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Condensed Mathematics and Complex Geometry

Preface

These are lectures notes for a course in Summer 2022 joint between Bonn and Copenhagen.

Many thanks go to Ko Aoki and Mohan Ramachandran for many comments, and in particular
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1. Lecture I: Introduction

Over the last few years, we have been working on an alternative foundation for the development
of a (very general) “analytic geometry”, based on a new foundation for combining algebra and
topology, in the framework of “condensed mathematics”. These ideas have been laid out in the
lectures [CS19] and [CS20], given in 2019–2020.

The goal of this course will be to make these developments more concrete by concentrating on
the case of complex-analytic geometry, and instead of trying to develop new kinds of geometry,
we will here merely try to redevelop the classical theory, but from a different point of view. More
precisely, we aim to reprove some important theorems for compact complex manifolds, including:

(1) Finiteness of coherent cohomology;
(2) Serre Duality;
(3) In the algebraic case, GAGA;
(4) (Grothendieck–)Hirzebruch–Riemann–Roch.

The proofs will be very different from previous proofs. Notably, at least for the first three
results, our proofs will be of a local nature; even better, we will formulate versions of these results
that are true even in the non-compact (sometimes also called non-proper) case. Moreover, we would
like to say that our proofs are proofs by “formal nonsense” and in particular analysis-free. Let us
try to be somewhat more precise by what we have in mind here.

The most basic notion in complex analysis is that of a holomorphic function, in one variable.
The claim that this is a well-behaved notion is contained in the following theorem.

Theorem 1.1. There is a (necessarily unique) sheaf O on the topological space C, such that
for any open disc

D = D(x, r) = {z ∈ C | |z − x| < r} ⊂ C,
one has

O(D) = {
∞∑
n=0

an(T − x)n | an ∈ C, ∀r′ < r, anr
′n → 0},

with obvious transition maps O(D)→ O(D′) for D′ ⊂ D.
Moreover, for any such disc D, the sheaf cohomology groups H i(D,O) = 0 for i > 0.

Here, the “obvious” transition maps are those that are compatible with evaluation at points.
More precisely, if z ∈ D(x, r) and f ∈ O(D), i.e. f =

∑∞
n=0 an(T−x)n, then f(z) =

∑∞
n=0 an(z−x)n

is absolutely convergent in C, so O(D) maps (injectively) to the functions from D to C. Then
O(D)→ O(D′) is the unique map making

O(D) //

��

Map(D,C)

��
O(D′) // Map(D′,C)

commute. (One could also write down this map very explicitly in terms of power series.)
In other words, there should be a notion of “holomorphic function” on D, a certain kind of

function D → C, and checking holomorphicity can be done locally. On the other hand, any such,
a priori locally defined, function, should have on D a global convergent Taylor series expansion.
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The usual proof of this theorem is based on treating holomorphic functions as special smooth
functions, and most critically on Cauchy’s integral formula, based on integrating along paths. This
makes it possible to compute the Taylor coefficients an in terms of integrals around the circle
|z − x| = r′ for any r′ < r. For the final cohomology statement, one uses the exact sequence

0→ O → C∞
∂−→ C∞ → 0,

and uses the good properties of the ∂-differential operator, as well as bump functions to see that
the higher cohomology of the sheaf of C∞-functions vanishes. This is analysis!

Already Weierstraß was trying to avoid the use of integrals in the proof of this theorem; he gave
an argument replacing the integrals by approximating finite sums, but in essence it is still the same
argument. In a letter to Schwarz dated October 3, 1875, Weierstraß writes (cf. [Rem84, Chapter
8, Section 2.2.3]):

“Je mehr ich über die Principien der Functionentheorie nachdenke – und ich thue dies un-
ablässig –, um so fester wird meine Überzeugung, dass diese auf dem Fundamente algebraischer
Wahrheiten aufgebaut werden muss, und dass es deshalb nicht der richtige Weg ist, wenn umgekehrt
zur Begründung einfacher und fundamentaler algebraischer Sätze das ‘Transzendente’, um mich
kurz auszudrücken, in Anspruch genommen wird – so bestechend auch auf den ersten Ablick z.B. die
Betrachtungen sein mögen, durch welche Riemann so viele der wichtigsten Eigenschaften algebrais-
cher Functionen entdeckt hat. (Dass dem Forscher, so lange er sucht, jeder Weg gestattet sein
muss, versteht sich von selbst; es handelt sich nur um die systematische Begründung.)”

In this course, we will try to develop complex geometry in this spirit.
Let us also remark that the above strategy of proof is extremely different from the strategy

of proof used to prove the corresponding result in p-adic geometry (known as “Tate acyclicity”).
Part of our goal is to develop foundations for analytic geometry that treat archimedean and non-
archimedean geometry on equal grounds; and we will proceed by making archimedean geometry
more similar to non-archimedean geometry. In very rough outline, we will make C[T ] into an
“analytic ring”, which will have an associated “analytic spectrum” AnSpecC[T ]. Moreover, any D
as above will correspond to an open subset of AnSpecC[T ], and the theorem basically amounts to a
computation of the structure sheaf on AnSpecC[T ] (that will exist, and have acyclicity properties, by
general theory). This computation will in fact be rather simple. So in this approach, one discovers
holomorphic functions as functions on certain open subsets of the analytic spectrum AnSpecC[T ].

Let us step back for a moment and take a big picture look at the development of different kinds
of geometry. Basically, things started with the analysis of functions of several real variables,

f : Rn → Rm,

restricting to continuous, differentiable, or smooth functions. The focus here was always on the
infinitesimal variation of such functions; and functions are notably something that is determined
by its values (and vice-versa, any collection of values determines a function). Assuming n and m
even and identifying R2 = C, one can also restrict to complex-differentiable functions. The first big
surprise in the theory is that this already implies smoothness, and in fact that the function is given
by a convergent power series expansion. Here, a small shift happens: Any function is uniquely
given by a formula (its power series expansion). Generally, complex analysis becomes much more
rigid, and in fact is often extremely close to algebraic geometry, which deals just with polynomial
functions (with complex coefficients). Pictorially:
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Map(C,C) ⊃ C0(C,C) ⊃ C1(C,C) ⊃ . . . ⊃ C∞(C,C) ⊃ O(C) ⊃ C[T ] ⊃ Z[T ]

This goes from arbitrary maps (“set theory”) to continuous maps (“topology”) to differen-
tiable functions (“analysis”) to smooth functions (“differential geometry”) to holomorphic func-
tions (“complex analysis”) to complex polynomials (“algebraic geometry”) to integer polynomials
(“arithmetic geometry”). Historically (at least on a very superficial level), the development started
with some class of differentiable functions, implicit in the first works on analysis, and then pro-
ceeded rightwards by putting more and more stringent conditions. Proceeding along those lines,
however, made functions much more into formulas – any element of Z[T ] is just something like
3T 4 + 7T − 4, and in fact can be evaluated not just in C, but in any field, for example Fp.

Traditionally, objects on the right are considered more complicated than objects towards the
left. We will take the opposite point of view – what could be simpler than polynomials with integer
coefficients? (Indeed, these are the simplest kinds of commutative rings.) Thus, we will start from
Z[T ] and try to get to C[T ] and O(D) in a “formal nonsense” manner – i.e., we want to find ways
to freely adjoint the “correct” convergent power series.

In other words, we need a way to “formally” adjoin convergent sums. This is formalized in
the notion of an “analytic ring” developed in [CS19] and [CS20]. The idea is the following. An
analytic ring should be a topological ring A together with a certain (topological) A-module

Summable(N, A) ⊂ AN

of “summable” sequences, such that, for any null-sequence a0, a1, . . . , an, . . . ∈ A, encoded in a
continuous map

f : N ∪ {∞} → A

(with f(∞) = 0), and any summable sequence (x0, x1, . . . , xn, . . .) ∈ Summable(N, A), one can form
a new element

∞∑
n=0

xnan ∈ A.

In other words, any continuous map f : N ∪ {∞} → A with f(∞) = 0 should extend uniquely
to a continuous map

f̃ : Summable(N, A)→ A.

It turns out that it’s more convenient to generalize convergent sequences (for example, in general
continuity cannot be checked in terms of convergent sequences). Namely, N∪∞ is a special kind of
profinite set S (recall that profinite sets are also known as totally disconnected compact Hausdorff
spaces). One should define for any profinite set S a topological A-module MA(S) of “A-valued
measures on S”, with a map S →MA(S) sending any s ∈ S to the “Dirac measure” δs ∈MA(S),
such that for any continuous map f : S → A, there is a unique extension

f̃ :MA(S)→ A : µ 7→
∫
fµ.

In other words, an analytic ring A is roughly the datum of a topological ring A, together with
a topological A-moduleMA(S) for any profinite set S, satisfying some compatibilities. One would
like the basic example to be A = R, with MR(S) given by the space of Radon measures, i.e.

MR(S) = Homcont
R (Cont(S,R),R).
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Unfortunately, as we will discuss below, this will not define an example of an analytic ring, due to
some subtle behaviour of the real numbers. But similar constructions carried over Z or Zp (for a
prime p) do give very interesting examples of analytic rings, discussed in [CS19].

We note that any analytic ring A will in fact give rise to a notion of “complete” topological
A-modules M . Namely, M is complete if for any f : S →M as before, there is a unique extension

f̃ :MA(S)→M : µ 7→
∫
fµ.

Example 1.2. Let A = R with MR(S) given by the space of Radon measures as above. Then
for any complete locally convex topological R-vector space V , any map f : S → V extends uniquely
to a map

f̃ :MR(S)→ V : µ 7→
∫
fµ.

On the other hand, we would like to use the very categorical methods of algebraic geometry
in this setting of analytic rings. In particular, we would like to work in the setting of abelian
categories.

Problem 1.3. Topological abelian groups do not form an abelian category!

The issue is very basic. Indeed, consider the map

Rdisc → Rnat

from R with the discrete topology to R with its natural topology. This has trivial kernel, trivial
cokernel, but is not an isomorphism. This happens in fact whenever one equips an abelian group
M with two distinct topologies, one finer than the other, so it is an extremely pervasive problem.

On the other hand, in the presentation above, we started to look at topological abelian groups
M only in terms of the corresponding functor

M : ProFinop → Ab : S 7→ Cont(S,M)

taking any profinite set S to the continuous maps from S to M . This will be an example of a
condensed abelian group, which is just a functor

ProFinop → Ab

satisfying some simple axioms.
Condensed abelian groups form an abelian category! For example, there is a short exact se-

quence

0→ Rdisc → Rnat → Q→ 0

where Q is the condensed abelian group given by the functor

Q(S) = Cont(S,R)/LocConst(S,R).

Note that the “underlying abelian group” Q(∗) = 0, but still Q 6= 0 as Q(S) 6= 0 for infinite
profinite sets – for example, taking S = N∪ {∞}, not every convergent sequence in R is eventually
constant.

Just like condensed abelian groups, one can define condensed sets, as functors ProFinop → Set,
satisfying some simple conditions (recalled in the next lecture). There is a functor

Top→ Cond : X 7→ (X : S 7→ Cont(S,X)).
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Restricted to compactly generated spaces, this functor is fully faithful, so in practice condensed
sets are an enlargement of topological spaces. But there are many more objects in Cond; notably,
nonseparated quotient objects.

Definition 1.4 (slightly preliminary). An analytic ring is a condensed ring A together with a
condensed A-moduleMA(S) for any profinite set S, with a map S →MA(S) of “Dirac measures”,
subject to some compatibility. In particular, the full subcategory

{MA-complete condensed A-modules} ⊂ Cond(A),

of those condensed A-modules M such that for all S and all f : S →M , there is a unique extension

f̃ :MA(S)→M , should be an abelian subcategory of Cond(A), stable under extensions.

We can now explain why R (or R – we will soon become lax with our use of underlines, treating
everything as condensed from the start...) equipped with the spaces of signed Radon measures is
not an analytic ring.

Example 1.5. For any p ∈ [1,∞], let `p(N) be the Banach space of p-summable sequences
(x0, x1, . . .) of real numbers, equipped with the `p-norm

||(xn)n||`p = (
∑
n

|xn|p)1/p.

Then `1(N) ⊂ `2(N) with dense image; in condensed R-vector spaces, we can pass to the quotient:

0→ `1(N)→ `2(N)→ Q→ 0.

Now consider the (non-linear) map

g : `1(N)→ `2(N) : (xn)n 7→ (xn log |xn|)n.
It turns out that the composite

g : `1(N)
g−→ `2(N)→ Q

is a (nonzero) map of condensed R-vector spaces. On the other hand, restricted to the basis vectors,
the map is identically 0. In other words, the sequence

N ∪ {∞} → Q

that is constant 0 admits two distinct extensions to the space of summable sequences `1(N) (which
is basically MR(N ∪ {∞})): The map that is constant 0, and g. That is, Q is not MR-complete,
contrary to the requirement put in Definition 1.4.
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2. Lecture II: Liquid vector spaces

Recall from the previous lecture that our first goal is to produce a sheaf O of R-vector spaces
on the topological space C, whose value on the disk D = D(x, r) of radius r > 0 centered at a point
x ∈ C is given by

O(D) = {
∞∑
n=0

an(T − x)n | an ∈ C, ∀r′ < r, anr
′n → 0}.

Moreover, we want to see that O has no higher cohomology on these disks D, so that this description
of the sections is “robust”.

As described in the previous lecture, we will approach this old result by new methods, which are
much more algebraic in nature as opposed to analytic. For this, the first step is to recognize more
structure on these vector spaces of sections. In fact, we need to promote O(D) to an object of an
abelian tensor category, such that this promotion in some sense encodes a structure of topological
vector space on O(D). The category being abelian is useful in order to control sheaf cohomology;
and the tensor product, though its use is not a priori obvious, is actually also crucial for our
approach.

The purpose of this lecture is to introduce the required abelian tensor category, whose objects
are known as p-liquid vector spaces.

As mentioned, the idea is that we want to encode a topological vector space structure on
O(D). However, as indicated in the previous lecture, the formalism of topological vector spaces is
not appropriate, because topological spaces don’t mix well with algebra: in particular, topological
abelian groups do not form an abelian category.

The solution is to find a replacement for the very notion of topological space, one for which
it is much more convenient to add on algebraic structures such as that of a vector space. This
replacement is known as condensed set.

