. □

Corollary VI.1.3. Let A→ B be a map of analytic rings such that −⊗L
A B is conservative.

Let M be a perfect complex of A-modules. Then the perfect amplitude of M agrees with the perfect
amplitude of M ⊗L

A B. In particular, if M ⊗L
A B is a finite projective B-module, then M is a finite

projective A-module.

Proof. It suffices to control the perfect amplitude on the right. But the rightmost quotient
gives a static finitely generated A▷(∗)-module to which we can apply the previous proposition. □

Corollary VI.1.4. Assume that A is an analytic ring such that any dualizable object of D(A)
is a perfect complex. Then any object of D(A) that is !-locally a perfect complex is actually a perfect
complex, and the perfect amplitude can be determined !-locally. In particular, any object of D(A)
that is !-locally a finite projective module is a finite projective A-module.

Proof. Being !-locally a perfect complex implies being dualizable, which by assumption on A
implies being a perfect complex. The rest follows from the previous corollary. □

51
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The condition can be phrased slightly more explicitly.

Proposition VI.1.5. Let A be an analytic ring. The following conditions are equivalent.

(i) Any dualizable object of D(A) is a perfect complex.
(ii) For any compact object K ∈ D(A) and any trace-class endomorphism f : K → K, the

cone of 1− f is a perfect complex.

Proof. The direction from (ii) to (i) is easy: IfK is dualizable, then in particularK is compact,
and the identity is trace-class; and K is a retract of the cone of 1 − 1 on K. Conversely, if K is
compact and f : K → K is trace-class, then the cone of 1 − f is both compact and nuclear (as it
is also the cone of 1 − f on K[ 1f ] which is nuclear). But dualizable is equivalent to compact and

nuclear. □

This proposition suggests the following name.

Definition VI.1.6. An analytic ring A is Fredholm if every dualizable object of D(A) is a
perfect complex.

Proposition VI.1.7. Let A → A be a surjective map of analytic rings. Assume that A is
Fredholm, and that for every finitely presented static A-module M , if the nonderived tensor product
M ⊗A A = 0 vanishes, then M = 0. Then A is Fredholm.

Proof. Assume that K is dualizable. Up to shifting, assume that K is concentrated in ho-
mological degrees ≥ 0, and H0(K) ̸= 0. By compactness of K, we see that H0(K) is finitely
presented. Moreover, K ⊗AA is perfect, and hence we can find finitely many elements x1, . . . , xr ∈
H0(K) (which surjects onto H0(K ⊗A A) such that the (still finitely presented) quotient M =
H0(K)/(x1, . . . , xr) satisfies M ⊗A A = 0. But then M = 0 by assumption, and so we find that
H0(K) is a quotient of a free A-module. We can then pass to the cone of Ar → H0(K) and induct.
This implies that K is a discrete A-module; but being also compact, it must be perfect. □

Note that this property applies in particular to the static truncation A→ π0A; thus, for showing
Fredholmness, one can reduce to the static case. In the bounded case, one can reduce much further.

Proposition VI.1.8. Let A be a bounded gaseous R-algebra and let M be a finitely presented
static A-module M . If M ⊗A A

†-red = 0, then M = 0.

In particular, if A†-red is Fredholm, then A is Fredholm.

Proof. We can assume that A is static. Pick a surjection A[S] → M , given by some map

f : S → M . As M ⊗A A
†-red = 0, we find that Nil†(A)[S] → M must still be surjective. Thus, we

can find some cover S′ → S and a lift of f ′ : S′ → S → M to g : S′ → Nil†(A)[S]. Then there is

some light profinite set T and a map R[T ]→ Nil†(A) so that g factors over g0 : S′ → R[T × S]gas.
Any such map is a countable sum of maps S′ → T ×S weighted by a sequences of quasi-exponential
decay. Up to taking a cover S′′ of S′, we may assume that these maps all lift to maps S′′ → T ×S′.
Playing this game countably many times and passing to a limit, we can assume that S′ = S. Thus,
we have a surjection A[S]→M induced by f : S →M and a lift of f to a map g : S → Nil†(A)[S],
and it suffices to see that the induced map

1− g : A[S]→ A[S]
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is surjective (as M is a quotient of the cokernel). In fact, we will show that it is an isomorphism,
with inverse 1 + g + g2 + . . . that we will show exists.

In other words, we want to see that there is a well-defined map

(1, g, g2, . . . , 0) : A[S × (N ∪ {∞})]→ A[S].

Now we factor g again over some R[T × S]gas → Nil†(A)[S], for some R[T ] → Nil†(A). This
gives a countable sum of maps S → T × S, weighted by a sequence of quasi-exponential decay. Up
to rescaling the map R[T ] → Nil†(A), we can assume that the sum of the weights is less than 1.
Now it is some straightforward argument. □

Corollary VI.1.9. Let A be a totally disconnected C-algebra. Then A is Fredholm.

Proof. Passing to stalks and using a spreading argument, we can assume that A†-red ∼= C. By
the previous proposition, it is enough to prove that C is Fredholm. This is a standard argument. □

Definition VI.1.10. Let X be an analytic stack. A vector bundle on X is an object E ∈ Dqc(X)
for which there is some !-cover by AnSpec(Ai)→ X such that E|Ai is a finite projective Ai-module.

A priori this notion is hard to control because of the !-locality, but the previous corollary makes
it controllable in practice.

VI.2. The Picard stack

Definition VI.2.1. The Picard stack of the twistor-P1 is the functor taking any totally discon-
nected C-algebra A to the anima of line bundles on XR,A.

Proposition VI.2.2. The preceding definition defines an object of TDStack.

Proof. We need to prove descent of line bundles, for A 7→ XR,A. Note that this probably
does not map !-covers to !-covers and certainly does not commute with finite limits, so one cannot
formally apply descent results on XR,A as an analytic stack. Still, giving a line bundle on XR,A is
equivalent to giving line bundles on AnSpec(A) and on XR × AnSpec(Cont(S,R)), together with
an isomorphism over AnSpec(Cont(S,C)). The AnSpec(A)-part is fine, by Corollary VI.1.9. For
the rest, by describing vector bundles on P1 in terms of the global sections of their twists, it is
enough to show that taking A to the category of vector bundles over Cont(S,R) defines a stack.
This follows from the next lemma.

We should also check that the functor commutes with ℵ1-filtered colimits; the point here is that
S 7→ Cont(S,C) takes ℵ1-cofiltered limits of light profinite sets to ℵ1-filtered colimits, as ℵ1-filtered
colimits preserve Cauchy completeness (as any sequence is already contained in one term of the
colimit). □

We need the next lemma only for light profinite sets, but prefer to state it in its natural
generality.

Lemma VI.2.3. The functor taking any compact Hausdorff S to the category of vector bundles
over Cont(S,R) defines a sheaf of categories with respect to the usual topology of finite families of
jointly surjective maps.
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Proof. The functor S 7→ Cont(S,R) is a sheaf (without higher cohomology, by [Sch19, The-
orem 3.3]); thus, only effectivity of descent is at stake. By the usual open descent, it is enough
to argue locally. Certainly one has effective descent in each fibre. This means that around each
point one gets a 1-cocycle with values in the subgroup of GLn of matrices that are 1 in the fibre.
Shrinking to a neighborhood one can assume the 1-cocycle lands in a small ball around 1 in GLn

on which the logarithm is well-defined and its failure to be a group homomorphism is small. One
can then successively modify the 1-cocycle by boundaries to make it smaller, using the controlled
exactness of [Sch19, Theorem 3.3]. In the limit, this trivializes the 1-cocycle, as desired. □

For each n ∈ Z, we have the line bundle OXR(n). Its automorphism group is the group of
invertible elements in BC(O), i.e. R×,la. Thus, we get a map⊔

n∈Z
∗/R×,la → Pic.

In fact, this is an isomorphism.

Theorem VI.2.4. The map ⊔
n∈Z
∗/R×,la → Pic

is an isomorphism in TDStack. In particular, there is a well-defined degree map

deg : Pic→ Z

sending OXR(n) to n.

Proof. It is clear that the map is injective, so we have to prove surjectivity. Let L be any line
bundle on XR,A, for some totally disconnected C-algebra A, with S = Hom(A,C). This yields in

particular a line bundle L on XR × AnSpec(Cont(S,R)). This gives, for each s ∈ S, a line bundle
on XR, and those are classified by their degree. The resulting map S → Z must be locally constant,
for example as the degree can be read off the dimension of the (perfect) complex of global sections.1

Thus, we can assume that it is constant, and then after twisting that it is zero. Then

RΓ(XR ×AnSpec(Cont(S,R)),L)

is a perfect complex of Cont(S,R)-modules, of perfect amplitude a priori contained in (cohomolog-
ical degrees) [0, 1], and rank 1. But the H1 is fibrewise zero, and hence zero (as a map of finite
projective Cont(S,R)-modules that is fibrewise surjective is surjective). Thus, it is actually a line
bundle concentrated in degree 0. This is trivial, yielding a nowhere vanishing global section of L,
thus L is trivial.

But then to trivialize L we simply need to lift the trivializing section of L from L|AnSpec(Cont(S,C))
to L|A. We can assume that A is strongly totally disconnected (by Proposition V.2.8) and then A→
Cont(S,C) is surjective, and any section of L|AnSpec(Cont(S,C)) lifts to L|A. By Proposition VI.1.8,
the resulting map A → L|A must be surjective, and hence (being a map of invertible A-modules)
an isomorphism. Thus, L is trivial, and hence in the image. □

1From abstract 6-functor arguments, pushforward along proper smooth maps preserves dualizable objects. But
the global sections are dualizable; thus they are a perfect complex by Corollary VI.1.9.
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VI.3. Degree 1 divisors

Definition VI.3.1. The stack of degree 1 divisors Div1 takes a totally disconnected C-algebra
A to the anima of pairs {(L, s)} of a degree 1 line bundle L on XR,A and a section s ∈ Γ(XR,A,L)
that is nonzero after pullback along every map A→ C.

It is clear that this defines an object of TDStack. Given {(L, s)}, we get the Cartier divisor

V (s)→ XR,A

which conversely determines {(L, s)}. In the p-adic situation, V (s) is an “untilt of A” but it is not
clear how useful this analogy is here.