The building blocks for condensed sets are the following very special kinds of topological spaces.

Definition 2.1. Let Prof denote the category of compact Hausdorff totally disconnected topo-
logical spaces.

There are several useful characterizations of this class of topological spaces. We have that
S ∈ Prof if and only if S is compact Hausdorff and there is a basis for the topology of S consisting
of clopen subsets. Another equivalent condition is that S should be homeomorphic to some inverse
limit of finite discrete spaces:

S = lim←−
i∈I

Si.

In fact, there is a canonical choice for this inverse limit diagram: we can take I to be the set of
disjoint union decompositions of S into (finitely many) nonempty clopen subsets, with partial order
given by refinement. Equivalently, an element of I is an isomorphism class of continuous surjections
S � Si with Si a finite discrete space, and this shows how to build the inverse limit diagram.

This canonical index diagram is cofiltered, so every S ∈ Prof is a cofiltered inverse limit of finite
sets. In fact, this yields an equivalence of categories

Prof ' Pro(finiteSets)
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with the Pro-category of finite sets, giving a “combinatorial” as opposed to topological description
of our basic building blocks. For this reason, objects of Prof are called simply profinite sets for
short.

More general condensed sets will be glued from objects of Prof via the formalism of sheaves.
To implement this, we consider the following finitary Grothendieck topology on Prof.

Definition 2.2. A finite collection (fi : Si → S)i∈I of maps in Prof with common codomain is
called a covering if the induced map

ti∈ISi � S

is surjective.

The category Prof has all pullbacks (in fact, all limits), and it is trivial to check the axioms of a
Grothendieck topology. However, before we use this to define a category of sheaves, we need to get
around the technical difficulty that Prof is not essentially small. For this we introduce a “cutoff”
cardinal κ, which we assume to be infinite.

Definition 2.3. A profinite set S is called κ-small if the set of clopen subsets of S has cardi-
nality < κ. The full subcategory of κ-small profinite sets is denoted

Profκ ⊂ Prof .

We can restrict the Grothendieck topology on Prof to Profκ, and then make the following
definition.

Definition 2.4. A κ-condensed set is a sheaf of sets on Profκ. The category of κ-condensed
sets is denoted by CondSetκ.

Explicitly, an X ∈ CondSetκ is a functor

X : Profopκ → Set

such that:

(1) If (Si)i∈I is a finite collection of objects of Profopκ , then

X(ti∈ISi)
∼→
∏
i∈I

X(Si);

(2) If f : T � S is a surjective map in Profκ, then

X(S)
f∗

↪→ X(T )

is injective with image equal to the set of those x ∈ X(T ) for which p∗1x = p∗2x, where
p1, p2 : T ×S T → T are the two projections.

There are two ways of thinking about this definition. The first is that instead of encoding a
topological space structure on X directly, we encode, for every S ∈ Prof, the data of an abstract
set X(S) which we think of as specifying the set of “continuous maps from S to X”. From this
perspective, the above structure and conditions should make intuitive sense:

(1) the contravariant functoriality X : Profopκ → Set comes from the idea that a “continuous
map” S → X and a continuous map T → S should compose to give a “continuous map”
T → X;
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(2) the first axiom encodes that giving a “continuous map” out of a disjoint union should be
the same as separately giving a “continuous map” out of each constituent piece;

(3) the second axiom encodes that if f : T � S, then giving a “continuous map” out of S
should be the same as giving a “continuous map” out of T which is constant on the fibers
of f .

To make this last point more palatable, note that a continuous surjection between compact Haus-
dorff spaces is a topological quotient map.

The other way of think about this definition, actually equivalent to the first though perhaps
psychologically different, comes back to the idea that profinite sets are the building blocks for
arbitrary condensed sets. More formally, the Yoneda embedding gives a fully faithful functor

Profκ ↪→ CondSetκ

defined by

S 7→ (S : T 7→ Cont(T, S)),

allowing us to view κ-small profinite sets as special kinds of κ-condensed sets; and an arbitrary
κ-condensed set is built from κ-small profinite sets via colimits in CondSetκ.

From this perspective, the role of the sheaf conditions is perhaps a bit more tangible. If
we had used the presheaf category instead of sheaf category in the definition, then CondSetκ
would be freely generated under colimits by Profκ, so every relation between colimits would be
essentially diagrammatic in nature. The role of the sheaf conditions is to enforce that certain
colimits we already have in Profκ should be preserved by the Yoneda embedding, and thus be
visible in CondSetκ. Indeed:

(1) the first sheaf condition says that given finitely many profinite sets Si, we have

ti∈ISi
∼→ tiSi;

(2) the second sheaf condition says that that if T � S, thereby presenting S as the quotient
of T by the equivalence relation T ×S T , then S is the quotient of T by the equivalence
relation T ×S T .

Carrying around the cardinal κ is sometimes a bit annoying. If κ < κ′, then there is a pullback
functor

π∗ : CondSetκ → CondSetκ′ ,

characterized by the fact that it preserves colimits and restricts to the obvious inclusion Profκ →
Profκ′ under the Yoneda embeddings. Now it turns out that, for κ and κ′ restricted to a cofinal
class of cardinals (e.g., strong limit cardinals of sufficiently large cofinality), the functor π∗ is fully
faithful and preserves limits and internal hom’s of any fixed size. This means that the colimit
category

CondSet := lim−→
κ

CondSetκ

of condensed sets is just as well-behaved as each individual CondSetκ in terms of its topos-theoretic
exactness properties, because calculations can always be done at some “finite” level. Moreover,
CondSet is generated under colimits by arbitrary profinite sets in the same way CondSetκ is gen-
erated under colimits by κ-small profinite sets.

Let’s try to understand a bit about what condensed sets can look like by carving out a hierarchy
of full subcategories of CondSet:
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qcProj ⊂ Prof ⊂ qcqs ⊂ qs ⊂ CondSet .

We already know about Prof: these were our basic building blocks, the profinite sets. The
other three full subcategories are given by some general properties an object in a topos can have.
We review the relevant definitions in the current context.

Definition 2.5. A condensed set X is called quasicompact or qc for short if for all collections
(Xi → X)i∈I of maps of condensed sets with target X, indexed by an arbitrary set I, it holds that
if

tiXi � X,

then there exists a finite subset I0 ⊂ I such that

ti∈I0Xi � X.

Since CondSet is generated by Prof, every X ∈ CondSet admits a surjection from a coproduct
of profinite sets, and it follows that in the above definition we could restrict to the case where all
Xi are profinite without any change in the resulting notion. Since the Grothendieck topology on
Prof is finitary, every profinite set is itself quasicompact, and in fact we find that an X ∈ CondSet
is quasicompact if and only if there exists an S ∈ Prof and a surjection

S � X.

Thus, a condensed set is qc if and only if it is a quotient of a profinite set. However, this
quotient can be quite arbitrary, and in particular non-Hausdorff: an example is X = R/Rδ from
the previous lecture. This is a quotient of R/Z, which is in turn a quotient of the profinite set∏

N{0, 1} via binary expansions.
The next condition rules out such non-Hausdorff behavior.

Definition 2.6. A condensed set X is called quasiseparated or qs for short if the diagonal map
X → X × X is quasicompact, meaning for all S ∈ Prof and all pairs of maps f, g : S → X, the
condensed set S ×X S is quasicompact.

This is the analog of the Hausdorff condition for condensed sets. Indeed, a topological space is
Hausdorff if and only if the diagonal is a closed inclusion; but on the other hand, the condition in
the above definition that S ×X S be quasicompact is equivalent to the condition that the inclusion
S ×X S ⊂ S × S be represented by a closed subset of the topological space S × S, thanks to the
following lemma, whose proof we include to give a feel for this kind of elementary argument.

Lemma 2.7. Let S ∈ Prof. For an arbitrary condensed subset T ⊂ S, we have that T is qc ⇔
T is represented by a closed subset of S ⇔ T ∈ Prof.

Proof. The nontrivial implication is that T qc ⇒ T is represented by a closed subset of S. If
T is qc, we can choose an S′ ∈ Prof and a surjection S′ � T . The composition

f : S′ � T ⊂ S
is a map between objects of Prof. Let f(S′) denote the topological space image of this map of
compact Hausdorff spaces. Then f(S′) is closed in S, so it suffices to show that f(S′) = T as
subobjects of S. However, f(S′) is the quotient of S′ by the equivalence relation S′ ×f(S′) S

′ in
CondSet by definition of the Grothendieck topology. On the other hand, S′ ×f(S′) S

′ = S′ ×T S′
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because T, f(S′) ⊂ S, and T is the quotient of S′ by S′×T S′ on completely general topos-theoretic
grounds. �

Having the notions of qc and qs, we get the notion of qcqs: a condensed set is qcqs if it is both
qc and qs. This is the topos-theoretic analog of compact Hausdorff; but in fact, in this case it is
much more than an analogy.

Proposition 2.8. The full subcategory qcqs ⊂ CondSet is equivalent to the category CHaus of
compact Hausdorff spaces.

The idea behind this equivalence is that both qcqs condensed sets and compact Hausdorff
spaces can be described in terms of profinite sets in exactly the same way: they are quotients of
profinite sets by closed (equivalently, profinite) equivalence relations. The functor CHaus

∼→ qcqs
implementing this equivalence is also just the usual way

X 7→ (X : S 7→ Cont(S,X))

of assigning a condensed set to a topological space, and the functor backwards can be described as
sending a qcqs X to its underlying set X(∗) equipped with the topology where the closed subsets
are those of the form Y (∗) for some qc condensed subset Y ⊂ X.

We can also describe the more general quasiseparated condensed sets.

Proposition 2.9. A condensed set is qs if and only if it is a filtered union of qcqs subobjects.
The full subcategory qs ⊂ CondSet is equivalent to the full subcategory category of Ind(CHaus)
consisting of those ind-compact Hausdorff spaces which can be represented by an ind-system with
injective transition maps.

The fully faithful functor X 7→ X from compactly generated weak Hausdorff topological spaces
to condensed sets lands inside qs: it sends X to the union of all its compact Hausdorff subsets,
viewing these as qcqs condensed sets. However, there are many more quasi-separated condensed
sets than just these: given a CGWH topological space X, we can take any family of compact
Hausdorff subsets of X which is closed under finite union, and take the union in condensed sets
over just those instead. If that family of compact subsets still determines the topology of X (for
example, if X is metrizable and we take the family of countable compact subsets), this gives a new
qs condensed set which is, however, indistinguishable from X from a topological perspective. In
fact, the notion of qs condensed set exactly matches the notion of compactological space developed
by Waelbrock, [Wae06].

Via this description in terms of ind-compact Hausdorff spaces, the qs condensed sets are fairly
accessible in standard topological terms. On the other hand, disjoint unions of profinite sets are
qs, and a subobject of a qs condensed set is qs. It follows that any condensed set is a quotient
of a qs condensed set by a qs equivalence relation. This gives some idea of the general nature of
condensed sets.

It remains to discuss the most special class qcProj of condensed sets, the quasicompact projective
objects.

Definition 2.10. A condensed set X is called projective if for all Y ∈ CondSet, every surjection
Y � X admits a section.

Equivalently, X is projective if for all surjections A � B of condensed sets, the induced map
A(X)� B(X) is a surjective map of sets.
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A condensed set is quasicompact projective if it is both quasicompact and projective. Such an
X, being quasicompact, admits a surjection from a profinite set; being projective, this surjection
splits, so X is a retract of a profinite set, and hence itself is a profinite set. Thus we see that qc
projective condensed sets are the same thing as projective profinite sets: profinite sets S such that
for every surjection S′ � S of profinite sets splits.

These are the same as the extremally disconnected profinite sets studied by Gleason in [Gle58].
The main result on them is that there are “enough” extremally disconnected profinite sets:

Lemma 2.11. For every S ∈ Prof, there is a projective S′ ∈ Prof with a surjection S′ � S.

Proof. We take S′ = βSδ, the Stone-Cech compactification of the underlying set of S. The
universal property of Stone-Cech compactification gives both the required surjection and the proof
that S′ is projective. �

This means that the projective profinite sets also generate the category of condensed sets. In
some ways they are a more convenient set of generators, because of their projectivity. For example,
a map X → Y of condensed sets is surjective (resp. injective, resp. an isomorphism) if and only if
X(S)→ Y (S) is surjective (resp. injective, resp. an isomorphism) as a map of sets, for all projective
profinite S. For “surjective”, this fails on more general profinite sets.

Coming back to our cut-off cardinals κ, it is convenient to require κ to be a strong limit
cardinal (S < κ⇒ 2S < κ), because then the above lemma also holds inside Profκ. Moreover, then
κ-smallness for a profinite set as defined above is equivalent to underlying set being κ-small. In fact,
for all practical purposes we know, nothing would be lost by restricting the theory to CondSetκ
for κ equal to the first uncountable strong limit cardinal, the supremum of finite iterations of the
power set function applied to the natural numbers.

These projective profinite sets, though they never show up in practice as explicit objects of
interest, are very convenient abstract entities to have around when discussing the homological
algebra of condensed abelian groups, which constitute our next topic.

Definition 2.12. A condensed abelian group is an abelian group object of CondSet, or equiv-
alently, a sheaf of abelian groups on Profκ for some κ. The category of condensed abelian groups
is denoted CondAb.

General topos-theoretic considerations show that CondAb is an abelian category with all limits
and colimits, and that filtered colimits in CondAb are exact. However, due to the existence of
enough qc projective profinite sets, we get even better exactness properties. If S ∈ qcProj, then
the free condensed abelian group on S

Z[S]

is a compact projective object of the abelian category CondAb. This means that

HomCondAb(Z[S],−) : CondAb→ Ab

commutes with both filtered colimits and cokernels. It follows that it in fact commutes with all
colimits. It also obviously commutes with all limits, so it commutes with both limits and colimits.

Moreover, these Z[S] for S ∈ qcProj provide enough compact projectives to generate CondAb.
This can be expressed in two equivalent ways:

(1) a map f : A→ B of condensed abelian groups is an isomorphism if and only if Hom(Z[S], A)→
Hom(Z[S], B) is an isomorphism for all S ∈ qcProj;
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(2) every condensed abelian group is isomorphic to a cokernel of a map between direct sums
of condensed abelian groups of the form Z[S].