Essentially from the definition, we get the following presentation of Div1.

Proposition VI.3.2. There is an isomorphism

(BC(O(1)) \ {0})/R×,la ∼= Div1

in TDStack. Here,
BC(O(1)) \ {0} ⊂ BC(O(1))

denotes the subfunctor of those sections that are nonzero in each fibre; this subfunctor is determined
on underlying condensed anima, where it is an open immersion.

Proof. Given {(L, s)} ∈ Div1, one can locally trivialize L ∼= O(1), and then s is a fibrewise
nonzero section of O(1). It is clear that the condition of being fibrewise nonzero is a condition that
can be checked on underlying anima as it is a condition on C-points; and as the nonvanishing locus
of a section is an open subset, it is an open condition. □

To make this more explicit, we need to compute BC(O(1)). At this point, we should be more
precise about what O(1) really is – so far, we only really defined it up to isomorphism. Thus,
from now on O(1) denotes O([∞]), the ample line bundle associated with the degree 1 divisor
∞ = AnSpec(C) ⊂ XR.

Proposition VI.3.3. There is an isomorphism

BC(O(1)) ∼= A1,an × RBetti

of BC(O) = Rla-module objects in TDStack.

More precisely, the inclusion O ↪→ O([∞]) = O(1) induces a map

BC(O) = Rla → BC(O(1))
that factors over RBetti, and taking the fibre at ∞ of a section of O(1) defines a map

BC(O(1))→ A1,an

with kernel RBetti, together yielding an exact sequence

0→ RBetti → BC(O(1))→ A1,an → 0.

Splitting this exact sequence is equivalent to splitting it on C-valued points, where there is a unique
U(1)-equivariant splitting. Explicitly, the C-valued points of BC(O(1)) are, after pullback to Gm,C →
XR, functions of the form az + b − az−1 with a ∈ C and b ∈ R, and this is sent the pair (a, b) ∈
(A1,an × RBetti)(C).
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Proof. Using the pushout presentation of the family of twistor-P1’s, we see that

BC(O(1)) ∼= A1,an ×CBetti
H0(XR,O(1))Betti

as BC(O) ∼= Rla-modules. Now H0(XR,O(1)) is a 3-dimensional R-vector space that surjects onto
C via taking the fibre at ∞. Picking a splitting yields the isomorphism of the proposition.

For the more precise assertion, note that the map BC(O)→ BC(O(1)) factors, in the displayed
presentation, over the kernel of H0(XR,O(1))Betti → CBetti, which is precisely RBetti. The quotient
is then the A1,an coming from the fibre at ∞. Splitting it can be done on Betti stacks, which are
also the C-valued points, and the given formula gives a U(1)-equivariant splitting. □

In particular,
Div1 ∼= (A1,an × RBetti \ {0})/R×,la.

In the next lecture, we want to understand the vector bundles on Div1, and notably find a close re-
lation with representations of the real Weil groupWR. This is difficult to see with this presentation;
but there is a second description that makes this relation more transparent.

VI.4. Degree 1 divisors over C

Note that in a philosophical sense we committed a small sin in our presentation, as we focused
on the local field R and ignored the other archimedean local field C. The justification for this is
that on the one hand, it gives better focus; and on the other hand it is always easy to recover the
theory for C from the one for R, via some restriction of scalars.

For the present discussion, however, it is useful to explicitly discuss the analogue of the last
section in the case of C. We set

XC,A = XR,A ×AnSpec(R) AnSpec(C);

in particular XC = P1
C is just a complex projective line. The preimage of ∞ is now two points

{0,∞} in XC. If one wants to define XC,A directly, it is now a pushout

AnSpec(Cont(S,C)) ⊔AnSpec(Cont(S,C)) 0⊔∞ //

��

P1
C ×C AnSpec(Cont(S,C))

��
AnSpec(A⊗C,z 7→z C) ⊔AnSpec(A) // XC,A

where, critically, one of the two components in the lower left corner (and one of the two components
of the left vertical map) is twisted by complex conjugation.2

One can then define PicC parametrizing line bundles on XC,A. In a way completely analogous
to the preceding discussion, one finds:

Proposition VI.4.1. The natural map⊔
n∈Z
∗/C×,la → PicC

2As we said, confusion increases. Note also that one must do a modification at both points 0 and ∞; if one does
it only at one point, one does not get the correct theory.
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is an isomorphism in TDStack. In particular, there is a well-defined degree map

degC : PicC → Z

sending OP1
C
(n) to n. □

We warn the reader that degC = 2degR under the pullback of line bundles Pic→ PicC.

One can then also define Div1C, the moduli space of degree 1 divisors on XC,A. Despite the

previous warning, there is a well-defined map Div1C → Div1 of pushforward of Cartier divisors,

taking a {(L̃, s̃)} ∈ Div1C to the pair {(L, s)} corresponding to the Cartier divisor

V (s̃)→ XC,A → XR,A.

Note that this is unchanged when acting by complex conjugation on C. It is a simple verification
that this definition of pushforward of Cartier divisors is compatible with the notion of degree.

Proposition VI.4.2. The map

Div1C/Gal(C/R)→ Div1

is an isomorphism in TDStack.

Proof. Given {(L, s)}, the fibres of Div1C → Div1 parametrize lifts of V (s) from AnSpec(R)
to AnSpec(C). Locally, such a lift can always be found (as XR,A locally lifts to AnSpec(C)), and
any two lifts are locally Galois conjugate. □

On the other hand, we can describe Div1C in terms of “complex Banach–Colmez spaces”.

Proposition VI.4.3. There is a natural isomorphism

Div1C
∼= (BCC(O(1)) \ {0})/C×,la,

where O(1) = OP1
C
(1) and BCC is the obvious variant of BC. □

Now one can also describe BCC(O(1)). Again, we need to be more precise what we mean by
O(1), and again we take it to mean O([∞]), where now ∞ is the point of XC = P1

C.

Proposition VI.4.4. There is a natural isomorphism

BCC(O(1)) ∼= A1,an × A1,an

of Cla-module objects, where z ∈ Cla acts on

(t1, t2) ∈ A1,an × A1,an

via z · (t1, t2) = (zt1, zt2).

More precisely, the isomorphism is given by taking the fibre at 0 and at ∞ of a section of O(1).
On C-valued points, a pair (a, b) ∈ (A1,an × A1,an)(C) corresponds to the section az + b of O([∞]).

Proof. In this case, translating the pushout description ofXC,A into a fibre product description
for global sections, one finds

BCC(O(1)) ∼= (A1,an × A1,an)×(C×C)Betti
H0(XC,O(1))Betti,
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the map

H0(XC,O(1))→ C× C
of taking fibres at 0 and ∞ is actually an isomorphism. Thus,

BCC(O(1)) ∼= A1,an × A1,an,

where the action on one factor is twisted by complex conjugation. This gives the desired formula.
□

Combining the three previous results, we find the following corollary.

Corollary VI.4.5. There is a natural isomorphism

Div1 ∼= (A2,an \ {0})/W la
R

where the real Weil group WR ⊂ H∗ acts on A2,an ∼= H⊗C A1,an via multiplication.

A different description is that A2,an is BC(O(12)), where O(
1
2) is the pushforward of OP1

C
(1),

which is the stable vector bundle of slope 1
2 . Moreover, the automorphism group of O(12) is H

∗ and
this contains WR.

Proof. There are two things to check: That the combined quotient

Div1 ∼= (Div1C)/Gal(C/R) ∼= ((A2,an \ {0})/C×,la)/Gal(C/R)

combines into a quotient by WR, and that the action is the one described. But one can make the
map

BC(O(12)) \ {0} → Div1

explicit as follows, fixing a maximal commutative subalgebra C ⊂ H = End(O(12)). Take any

fibrewise nonzero section s of O(12). Then we get a map C ⊗R O → O(12) such that the cokernel
of the dual map gives the desired Cartier divisor of degree 1. This construction is invariant under
the normalizer (not centralizer!) WR of C ⊂ H, and hence descends to a map

(BC(O(12)) \ {0})/W
la
R → Div1.

That this is an isomorphism then follows from the previous results. □

VI.4.1. Relating the two presentations. Finally, we would like to understand explicitly
the isomorphism

(A1,an × RBetti \ {0})/R×,la ∼= (A2,an \ {0})/W la
R

between the two presentations of Div1.

Given a section s ∈ BC(O(12)), we need to find a section t ∈ BC(O(1)) whose vanishing locus
is the same as the vanishing locus of s (considered as a section of BCC(OP1

C
(1))). Explicitly, if s is

given by the pair (a, b) ∈ A2,an \ {0}, it corresponds to the function az+ b, and we can take t to be

(az + b)(−az−1 + b) = abz + (bb− aa)− abz−1

which indeed defines a section t ∈ BC(O(1)), corresponding to the pair

(ab, bb− aa) ∈ A1,an × RBetti \ {0}.
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If we act by z ∈ C×,la ⊂W la
R on (a, b), this rescales it to (za, zb), which is sent to

(zzab, zz(bb− aa)),
thus acting by zz ∈ Rla

>0 on (ab, bb− aa). The other C×,la-coset in W la
R acts on (a, b) via sending it

to (zb,−za), which is sent to
(−zzab,−zz(bb− aa)),

thus acting by −zz ∈ Rla
<0.

In the inverse direction, the image of a pair (a, b) ∈ (A1,an × RBetti)(C) can be described as
follows. If b ̸= 0, then up to rescaling we can assume b = 1. Then a is sent to (a′, 1) with |a′| < 1
where

a′

1− |a′|2
= a.

This gives a real-analytic isomorphism between a ∈ C and a′ in the open unit disc. On the other
hand, if b = 0, then a ∈ A1,an \ {0} is only well-defined up to rescaling by R×,la; so we can assume
it lies on the unit circle. In that case, it is sent to (a, 1). (On both source and target there is a
remaining ±1-ambiguity, but they match.)





CHAPTER VII

The stack of L-parameters

Assume for simplicity that G is split. Let Ĝ denote the Langlands dual group over C. The
classical notion of L-parameter is a continuous map of groups

φ :WR → Ĝ(C)
such that φ|C× is semisimple (which forces φ itself to be semisimple). In particular, for G = GLn (so

Ĝ = GLn), this yields n-dimensional semisimple representations of WR. We note that continuous
WR-representations are automatically real-analytic.