From this we deduce that CondAb inherits all the exactness properties of Ab. Indeed, any
question about interchanging limits and colimits in CondAb can be tested on Hom’s out of the
Z[S], and then it reduces to the same claim in Ab. In particular, infinite products are exact, a
feature not shared by abelian group objects in most toposes.

Now we can finally discuss our main objects of study: the liquid vector spaces. As mentioned
in the previous lecture, the idea is that we want to restrict to a certain class of condensed abelian
groups, which we consider to be “complete” real vector spaces in some sense. And this completeness
is expressed in terms of the existence and uniqueness of certain infinite sums, or more precisely,
integrals of continuous functions along measures.

We start with the set of (signed) Radon measures M(S) on a profinite set S. In the previous
lecture this was defined as the continuous dual of C(S;R), the Banach space of continuous functions
on S. But for our purposes it will be convenient to introduce an alternate more direct perspective
on M(S).

Classically, a measure assigns to every Borel subset of S a real number, such that certain
axioms are satisfied, in particular countable additivity and bounded variation. But for profinite
S, the description simplifies considerably: it suffices to specify the measure µ(T ) only for clopen
subsets of S, and then only finite additivity and bounded variation need to be imposed. That is,

M(S) ⊂ {µ : Clopen(S)→ R | µ(∅) = 0, µ(T t T ′) = µ(T ) + µ(T ′)}
is given by M(S) = ∪C>0M(S)≤C , where

M(S)≤C = {µ | |µ(T1)|+ . . .+ |µ(Tn)| ≤ C if S = T1 t . . . t Tn}.

There is another way of organizing this definition, using the presentation S = lim←−i Si of S as a
filtered inverse limit of finite sets, namely

M(S)≤C = lim←−
i

M(Si)≤C ⊂ lim←−
i

R⊕Si ,

whereM(Si)≤C is the closed ball of radius C centered at the origin with respect to the `1-norm on
R⊕Si . This also describes M(S) as a qs condensed set: it is the sequential union of the M(S)≤C ,
which are compact Hausdorff spaces, being inverse limits of closed balls in finite-dimensional spaces.

The appearance of the `1-norm here is necessary to make M(S) match the dual of continuous
functions, but in this last presentation there’s nothing to suggest we couldn’t use a different norm.
In fact this freedom of changing norms will be crucial for us.

More precisely, for 0 < p ≤ 1, we can consider the `p-norm on RS for a finite set S, defined by

‖(xs)s∈S‖p =
∑
s∈S
|xs|p.

This norm still satisfies the triangle inequality (this uses p ≤ 1). Note that the closed disk of radius
C in the `p norm is smaller than in the `1-norm, so we will be shrinking our space of measures.
More drastically, for p < 1 the closed disks in the `p norm are no longer convex! This constitutes a
more radical departure from standard functional analysis, which makes extensive use of convexity.
However, nonconvex functional analysis has been studied to some extent, with Kalton in particular
proving some interesting and nontrivial results which we used as inspiration, see [Kal81].
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Anyway, we can consider
Mp(S) = ∪C>0M(S)`p≤C ,

where
M(S)`p≤C = lim←−

i

M(Si)`p≤C ⊂ lim←−
i

R⊕Si ,

in perfect analogy to the above. In other words, instead of measures of bounded variation, we
take measures of bounded p-variation. However, we cannot directly use this space of measures for
defining p-liquid vector spaces either, because of similar phenomena as given in Example 1.5 of the
previous lecture. Instead, we need to fix a 0 < p ≤ 1, and then consider

M<p(S) = ∪q<pMq(S).

Note that there is a natural inclusion S → M<p(S) of condensed sets, singling out the Dirac
measures (unit coordinate vectors in the finite-dimensional approximations in the above definitions).
With this space of measures in place, we make the main definition.

Definition 2.13. Let V ∈ CondAb and 0 < p ≤ 1. We say that V is p-liquid if for every
S ∈ Prof and every map of condensed sets f : S → V , there is a unique map of condensed abelian

groups f̃ :M<p(S)→ V such that f̃ |S= f .

We will soon state the main theorem on p-liquid condensed abelian groups, which implies that
they form a very robust abelian subcategory of condensed abelian groups; and moreover, every
p-liquid condensed abelian group has a unique and functorial structure of condensed R-module.
But first, we want to explore the meaning of this definition by specializing it to the case of quasi-
separated V . The result is the following.

Theorem 2.14. Let V be a qs condensed R-module and 0 < p ≤ 1. Then V is p-liquid if and
only if for every q < p, every quasicompact subobject of V is contained in a quasicompact q-convex
subobject of V .

A quasi-compact subobject K of a qs condensed R-module is said to be q-convex if for all finite
sets S, the map

(R⊕S)`q≤1 ×KS → V,

((λs), (xs)) 7→
∑
s

λsxs,

lands inside K. If q = 1, this is the usual notion of absolute convexity.
Recall that a qc subobject of a qs condensed set is qcqs, hence corresponds to a compact

Hausdorff space. In particular, the above q-convexity on K is really a pointwise condition. In
essence, the theorem says that a p-liquid qs condensed R-module is one which can be exhausted by
q-convex compact Hausdorff subobjects, for all q < p.

One implication in the above theorem is easy to prove:

Proof. Suppose V is p-liquid, and letK be a quasicompact subobject of V . Choose a surjection
S � K with S ∈ Prof. By definition of p-liquid, the composite f : S → K ⊂ V extends to a map
of condensed abelian groups from Mq(S) for all q < p. Note that this extended map is necessarily
R-linear, because we can test this on the compact Hausdorff subobjectsM(S)`q≤C and then argue
pointwise using the density of Q in R. On the other hand, from the definitions we see that the
quasicompact subset

M(S)`q≤1 ⊂Mq(S)
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is q-convex. It follows that its image under the R-linear map Mq(S) → V is also quasicompact
and q-convex. Since it clearly contains K, this proves one direction of the above theorem. �

The other implication is a bit more tricky. In fact we didn’t actually do it in the lecture, but
the argument can be found in the appendix.

Thus we have a convenient criterion for a qs condensed R-module to be p-liquid. We can
use this to produce some examples. First of all, the spaces M<p(S) themselves clearly satisfy
the hypotheses, so they are themselves p-liquid. They are the most basic examples, being (by
definition!) the free p-liquid vector spaces on the profinite sets S.

But there is another class of examples, closely related to classical functional analysis, which also
play an important role in our theory. These are the Banach spaces, or more generally p-Banach
spaces for our fixed 0 < p ≤ 1.

Definition 2.15. Let 0 < p ≤ 1. For an abstract R-vector space V , a p-norm on V is a map

‖·‖ : V → R≥0

such that:

(1) ‖v‖ = 0⇔ v = 0 for v ∈ V ;
(2) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for v, w ∈ V ;
(3) ‖λv‖ = |λ|p‖v‖ for v ∈ V , λ ∈ R.

Such a p-norm induces a topological vector space structure on V , and those topological vector
spaces which arise from p-norms on V for which V is complete are called p-Banach spaces.

Note that if q < p and V is p-Banach, then it is also q-Banach: we can replace the norm by
‖·‖q/p without affecting the topology. In particular, every Banach space, which is a 1-Banach space
in the above terminology, is also p-Banach for all p.

By definition the topology of a p-Banach space is sequential, hence compactly generated, so
we can equivalently encode a p-Banach V in terms of its associated condensed R-vector space. We
claim that any p-Banach is p-liquid. To prove this, and for other purposes, it’s nice to have control
over compact subsets of p-Banach spaces. Good information is provided by the following lemma of
Grothendieck, [Gro55] p. 112:

Lemma 2.16. Let 0 < p ≤ 1, and let V be a p-Banach space. Then:

(1) Every compact subset of V is contained in the closure of the p-convex hull of a nullsequence.
(2) The closure of the p-convex hull of any nullsequence is compact (and p-convex).

Evidently, this implies that a p-Banach space is p-liquid, given the criterion provided by the
above theorem. Since arbitrary inverse limits of p-liquid spaces are p-liquid, we deduce that arbi-
trary inverse limits of p-Banach spaces are p-liquid. This covers the condensed R-modules associated
to arbitrary complete locally p-convex topological vector spaces, showing that the most classical
notion of completeness in functional analysis does yield condensed vector spaces which are complete
in our sense, i.e. p-liquid.

But besides the desire to connect with classical functional analysis, there is another reason for
us to study p-Banach spaces, or rather simply ordinary Banach spaces: it turns out they also play
a foundational role in our theory. This is for the following two reasons:
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(1) As mentioned, the most fundamental p-liquid vector spaces are the measure spacesM<p(S),
and these are far from being Banach. (They are countable unions of compact subsets, which
only happens for finite-dimensional Banach spaces.) However, their dual, i.e. internal Hom
to R, identifies with the Banach space C(S;R) of continuous maps S → R, and these duals
play an important role.

(2) It turns out that Banach spaces have many convenient calculational properties which are
not shared by the M<p(S), so for some arguments it is preferable to build more compli-
cated p-liquid spaces from Banach spaces instead of spaces of measures. We will see some
examples in the coming lectures.

Exercise 1. Recall that an object X of a category C is said to be compact if the functor
Hom(X;−) : C → Set commutes with filtered colimits. For X ∈ CondSet, show that there are
implications

X qcqs ⇒ X compact ⇒ X quasicompact.

Exercise 2. Find examples showing that neither implication in the previous exercise is re-
versible.

Exercise 3. Let {Ui}i∈I be an arbitrary open cover of a topological space X. Show that X is
the quotient of tiUi by the equivalence relation ti,jUi ∩ Uj in CondSetκ for all κ.

Exercise 4. Let 0 < p ≤ 1. Suppose V is a qs condensed R-vector space and K ⊂ V is a qc
p-convex subset such that V = R ·K. Define a p-norm on V (∗) such that K(∗) is the closed unit
ball and show that V (∗) is complete with respect to this p-norm, thus giving a new qs condensed
R-vector space V Banp . Show that there is an injective map of condensed R-vector spaces

V Banp → V

which is the identity on ∗-valued points, and is natural in V as a condensed R-vector space.
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Appendix to Lecture II: Quasiseparated liquid vector spaces

In this appendix, we prove the converse direction in Theorem 2.14. We will use the following
lemma.

Lemma 2.17. Let T be a compact Hausdorff space, 0 < p ≤ 1, and K ⊂ V a quasicompact
p-convex subobject of a qs condensed R-module V . Then:

(1) ∩λ>0λ ·K = {0};
(2) for any sequence f1, f2 . . . of continuous maps T → K, if there is a nullsequence λ1, λ2 . . .

of positive real numbers such that fn(t)− fm(t) ∈ λn ·K for all t ∈ T and n ≤ m, then the
fn converge pointwise to a continuous map

f∞ : T → K.

Proof. For (1), let v ∈ ∩λ>0λ ·K. Then R · v ⊂ K. Hence the closure of R · v is a compact
Hausdorff topological R-vector space. But the only such is 0: for example, by Pontryagin duality
this is equivalent to the fact that a discrete topological R-vector space must be 0.

For (2), since K is compact Hausdorff, we can extend the map f : T × N → K defined by
f(t, n) = fn(t) to the Stone-Cech compactification:

f̃ : β(T × N)→ K.

Recall that β(T ×N) is a compact Hausdorff space containing T ×N as a dense subspace. We will

show that this f̃ factors through the more refined compactification T × (N ∪∞), giving the claim.
As surjective maps of compact Hausdorff spaces are quotient maps, it suffices to check this

pointwise. The subsets of the form T ′ × N≥N ⊂ T × N, for T ′ ⊂ T a compact neighborhood of t
and N ∈ N, are the intersections with T × N of a fundamental system of neighborhoods of t ×∞
in T × (N ∪∞), so it suffices to show that

∩T ′,Nf(T ′ × N≥N )

consists of a single point of K (which will give the value f̃(t,∞)).
However, from the hypothesis we have for fixed N that

f(T ′ × N≥N ) ⊂ fN (T ′) + λN ·K.

The latter subset is compact, and taking the intersection over T ′ we deduce that

∩T ′f(T ′ × N≥N ) ⊂ fN (t) + λN ·K.

If v is any given limit point of the sequence f1(t), f2(t), . . . in K, then v − fN (t) is a limit point of
the fn(t)− fN (t), hence lies in λN ·K. We deduce that

∩T ′f(T ′ × N≥N ) ⊂ v + λN · (K +K)

for all N . However, K+K ⊂ C ·K for some C > 0 depending only on p because of the p-convexity
of K. Thus, intersecting over all N and using part (1), we deduce the claim. �

Now we turn to the proof of the reverse direction of Theorem 2.14: if V is a qs condensed R-
module which is exhausted by quasicompact q-convex subobjects for all q < p, then V is p-liquid.
The difficulty is that we will need to understand how to build maps out of these spaces of measures
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Mq(S). For this, we will make use of the discretization ofMq(S) described in [CS20, Lecture VI],
based on passing from the condensed ring R to the condensed ring

Z((T ))r

of Laurent series with integer coefficients which converge absolutely on the closed disk of radius r,
for some fixed arbitrary r < 1. For any 0 < λ < r, we get a surjective homomorphism

Z((T ))r → R
by plugging in T = λ. One very relevant advantage of Z((T ))r over R is that each element of
Z((T ))r is canonically a limit of elements of the discrete ring Z[T, T−1], given by truncating the
power series.

Quite remarkably, this also passes to spaces of measures. For a profinite set S, we have

M(S;Z((T ))r) = ∪C>0M(S;Z((T ))r)≤C ,

where
M(S;Z((T ))r)≤C ⊂

∏
n∈Z

Z[S] · Tn

is the condensed — in fact, profinite — subset whose S′-valued points are specified pointwise, and
on a point are given by those ∑

n

cnT
n, cn ∈ Z[S]

such that
∑

n‖cn‖`1rn ≤ C. Then [CS20, Proposition 6.9] says that there is a natural isomorphism
of condensed R-modules

M(S;Z((T ))r)⊗Z((T ))r R =Mq(S)

again induced by plugging in λ for T . Here 0 < q < 1 is such that λq = r.
Thus, to map R-linearly out ofMq(S) is the same as mapping Z((T ))r-linearly out ofM(S;Z((T ))r),

and this can be easier because measures in M(S;Z((T ))r) are canonically limits of finite sums of
Dirac measures with coefficients in Z[T, T−1]! We will use this in the following proof of the reverse
direction.