To fit into the geometric Langlands philosophy, we would like to interpret this as the “Ĝ-local
systems on the twistor-P1” in some sense. Naively, this suggests that WR would have to be related
to the fundamental group of the twistor-P1, just like WQp is in fact related to the fundamental

group of the Fargues–Fontaine curve. However, it is quite unclear how C× ⊂ WR should be a
fundamental group of anything (as its topology is not (pro-)discrete), and how one could end up
with continuous representations of it.

Now such vector bundles on the twistor-P1 are also meant to be related to (generalizations
of) Hodge structures. But while in p-adic Hodge theory, it is quite natural to find “generic”
WQp-representations (as it is essentially Gal(Qp/Qp), which acts on étale cohomology, in highly
nontrivial ways), as far as I know there is no variant of real or complex Hodge theory where one
finds “generic” WR or C×-representations. One hint is given by the Deligne torus, but this yields
only the representations of C× as an R-algebraic group. Effectively, one seeks a generalization of
Hodge theory where the Hodge numbers are not integers, but arbitrary complex numbers.

Another issue is that one wants to replace the notion of L-parameter by a slightly different
notion that works better in families – discrete series representations interact with principal series
representations in the category ofG(R)-representations, but their L-parameters are classically living
in different connected components. Refined parameter spaces, allowing degenerations from discrete
series L-parameters to principal series L-parameters, have been introduced by Adams–Barbasch–
Vogan [ABV92].

Fortunately, the formalism developed above tells us the answer: We have to look at vector
bundles on Div1.1 The goal of this lecture is to analyze this category. In particular, we have
the following result, showing that on the level of isomorphism classes we are getting the classical
objects. We will see that it also fits into Hodge theory, and is related to Adams–Barbasch–Vogan’s
parameter spaces.

1This presentation is not revisionist history: We did find Div1 precisely by unraveling what the moduli space of
degree 1 divisors is, and then trying to see whether it has the desired relation to WR-representations. It was a good
surprise that it worked!
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Theorem VII.0.1. All vector bundles on

Div1 = (A2,an
C \ {0})/W la

R

extend uniquely to vector bundles on
A2,an
C /W la

R .

This yields natural functors

Rep(W la
R )

π∗
−→ VB(Div1)

s∗−→ Rep(W la
R ),

with composite the identity, via pullback along

∗/W la
R

s−→ A2,an
C /W la

R
π−→ ∗/W la

R .

In particular, on the level of isomorphism classes, continuous WR-representations embed into vector
bundles on Div1. If V ∈ VB(Div1) is a vector bundle for which s∗V is semisimple, then V is in
the image of this embedding. In particular, on the level of isomorphism classes, semisimple vector
bundles on Div1 are equivalent to semisimple representations of WR.

On the other hand, we will see that there are interesting families of vector bundles on Div1,
related to the parameter spaces introduced by Adams–Barbasch–Vogan [ABV92]. Part of the
notation in the following theorem will be explained below.

Theorem VII.0.2. The set X = X(Ĝ) introduced in [ABV92, Definition 1.8] is Ĝ-equivariantly

identified with the set of those Ĝ-torsors on Div1 with a trivialization at the point

1 ∈ C×
Betti ⊂ Div1C → Div1

for which the corresponding monodromy α ∈ Ĝ(C) is semisimple.

A corresponding result holds also for nonsplit G. Adams–Barbasch–Vogan considered the space
for each semisimple conjugacy class α individually and left open the problem of putting them in a
nice family as α varies; we see here that they may all be combined by looking at the moduli space

of Ĝ-torsors on Div1.

Remark VII.0.3. Similar translations of the Adams–Barbasch–Vogan parameter spaces into

Ĝ-local systems on the twistor-P1 (in their case, equipped with B-structures) have been obtained by
Ben-Zvi–Nadler [BZN13]. We note however that their results are restricted to regular infinitesimal
characters, while we can deal with arbitrary infinitesimal characters.

VII.1. Representations of C×

We start with a reminder on the representation theory of C×. Being commutative, all irreducible
representations are 1-dimensional. Things can be analyzed through the exponential sequence

0→ 2πiZ→ C exp−−→ C× → 0.

The characters of C are of the form

z 7→ exp(λ1z + λ2z),

with λ1, λ2 ∈ C, and they descend to C× if and only if

exp(2πiλ1) = exp(2πiλ2).



VII.1. REPRESENTATIONS OF C× 63

This is of course equivalent to λ1−λ2 ∈ Z. In summary, characters of C× are given by pairs (λ1, λ2)
of complex numbers, with difference λ1 − λ2 ∈ Z. In particular, any character χ : C× → C× yields
the number

α = exp(2πiλ1) = exp(2πiλ2) ∈ C×.

A curious interpretation of this number α, relevant to the relation with Div1, is the following.
Consider the open subset

G2,an
m,C/C

×,la ⊂ Div1C.

On the one hand, this has a natural projection map to ∗/C×,la. On the other hand, the action of
C×,la is free on this locus, and the natural map

G2,an
m,C/C

×,la → C×
Betti : (a, b) 7→ ab

−1

is an isomorphism. Thus, we get a map of analytic stacks

C×
Betti → ∗/C

×,la.

Vector bundles on the source are local systems, and determined by their monodromy. One verifies
that for a character χ, the monodromy of the pullback to C×

Betti is given by α.

One way to see this is as follows. Let G → G2,an
m,C be the Z-cover such that π1(G) = π1(C×) ⊂

π1(G2,an
m,C), so that the embedding

C×,la ⊂ G2,an
m,C

lifts to an embedding
C×,la ⊂ G.

Now G/C×,la is isomorphic to CBetti, so pullback along

∗/C×,la → ∗/G
induces an equivalence of vector bundles. In particular, any character χ extends uniquely to a
character of G. Now α is the evaluation of χ at a generator of the kernel of G→ G2,an

m,C, essentially
from its definition. On the other hand we have the Z-cover

G/C×,la ∼= CBetti → G2,an
m,C/C

×,la ∼= C×
Betti

and this translates the monodromy into the action of this generator.

A general representation
φ : C× → GLn(C)

is similarly determined by two commuting matrices

λ1, λ2 ∈Mn(C)
subject to the condition

exp(2πiλ1) = exp(2πiλ2)

yielding again the element α ∈ GLn(C); again, this can be interpreted as a monodromy, as above.

Now one can show that φ is semisimple if and only if α is semisimple. Indeed, if φ is semisimple,
it is a sum of characters, and so certainly α is semisimple. Conversely, we first note that for any
two distinct characters χ and χ′ of C×, there are no extensions between χ and χ′. Thus, the
only possible source of non-semisimplicity are extensions between the same character, which after
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twisting we can assume to be the trivial character. Then λ1 and λ2 are nilpotent matrices, and on
nilpotent matrices the exponential map is injective, so if α is trivial, then so are λ1 and λ2.

VII.2. Vector bundles on Div1C

Now we want to understand vector bundles on Div1C. We have already seen that on the large
open subset

G2,an
m,C/C

×,la ⊂ Div1C,

one gets a vector bundle on

G2,an
m,C/C

×,la ∼= C×
Betti,

given by some monodromy α ∈ GLn.

It remains to understand the neighborhoods of the two missing points 0 and ∞. These are
exchanged under complex conjugation, so let us focus on ∞. This yields

(A1,an
C ×Gan

m,C)/C×,la

where the C×,la-action is via z · (a, b) = (za, zb). Now the action is transitive on the second factor,

with stabilizer given by a copy of G†
m,C ⊂ C×,la. This acts in the usual holomorphic way on A1,an,

so this yields the stack

A1,an
C /G†

m,C.

This indeed has
Gan

m,C/G
†
m,C
∼= (Gm,C)

an
dR
∼= C×

Betti

as open subset. We have to understand the category of vector bundles on A1,an
C /G†

m,C. Let T denote

the standard coordinate on A1,an. Recall that a T -connection on a vector bundle M is a map

∇M :M →M ⊗ Ω1

satisfying
∇M (fm) = f∇M (m) + T∇(f)m

for f ∈ O andm ∈M . These can also be thought of as connections 1
T∇ with logarithmic singularity

at T = 0.

Proposition VII.2.1. Vector bundles on A1,an
C /G†

m,C are equivalent to vector bundles on A1,an
C /Ĝm,C,

and to vector bundles M on A1,an
C equipped with a T -connection.

Proof. This is a simple variation on the identification of vector bundles on the analytic de
Rham stack of A1,an with vector bundles with connection. □

Using this for 0 and ∞, one sees that vector bundles on Div1C are given by two vector bundles

with T -connection on A1,an
C , having the same monodromy.

Moreover, one sees that any filtration of the vector bundle restricted to

G2,an
m,C/C

×,la ⊂ Div1C

extends uniquely to the whole vector bundle. In particular, we can decompose the category of
vector bundles as a direct sum according to the generalized eigenvalue of the monodromy α. It also
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follows that any semisimple vector bundle necessarily has semisimple monodromy α. Conversely,
we will see that having semisimple monodromy α forces the vector bundle to be a direct sum of
line bundles, all of which come from characters of C×.

Indeed, if α is semisimple, then after taking direct summands, we can assume that α is scalar,
and then by twisting that α is in fact trivial.

Proposition VII.2.2. The category of T -connections on A1,an with trivial monodromy is equiv-
alent to the category of vector bundles on A1,an/Gan

m , and also equivalent to filtered vector spaces.

Proof. For the first statement, we need to see that having trivial monodromy is equivalent to
descending along

A1,an/G†
m → A1,an/Gan

m .

But this map is a torsor under Gan
m /G

†
m
∼= C×

Betti, and such a descent statement holds for any

torsor under C×
Betti. Now filtered vector spaces are known to be equivalent to vector bundles on the

algebraic incarnation A1/Gm thereof, and one checks that pullback along

A1,an/Gan
m → A1/Gm

induces an exact equivalence on vector bundles, for example by checking that on both sides the
irreducible objects are line bundles, those biject, and finally one computes Hom and Ext1. □

Thus, we see that vector bundles on Div1C with trivial monodromy α are equivalent to C-vector
spaces V equipped with two C-filtrations. These are precisely complex Hodge structures, and all
of them are isomorphic to sums of 1-dimensional complex Hodge structures. A stacky way to see
this is as follows. A filtered vector space is equivalent to a vector bundle on A1/Gm. A bifiltered
vector space is then equivalent to a vector bundle on

(A2 \ {0})/G2
m.