Proof. Suppose given a qs condensed R-vector space V such that for all q < p, every quasi-
compact subobject of V is contained in a quasicompact q-convex subobject of V . Let S ∈ Prof
with a map

f : S → V.

We want to extend f uniquely to a map f̃ :M<p(S)→ V of condensed abelian groups. First, note
that uniqueness is automatic, because the sums of Dirac measures with Q-coefficients are dense in
each qc subset of M<p(S). Also for this reason, it suffices to show that for all q < p, the map f
extends to an R-linear map

f̃ :Mq(S)→ V.

Now, the image of f is a qc subset of V , hence by assumption on V it lies in a q-convex subset.
Actually, it even lands in a q′-convex qc subset for some q′ > q. Thus it suffices to show that if
f : S → V lands in a q′-convex qc subset K ⊂ V , then it extends to Mq(S) for all q < q′.

Now we use the trick of passing to M(S;Z((T ))r). By the above discussion, it suffices to
produce a Z((T ))r-linear map

M(S;Z((T ))r)→ V
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which restricts to f , where the right-hand side is a Z((T ))r-module via evaluation at λ = r1/q. Now,
using density of Z[T, T−1]-linear sums of Dirac measures in every qc subset of M(S;Z((T ))r), the
Z((T ))r-linearity will be automatic if we just show that there exists a map of condensed sets

f̃ :M(S;Z((T ))r)→ V

such that on (Z[T, T−1])[S] it gives the Z[T, T−1]-linear extension of f .

We produce this f̃ as a limit of approximations. For n ≥ 0 we can consider the projection

M(S;Z((T ))r)→ ⊕i≤nZ[S] · T i

and compose with the Z[T, T−1]-linear map (Z[T, T−1])[S] → V induced by f : S → V to deduce

maps fn :M(S;Z((T ))r)→ V which we will claim converge to our desired f̃ .
Clearly, if we plug a Z[T, T−1]-linear sum of Dirac measures into these fn, we get an eventually

constant sequence with the correct desired limit value. Using Lemma 2.17 applied to the source
compact Hausdorff space M(S;Z((T ))r)≤C for arbitrary C, to finish the proof it therefore suffices
to show two things: first, fn restricted to M(S;Z((T ))r)≤C lands in some constant multiple of K,
and second, there is a nullsequence (λn) such that

fn − fm ∈ λn ·K
if n ≤ m, again restricting to M(S;Z((T ))r)≤C .

To see that fn restricted toM(S;Z((T ))r)≤C lands in some constant multiple of K, recall that
M(S;Z((T ))r) goes to Mq(S) under evaluation λ = T , so the bound on the coefficients of the
finite Z[T, T−1]-linear combination of Dirac measures inM(S;Z((T ))r) implies an `q-bound on the
R-coefficients once we plug in λ. As K is q′-convex, it is also q-convex, so this implies that claim.

To see that there is a nullsequence (λn) as desired, note that for a > 1 we have

(fm − fn)(
∑

ciT
i) =

∑
n<i≤m

f(ci)λ
i = a−n

∑
n<i≤m

f(ci)a
n−i(aλ)i

where ci ∈ Z[S] and we use f also to denote the Z-linear extension of f . But now we can choose
a so that evaluation at T = aλ produces the space of q′-measures from M(S;Z((T ))r), instead of
q-measures as we got from T = λ, and we deduce the desired claim as a−n is a nullsequence and
the sum on the right hand side lands in a constant multiple of K for the same reason as before,
using q′-convexity of K. �
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3. Lecture III: Liquid vector spaces, redux

In today’s lecture, we spent some more time discussing condensed sets, condensed abelian
groups, and discussed the main theorem on liquid vector spaces.

Recall from the last lecture that condensed sets are sheaves on the category Prof of profinite
sets. (Up to set-theoretic issues, which I will from now on ignore – they are resolved as in the last
lecture.) In other words, those are functors

X : Profop → Set : S 7→ X(S)

satisfying some simple conditions. Actually, these conditions simplify even further if one passes to
the generating subcategory Extr = qcProj ⊂ Prof of extremally disconnected profinite sets. Then
a condensed set is equivalently given by a functor

X : Extrop → Set

that preserves finite products. Equivalently, X(∅) = ∗, and X(S1tS2)→ X(S1)×X(S2) is bijective
for all S1, S2 ∈ Extr. In particular, the category of condensed sets is almost given by a functor
category. This is what gives the theory of condensed sets an extremely algebraic nature. We note
that for any S ∈ Extr, the functor

CondSet→ Set : X 7→ X(S)

commutes with all limits, all filtered colimits, and preserves surjections. (In fact, it commutes
with all so-called sifted colimits.) It does not, however, in general commute with finite coproducts,
except in the trivial case S = ∗. The functor

CondSet→ Set : X 7→ X(∗)
should be thought of as the “underlying set” functor, but it is not conservative (as shown by the
example of R/Rδ).

Remark 3.1. Both Prof and Extr (or rather the opposite categories) admit simple algebraic
descriptions. Namely, S 7→ C(S,F2) induces an equivalence between Profop and the category of
Boolean algebras (i.e. those rings where all elements satisfy x2 = x); while Extr ⊂ Prof corresponds
to the category of complete Boolean algebras. (Here, a Boolean algebra is complete if any (possibly
infinite) set of elements has a supremum, where a Boolean algebra is partially ordered by x ≤ y
if xy = x. Equivalently, a Boolean algebra is complete if and only if it is a retract of a Boolean
algebra of the form

∏
I F2 for some set I.) Thus, condensed sets are the same thing as finite-

product-preserving functors from complete Boolean algebras to sets. (It is even enough to consider
the subcategory of Boolean algebras of the form

∏
I F2.)

However, going down this route one tends to lose track of the topological intuition, and we will
not use the perspective of Boolean algebras.

Next, we discussed condensed abelian groups CondAb. These can be equivalently thought of as
abelian group objects in CondSet, or as sheaves of abelian groups on Prof. We note that as finite
coproducts agree with finite products, it is now the case that for S ∈ Extr, the functor

CondAb→ Ab : X 7→ X(S)

commutes with all limits and all colimits. This implies that CondAb has excellent categorical
properties: Like sheaves of abelian groups on any topos, it has all limits and all colimits, and
filtered colimits are exact, but in this case it is also true that arbitrary products are exact. In fact,
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it admits a class of compact projective generators, namely the free condensed abelian groups Z[S]
for S ∈ Extr. We recall here that the forgetful functor

CondAb→ CondSet

admits a left adjoint, the “free condensed abelian group” functor

CondSet→ CondAb : X 7→ Z[X].

Concretely, this is given by the sheafification of S 7→ Z[X(S)] (and the sheafification is important
here, even for S ∈ Extr).

Remark 3.2. The construction Z[X] for X say a CW complex is closely related to classical
constructions due to Dold–Thom. The underlying set of Z[X] is given by Z[X(∗)], i.e. finite
collections of points of X weighted with integers. The condensed structure is made so that if
two points collide, the corresponding integers add up. This can also be understood as the group
completion of the free abelian monoid N[X], which can be written as

N[X] =
⊔
n≥0

Symn(X)

where Symn(X) = Xn/Σn is the condensed set of unordered n-tuples of elements of X.

If X = S ∈ Prof, one can describe Z[S] explicitly.

Proposition 3.3 ([CS20, Proposition 2.1]). Let S = lim←−i Si be a profinite set, written as a

cofiltered limit of finite sets Si. The free condensed abelian group Z[S] is quasiseparated, and can
explicitly be written as a countable union of profinite subsets, as follows:

Z[S] ∼=
⋃
n>0

lim←−
i

Z[Si]`1≤n ⊂ lim←−
i

Z[Si].

Here Z[Si] is the finite free abelian group on the finite set Si, and the subset `1 ≤ n is the part
of `1-norm at most n; this produces a finite subset of Z[Si], so lim←−i Z[Si]`1≤n is a profinite set. We
note that by the discreteness of Z, the precise choice of norm is irrelevant here: any bound on the
`1-norm also gives a bound on the `p-norm for all 0 < p < 1.

We note that this description is remarkably close to the description of the space of signed Radon
measures M1(S) – but over Z, this construction produces the uncompleted free objects.

Another important structure is the tensor product of condensed abelian groups. In fact, like
on any topos, condensed abelian groups have a symmetric monoidal tensor product, representing
bilinear maps. Concretely, for M,N ∈ CondAb, the tensor product M ⊗ N is the sheafification
of the presheaf S 7→ M(S) ⊗N(S). In this case, one can in fact understand what happens under
sheafification. Namely, for any S ∈ Extr,

(M ⊗N)(S) = M(S)⊗Z(S) N(S)

where Z(S) = Cont(S,Z) is the algebra of continuous integer-valued functions on S. (Indeed, this
functor will already send finite disjoint unions to finite products.)

There is also a partial right adjoint to tensor product, the internal Hom functor Hom(−,−), so
that

Hom(M,Hom(N,P )) ∼= Hom(M ⊗N,P ).
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Moreover, all operations can be derived (using existence of projective resolutions), leading to derived
tensor products −⊗L− and derived internal Hom RHom.

At this point, it may be helpful to say a few words about flat objects, and projective objects.
Generally, it turns out that flat objects are plentiful and well-behaved, but projective are extremely
scarce, and fragile.

Proposition 3.4. A condensed abelian group M ∈ CondAb is flat if and only if for all S ∈
Extr, the value M(S) is torsion-free (as an abelian group). In that case, M(S) is torsion-free for
all S ∈ Prof.

Proof. In the forward direction, it is enough to look at tensor products of M with short exact
sequences of abstract abelian groups (where everything commutes with evaluation at S). In the
converse direction, if M(S) is torsion-free for all S ∈ Extr, then tensoring is exact on the presheaf
level. But sheafification is also exact.

For the final sentence, note that if S ∈ Prof and T ∈ Extr is a cover of S, then M(S) ↪→M(T ),
showing that torsion-freeness of M(T ) implies torsion-freeness of M(S). �

Concerning projective objects, we have the following basic characterization.

Proposition 3.5. A condensed abelian group M ∈ CondAb is compact projective if and only
if it is a retract of Z[S] for some S ∈ Extr; equivalently, if it is a retract of Z[βI] for some infinite
set I. In that case, there is an isomorphism M ⊕ Z[βI] ∼= Z[βI].

Proof. We already know that Z[S] is compact projective when S ∈ Extr. In the other direc-
tion, any surjection Z[βI] → M must split, showing that M is a retract. For the final statement,
we only sketch the argument. Choose a bijection I ∼= I × N and regard Z[β(I × N)] as a certain
completion of ⊕

N
Z[βI],

where Z[βI] ∼= M ⊕M ′, and then reorder

(M ⊕M ′)⊕ (M ⊕M ′)⊕ . . . ∼= M ⊕ (M ′ ⊕M)⊕ (M ′ ⊕M)⊕ . . . ,

to find an isomorphism (after recompleting)

Z[β(I × N)] ∼= M ⊕ Z[β(I × N)]. �

The following question is open, and closely related to an open question on injective Banach
spaces [ASC+16, Section 1.6.1].

Question 3.6. Are all compact projective condensed abelian groups isomorphic to Z[S] for
some S ∈ Extr?

We note that one can find non-extremally disconnected S such that Z[S] is compact projective;
for example, if S is obtained by identifying two points in the boundary of βN, then Z[S] ∼= Z[βN].

In any case, this indicates that there are extremely few compact projectives. They are also
destroyed by basic operations:

Proposition 3.7. For any infinite sets I and J , the tensor product Z[βI]⊗Z[βJ ] = Z[βI×βJ ]
is not projective.
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The proposition is not completely trivial. In the appendix to this lecture, we include a proof
of a strengthening, answering a question in [ASC+16, Section 6.4.1] in the negative.

This leads to the following important warning.

Warning 3.8. For S ∈ Extr and any M ∈ CondAb, clearly the Ext-groups

Exti(Z[S],M) = H i(S,M) = 0

vanish for i > 0. However, the internal Ext-groups

Exti(Z[S],M) ∈ CondAb

are nonzero in general. Indeed, for S′ ∈ Extr, one has

Exti(Z[S],M)(S′) = Exti(Z[S′]⊗ Z[S],M) = Exti(Z[S′ × S],M),

which may be nonzero by the previous proposition.

While the problem mentioned in the warning has never really led to any problems in situations
of practical interest (see especially the appendix for some positive results), it is sometimes annoying
in the theory development.

One might hope in particular that the issue discussed in this warning might disappear if M is
suitably “complete”. The answer is yes and no:

(1) In nonarchimedean functional analysis, when working with “solid” modules (see [CS19]),
the issue disappers. In that case, Z[S]� is compact projective for all S ∈ Prof, and hence
(as profinite sets are stable under products) tensor products of compact projectives are
still compact projective.

(2) In archimedean functional analysis, we deal with “liquid” vector spaces, and in this case
it turns out that the warning stays as acute. (In fact, in the appendix, we will prove
Proposition 3.7 by proving that the issue persists even in the world of Banach spaces.)

With this, let us now turn back to liquid R-vector spaces. Recall that for any profinite set
S = lim←−i Si (with finite sets Si), we have the space of signed Radon measures

M1(S) = Hom(C(S,R),R)

=

{
µ : {clopen U ⊂ S} → R | µ(∅) = 0, µ(U1 t U2) = µ(U1) + µ(U2)

∃c : ∀U1, . . . , Un disjoint :
∑

j |µ(Uj)| ≤ c

}
=
⋃
c>0

lim←−
i

R[Si]`1≤c.

Notice that this has the prototypical form of a quasiseparated condensed set, as a union of compact
Hausdorff subsets.