Any such vector bundle extends uniquely to A2/G2
m (as vector bundles on regular schemes extend

over codimension 2). Now given a vector bundle V on A2/G2
m, the fibre V0 at the origin is a direct

sum of line bundles Li, which extend to line bundles Li over A2/G2
m pulled back from ∗/G2

m. Each
map Li → V0 to the fibre at 0 extends to a map Li → V as taking global sections on A2/G2

m

is an exact operation (as tori have no cohomology), and then the map
⊕

i Li → V must be an
isomorphism.

The remaining datum is then a pair of integers, giving the filtration degrees. This bijects as
desired to pairs (λ1, λ2) of complex numbers with

exp(2πiλ1) = exp(2πiλ2) = 1.

At this point we have proven that all vector bundles on Div1C with monodromy α semisimple
are direct sums of line bundles that arise via pullback from characters of C×. It follows that all of
these vector bundles indeed extend to

A2,an/C×,la ⊃ Div1C.

Note also that such an extension is necessarily unique (however, in the analytic context, the exten-
sion is not automatic for vector bundles on A2,an \ {0}!), as the sections on A2,an are necessarily
the global sections of the vector bundle on Div1C pulled back to A2,an \ {0}.
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Starting from here, one can prove that pullback along

(A2,an ×A2 (A2 \ {0}))/C×,la ⊃ Div1C

induces an equivalence of the exact categories of vector bundles (in particular, preserving Ext1).
(The difference between both sides is that on the left, we removed the origin in the algebraic sense,
while on the right we did so in the analytic sense.) The left-hand side is, as a category, equivalent
to vector bundles on

A2,an/C×,la,

in particular we see that pullback is necessarily fully faithful. To see that it is essentially surjective
and an exact equivalence, it suffices to see that all Ext1’s between semisimple objects are preserved.
As all semisimple objects are direct sums of line bundles, this amounts to a computation of the H1

of line bundles, which we leave as an exercise to the reader.

Finally, Theorem VII.0.1 follows by descent along C/R.

Remark VII.2.3. Theorem VII.0.1 restricts to semisimple vector bundles for the relation to
WR-representations. This is necessary: There are non-semisimple vector bundles on Div1 that do
not arise via pullback from WR-representations. To give an example, it suffices to find an extension
E of line bundles on A2,an/W la

R that is nonsplit, but is split on the special fibre. These are easy to
construct.

VII.3. Local duality on Div1

Let us add a small digression about local duality. Over nonarchimedean local fields, local Tate–
Nakayama duality shows that the Weil group WQp has cohomological dimension 2, and satisfies a
2-dimensional duality reminiscent of Poincaré duality on a (non-orientable) 2-dimensional manifold;
the Fargues–Fontaine curve then makes it possible to give a quite literal interpretation of this.
However, classically no such local duality holds over the real numbers. For example, WR has on
R-vector spaces cohomological dimension 1.

Again, Div1 gives a solution to this problem.

Theorem VII.3.1. The analytic stack

f : Div1 → AnSpec(Cgas)

is proper and cohomologically smooth, with f !(1) ∼= | · |[2] where | · | denotes the line bundle on Div1

associated to the norm character

| · | :WR → R>0

which on C× is given by z 7→ zz. In particular, for any vector bundle E on Div1, there is a perfect
pairing of finite-dimensional C-vector spaces

H i(Div1, E)⊗H2−i(Div1, E∨ ⊗ | · |)→ H2(Div1, | · |) ∼= C

for i = 0, 1, 2 (and H i(Div1, E) = 0 for i > 2).
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Proof. For properness and cohomological smoothness, it suffices to consider Div1C. This can be

covered by two copies of D†/G†
m intersecting along U(1)Betti (where D† ⊂ A1,an is the overconvergent

closed unit disc). These pieces are easily seen to be proper: in the first case, write it as the composite

D†/G†
m → ∗/G†

m → ∗

both of which are proper. For the second, as G†
m is proper, it suffices (by the inductive defini-

tion/characterization of properness) to see that the natural p!(1)→ p∗(1) is an isomorphism where

p : ∗/G†
m → ∗ is the projection. But p!(A)→ p∗(A) is an isomorphism for A = q!(1) = q∗(1) where

q : ∗ → ∗/G†
m is the proper projection; and 1 is the cone of an endomorphism of A.

For cohomological smoothness, it suffices to show that A1,an/G†
m is cohomologically smooth,

which follows similarly by writing it as the composite

A1,an/G†
m → ∗/G†

m → ∗,

where cohomological smoothness of ∗/G†
m has been proved in Proposition III.1.2.

It remains to identify the dualizing complex. The local computation implies that it must sit
in degree 2, given by some character of WR, or in fact its abelianization R×. Which character one
gets can be analyzed, for example, by looking at which characters have a nonzero Ext2. □

VII.4. Relation to Adams–Barbasch–Vogan parameters

In this section, we prove Theorem VII.0.2. Assume again, for simplicity, that G/R is split,

and fix a semisimple element α ∈ Ĝ(C). We can consider the moduli space (for the moment, just

naively at the level of C-valued points) of all Ĝ-local systems on Div1 together with a trivialization
at

1 ∈ C×
Betti ⊂ Div1C → Div1,

yielding monodromy α. This is given by pairs (y,Λ) where y ∈ Ĝ(C) with y2 = α, and Λ is a

T -connection on A1,an
C whose generic fibre is the given local system on C×

Betti with monodromy α.

Indeed, descending from Div1C to Div1 we have to remember only one of the two T -connections;
but the open part

C×
Betti/Gal(C/R) ⊂ Div1

is a Möbius strip, so one has to give a square root y of α. (More precisely, the two “boundary
circle” are mapped to one boundary circle under this map, with monodromy α; but there is also
the central unit circle on which one gets a 2-fold quotient, with monodromy a square root y of α.)

To identify this with Adams–Barbasch–Vogan’s parameter space [ABV92, Definition 1.8], it
remains to relate the choice of Λ to the canonical flats. By our previous results, suitably extended

to any G, any λ ∈ Lie(Ĝ) with exp(2πiλ) = α yields a possible T -connection Λ with monodromy
α, and all T -connections arise in this way. It remains to see that the corresponding T -connections
agree if and only if the λ’s lie in the same canonical flat. We leave this as an exercise to the reader.





CHAPTER VIII

Variations of Hodge/twistor structures

Let X be a complex manifold. There is the central notion of a variation of Hodge structures.
Following our standard convention of using C-coefficients, we consider also here the version with
R-coefficients. That said, one could descend the results to R-coefficients.

Recall that a variation of C-Hodge structures is given by a local system L of (finite-dimensional)

C-vector spaces onX, together with Z-indexed decreasing filtrations Fil•(L⊗COX) and Fil
•
(L⊗C,z 7→z

OX) of the corresponding holomorphic vector bundles. Moreover, the filtrations have to satisfy
Griffiths transversality:

∇(Fili) ⊂ Fili−1 ⊗OX
Ω1
X ,∇(Fil

i
) ⊂ Fil

i−1 ⊗OX
Ω1
X .

Here Ω1
X denotes the sheaf of holomorphic differentials, and ∇, ∇ the connections for which L is

horizontal.

Usually one would ask further conditions, like being pure (or maybe adding a weight filtration
otherwise), or even being polarizable. We will for now be content with this most basic version (but
would, in the future, like to understand an extension of these ideas that includes questions of purity
and polarizability).

Simpson [Sim97] has defined a notion of variation of twistor structures, as a generalization of
the notion of variation of Hodge structures. His motivation was that while not all local systems
underlie a variation of Hodge structures, the Corlette–Simpson correspondence in nonabelian Hodge
theory implies all (irreducible) local systems underlie a variation of twistor structures. We will see
that (a small variant of) this notion arises naturally in our setup.

VIII.1. The case of a point

Before embarking on the relative situation, we have to look back at the case of a point: While
we have implicitly seen some relation to Hodge structures in the last lecture, vector bundles on
Div1 were not really Hodge structures. To get Hodge structures, we have to incorporate an extra
symmetry that we ignored so far.

Recall that the group O(2) acts as automorphisms of XR fixing ∞. So far, we have used
AnSpec(Cgas) as our base. It turns out that the whole theory makes sense over the base

AnSpec(Cgas)/O(2)Betti
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already. Here O(2)Betti acts on AnSpec(Cgas) via O(2)Betti → {±1} ∼= Gal(C/R). Indeed, the
theory makes sense as soon as the functor A 7→ XR,A can be defined. Now XR,A is the pushout

AnSpec(Cont(S,C)) ∞ //

��

XR,Cont(S,R)

��
AnSpec(A) // XR,A,

so it suffices to define XR,Cont(S,R) with its point ∞. But this is a Brauer–Severi variety over
Cont(S,R), so it suffices to define a sheaf of quaternion algebras over S, together with a maximal
commutative subalgebra. But this is precisely guaranteed by the map S → ∗/O(2)Betti, as O(2) ⊂
Aut(H) is the normalizer of C ⊂ H.

Remark VIII.1.1. The stack AnSpec(Cgas)/O(2)Betti is a gerbe over AnSpec(Rgas) banded by
U(1)Betti. In fact, it is the trivial gerbe, where a splitting is induced by picking any element of
O(2) \ U(1) (necessarily of order 2), yielding a splitting

AnSpec(Rgas) = AnSpec(Cgas)/{±1} → AnSpec(Cgas)/O(2)Betti.

In particular, we see that Div1C (or also Div1) descends to AnSpec(Cgas)/O(2)Betti. In keeping
with our tradition of working with C-coefficients, we will not make use of the full O(2)Betti-symmetry
and restrict to the U(1)Betti-symmetry.

Thus, we work with

Div1C/U(1)Betti → AnSpec(Cgas)/U(1)Betti.

This has an open subset

C×
Betti/U(1)Betti = R>0,Betti.

This is a contractible manifold, realized as Betti stack over AnSpec(Cgas), so it follows that vector
bundles on this open subset are equivalent to finite-dimensional C-vector spaces.

It remains to understand neighborhoods of 0 and ∞. The two points are swapped under the
automorphism of Div1C over Div1, so let us concentrate on the neighborhood of ∞. Recall that for
Div1C this gives

A1,an/G†
m = A1,an/U(1)†.

Combined with the U(1)Betti-quotient, this yields

A1,an/U(1)la

as an open neighborhood of∞ in Div1C/U(1)Betti. This is an analytic version of A1/Gm, and vector
bundles are filtered C-vector spaces.

Summarizing this discussion:

Proposition VIII.1.2. Vector bundles on Div1C/U(1)Betti are equivalent to C-Hodge structures,
i.e. finite dimensional C-vector spaces V equipped with two separated and exhaustive descending Z-
indexed filtrations Fil•V ⊂ V , Fil

•
V ⊂ V .

The discussion of the geometry of Div1C/U(1)Betti in fact yields the following isomorphism.
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Proposition VIII.1.3. There is an isomorphism

Div1C/U(1)Betti
∼= P1

C/U(1)la

of analytic stacks over Cgas.

Remark VIII.1.4. If we used the full O(2)Betti-descent, we would get XR/U(1)la.

Proof. It is easy to identify their Betti stacks, which already gives the isomorphism except in
a neighborhood of 0 and ∞. But near 0 and ∞, they have the same local structure, by the above
analysis. □

Thus, we have simultaneously the U(1)Betti-torsor

Div1C → Div1C/U(1)Betti

central to our perspective, as well as the U(1)la-torsor

P1
C → Div1C/U(1)Betti

which we will see is related to the classical twistor theory. It is not the case that the first torsor is
the pushout of the second torsor along U(1)la → U(1)Betti: While this is true locally, globally there
is some obstruction. Namely, one can show that there is no map P1

C → Div1C inducing the expected
map on C-valued points. The issue is that the map has to “holomorphic at∞ but anti-holomorphic
at 0”.

VIII.2. The analytic stack X♢

In p-adic geometry, for an adic space X over Qp, a standard construction is to consider the

functor taking a perfectoid space S in characteristic p to an untilt S♯ together with a map S♯ → X;
this defines the associated diamond X♢.

We can formulate the same construction in our setting.

Definition VIII.2.1. Let X be a complex manifold, regarded as an object of TDStack. Let

X♢ → Div1C

be the functor taking a totally disconnected C-algebra A to a degree 1 divisor Z ⊂ XC,A together
with a map Z → X.

Remark VIII.2.2. When X is endowed with a real structure, i.e. an antiholomorphic involution
(equivalently, a descent to AnSpec(Rgas)), then X♢ descends to Div1. This will occasionally be
used below.

Again, everything makes sense already over AnSpec(Cgas)/O(2)Betti, so one can define

X♢/O(2)Betti → Div1C/O(2)Betti.

As usual, we will restrict to the U(1)Betti-symmetry. The previous map can be base changed along
P1
C → P1

C/U(1)la ∼= Div1C/U(1)Betti, leading to

Xtw = X♢/U(1)Betti ×Div1C/U(1)Betti
P1
C → P1

C.
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In other words, we have a diagram

X♢ → X♢/U(1)Betti ← Xtw

base changed from

Div1C → Div1C/U(1)Betti ← P1
C.

We will see that vector bundles on Xtw are variations of C-twistor structures, and vector bundles
on X♢/U(1)Betti

∼= Xtw/U(1)la are variations of C-Hodge structures. On the other hand, vector
bundles on X♢ itself yield a new notion, generalizing the discussion from the last lecture to the
relative case.

Our goal now is to describe X♢, and vector bundles on it. Away from 0 and ∞, this is easy to
describe.

Proposition VIII.2.3. The fibre product

X♢ ×Div1C
C×
Betti ⊂ X

♢

maps isomorphically to its Betti stack, which is a product

X(C)Betti × C×
Betti.

Proof. Away from 0 and ∞, the curve XC,A is just the base change Gan
m,Cont(S,C) and so

Z = AnSpec(Cont(S,C)). This yields the Betti stacks. □

VIII.3. The analytic Hodge–Tate stack

Next, we will describe the fibre of X♢ over∞ ∈ Div1C. In p-adic geometry, this object is known
as the analytic Hodge–Tate stack and first appears implicitly in work of Anschütz–Heuer–le Bras
[AHLB23]; it plays a key role in the p-adic Simpson correspondence.

Definition VIII.3.1. For a complex manifold X, let XHT be the object of TDStack taking a
totally disconnected C-algebra A to the maps

XC,A ×XC,∞ AnSpec(C)→ X.

Note that

XC,A ×XC,∞ AnSpec(C) = AnSpec((Cont(S,C)[T ]×Cont(S,C) A)/
LT )

is the affine analytic stack given by the ring (Cont(S,C)[T ]×Cont(S,C)A)/
LT . This is a split extension

A with kernel Nil†(A)[1].

Remark VIII.3.2. While for technical reasons all rings are (possibly) animated throughout,
this is the first time that animated rings make an essential appearance.

Proposition VIII.3.3. The stack XHT has a natural map XHT → X which makes it a gerbe

for T †
X , the overconvergent neighborhood of 0 in the tangent bundle TX . Moreover, XHT → X is

split, so it is the split gerbe XHT ∼= BT †
X → X.
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Proof. If X is An,an
C , this follows directly from the description of the ring

(Cont(S,C)[T ]×Cont(S,C) A)/
LT.

This implies that in general XHT → X is a gerbe banded by a commutative group that is locally

isomorphic to T †
X . But in fact, one can write down a local isomorphism that glues. Finally, as the

map (Cont(S,C)[T ]×Cont(S,C) A)/
LT → A splits, it follows that XHT → X splits. □

Corollary VIII.3.4. Vector bundles on XHT are equivalent to Higgs bundles on X, i.e. vector
bundles E on X together with a map θ : E → E ⊗ Ω1

X such that 0 = θ ∧ θ : E → E ⊗ Ω2
X .

Proof. Locally T †
X is isomorphic to (G†

a)d, and representations thereof are given by d com-
muting endomorphisms. This unravels to the desired result. □

VIII.4. T -connections

It is a well-known phenomenon in p-adic geometry that descriptions given in coordinates do
not usually globalize naively; so one has an abstract description in general and makes it explicit
only in coordinates. We will follow the same approach here, and make the stack X♢ explicit in
coordinates. (However, in the present context, the gluing can actually be done in more naive ways.)

Thus, assume X = An,an
C is the n-dimensional complex-analytic affine space (or an open subset

thereof, which simply yields a base change of the whole situation). We write U1, . . . , Un for the
coordinates on X. We will work in a neighborhood of ∞ in Div1C. In this neighborhood, the
diagram

Div1C → Div1C/U(1)Betti ← P1
C

is
A1,an
C /U(1)† → A1,an

C /U(1)la ← A1,an
C ,

and on this region the map A1,an
C → A1,an

C /U(1)la indeed lifts to A1,an
C → A1,an

C /U(1)† in the obvious
way.

Consider the group (G†
a)n⋊U(1)la; here U(1)la ⊂ Gan

m,C acts via multiplication. This group acts

naturally on An+1,an via

(u1, . . . , un, t) · (U1, . . . , Un, T ) = (U1 + u1T, . . . , Un + unT, tT ).

Remark VIII.4.1. In p-adic Hodge theory, local coordinate descriptions of (φ,Γ)-modules in-
volve the group Γ = Zn

p ⋊ Z×
p , and similar local actions. Again the multiplicative part Z×

p acts on
the arithmetic base, while the additive part Zn

p acts on the geometric variables.

Proposition VIII.4.2. There is an isomorphism between the base change of

X♢/U(1)Betti → Div1C/U(1)Betti

to A1,an
C /U(1)la, and

An+1,an
C /(G†

a)
n ⋊ U(1)la → A1,an

C /U(1)la.

In particular, the base change of Xtw → P1
C to A1,an

C is given by

An+1,an
C /(G†

a)
n → A1,an

C
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where the action of (G†
a)n on An+1,an

C is given by

(u1, . . . , un) · (U1, . . . , Un, T ) = (U1 + u1T, . . . , Un + unT, T ).

Proof. Given any untilt Z ⊂ XC,A away from 0, it actually maps to

XC,A ×XC A1,an
C ⊂ AnSpec(Cont(S,C)[T ]×Cont(S,C) A)→ AnSpec(A)

and hence AnSpec(A)-valued points of X map to Z-valued points of X, yielding a map

X × A1,an
C → X♢ ×Div1C

A1,an
C

that is easily seen to be surjective. It remains to compute the induced equivalence relation.

The cofibre of A → O(Z) is given by Nil†(A)[1] ⊗ I/I2 where I denotes the ideal sheaf of Z.

Thus, for X = An,an
C , the equivalence relation is isomorphic to X × (G†

a)n, and one can make the
action explicit, yielding the given formulas. One can also keep track of the U(1)-action. □

Corollary VIII.4.3. For a complex manifold X, vector bundles on

Xtw ×P1
C
A1,an
C

are given by vector bundles M on X × A1,an
C together with a flat T -connection, i.e. a map

∇ :M →M ⊗OX
Ω1
X

that satisfies ∇∧∇ = 0 and
∇(fm) = f∇(m) + T∇(f)m.

In particular, vector bundles on Xtw are variations of C-twistor structures.

We note that there is no connection in the base A1,an
C -direction here.

Remark VIII.4.4. Classically, a variation of C-twistor structures on X can be defined as a T -
connection on X×A1,an

C as above, together with a T ′-connection on X×A1,an
C on the complementary

A1,an
C ⊂ P1

C (where T ′ = T−1), together with an isomorphism as follows. Restricting either of
these T -connections to Gan

m,C, they yield by Riemann–Hilbert a family of C-local systems on X
parametrized by Gan

m,C. The final datum is an isomorphism between these two families, where one

gets twisted by complex conjugation on the coefficients C (more precisely, one pulls back under the
automorphism of Gan

m,C pulled back from compex conjugation on AnSpec(C)).