Remark 3.9. Note that this definition of Radon measures on profinite sets is straightforward,
as one has to define the measure only on open and closed subsets. In contrast, for general compact
Hausdorff spaces X, the usual definition of M(X) is rather complicated, involving Borel sets,
countable additivity, and inner/outer regularity. The perspective of condensed sets gives a different
approach. Namely, from the condensed perspective, X is a quotient of a profinite set S by a
profinite equivalence relation R ⊂ S ×X S. In that case, there is an exact sequence

M(R)→M(S)→M(X)→ 0

which can also be used to define M(X) as the quotient of M(S) by M(R).
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It turned out that this choice of measures does not define an abelian category of “M1-complete”
R-vector spaces; in fact, it is necessary to include non-locally convex objects. This led us to consider,
for 0 < p ≤ 1, the variant

Mp(S) =

{
µ : {clopen U ⊂ S} → R | µ(∅) = 0, µ(U1 t U2) = µ(U1) + µ(U2)

∃c : ∀U1, . . . , Un disjoint :
∑

j |µ(Uj)|p ≤ c

}
=
⋃
c>0

lim←−
i

R[Si]`p≤c.

Remark 3.10. These spaces shrink as p gets smaller. One might even define a limiting case
for p = 0, defining

M0(S) =
⋃
c>0

lim←−
i

R[Si]`0≤c

where the condition `0 ≤ c means that at most bcc coefficients are nonzero, and the `1-norm is
at most c. (Once one bounds the number of nonzero coefficients, the precise choice of norm does
not matter.) As an analogue of Proposition 3.3, it turns out that this is just the uncompleted free
condensed R-vector space on S

R[S] =M0(S).

For a fixed p, the issue persists: There is a nonzero map

`p(N)→ `2(N)/`p(N) : (xn)n 7→ (xn log |xn|)n
of condensed R-vector spaces, whose restriction to basis vectors is zero. However, its restriction to
`q(N) with q < p is zero. Thus, we consider the variant

M<p(S) =
⋃
q<p

Mq(S).

All these spaces of measures have the subset S ⊂Mq(S) ⊂M<p(S) of Dirac measures.
Now we can state the main theorem on liquid vector spaces. In this course, we will use this as

a black box; for the proof we refer to [CS20, Lecture VI – IX]. The theorem is quite a mouthful.
The essential content is that (R,M<p) (and (Z,M<p)) is an analytic ring in the sense of [CS19];
most of this theorem is then a formal consequence of general properties of analytic rings.

Theorem 3.11. Let V be a condensed abelian group. The following are equivalent.

(1) For all S ∈ Prof, all f : S → V , and all q < p, there is a unique extension of f to a map

f̃q :Mq(S)→ V .

(2) For all S ∈ Prof and all f : S → V , there is a unique extension of f to a map f̃ :
M<p(S)→ V .

(3) One can write V as a cokernel of a map⊕
j

M<p(Tj)→
⊕
i

M<p(Si).

The class of such V is an abelian subcategory Liquidp of CondAb stable under all limits, all colimits,
all extensions, and all internal Hom’s (and internal Ext’s). In fact, on the level of derived categories,
the functor

D(Liquidp)→ D(CondAb)
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is fully faithful, and the essential image consists of all those C ∈ D(CondAb) for which all coho-
mologies H i(C) lie in Liquidp. For all C ∈ D(Liquidp), all S ∈ Prof, and all q < p, the maps

RHom(M<p(S), C)→ RHom(Mq(S), C)→ RHom(Z[S], C)

are isomorphisms (giving a derived and internal version of conditions (1) and (2)).
The embedding Liquidp ⊂ CondAb admits a left adjoint M 7→ M liq, called (p-)liquidification,

whose left derived functor defines a left adjoint to the inclusion

D(Liquidp)→ D(CondAb).

Liquidification commutes with all colimits and sends Z[S] to M<p(S). In particular, for S = ∗, it
sends Z to R.

There is a unique symmetric monoidal tensor product − ⊗liq − on Liquidp making M 7→ M liq

symmetric monoidal, i.e. such that

M liq ⊗liq N liq ∼= (M ⊗N)liq.

Concretely, − ⊗liq − represents bilinear maps in Liquidp. Its left derived functor defines a sym-
metric monoidal tensor product on D(Liquidp) making the left adjoint D(CondAb)→ D(Liquidp)
symmetric monoidal.

All functors just mentioned (liquidification, forgetful functors, and tensor products) commute
with all colimits (resp. all direct sums on the level of derived categories).

As the liquidification of Z is R, it follows that the tensor unit of Liquidp is R, and thus all objects
of Liquidp have unique and functorial R-module structures. All the above results on the relation
between Liquidp and CondAb are also true about the relation between Liquidp and Cond(R).

Remark 3.12. As Zliq = Rliq = R, it follows that (R/Z)liq = 0. In fact, more generally, for any

compact abelian group A, one has Aliq = 0. Thus, for example, Zliq
2 = 0.

The following remark may be safely ignored (and reading it may actually lead to confusion, as
it generalizes the concept of liquidity in a way not captured by the above discussion, but also not
relevant for this course).

Remark 3.13. When we tried to find an analytic ring structure on R (and eventually found
the p-liquid analytic ring structure), we also wondered whether this analytic ring structure on R
might admit non-archimedean analogues, say over Q2 (or any prime in place 2, but the letters p, q
and ` are already taken...). And indeed, it does! More precisely, for any 0 ≤ p ≤ ∞, we can define

Mp(S,Q2) =
⋃
c>0

lim←−
i

Q2[Si]`p≤c

where for 0 < p < ∞, the `p-norm is defined as usual by
∑

s∈Si
|xs|p (which is now subadditive,

as |x + y|p ≤ max(|x|p, |y|p) ≤ |x|p + |y|p in the nonarchimedean case), the `0-norm is defined
as in Remark 3.10, and the `∞-norm is the supremum norm. Then M0(S,Q2) = Q2[S], while
M∞(S,Q2) is the dual of C(S,Q2). It turns out that all pairs

(Q2,M0), (Q2,M<p)0<p≤∞, (Q2,M∞)

define (pairwise distinct) analytic rings. For the first, all condensed Q2-vector spaces are complete;
we might call this class “gaseous”. In the middle, we have various classes of p-liquid Q2-vector spaces
for varying p. Finally,M∞-complete Q2-vector spaces are exactly the solid Q2-vector spaces. Thus,
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over nonarchimedean fields, there is a whole line 0 ≤ p ≤ ∞ of possible “completeness” conditions,
interpolating from “gaseous” to “liquid” to “solid”.

Over R, one has to stop at p = 1, because of the triangle inequality. This picture is extremely
reminiscent of the Berkovich space of Z, which includes a full (0,∞) at each nonarchimedean place,
but only a half-open interval (0, 1] at the archimedean place.

All these various notions of liquidity over R and the various nonarchimedean local fields like
Q2 can be understood as specializations of a notion of liquid module over a ring of overconvergent
arithmetic Laurent series Z((T ))>r, constructed in [CS20, Lecture VI – IX]. In the current lectures,
we will only consider the case over R, and so as in the theorem, “liquid” will imply R-vector space
for us, discarding these analogues of liquid vector spaces over nonarchimedean fields.

Coming back to the discussion of flat and projective objects, we discuss flat objects in the
following proposition (and projective objects in the appendix).

Theorem 3.14. For any S ∈ Prof, the object M<p(S) ∈ Liquidp is flat. Moreover, for any
quasiseparated p-liquid R-vector space V , there is a natural isomorphism

M<p(S)⊗liq V ∼=
⋃
q<p

⋃
K⊂V
q-convex

Mq(S,K).

Here, for finite S, we define
Mq(S,K) ⊂ R[S]⊗R V

as the q-convex hull of the |S| closed subsets K ∼= [s]⊗K ⊂ R[S]⊗R V , s ∈ S, and in general

Mq(S,K) = lim←−
i

Mq(Si,K)

for S = lim←−i Si profinite.

Proof. Consider the functor

V 7→ M<p(S;V ) =
⋃
q<p

⋃
K⊂V
q-convex

Mq(S,K),

which is an endofunctor on quasiseparated p-liquid R-vector spaces. (Indeed, each Mq(S,K) is a
compact q-convex subset, and all transition maps are injective.) This is an exact functor: If

0→ V → V ′ → V ′′ → 0

is an exact sequence of quasiseparated p-liquid R-vector spaces, then

(1) the map M<p(S;V )→M<p(S;V ′) is injective, directly from the definition. In fact, this
holds for any injection V ↪→ V ′, not necessarily with quasiseparated quotient.

(2) the image of M<p(S;V ) → M<p(S;V ′) is the kernel of M<p(S;V ′) → M<p(S;V ′′), as
for any compact q-convex K ′ ⊂ V ′ with image K ′′ ⊂ V ′′, any element in the kernel of
Mq(S;K ′)→Mq(S;K ′′) actually defines an element of Mq(S;K), where K = V ∩K ′.

(3) the map M<p(S;V ′) → M<p(S;V ′′) is surjective, as any compact q-convex K ′′ ⊂ V ′′ is
the image of some compact q-convex K ′ ⊂ V ′, in which case Mq(S;K ′)→Mq(S;K ′′) is
surjective (by Tychonoff). Indeed, as V ′ → V ′′ is surjective, there is some compact subset
K0 ⊂ V ′ with image K ′′, and this is contained in a compact q-convex subset K1 ⊂ V ′.
Then the intersection of K1 with the preimage of K ′′ is a compact q-convex subset K ′ ⊂ V ′
with image K ′′.
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In particular, the functor commutes with finite direct sums. In fact, it commutes with infinite
direct sums (as any compact K ⊂

⊕
i Vi is already contained in some finite direct sum). Moreover,

for V =M<p(S
′), there is a natural isomorphism

M<p(S;M<p(S
′)) ∼=M<p(S × S′),

by writing out the definitions.
Now any p-liquid condensed R-vector space V admits a resolution

. . .→
⊕
i1

M<p(Si1)→
⊕
i0

M<p(Si0)→ V → 0

where all Si0 , Si1 etc. are extremally disconnected profinite sets. If V is quasiseparated, then
applying M<p(S;−) to this sequence gives a long exact sequence

. . .→
⊕
i1

M<p(S × Si1)→
⊕
i0

M<p(S × Si0)→M<p(S;V )→ 0.

But the complex

. . .→
⊕
i1

M<p(S × Si1)→
⊕
i0

M<p(S × Si0)

computesM<p(S)⊗L,liq V . This discussion implies thatM<p(S)⊗L,liq V is concentrated in degree
0, and given by M<p(S;V ), as desired.

Finally, for any p-liquid condensed R-vector space V , we can find a surjection V ′ → V with
V ′ quasiseparated, in which case also V ′′ = ker(V ′ → V ) ⊂ V ′ is quasiseparated. Taking derived
tensor products of

0→ V ′′ → V ′ → V → 0

withM<p(S), we see thatM<p(S)⊗L,liqV is concentrated in degree 0 if and only ifM<p(S;V ′′)→
M<p(S;V ′) is injective. But this is item (1) above. �
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Appendix to Lecture III: Remarks on projective objects

The goal of this appendix is to discuss some positive and some negative results on projective
objects. The results of this appendix are not used in this course, and we mostly include them here
to record them.

The starting point is the following positive result. Here, ω1 is the first uncountable ordinal, and
hence Profω1 is the category of profinite sets that are countable limits of finite sets; equivalently,
this is the category of metrizable profinite sets. The pullback functor CondSetω1 → CondSet is
fully faithful; objects in the image are called ω1-condensed. Equivalently, a condensed set X is
ω1-condensed if the functor

Profop → Set

commutes with ω1-filtered colimits, i.e.

X(lim←−
i

Si) = lim−→
i

X(Si)

whenever Si ∈ Prof, and the index category is ω1-filtered (i.e. any countable subdiagram can be
extended with a cone point).

Proposition 3.15. Let M be a ω1-condensed abelian group. Then for all i > 0,

Exti(Z[N ∪ {∞}],M) = 0.

In other words, within ω1-condensed abelian group, Z[N∪{∞}] is internally projective. (While
within all condensed abelian groups, it is not even projective! And within all condensed abelian
groups, Proposition 3.7 shows that there are essentially no internally projective objects.)

Proof. Let S ∈ Extr. We have to see that

H i(S × (N ∪ {∞}),M) = 0

for i > 0. Consider the pushout diagram

∂β(S × N) //

��

β(S × N)

��
S × {∞} // S × (N ∪ {∞}).

This induces a Mayer–Vietoris type sequence

. . .→ H i(S × (N∪ {∞}),M)→ H i(S ×{∞},M)⊕H i(β(S ×N),M)→ H i(∂β(S ×N),M)→ . . . .

Here, S = S × {∞} and β(S × N) are extremally disconnected profinite sets, so their H i(−,M)
vanishes for i > 0. Thus, it suffices to show that the restriction maps

H i(β(S × N),M)→ H i(∂β(S × N),M)

are surjective for all i ≥ 0. This is a special case of the next lemma. �

Lemma 3.16. Let M be an ω1-condensed abelian group and let S ⊂ T be an injection of profinite
sets. Then for all i ≥ 0 the map H i(T,M)→ H i(S,M) is surjective.
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Proof. As M is ω1-condensed, the functor S 7→ H i(S,M) takes ω1-cofiltered limits to filtered
colimits. Writing T as an ω1-cofiltered limit of its metrizable quotients (and S as the corresponding
limit of its images), we can thus assume that T and S are metrizable. In that case, S is injective in
the category of profinite sets (by writing it as a sequential limit of finite sets along surjective maps,
and noting that injections of profinite sets admit the left lifting property against surjective maps
of finite sets). Thus, S ↪→ T splits, and consequently H i(T,M)→ H i(S,M) is surjective. �

One might wonder whether further profinite sets S have the property that H i(S,M) = 0 for
all M ∈ CondAbω1 and i > 0. Regarding this property, we have the following proposition.

Proposition 3.17. Let S ∈ Prof. Consider the following conditions.

(1) For all M ∈ CondAbω1 and all i > 0, one has H i(S,M) = 0.
(2) For all M ∈ Liquidp ∩ CondAbω1 and all i > 0, one has H i(S,M) = 0.

(3) For all Smith spaces W whose unit ball is metrizable, one has H1(S,W ) = 0.
(4) The real Banach space C(S) is separably injective in the sense of [ASC+16, Definition

2.1].

Then (1) ⇒ (2) ⇒ (3) ⇒ (4).

In the proof, we use the yoga of Banach and Smith spaces, for which we refer to [CS20, Lecture
IV].