Proof. This is the same kind of unravelling as before. For the final statement, one has to
check that the identification works even globally. Classically, in the gluing of the structures at
0 and ∞, variations of twistor structures have to use complex conjugation on D-modules; this is
incorporated for us in terms of the analytic Riemann–Hilbert isomorphism, and the observation
that the analytic de Rham stack is already defined over R (all of which is baked into the definition
of X♢ and thus of Xtw). □

Corollary VIII.4.5. For a complex manifold X, vector bundles on

X♢/U(1)Betti ×Div1C
A1,an
C /U(1)la

are given by a C-local system L on X together with a separated and exhaustive filtration Fil•(L⊗C
OX) of the corresponding holomorphic vector bundle, satisfying Griffiths transversality.
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In particular, vector bundles on X♢/U(1)Betti
∼= Xtw/U(1)la are variations of C-Hodge struc-

tures.

Proof. One passes to U(1)la-equivariant objects in the previous result. Over Gan
C /U(1)la ∼=

R>0,Betti, this yields just the Betti stack of X, so one just gets a C-local system L there. The

U(1)la-equivariant extension to a vector bundle then amounts to a filtration of the corresponding
holomorphic vector bundle. This must be stable under T times the connection, which amounts to
Griffiths transversality. The final sentence follows by the similar unravelling. □

We leave it as an exercise to the reader to give an explicit description of vector bundles on
X♢ itself. This combines the T -connection in the geometric direction with a T -connection in the
“arithmetic” A1,an

C -direction, but these two parts of the connection no longer satisfying the usual
commutation relations; instead, one gets commutation relations mirroring the structure of the

noncommutative group (G†
a)n ⋊ U(1)†. However, if one divides all pieces of the T -connection by

T , one arrives at a usual connection, but with values in 1/TΩ1; in other words, what one may
call a connection with logarithmic singularities along T = 0. In other words, vector bundles on
X♢ consist of two vector bundles with logarithmic singularities on X × A1,an, together with an
isomorphism of the local systems on X × C×

Betti they induce.

Remark VIII.4.6. For a map f : X → Y of complex manifolds, one gets an associated map
f♢ : X♢ → Y ♢, and similarly f tw : Xtw → Y tw. Pushforward along this map then yields the
expected relative cohomology of variations of twistor structures. If f is proper, then f♢ is proper;
while if f is smooth, then f♢ is cohomologically smooth. Thus, if f is proper and smooth, the
functors f♢∗ and f tw∗ take perfect complexes to perfect complexes. Under suitable projectivity and
polarizability assumptions, it should be the case that they preserve objects that are vector bundles
in each degree, but unfortunately our methods cannot yet yield such results. (Concretely, this
would imply degeneration of the Hodge-to-de Rham spectral sequence.)





CHAPTER IX

BunG

The goal of this talk is to define the stack of G-bundles on the twistor-P1 and study Hecke
operators on them, in particular the first nontrivial example for GL2.

IX.1. BunG

Let G be a reductive group over R.

Definition IX.1.1. The stack BunG is the object TDStack taking any totally disconnected
C-algebra A to the anima of G-bundles on XR,A.

It does indeed define an object of TDStack by the proof of Proposition VI.2.2.

Let us analyze the structure of BunG. We have, notably, the following fibre product description.

Proposition IX.1.2. There is a fibre product

BunG //

��

(BunG)Betti

��
∗/Gan

C
// ∗/G(C)Betti

where the left vertical map takes the fibre of a G-bundle at AnSpec(A) → XR,A, and the right
vertical map is obtained by applying −Betti.

Proof. This follows from the pushout definition of XR,A. □

Proposition IX.1.3. The natural map

∗/G(R)la → BunG,

induced by the trivial G-bundle, is an open immersion, whose image is the locus of locally trivial
G-bundles.

Proof. It is clear that the map is a monomorphism whose image is the locus of locally trivial
G-bundles. It is enough to prove that one gets an open immersion

∗/G(R)Betti → (BunG)Betti

77
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on Betti stacks, as then one recovers ∗/G(R)la as the fibre product

∗/G(R)la //

��

∗/G(R)Betti

��
∗/Gan

C
// ∗/G(C)Betti.

Thus, we need to see that if S is a light profinite set and E is G-bundle on XR,A for A =
Cont(S,C), then the locus of s ∈ S for which Es is trivial is open in S; and if this locus is all of S,
then E is actually trivial.

Assume first that G = GLn. One can first prove semicontinuity of the Newton polygon as in the
case of the Fargues–Fontaine curve (the critical point being properness of projectivized Banach–
Colmez spaces, which is much easier in the case at hand). This already implies that the locus of
all s ∈ S for which Es is trivial is open. Now assume that all fibres are trivial. Then

V = RΓ(XR,A, E)

is a perfect complex of Cont(S,R)-modules of perfect amplitude [0, 1] (as XR is covered by two
affines, giving perfect amplitude in [−∞, 1]; and then Serre duality gives the other bound). But
the triviality of Es forces that it actually is a vector bundle. The induced map V ⊗R OXR,A → E
is a map of vector bundles that is an isomorphism in all fibres, and thus an isomorphism.

In general, we can pick an embedding G ↪→ GLn; by reductivity of G, the quotient GLn/G is
affine, and it is visibly smooth. Trivializing the GLn-torsor induced from the G-torsor E, we get
a map XR,A → GLn/G which by affinity of the target corresponds to a map Spec(Cont(S,R)) →
GLn/G, or in other words a continuous map S → (GLn/G)(R). The locus where E is trivial
corresponds to the image of

GLn(R)→ (GLn/G)(R).
This is a submersion of real manifolds and hence has open image. Moreover, on the image the map
is locally split, so when S maps to the image, it can also be lifted. □

Recall that G-bundles on XR are classified, up to isomorphism, by Kottwitz’ set B(G).

Definition IX.1.4. For b ∈ B(G), let BunbG ⊂ BunG be the image of the map ∗ → BunG given
by the G-bundle corresponding to b.

Theorem IX.1.5. The inclusion BunbG ⊂ BunG arises via pullback from (BunbG)Betti ⊂ (BunG)Betti,
which is a locally closed substack. The Betti stack (BunG)Betti has a locally finite stratification into
these strata (BunbG)Betti, and hence BunG has a locally finite stratification into strata BunbG.

As in the p-adic case, Kottwitz’ notion of basic b corresponds to the notion of semistable G-
bundles. In the p-adic case, each connected component contains a unique semistable stratum. This
fails here: There can be multiple or no semistable strata in a connected component. In particular,
it can happen that a non-semistable stratum is open (for example for the group GL3 and the bundle
O ⊕O(12)).

Proof. For the first assertion, it suffices to see that if for some strongly totally discon-
nected C-algebra A with S = Hom(A,C), a G-bundle E is isomorphic to Eb on XR ×AnSpec(R)
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AnSpec(Cont(S,R)), then E is isomorphic to Eb. But to see this, we simply have to lift an iso-
morphism of G-torsors from Cont(S,C) to A. But A → Cont(S,C) is a henselian thickening (as
discrete rings), so any trivialization of a G-torsor lifts.

Now in general we have the Harder–Narasimhan stratification, and on each Harder–Narasimhan
stratum, the Harder–Narasimhan filtration splits (as all relevant extension groups are split, as
vector bundles of positive slope have no cohomology). This reduces the classification to the case of
semistable G-bundles. These are given by basic b up to isomorphism, and for each such b, the map

∗/Gb(R)la ↪→ BunG

is an open immersion, by applying the result for b = 1 to the inner form Gb (so BunGb
∼= BunG).

As b varies over basic elements of B(G), this covers the whole semistable locus. □

IX.2. Hecke operators

As usual, by looking at modifications of G-bundles, one can define Hecke operators. In general,
their definition is slightly involved as they involve the geometric Satake equivalence. For this reason,
we restrict our discussion here to the case of minuscule Hecke operators.

Thus, let µ be a conjugacy class of minuscule cocharacters of G. We get the associated flag
variety Flµ.

Definition IX.2.1. The Hecke stack Hckµ sends a totally disconnected C-algebra A to the
anima consisting of triples (E , x, s) consisting of a G-torsor E on XR,A, a degree 1-Cartier divisor
Z ⊂ XR,A, and a section

s : Z → E ×G Fl

of the Fl-fibration E ×G Fl→ XR,A over Z.

In particular, Hckµ comes with a projection

Hckµ → BunG ×Div1.

The fibre of the composite projection
Hckµ → BunG

over the trivial G-bundle is isomorphic to Fl♢µ . In general, the fibres are certain twisted forms of

Fl♢µ .

On the other hand, there is a second projection

Hckµ → BunG

taking (E , x, s) to the minuscule modification E ′ of E at x determined by s. This leads to Hecke
correspondence

Hckµ

{{ &&
BunG BunG ×Div1

both of whose projections are proper and cohomologically smooth; and hence the Hecke operator

Tµ : Dqc(BunG)→ Dqc(BunG ×Div1)
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via pull-push along the Hecke correspondence.

Remark IX.2.2. Over the last few lectures, we have seen that using our definition of “families
of twistor-P1’s”, we get relations to three a priori different mathematical subjects:

(1) The theory of (locally analytic) G(R)-representations, via the embedding

∗/G(R)la ↪→ BunG.

(2) Various notions of L-parameters, including the one of Adams–Barbasch–Vogan, via vector
bundles on Div1.

(3) The theory of variations of Hodge/twistor structures, via vector bundles on X♢ and its
variants.

These Hecke operators combine all three aspects: The first via BunG, the second via Div1, and the
third via the fibres Fl♢µ of the Hecke correspondence.

The remaining goal of the lectures is to see the simplest Hecke correspondence in action.

IX.3. The isomorphism of the two towers

In p-adic geometry, the simplest instance of a Hecke operator yields the isomorphism of Lubin–
Tate and Drinfeld tower, first proved by Faltings [Fal02], cf. also [Far08], [SW13]. For the group
GL2, this takes the form of an isomorphism

MLT,∞
∼= //

f

{{

MDr,∞
g

&&
P1
Cp

P1
Cp
\ P1(Qp)

where everything is sight is equipped with commuting GL2(Qp) and D×-actions (where D/Qp is
the quaternion algebra). Here f is a GL2(Qp)-torsor while g is a D×-torsor. The spaces at infinite
level are not of finite type anymore, but are perfectoid spaces. The notion of torsors has to be taken
in the sense of pro-étale sheaves on the site of perfectoid spaces, i.e. in the category of diamonds.