Proof. It is clear that (1) ⇒ (2) ⇒ (3). To show that this implies (4), let V ⊂ V ′ be a closed
immersion of separable Banach spaces and V → C(S) a map of Banach spaces. We wish to show
that it extends to a map V ′ → C(S). We note that the exact sequence 0→ V → V ′ → V ′′ → 0 of
Banach spaces dualizes to an exact sequence 0 → W ′′ → W ′ → W → 0 of Smith spaces, and the
map V → C(S) dualizes to a map M1(S) → W of Smith spaces, which is in fact determined by
the map S →W . The condition that the V ’s are separable is equivalent to the condition that the
W ’s have metrizable unit balls. By (3), one has H1(S,W ′′) = 0, and hence the map S →W lifts to
a map S → W ′, which then extends uniquely to a map M1(S)→ W ′ of Smith spaces, necessarily
lifting M1(S)→W . Dualizing again, we arrive at the desired extension V ′ → C(S). �

One negative result is a theorem of Amir:

Theorem 3.18 ([Ami64, Theorem 3]). For a metrizable profinite set S, the Banach space C(S)
is separably injective if and only if C(S) ∼= c0(N). In particular, C(S) is not separably injective for
the Cantor set S.

The book [ASC+16] raises the question whether the non-metrizable profinite set S = βN×βN
has the property that C(S) is separably injective, see [ASC+16, Section 6.4.1]. We answer this in
the negative:

Theorem 3.19. The Banach space C(βN× βN) is not separably injective.

In particular, by Proposition 3.17, this implies that not all H i(S,M) vanish for i > 0 and
M ∈ CondAbω1 , which in particular gives Proposition 3.7. (In fact, if one only wishes to show
Proposition 3.7, it suffices to show that C(βN× βN) is not an injective Banach space. This follows
from it admitting c0(N) as a direct summand by [Cem84], and c0(N) not being injective, [ASC+16,
Theorem 1.25].)
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Remark 3.20. The proof below can also be read line-by-line with all Banach spaces C(S)
replaced by free condensed abelian groups Z[S], leading to a proof that Z[βN× βN] has nontrivial
Ext1-groups against ω1-condensed abelian groups, without unnecessarily involving Banach spaces.
We formulate the proof in terms of Banach spaces in order to cover the question asked in [ASC+16].

Given a profinite set S, one can naturally endow the set of all closed subsets of S with the
structure of a profinite set Sub(S). One way to do this is to observe that for finite sets S, Sub(S)
is itself a finite set, and the association S 7→ Sub(S) admits a covariant functoriality (by taking
images of subsets). For general profinite S = lim←−i Si, one can then define Sub(S) = lim←−i Sub(Si) as

a profinite set. Note that indeed the underlying set of Sub(S) is given by the set of closed subsets of
S: Any closed subset Z ⊂ S is itself the limit of its images Zi ⊂ Si (and conversely any compatible
collection of subsets Zi ⊂ Si defines a closed subset Z ⊂ S in the inverse limit). Also note that if
S is metrizable, then so is Sub(S). One can give a “moduli description” of Sub(S): For any other
profinite set T , maps from T to Sub(S) are in bijection with those closed subsets Z ⊂ S × T such
that for all finite quotients S → Si, the image Zi ⊂ Si× T (of Z ⊂ S × T ) is locally on T constant.

We note that the subset Suboc(S) ⊂ Sub(S) of open and closed subsets defines a dense subset,
which is also countable in case S is metrizable.

If S is metrizable, one can find a “universal” family of metrizable covers of S. Indeed, any
such T admits a closed immersion T ↪→ {0, 1}N × S. Let Tn ⊂ {0, 1}n × S be the image of
T . Then Tn =

⊔
αn∈{0,1}n Tn,αn , where each Tn,αn ⊂ S is a closed subset. Such Tn’s are then

parametrized by Sub(S){0,1}
n
, and the condition that Tn → S is a cover defines a closed subset

Sub(S)
{0,1}n
cov ⊂ Sub(S){0,1}

n
. Varying n, there are transition maps

Sub(S){0,1}
n+1

cov → Sub(S){0,1}
n

cov

taking a collection

(Tαn+1)αn+1∈{0,1}n+1

of closed subsets of S to the collection (Tn,αn)αn given by Tαn = T(αn,0) ∪ T(αn,1). Let

Cov(S) = lim←−
n

Sub(S){0,1}
n

cov ;

this is a metrizable profinite set whose points parametrize metrizable covers T → S with a fixed
embedding T ↪→ {0, 1}N × S.

There is a countable dense subset Covoc(S) of Cov(S) consisting of those T such that all Tn,αn

are open and closed subsets of S, and for large n all inclusions Tn+1,αn+1 ⊂ Tn,αn are equalities.
Now we can give a reformulation of the separable injectivity of C(βN× βN).

Proposition 3.21. The Banach space C(βN× βN) is separably injective if and only if for all
metrizable profinite sets S1 and S2 with a metrizable cover T → S1×S2, there are metrizable covers
S′1 → S1 and S′2 → S2 and a commutative diagram

C(S1 × S2) //

''

C(T )

��
C(S′1 × S′2).
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Proof. We prove only the direction of relevance to us, namely that the separable injectivity
of C(βN× βN) implies this statement. As T → S1 × S2 is a cover, the map C(S1 × S2)→ C(T ) is
a closed immersion of separable Banach spaces. Choose surjections βN→ S1, βN→ S2. Then the
map C(S1 × S2)→ C(βN× βN) extends to C(T ) by separable injectivity of C(βN× βN). But

C(βN× βN) = lim−→
βN→S′1,βN→S′2

C(S′1 × S′2)

is the ω1-filtered colimit of Banach spaces, where the index category is over all metrizable quotients
S′1, S′2 of βN; we may assume that these quotients map to S1 and S2. Thus, any map C(T ) →
C(βN×βN) from the separable Banach space C(T ) factors over some C(S′1×S′2), giving the desired
result. �

We will show that if this property holds true, then in a certain “universal” case it cannot be
necessary to include the cover of S1. Intuitively, the point is that given S1, there is a universal case
for S2 (given by Cov(S1)) and in this universal case, any one metrizable cover S′1 → S1 does not
really simplify the situation.

As preparation, we recall the following.

Proposition 3.22. Let S be the Cantor set, and let f : T → S be a metrizable cover. Then
there is a closed subset Z ⊂ S homeomorphic to the Cantor set on which f splits.

Proof. This is well-known; one can for example write T = lim←−n Tn as above, and inductively
for each n choose 2n pairwise disjoint open and closed subsets Sαn with splittings Sαn → Tn; then
lim←−n

⊔
αn
Sαn is a closed subset of S on which f splits, and which contains a Cantor set (as it

surjects onto the Cantor set, and this surjection admits a splitting as all metrizable profinite sets
are injective in the category of profinite sets). �

Now let S be the Cantor set and let J = Covoc(S). We get a surjective map βJ → Cov(S).

Proposition 3.23. Assume that C(βN×βN) is separably injective. Then there is a commutative
diagram

C(S × Cov(S)) //

((

C(T )

��
C(S × βJ)

where T → S × Cov(S) is the universal cover.

Proof. Using Proposition 3.21, we see that there is some cover f : S′ → S and a commutative
diagram

C(S × Cov(S)) //

((

C(T )

��
C(S′ × βJ).

We need to get rid of the cover f : S′ → S. For this, we pick a copy of the Cantor set Z ⊂ S on
which f splits.
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Fix a retraction r : S → Z. This induces a map Cov(S) → Cov(Z) (as for any surjective map
of metrizable profinite sets), and letting TZ → Z ×Cov(Z) be the universal family, there is a map
T → TZ over S × Cov(S)→ Z × Cov(Z). In particular, we get a commutative diagram

C(Z × Cov(Z)) //

��

C(TZ)

��
C(S × Cov(S)) // C(T ).

By assumption, we get a further map C(T )→ C(S′ × βJ).
Let JZ = Covoc(Z). Using the retraction r : S → Z, one can use contravariant functoriality of

Covoc(−) to get a map JZ → J = Covoc(S), inducing a map βJZ → βJ → Cov(S). The composite
βJZ → Cov(S)→ Cov(Z) is given by the unique extension of the map JZ → Covoc(Z) ⊂ Cov(Z).

In particular, we get the map C(T )→ C(S′×βJ)→ C(Z×βJZ) by restriction along Z×βJZ →
S′ × βJ . We claim that the composite

C(Z × Cov(Z))→ C(TZ)→ C(T )→ C(S′ × βJ)→ C(Z × βJZ)

is pullback along the map Z × βJZ → Z × Cov(Z). But the first three maps compose to pullback

along the map S′ × βJ → Z × Cov(Z) that is given by S′ → S
r−→ Z in the first factor and by

βJ → Cov(S)→ Cov(Z) in the second factor. Restricting to Z × βJZ , the claim follows.
Thus, we get the desired splitting (for the Cantor set Z in place of S, but they are isomorphic).

�

Back to our Cantor set S, choose a metrizable cover S′ → S such that C(S)→ C(S′) does not
split. In fact, let us choose one such cover such that even the map C(U) ⊂ C(S)→ C(S′) does not
split for any open and closed subset U ⊂ S, for example by choosing one such cover for each open
and closed subset of S and then taking the product of all such covers (noting that there are only
countably many open and closed subsets of S). We can find a point x ∈ Cov(S) giving rise to this
cover S′ → S. Picking a point of βJ mapping to x, Proposition 3.23 implies that if C(βN× βN) is
separably injective, then there is a commutative diagram

C(S × Cov(S)) //

''

C(T )

��
C(S)

where the diagonal arrow is evaluation at x ∈ Cov(S). Now take the infimum C, over all possible
open and closed subsets U ⊂ S and all maps f : C(T )→ C(U) making the diagram

C(S × Cov(S)) //

��

C(T )

��
C(S) // C(U)

commute, of the norm of f . (Clearly, C ≥ 1.) Choose some such U and f for which ||f || < C + 1
2 .

Note that we may always replace f by f precomposed with the projection to the preimage of
an open and closed subset of Cov(S) containing x. Choosing a retraction r : T → S′ of T to
S′ = T ×Cov(S) {x}, we find that ||f − f ◦ r|| < 1 (otherwise we could make ||f || smaller at
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least on an open and closed subset of U by precomposing with such a projection to an open and
closed subset of Cov(S)). But then f ◦ r : C(S′) → C(U) is almost an inverse to the pullback
g : C(U) ⊂ C(S)→ C(S′), more precisely ||1− g ◦ f ◦ r|| < 1, but then a geometric series produces
an actual inverse to g.
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4. Lecture IV: Liquid tensor product calculations

Let us recap. For every 0 < p ≤ 1, we have an abelian full subcategory Liquidp of CondAb (or
of condensed R-modules), closed under limits and colimits, generated by the compact projective
objects

M<p(S),

the spaces of < p-summable measures on S ∈ Prof. There is also a tensor product − ⊗R<p − on
Liquidp, the liquid tensor product, which:

(1) commutes with colimits in each variable;
(2) satisfies M<p(S)⊗R<pM<p(T ) =M<p(S × T ) for S, T ∈ Prof.

Moreover, for V,W ∈ Liquidp, the p-liquid vector space V ⊗R<p W corepresents the functor of
bilinear maps of condensed abelian groups (or condensed R-modules) out of V ×W with p-liquid
target.

We also saw that the basic objects, M<p(S) for S ∈ Prof, are flat. In this lecture, we want
to carry this further and demonstrate a non-trivial calculation of the liquid tensor product, in the
context of spaces of holomorphic functions on disks in the complex plane. We will also illustrate,
in this case, some important principles which we’ll revisit from a more thorough perspective when
we discuss nuclear modules.

All these spaces of holomorphic functions for varying disks are isomorphic by translation and
scaling, so we may as well just consider the unit disk D, with

O(D) = {
∑
n≥0

cnT
n | cnrn → 0∀r < 1} ⊂ C[[T ]].

We will explain the structure of condensed C-module on O(D) and prove the following.

Theorem 4.1. For each 0 < p ≤ 1, the space O(D) is p-liquid, and is flat with respect to the
p-liquid tensor product. Moreover, for k ≥ 0, the k-fold p-liquid tensor product

O(D)⊗C<pk

identifies with the space of holomorphic functions on the unit polydisk Dk ⊂ Ck,

O(Dk) = {
∑

n1,...,nk≥0

cn1,...,nk
Tn1

1 . . . Tnk
k | cn1,...,nk

rn1
1 . . . rnk

k → 0∀r1, . . . , rk < 1} ⊂ C[[T1, . . . , Tn]].

Remark 4.2. Although this theorem looks very relevant to our purposes, it turns out that we
(probably) won’t actually use it in the remainder of the course! We’re including it here because
another purpose of this class is to present some basic information about the liquid category and
how to work in it.

Note that, because of the ∀r < 1 in the definition, O(D) is an intersection, or inverse limit, of
more basic spaces of sequences with some given convergence criterion. (We will be more explicit
about this later.) The essential content of the above theorem is that we can commute these inverse
limits past the liquid tensor product. This illustrates that the p-liquid tensor product is “complete
enough”: even though it’s only designed to commute with colimits in each variable, it actually also
commutes with many inverse limits arising in practice, though for highly non-formal reasons.

Another notable aspect of this theorem is that the p-liquid tensor product is, in this example,
independent of p, and simply gives the natural multi-variable analog of the given space of functions.
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This is also far from formal, and in fact it fails for spaces of continuous functions. Indeed, if S and
T are infinite profinite sets, then

C(S;R)⊗R<p C(T ;R) 6= C(S × T ;R),

for all p, and the left-hand side depends on p. The problem is that the topology on spaces of
continuous functions comes from the sup norm, which morally corresponds to taking p =∞, so to
have the desired Künneth result we would need to take a tensor product over “R∞”. As discussed
in the previous lecture, this doesn’t exist as an analytic ring. However, replacing R by Q2 for an
arbitrary prime 2, such a theory with p = ∞ does exist: the solid theory. And for solid tensor
product the Künneth formula for continuous functions on profinite sets does hold.

In principle, to perform the tensor product calculation in the theorem, we should resolve O(D)
by the basic liquid spaces M<p(S) and the use the calculational properties (1),(2) of the liquid
tensor product to compute. But in practice, it’s much easier to follow a more indirect route. In
fact, we will start with something which looks completely unrelated: spaces of measures on locally
profinite topological spaces.

Before we explain what we mean by this, let’s explain what we don’t mean. For a profinite
set S, the space of measuresM<p(S) can alternatively be described as the p-liquidification of Z[S]
since, by definition, M<p(S) is the free p-liquid space on S. But now for any condensed set X, we
can also take the p-liquidification of Z[X] and consider this as a kind of space of measures on X.

But these aren’t the kind of measures we’ll want. For example, if X is the filtered union of its
profinite subsets, then

Z[X]liqp = ∪S⊂X,S∈ProfM<p(S),

and this corresponds to not arbitrary < p-summable measures on X (whatever that means), but
to compactly supported < p-summable measures on X.

However, if X is locally profinite — equivalently, X is Hausdorff and the compact open subsets of
X form a basis for the topology — then we can directly define a space of (non-compactly supported)
measures on X by a simple generalization of the case of profinite X. Namely, a measure on X is a
function

µ : {U ⊂ X | U compact open } → R
such that µ(∅) = 0 and µ(U t V ) = µ(U) + µ(V ) for disjoint U and V . For 0 < p ≤ 1, such a µ
is called a p-measure, or a measure of bounded p-variation, or a p-summable measure, if there is a
C > 0 such that ∑

i∈I
|µ(Ui)|p ≤ C

whenever (Ui)i∈I is a finite set of disjoint compact open subsets of X.
The set of p-measures is denoted Mp(X), and we give it the structure of a condensed set (and

in fact, condensed R-module) by

Mp(X) = ∪C>0M(X)`p≤C ,

where M(X)`p≤C is the closed (hence compact Hausdorff) subset of
∏
U compact open [−C1/p, C1/p]

specified by the above conditions of finite additivity and having p-variation ≤ C. Finally, we set

M<p(X) = ∪q<pMq(X).

Warning 4.3. These spaces of measures M<p(X) are not covariantly functorial for arbitrary
continuous maps X → Y , but only for proper maps.
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Generalizing our discussion for profinite X, we have the following.

Proposition 4.4. Let X be a locally profinite space and 0 < p ≤ 1. Then:

(1) M<p(X) is p-liquid;
(2) M<p(X) is flat with respect to the p-liquid tensor product;
(3) If X,Y are both locally profinite, then there is a natural identification M<p(X) ⊗R<p

M<p(Y ) =M<p(X × Y ).

The proof will use the following two lemmas. The first lemma says that we can express these
measures on locally profinite sets simply in terms of measures on profinite sets, by means of the
one-point compactification.

Lemma 4.5. Let X be locally profinite, and let X ∪∞ ∈ Prof be the one-point compactification
of X. Then there are natural identifications

M<p(X) =M<p(X ∪∞)/M<p(∞) = ker (M<p(X ∪∞)→M<p(∗)) .

Proof. First note that by functoriality, the composition

R =M<p(∞)→M<p(X ∪∞)→M<p(∗) = R
is the identity, so we get a direct summand decomposition of M<p(X ∪∞), and in particular the
last two expressions in the statement of the lemma are equal. Now we will identify the two outer
expressions.

The clopen subsets of X ∪∞ can be categorized into two types:

(1) those which lie in X: these correspond bijectively to compact open subsets of X;
(2) those which contain ∞: these correspond (by intersecting with X) bijectively to the com-

plements of compact open subsets of X.

Thus, to promote a measure on X to a measure on X ∪ ∞ amounts to additionally specifying
values µ(V ) for subsets V ⊂ X which are complements of compact opens, such that additivity and
bounded p-variation hold.

However, if the measure is to lie in ker (M<p(X ∪∞)→M<p(∗)), then the total measure has
to be 0, which means that the value on the complement of a compact open U must be equal to
−µ(U). This sets up a bijection between finitely additive measures on compact open subsets of X
and finitely additive measures on clopen subsets of X ∪ ∞ with total measure 0. Moreover it is
easy to see with the triangle inequality that this bijection preserves `q-bound up to multiplication
by 2; and the resulting bijections on sets with bounds are continuous with respect to the compact
Hausdorff topologies. This gives the claim. �

The next lemma says that the choice of compactification is immaterial in the first identification
above.

Lemma 4.6. Let f : S � T be a surjection in Prof, let ∂T ⊂ T be a closed subset, and set
∂S = f−1∂T . If f : S\∂S ∼→ T\∂T (so that S and T can be viewed as two different compactifications
of the same locally profinite space S \ ∂S), then

M<p(S)/M<p(∂S)
∼→M<p(T )/M<p(∂T ).

Proof. Comparing universal properties of mapping out, it suffices to show that

S t∂S ∂T = T
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in the category of condensed sets.1 But but indeed the equivalence relation S×T S ⊂ S×S giving T
as a quotient of S is covered by the diagonal S → S×T S and ∂S×∂T ∂S because of the hypothesis
f : S \∂S ∼→ T \∂T , and this gives the claim by comparing universal properties of mapping out. �

Now we prove Proposition 4.4.

Proof. M<p(X) is p-liquid and flat because the first lemma exhibits it as a summand of
M<p(X∪∞), for which we know these facts by the previous lecture. If we calculateM<p(X)⊗R<p

M<p(Y ) using the presentations

M<p(X) =M<p(X ∪∞)/M<p(∞),

M<p(Y ) =M<p(Y ∪∞)/M<p(∞)

coming from the first lemma, we obtain

M<p(X)⊗R<pM<p(Y ) =M<p((X ∪∞)× (Y ∪∞))/M<p(X ×∞∪∞× Y ),

but this is the same as M<p((X × Y ) ∪∞)/M<p(∞) by the second lemma. �

Let us specialize to our case of main interest. Let I be a countable set, which we view as a
locally profinite space with the discrete topology. In this case, compact open subsets are the same
as finite subsets, and a finitely additive measure on these is uniquely specified by its values on the
singeton sets, which can be arbitrary. Thus we find that

M(I)`p≤C = {(xi)i∈I | xi ∈ R,
∑
i

|xi|p ≤ C},

as a closed subset of
∏
I [−C1/p, C1/p]. Thus Mp(I) is simply the set of absolutely p-summable

sequences of real numbers, equipped with a condensed structure where the “closed unit balls” for
the p-norms are given their natural compact Hausdorff topology.

In fact we also have analogous “sequence spaces” Mp(I) for any 0 < p ≤ ∞, not necessarily
≤ 1, defined by the same description, producing a whole series:(

. . . ⊂M1/3(I) ⊂M1(I) ⊂M2(I) ⊂ . . . ⊂M∞(I)
)
⊂
∏
I

R,

where the largest one is M∞(I) = ∪C>0
∏
I [−C,C].

But there is more, because each of theseMp(I) also has a (p-)Banach space analog `p(I), which
has the same underlying set

`p(I) = {(xi)i∈I | xi ∈ R,
∑
i

|xi|p <∞},

but with topology, hence condensed structure, where a basis of neighborhoods of 0 is given by the
open balls

`p(I)<ε = {(xi)i∈I | xi ∈ R,
∑
i

|xi|p < ε}

1In fact, this pushout also holds in condensed anima, a fact which was implicitly used in the proof of 3.15. To
deduce this from the same fact in condensed sets, it suffices to see that the pushout St∂S ∂T in condensed anima is a
condensed set. In general, the pushout in condensed anima is given by sheafifying the presheaf pushout. Sheafification
of anima sends sets to sets because it’s built from filtered colimits and limits, so it suffices to see that the pushout
S t∂S ∂T in presheaves of anima is a presheaf of sets. But this follows because the map ∂S → S is injective.



42 CONDENSED MATHEMATICS AND COMPLEX GEOMETRY

for ε > 0. This produces another series of sequence spaces(
. . . ⊂ `1/3(I) ⊂ `1(I) ⊂ `2(I) ⊂ . . . ⊂ `∞(I)

)
⊂
∏
I

R,

which includes termwise in the previous one by maps which are bijections on underlying sets, but
not isomorphisms of condensed sets.2

The fact that all of these sequence spaces are pairwise non-isomorphic as condensed R-modules
encapsulates much of the subtlety of linear algebra in infinite dimensions: first, there are different
convexity types parametrized by p, and second, there is also a difference between taking compact
subsets as fundamental and taking open subsets as fundamental. However, as noticed and studied
in detail by Grothendieck, there are certain maps which completely erase these subtle distinctions.
These are called nuclear, trace-class, or (p-)summable maps. The simplest example is the following.
Suppose given a sequence of real numbers (λi)i∈I which is p-summable, i.e.

∑
i |λi|p < ∞. Then

for any of the above sequence spaces V , we get an endomorphism

·λ : V → V,

given by multiplying the ith entry by the scalar λi. The simple but important phenomenon is the
following.

Lemma 4.7. Let I be a countable infinite set, and let λ = (λi)i∈I be a p-summable sequence of
real numbers. Then the map of condensed R-modules

·λ :M∞(I)→M∞(I)

lands inside `p(I) ⊂M∞(I).

Proof. On underlying sets, this is clear: if we multiply a uniformly bounded sequence by a
p-summable sequence, we still get an p-summable sequence. To see that the factoring holds as
condensed sets, we need that for all C > 0, the map∏

I

[−C;C]→ `p(I),

(xi) 7→ (λixi)

is continuous. But if we want to guarantee that∑
i

|λixi − λiyi|p =
∑
i

|λi|p|xi − yi|p < ε,

we can arrange this by taking xi and yi to be close enough for i in some finite subset I0 ⊂ I, since
the remainder ∑

i 6∈I0

|λi|p|xi − yi|p ≤ 2pCp
∑
i 6∈I0

|λi|p

goes to 0 as I0 grows.3 �

2Actually, in this Banach picture, it might be preferable to replace `∞(I) by its subspace c0(I), the set of
null-sequences, again with topology coming from the sup norm. The reason has to do with duality; see the exercises.

3Compare with the fact that the identity mapMp(I)→ `p(I) is not continuous: if all we know is that
∑

i |xi|
p ≤

C, then we cannot guarantee
∑

i |xi|
p < ε with just a condition on finitely many entries.
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Thus this map of multiplication by a p-summable λ takes us all the way from the largest measure
sequence space to the p-Banach one. In fact, we have run into a similar phenomenon before, when
discussing the space of holomorphic functions on the disk. We defined this as

O(D) = {
∑
n≥0

cnT
n | cnrn → 0∀r < 1} ⊂ C[[T ]].

We could replace the condition cnr
n → 0 by any number of other convergence conditions on the

sequence cnr
n without affecting the definition: we could say cnr

n is bounded, is 1/3-summable, is
2-summable, etc. For fixed r < 1, there is of course a difference between these convergence criteria;
but since we ask it for all r < 1, they are equivalent. Indeed, suppose we take the weakest one,
where we just ask that the cnr

n be uniformly bounded. If this holds for all r < 1, then in particular
it holds for some r′ > r. Thus cnr

n is equal to a uniformly bounded sequence cnr
′n multiplied by

the exponentially decaying sequence (r/r′)n, hence it has whatever other summability property we
could ask.

This leads us to consider the following situation. Suppose given, for every n ∈ N, an I-sequence

λ(n) = (λ
(n)
i )i∈I

of real numbers which is q-summable for some q < p, with 0 < p ≤ 1, and consider the tower of
condensed R-modules

. . .M<p(I)
·λ(n)

→ M<p(I)
·λ(n−1)

→ . . .
·λ(1)→ M<p(I).

For a reason which will become clear in a moment, we will also ask that all λ
(n)
i be nonzero. We

are interested in studying the inverse limit (=intersection, as the maps are injective)

V = lim←−
n

M<p(I)

of this tower. (This V depends on the λ(n), but we suppress this from the notation.) We make a
series of remarks about this situation:

(1) Up to a pro-isomorphism of the tower, we can assume that all the λ(n) are q-summable,
for any given fixed q < p. Indeed, this can be arranged by composing maps in the tower,
for the following reason: all the λ(n) are p-summable, but the Cauchy-Schwartz inequality
implies that if λ and λ′ are p-summable, then the termwise product λ ·λ′ is p/2-summable.

(2) Again up to a pro-isomoprhism of the tower, we can replace M<p(I) by any of the above
discussed sequence spaces, either of measure-type or of Banach-type. This follows from
the previous remark and Lemma 4.7.

(3) We have lim←−
1
n
M<p(I) = 0, so that V = R lim←−nM<p(I).4 Indeed, by the previous remark,

we can replace theM<p(I) by Banach sequence spaces; and moreover the transition maps
have dense image, because they contain the basis vectors for these sequence spaces due

to the hypothesis that all λ
(n)
i 6= 0. Thus this lim←−

1
n

claim follows from the Mittag-Leffler
lemma below.

4Here it is important that infinite products in CondAb are exact, so the standard Milnor sequence does calculate
the R lim←−n

’s.
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(4) For any p, there is a short exact sequence of condensed R-modules

0→ V →
∏
N
Mp(I)

σ−id−→
∏
N
Mp(I)→ 0,

where the map σ shifts the components using the given transition maps ·λ(n). This is a
rephrasing of the vanishing of lim←−

1 for the tower with terms theMp(I), which is the same
as the previous claim because all the different sequence spaces yield isomorphic pro-towers.

(5) There is a short exact sequence of liquid p-modules

0→ V → ∪q<p
∏
N
Mq(I)

σ−id−→ ∪q<p
∏
N
Mq(I)→ 0.

This follows by taking filtered colimits in the previous.

We used the following Mittag-Leffler lemma above:

Lemma 4.8. Suppose given a tower . . . → Vn → Vn−1 → . . . → V1 of Banach spaces such that
the transition maps have dense image. Then

R1 lim←−
n

Vn = 0

in CondAb.

Proof. We have to see that for all S ∈ ExtrDisc, we have

R1 lim←−
n

Vn(S) = 0

in the category of abelian groups. When S = ∗, this follows from the standard topological Mittag-
Leffler result, [Gro61] 13.2.4. But in fact the general case reduces to that one: each Vn(S) also has
a Banach space structure with respect to the sup norm, and each transition map Vn(S)→ Vn−1(S)
is still dense, as the locally constant functions are dense in the continuous functions S → Vn−1, and
locally constant functions lift up to ε by our original density hypothesis. �

It is this short exact sequence in (5) we will use to analyze p-liquid tensor products with V . In
fact, we have the following.