Indeed, as moduli problems, MLT,∞ classifies injective maps O2 → O(12) on the Fargues–
Fontaine curve XQp with cokernel supported at ∞; this moduli problem is clearly related to a
Hecke operator on BunGL2 . The two projection maps arise by forgetting the fixed trivialization of
O2 or O(12): There is a P1

Cp
(or rather, the Brauer-Severi variety of D) worth of modifications of

O(12) of type µ = (0,−1) ∈ X∗(GL2)
+ ⊂ Z2, and all of them are isomorphic to O2. Picking the

isomorphism yields the GL2(Qp)-torsor f . Conversely, there is a P1
Cp

worth of modification of O2

of type µ = (1, 0). The modified bundle is isomorphic to O(12) exactly for points of P1
Cp
\ P1(Qp);

and on this locus, picking the isomorphism yields the D×-torsor g.

Repeating precisely the same analysis, but on families of twistor-P1’s, we arrive at the following

structure. We warn the reader that here, the Brauer–Severi variety P̃1
R of the Hamilton quaternions

H appears again, but in a way entirely unrelated to its appearence as the twistor-P1. In order to
disambiguate, we denote this as FlHµ , the flag variety for H×.
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Proposition IX.3.1. Let M be the object of TDStack taking a totally disconnected C-algebra
A to the anima of fibrewise injective maps i : O2

XR,A
↪→ OXR,A(

1
2).

(1) The cofiber of i defines a Cartier divisor, leading to a mapM→ Div1.
(2) Parametrizing modifications of OXR,A(

1
2) of type (0,−1) at a given point of Div1 is repre-

sented by (FlHµ )
♢, and this yields a GL2(R)la-torsor

f :M→ (FlHµ )
♢.

(3) Parametrizing modifications of O2
XR,A

of type (1, 0) at a given point of Div1 is represented

by Fl♢µ , where Flµ = P1
R is the flag variety of GL2. The modified bundle is locally isomor-

phic to OXR,A(
1
2) precisely on (Flµ \ Flµ(R))♢, and this yields a H×,la-torsor

g :M→ Fl♢µ .

We note that on the other hand,

M⊂ BC(O(12))
2 ∼= A4,an

C

is an explicit open subset. In principle, all structures could thus be made very explicit. We will
not attempt to do this.

Proof. For part (i), one should more precisely say that the determinant of the cofiber defines
a degree 1 line bundle with a nonzero section; equivalently, one takes det(i). The statements are
easy consequences of the description of BunG that we have already obtained. □

IX.4. The modular curve

Fix some (sufficiently small) congruence subgroup Γ ⊂ GL2(Z) and the modular curve

XΓ = Γ\(Flµ \ Flµ(R)),

considered as a real form of a complex manifold. (Here, we continue to use the notation from the
previous section, and write Flµ for P1.) I had long expected that, in a suitable sense, there should
be a canonical H×-torsor over XΓ. Moreover, given a representation of H× – which is essentially
an algebraic representation of GL2 – the associated local system on XΓ should be the variation
of Hodge structures built from the corresponding algebraic representation of GL2 and the rank 2
variation coming from the cohomology of the elliptic curve. Indeed, using a point of Flµ \ Flµ(R)
one can build a modification of the trivial bundle O2 on the twistor-P1 that will be isomorphic
to O(12); and picking the isomorphism should yield the desired H×-torsor. The modified bundle,

isomorphic to O(12), is in fact the one coming from the Hodge structure of the universal elliptic
curve, which is why the corresponding local systems should yield the variations of Hodge structures
built from the elliptic curve.

Using the formalism, we can now give a mathematically meaningful interpretation. First, we
have to pass to diamonds, and consider

X♢
Γ = Γ\(Flµ \ Flµ(R))♢.
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Using the spaceM from the previous section, we get a H×,la-torsor

X̃Γ = Γ\M → Γ\(Flµ \ Flµ(R))♢ = X♢
Γ .

This realizes to the variations of Hodge/twistor structures of the universal elliptic curve:

Theorem IX.4.1. Let fΓ : EΓ → XΓ denote the universal elliptic curve. Then R1f♢Γ,∗O is a

rank 2 vector bundle on X♢
Γ . There is a canonical isomorphism to the rank 2 bundle on X♢

Γ arising
from the composite

X♢
Γ → ∗/H

×,la → ∗/GL2

where the second map is the composite

∗/H×,la ∼= BunbGL2
⊂ BunGL2 → ∗/GL2,

with the last map pulling back a G-torsor on XR,A to AnSpec(A).

Proof. At first, given the introduction to this section, this theorem may look like it ought to be
a tautology, but there is something subtle going on. Namely, in our interpretation of Hodge/twistor
structures, the filtration data appears at the fixed point ∞ of Div1. On the other hand, Hecke
operators are related to modifications at a varying point of Div1. Another subtlety is that the the-
orem is switching between the curve XR and the mirror curve Div1: Indeed, f♢Γ is about something

happening on the level of Div1, while the modification of vector bundles is something happening
on the level of XR.

We want to analyze vector bundles on X♢
Γ , so consider any totally disconnected C-algebra A

with a map

AnSpec(A)→ X♢
Γ .

This gives us a degree 1 Cartier divisor Z ⊂ XR,A and a map Z → XΓ; in particular, an elliptic
curve EZ → Z. Now more generally, for any “abstract family of twistor-P1’s” equipped with a
degree 1 Cartier divisor, one can define a version of “prismatic cohomology”, which can again be
defined in terms of a stack. Let us explain it only in this case: we get a stack

(EZ/XR,A)
∆ → XR,A,

with the following moduli description. For any totally disconnected C-algebra B with a map
AnSpec(B)→ XR,A, we get a map X ′

R,B → XR,A by the universal property of X ′
R,B in the category

of abstract families of twistor-P1’s; here X ′
R,B is the version of XR,B where the modification happens

at the point AnSpec(Cont(S(B),C))→ AnSpec(B)→ XR instead of ∞. Then

(EZ/XR,A)
∆ → XR,A

parametrizes maps X ′
R,B ×XR,A Z → EZ over Z. (A priori, as B was a C-algebra, this only defines

the base change to XC,A, but one can check that this definition canonically descends.)

It follows from the definitions that we have a cartesian diagram

E♢
Γ ×X♢

Γ
AnSpec(A) //

��

AnSpec(A)

��
(EZ/XR,A)

∆ // XR,A.
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We will now show that the first higher cohomology of

(EZ/XR,A)
∆ → XR,A

yields a rank 2 vector bundle on XR,A locally isomorphic to O(12), which thus for varying A with

AnSpec(A)→ X♢
Γ leads to a map

X♢
Γ → BunbGL2

∼= ∗/H×,la.

In fact, this rank 2 vector bundle on XR,A will be canonically a modification of the rank 2-bundle
determined by the map ∗/Γ → ∗/GL2, with modification determined by the point of Flµ. The
theorem then follows by using the previous cartesian diagram.

But now we observe that there is in fact a natural map

XR,A → Z♢/O(2)Betti

yielding a base change diagram

(EZ/XR,A)
∆ //

��

XR,A

��
E♢

Z /O(2)Betti
// Z♢/O(2)Betti.

Indeed, given any totally disconnected C-algebra B with map AnSpec(B) → XR,A, this in-
duces a map X ′

R,B → XR,A under which the preimage of Z corresponds to a map AnSpec(B) →
Div1/O(2)Betti with a lift to a map AnSpec(B)→ Z♢/O(2)Betti. (The O(2)-ambiguity here comes
from having to translate AnSpec(Cont(S(B),C))→ XR to∞ in order to identify X ′

R,B with XR,B.)

This constructs the map XR,A → Z♢/O(2)Betti, and unraveling definitions, we get the cartesian
diagram

(EZ/XR,A)
∆ //

��

XR,A

��
E♢

Z /O(2)Betti
// Z♢/O(2)Betti.

Thus, we are reduced to understanding the cohomology of E♢
Z /O(2)Betti → Z♢/O(2)Betti for an

elliptic curve EZ → Z. By the last lecture, this correspondends to variations of R-Hodge structure,
as desired. □

Another way to summarize the situation is in terms of a cartesian diagram

X♢
Γ

//

��

(FlHµ )
♢/H×,la

��

// Div1 × ∗/H×,la ⊂ Div1 × BunG

∗/Γ a// ∗/GL2(R)la ⊂ BunG.

where the lower map is the composite ∗/Γ → ∗/GL2(R)la ⊂ BunG, and the right vertical map
classifies modifications of type (0,−1) of bundles isomorphic to H×,la. This is analogous to Zhang’s
cartesian diagram in p-adic geometry [Zha23].
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In particular, proper base change implies the following result, which is a version of Matsushima’s
formula expressing the cohomology of Shimura varieties in terms of automorphic forms. This version
also keeps track of Hodge structures (as encoded in terms of vector bundles on Div1).

Theorem IX.4.2. Consider

πΓ := a!(1) ∈ Dqc(∗/GL2(R)la),
an incarnation of the space of cusp forms on GL2 with level Γ. Then for any algebraic representation
ρ of GL2, denoting Vρ the associated vector bundle on X♢

Γ , we have

RΓc(X
♢
Γ , Vρ)

∼= p!(ρ⊗ Tµ(πΓ)) ∈ Dqc(Div1).

Here Tµ(a!(1)) ∈ Dqc(∗/H×,la × Div1) is given by applying the Hecke operator Tµ to the space of

cusp forms πΓ, and we are taking the ρ∨-isotypic component for the H×,la-action, applying p! along
the map

p : ∗/H×,la ×Div1 → Div1.

□



CHAPTER X

Non-abelian Lubin–Tate theory over R

The final topic for this seminar is a version of non-abelian Lubin–Tate theory over R. Here, we
are looking for a cohomological realization of L-parameters that is similar to the realization of the
local Langlands correspondence for GLn(Qp) in the cohomology of the Lubin–Tate tower.

In the formulation of [Sch18], the result is the following. Let π be a Qℓ-representation of
GLn(Qp) (assumed later to be a discrete series irreducible representation). From the GLn(Qp)-
torsor

MLT,∞ → Pn−1
Cp

one can build a sheaf Fπ on Pn−1
Cp

(whose stalks are π). This sheaf is in fact D×-equivariant, and

also has a Weil descent datum. This means that on the cohomology

H∗(Pn−1
Cp

,Fπ),

one gets an action of D× × WQp . A form of following result is due to Deligne for n = 2, was
conjectured by Carayol for any n, and proved by Harris–Taylor in general (with refinements by
Boyer, Dat, ...). It can also be proved by following the arguments of [Sch18] with ℓ-adic coefficients,
as a consequence of local-global compatibility.

Theorem X.0.1. If π is a discrete series irreducible representation of GLn(Qp), then

H∗(Pn−1
Cp

,Fπ)

is concentrated in degree ∗ = n − 1, where one gets the tensor product JL(π) ⊗ LLC(π)(−n−1
2 )

of the Jacquet–Langlands correspondence JL(π) (an irreducible D×-representation) and the local
Langlands correspondence LLC(π) (an n-dimensional WQp-representation), twisted by (−n−1

2 ).

X.1. The Jacquet–Langlands/local Langlands functor

Using our techniques, we can translate the above to the real numbers, at least for n = 2. More
generally, it can be adapted to any group corresponding to a Shimura variety, but we will focus on
GL2 for concreteness.

Namely, we have the GL2(R)la-torsor

M→ (FlHµ )
♢

where FlHµ/R is the Brauer–Severi variety of the Hamilton quaternions H as before (i.e., the twistor-

P1, but in a different role). Thus, for any locally analytic GL2(R)-representation π we get a sheaf Fπ
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on (FlHµ )
♢ (with stalks isomorphic to π). In fact, this is an H×,la-equivariant sheaf, i.e. it descends

to

(FlHµ )
♢/H×,la.

Indeed, the isomorphism of the two towers gives us the isomorphism

(FlHµ )
♢/H×,la ∼= (Flµ \ Flµ(R))♢/GL2(R)la → ∗/GL2(R)la,

and then Fπ simply arises via pullback from π, regarded as a quasicoherent sheaf on ∗/GL2(R)la.
Now we have the proper and cohomologically smooth projection

f : (FlHµ )
♢/H×,la → ∗/H×,la ×Div1.

In particular,

Rf∗Fπ ∈ Dqc(∗/H×,la ×Div1).

Definition X.1.1. The Jacquet–Langlands/local Langlands functor is

JLL : Dqc(∗/GL2(R)la)→ Dqc(∗/H×,la ×Div1) : π 7→ Rf∗Fπ.

Remark X.1.2. Recall that the isomorphism of the towers is precisely giving the simplest piece
of the Hecke correspondence for BunGL2 . This in fact means that JLL is the simplest instance of
a Hecke operator

Tµ : Dqc(BunG)→ Dqc(BunG ×Div1).

Here, we restrict to one stratum on the source (the trivial rank 2 bundle), and take the fibre of the
Hecke operator at one stratum on the target (the rank 2 bundle O(12)).

Now we can formulate the desired result, yielding the desired cohomological realization of L-
parameters.

Theorem X.1.3. Let π be a discrete series irreducible representation of GL2(R). Then

JLL(π) ∼= JL(π)⊗ LLC(π)[−1](−1
2)

where JL(π) is the Jacquet–Langlands correspondence (an irreducible finite-dimensional represen-
tation of H×) and LLC(π) is the local Langlands correspondence, regarded as a rank 2 vector bundle
on Div1. The twist (−1

2) is by the positive square root of the norm character on WR.

X.2. Preservation of infinitesimal characters

Both Dqc(∗/GL2(R)la) and Dqc(∗/H×,la) are naturally linear over the Harish-Chandra center
U(h)W . The goal of this section is to prove the following proposition.

Proposition X.2.1. The functor JLL admits a natural U(h)-linear structure.

A similar result was proven by Dospinescu–Rodŕıguez Camargo for the locally analytic coho-
mology of the p-adic Lubin–Tate tower.
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Proof. The functor JLL is encoded in the kernel

K ∈ Dqc(∗/GL2(R)la × ∗/H×,la ×Div1)

given as the !-pushforward along

FlHµ/H×,la → ∗/GL2(R)la × ∗/H×,la ×Div1

where the projection to ∗/GL2(R)la arises from the isomorphism of the two towers. We want to
identify the two U(h)W -actions on this !-pushforward. This depends only on the Lie algebra actions,
so we can pull back to

∗/(K ⊂ GL2(R)la)† × ∗/(KH ⊂ H×,la)† ×Div1

for maximal compact subgroups K and KH. Then this !-pushforward can be written as the com-
pactly supported cohomology of a sheaf onM(C)/K×KH; one reduces to showing that for compact
K ×KH-invariant subsets Z ⊂M(C), the ∗-pushforward along

(Z ⊂M)†/(K ⊂ GL2(R)la)† × ∗/(KH ⊂ H×,la)† → ∗/(K ⊂ GL2(R)la)† × ∗/(KH ⊂ H×,la)† ×Div1

has the property that the two U(h)W -actions agree.

But now this ∗-pushforward is actually a quasicoherent sheaf living in degree 0, so this is
actually a condition. Moreover, by continuity, it can be checked on the generic part of Div1. Here,
there is a formal argument. □

X.3. Proof via local-global compatibility

We can now give a proof of Theorem X.1.3, via local-global compatibility.

Proof of Theorem X.1.3. We assume for simplicity that π has trivial central character;
in the general case, essentially the same argument works, fixing a central character. Now π has
the same infinitesimal character as some finite-dimensional representation Vλ of GL2, with highest
weight λ. By Proposition X.2.1, we know that JLL(π) also has the same infinitesimal character as
Vλ. One can also check that central characters are preserved by Hecke operators, so JLL(π) natu-
rally descends to (H×/R×)la. As H×/R× is compact, representations with infinitesimal character
λ are generated by Vλ|(H×/R×)la . Thus, it suffices to compute the Vλ|(H×/R×)la-isotypic component

of JLL(π), as an object of

Dqc(∗/(H×/R×)la ×Div1).

Now we globalize π. More precisely, let D/Q be a quaternion algebra split at ∞, let G =
D×/Gm, and let Γ ⊂ G(Q) ⊂ PGL2(R) be some congruence subgroup. Let πΓ = Cω(PGL2(R)/Γ),
the space of real-analytic automorphic forms of level Γ. Let πΓ,λ be the localization of π to gener-
alized infinitesimal character λ. By Theorem III.4.1 and the admissibility results for automorphic
forms of Harish-Chandra, πΓ,λ corresponds to an admissible (pgl2,K)-module. Choosing an ap-
propriate level Γ, we can assume that there is some cuspidal automorphic representation that
contributes with multiplicity 1 and has π as its PGL2(R)-component.

Let

XΓ = Γ\(Flµ \ Flµ(R)),
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the corresponding Shimura curve, defined over R. Then the version of Matsushima’s formula from
the last lecture gives an isomorphism (compatible with Hecke operators) between the Hodge struc-
ture RΓ(XΓ, Vλ) with complex conjugation, and the VΛ|(H×/R×)la-isotypic component of JLL(πΓ).

Moreover, by Proposition X.2.1, this agrees with the VΛ|(H×/R×)la-isotypic component of JLL(πΓ,λ).
Passing to an eigenspace for the Hecke operators, we get an isomorphism between the Hodge struc-
ture with complex conjugation seen in this Hecke eigenspace on RΓ(XΓ, Vλ), and the VΛ|(H×/R×)la-

isotypic component of JLL(π). But, forgetting complex conjugation, Vλ is a polarizable variation
of pure C-Hodge structures on XΓ and so RΓ(XΓ, Vλ) is in each degree a polarizable pure C-Hodge
structure of the expected weight. Moreover, the Hecke eigenspace is known to be of dimension 2,
and one also knows the Hodge numbers (as one can make the Hodge decomposition explicit). It
must then be given by LLC(π)(−1

2), by the next lemma. □

Lemma X.3.1. Let V be a rank 2 bundle on Div1 whose restriction to Div1C has trivial mon-
odromy and corresponds to a C-Hodge structure of type ((p1, q1), (p2, q2)) with p1 ̸= q1. Then p2 = q1
and p1 = q2, the vector bundle V is irreducible, and corresponds to the irreducible 2-dimensional
WR-representation

IndWR
C× (z 7→ zp1zq1).

Proof. Indeed, V must be the pushforward of the line bundle on Div1 corresponding to the
C-Hodge structure with weight (p1, q1). □

X.4. Local Proof

On the other hand, in a perhaps more satisfying way, one can also prove the result by local
means; we sketch the ideas. As before, it is enough to compute the H×,la-isotypic piece for some
finite-dimensional representation ρ of H×. The new observation is that the functor JLL(π) is a
composite of a proper cohomologically smooth pushforward and a cohomologically smooth pullback;
it is then easy to compute the left adjoint as a functor

Dqc(∗/H×,la)→ Dqc(∗/GL2(R)la ×Div1),

which is up to shift and twist again given by the correspondence induced by the isomorphism
between the two towers M. For example, the image of the trivial H×,la-representation yields the
!-pushforward of

(Flµ \ Flµ(R))♢ → Div1

as quasicoherent sheaf on Div1 with GL2(R)la-action. Away from ∞ ∈ Div1, this becomes simply
the compactly supported Betti cohomology of Flµ \ Flµ(R), which is concentrated in degree 2 and
free on 2 basis elements, with GL2(R) permuting the two basis vectors. At ∞, we arrive instead
at the compactly supported Hodge cohomology of Flµ \Flµ(R). Now RΓc(Flµ \Flµ(R),O) is given
by the discrete series representation π with trivial infinitesimal character (by analytic Beilinson–
Bernstein) while RΓc(Flµ \ Flµ(R),Ω1) contains π as a subrepresentation (via ∇ : O → Ω1), with
quotient the 2-dimensional representation of GL2(R) we had seen away from ∞.

This reduces the computation to computations in the derived category of locally analytic
GL2(R)-representations, which under Theorem III.4.1 are equivalent to computations of (g,K)-
cohomology. It is certainly possible to see this way that JLL(π) is concentrated in degree 1, where
it is the tensor product of JL(π) with some rank 2 vector bundle on Div1. By Lemma X.3.1, it
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suffices to identify this vector bundle after pullback to Div1C. This also follows by unraveling the
computations.
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