Lemma 4.9. Let A and B be two countable sets, and let (Xa)a∈A and (Yb)b∈B be locally profinite
spaces parametrized by A and B respectively. Then(

∪q<p
∏
a∈A
Mq(Xa)

)
⊗R<p

(
∪q<p

∏
b∈B
Mq(Yb)

)
= ∪q<p

∏
(a,b)∈A×B

Mq(Xa × Yb),

and all of these p-liquid spaces are flat.

Proof. We will prove this by writing all the objects as filtered unions of measure spaces on
locally profinite sets. First noote that

M<p(ta∈AXa) ⊂
∏
a∈A
M<p(Xa)
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because by additivity a measure on ta∈AXa is determined by its values on those compact opens
which are contained in some Xa. Now, given an A-sequence C = (Ca)a∈A of positive real numbers,
let us write

C · M<p(ta∈AXa) ⊂
∏
a∈A
M<p(Xa)

for the isomorphic copy of M<p(ta∈AXa) where we multiply the a-component by Ca. Then we
claim that

∪q<p
∏
a∈A
Mq(Xa) =

⋃
C

C · M<p(ta∈AXa),

where the union is over all A-sequences of positive real numbers, which is a filtered poset under
C ≤ C ′ ⇔ Ca ≤ C ′a∀a ∈ A.

If we know this claim, then first of all we get p-liquidity and flatness of ∪q<p
∏
a∈AMq(Xa),

because it is a filtered colimit of modules which we already know to be flat p-liquid. But second,
using the Künneth property for measure spaces on locally profinite sets proved above and com-
mutation of tensor products with colimits, we find that the tensor product formula we’re trying
to prove reduces to the following fact: any A× B-sequence E = (Ea,b) of positive real numbers is
termwise ≤ one of the form Ca · Db where C is an A-sequence and D is a B-sequence. To prove
that, choose bijections A,B ' N and let

Cn = Dn = max{ sup
i,j≤n

Ei,j , 1}.

Thus we’ve reduced to proving

∪q<p
∏
a∈A
Mq(Xa) =

⋃
C

C · M<p(ta∈AXa).

By taking the union over q, it suffices to show that∏
a∈A
Mq(Xa) =

⋃
C

C · Mq(ta∈AXa),

or in other words, for any given q-summable measures µa on Xa for all a ∈ A, there is an A-sequence
ε = (εa) of positive constants such that

µ(U) := εa · µa(U)

for U ⊂ Xa compact open specifies a q-summable measure on ta∈AXa. But indeed, if µa is of
q-variation ≤ Ca, then we can arrange this by taking εa = λa · C−1

a where λa is any q-summable
A-sequence. �

Remark 4.10. The countability hypothesis on A and B is crucial here; see the exercises.

From this we deduce the following, a special case of a general result about nuclear Frechet
spaces which we will (probably) discuss later.

Theorem 4.11. If V = lim←−nM<p(I) and V ′ = lim←−nM<p(I
′) are both presented as inverse lim-

its along towers where each transition map is given by termwise multiplication by some q-summable
I-sequence of nonzero real numbers for some q < p, then V and V ′ are flat p-liquid modules, and
we can pull the inverse limit out of the tensor product calculation, getting

V ⊗R<p V
′ = lim←−

n

M<p(I × I ′),
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where the nth transition map on the right is given by termwise multiplication by the I× I ′-sequence
which is the product of sequences giving the nth transition maps for V and V ′.

Proof. Remark (5) above writes V as the kernel of a map between two p-liquid modules which
are flat by the above lemma, thus giving the flatness claim. Then to calculate the tensor product,
we can use remark (5) and the tensor product calculation given by the lemma. �

We can now specialize this to the case of holomorphic functions on disks. Well, there is one
small wrinkle: this discussion was over R, whereas the tensor product of holomorphic functions we
want to take is over C. But this is not serious: if O(Dk)R denotes the R-subspace of O(Dk) where
the coefficients are required to lie in R, then we can write

O(Dk) = O(Dk)R ⊗R C,
so we can just as well do the calculation over R instead. And then it falls into the purview of the
above theorem. Indeed, choosing any increasing sequence (rn) of real numbers 0 < rn < 1 such
that rn → 1 as n→∞, we can write

O(Dk)R = lim←−
n

M<q(Nk),

where the nth transition map is multiplication by the exponentially decaying Nk-sequence

(d1, . . . dk) 7→ (rn−1/rn)d1+...+dk .

We deduce the desired claims: O(Dk) is flat as a p-liquid space for all k and p, and

O(Dk)⊗C<p O(Dl) = O(Dk+l),

independent of p.

Exercise 1. We used sequence spaces to produce the condensed structure on O(D). Prove the
following more direct description: for a profinite set S, we have

O(D)(S) = {f : S × D→ C | f is continuous, f(s,−) is holomorphic ∀s ∈ S}.

Exercise 2. Let 0 < p ≤ ∞ and I a countable set, and consider the internal hom in condensed
R-modules

Mp(I)∨ = Hom(Mp(I),R).

Show that:

(1) If p ≤ 1, then Mp(I)∨ = c0(I), the Banach space of null-sequences with sup norm.
(2) If p > 1, then Mp(I)∨ = `q(I) where 1 ≤ q <∞ is such that 1

p + 1
q = 1.

Exercise 3. Let 0 < p ≤ ∞ and I a countable set, and consider the internal hom in condensed
R-modules

`p(I)∨ = Hom(`p(I),R).

Show that:

(1) If p ≤ 1, then `p(I)∨ =M∞(I).
(2) If p ≥ 1, then `p(I)∨ =Mq(I) where 1 ≤ q ≤ ∞ is such that 1

p + 1
q = 1.
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For the next two exercises, let’s define a qs condensed R-module V to be countably p-liquid if
for any countable collection K1,K2, . . . of qc subsets of V and any q < p, there is a qc q-convex
K ⊂ V such that Kn ⊂ R ·K for all n. This is a strengthening of the condition saying that V is
p-liquid.

Exercise 4. Show that any p-Banach space is countably p-liquid, the measure space Mp(S)
for profinite S is countably p-liquid, and any countable inverse limit of countably p-liquid spaces is
countably p-liquid. Show also that M<p(S) is not countably p-liquid, and the countably p-liquid
spaces are not closed under countable direct sum.

Exercise 5. Show that if W is qs and countably p-liquid, then for any V = lim←−nM<p(I) with

transition maps given by nowhere zero q-summable λ(n) as in the lecture, then we can pull out the
inverse limit from the tensor product with W :

W ⊗R<p V = lim←−
n

W ⊗R<pM<p(I).

Moreover the lim←−
1 term vanishes.

Exercise 6. Show that if I, J are infinite sets with I uncountable, then(∏
I

R

)
⊗R<p

(∏
J

R

)
6=
∏
I×J

R,

i.e. the natural map is not an isomorphism.

Exercise 7. Let V be qs p-liquid. Show that

V ⊗R<p O(D) =
⋃

K⊂V qc

∩r<1 ∪C>0

∏
n≥0

C

rn
K · Tn ⊂ V [[T ]],

and identify this with a space of “holomorphic” functions D→ V .
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5. Lecture V: From formal nonsense to holomorphic functions

The goal of this lecture is to prove Theorem 1.1:

Theorem 5.1. There is a (necessarily unique) sheaf O (of p-liquid C-algebras) on the topological
space C, such that for any open disc

D = D(x, r) = {z ∈ C | |z − x| < r} ⊂ C,
one has

O(D) = {
∞∑
n=0

an(T − x)n | an ∈ C, ∀r′ < r, anr
′n → 0},

with obvious transition maps O(D)→ O(D′) for D′ ⊂ D.
Moreover, for any such disc D, the sheaf cohomology groups H i(D,O) = 0 for i > 0.

The proof of this theorem will actually not require the delicate commutation of liquid tensor
products with infinite products. But we still need the idea that multiplication by rapidly decaying
sequences erases the distinction between all different kinds of sequence spaces.

Let us start with the formal nonsense. It will later be applied to D(Liqp(C[T ])), the derived

category of p-liquid C[T ]-modules.5

Construction 5.2. Let C be a closed symmetric monoidal stable∞-category with all colimits.
(The following construction only depends on its homotopy category, which is a closed symmetric
monoidal triangulated category with all direct sums, and for most of the discussion such data would
be good enough; but some of the later things work better with stable ∞-categories.) Consider the
collection of idempotent algebra objects in C; equivalently, these are pairs of an object A ∈ C
together with a map 1→ A such that the induced map A→ A⊗A is an isomorphism. (Indeed, in
that case A admits a unique and functorial E∞-algebra structure.) For any such A and A′, there
is at most one map A → A′ commuting with the maps from 1. Indeed, if there is such a map

f : A→ A′, then 1→ A
f−→ A′ → A⊗A′ (where the last map is obtained by tensoring 1→ A with

A′) induces via tensoring with A′ maps

A′ → A⊗A′ → A′ ⊗A′ = A′ → A⊗A′ ⊗A′ = A⊗A′,
where the composite of the first two (resp. the last two) maps is an isomorphism. It follows that
all maps are isomorphisms, and hence A′ maps isomorphically to A ⊗ A′, and the map f is given
by the canonical map A→ A⊗A′ ∼= A′. In particular, the∞-category of such idempotent algebras
is naturally a poset.

Actually, we get a “locale”. Recall that a locale is a “pointless topological space”: One directly
axiomatizes the collection of closed subsets, subject to the condition that one can form finite
unions and arbitrary intersections, satisfying some simple conditions (notably infinite intersections
distribute over unions with a fixed closed subset). (Usually, one rather axiomatizes the collection

5This abstract discussion is closely related to the work of Ben-Bassat–Kremnizer, who emphasized the importance
of idempotent algebras (in their language “homotopy epimorphisms”) in derived analytic geometry, see for example
[BBK17], [BBBK18]. In fact, already in 1972 Taylor [Tay72] suggested very similar ideas; one could say that in
this lecture we simply rephrase his ideas in modern language. We believe that one could also carry out the proof of
Theorem 1.1 in the language of Ben-Bassat–Kremnizer, i.e. without liquid modules, but instead using their (stable
∞-category) D(Ind(Banach)) freely generated by Banach spaces, and their site of homotopy epimorphisms, but we
have not investigated the details.
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of open subsets, but they are in canonical bijection, and in our example it feels more natural to
consider the closed subsets.)

Proposition 5.3. The above construction defines a locale S(C) whose closed subsets Z ⊂ S(C)
correspond to idempotent algebras A, so that

(1) Z ∩ Z ′ corresponds to A⊗A′;
(2) Z ⊂ Z ′ if and only if A⊗A′ = A;
(3) Z ∪ Z ′ = Z tZ∩Z′ Z ′ corresponds to [A⊕A′ → A⊗A′];
(4)

⋂
i Zi corresponds to lim−→i

Ai.

Remark 5.4. This construction goes back at least to the work of Balmer–Favi [BF11], and has
been investigated in detail by Balmer–Krause–Stevenson [BKS20]. These works however generally
assume that all compact objects are dualizable, which will be very false in our situation of interest.
Under this assumption, however, it is known that the locale has enough points, see Wagsteffe’s
Thesis [Wag21] and Balchin–Stevenson [BS21].

Proof. All assertions reduce to direct computations. The infinite distribute law follows from
the commutation of finite limits with arbitrary colimits in a stable ∞-category (as finite limits are
also finite colimits). �

Now to any closed Z ⊂ S(C), corresponding to an idempotent algebra A ∈ C, we can associate
a full sub-∞-category

C(Z) = ModA(C) = {X ∈ C | X ∼= X ⊗A} ⊂ C.

(Indeed, if X is an A-module, then X → X ⊗ A is an isomorphism as A is idempotent; and
conversely, if X → X ⊗A is an isomorphism then X acquires a unique structure of A-module from
X ⊗A.) We write

iZ∗ : C(Z)→ C

for this full inclusion. It admits a left adjoint

i∗Z : C → C(Z) : X 7→ X ⊗A

and a right adjoint

i!Z : C → C(Z) : X 7→ RHomC(A,X).

Formally denoting by U the “complementary open” of Z, we define the Verdier quotient

C(U) = C/C(Z).

This comes with a localization functor denoted

j∗U : C → C(U)

which admits a fully faithful left adjoint

jU ! : C(U)→ C

determined by

jU !j
∗
UX = [X → X ⊗A]

and a fully faithful right adjoint

jU∗ : C(U)→ C
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determined by

jU∗j
∗
UX = RHomC([1→ A], X).

In particular, there are functorial distinguished triangles

jU !j
∗
UX → X → iZ∗i

∗
ZX

and

iZ∗i
!
ZX → X → jU∗j

∗
UX.

In particular, this formal nonsense produces a structure sheaf on S(C):

Proposition 5.5. The functor U 7→ C(U) defines a sheaf of ∞-categories on the locale S(C).
In particular, for any X ∈ C, the functor

U 7→ X(U) := jU∗j
∗
UX ∈ C

defines a sheaf on S(C) with values in C. In particular, applied to X = 1 the unit object of C, this
gives a “structure sheaf” on S(C).

Proof. The sheaf property can be stated in two pieces. First, for any two open U , U ′, one
gets a cartesian diagram

C(U ∪ U ′) //

��

C(U)

��
C(U ′) // C(U ∩ U ′).

To show this, consider the corresponding idempotent algebras A and A′. For fully faithfulness, one
needs to see that for all X ∈ C(U ∪ U ′) (considered as a full subcategory of C via jU∪U ′∗), the
square

X //

��

RHom([1→ A], X)

��
RHom([1→ A′], X) // RHom([1→ A⊗A′], X)

is cartesian. But this reduces to X = RHom([1→ B], X) where B = [A⊕A′ → A⊗A′] corresponds
to U ∪ U ′. Essential surjectivity reduces to a similar straightforward computation.

The other thing to check is that for a filtered union U =
⋃
i Ui, the functor

C(U)→ lim←−
i

C(Ui)

is an isomorphism (where in fact all transition functors are full inclusions, so the limit is an inter-
section). Again, fully faithfulness reduces to X → lim←−i RHom([1 → Ai], X) being an isomorphism

(where Ui corresponds to Ai). But the right-hand side is RHom([1→ A], X) for A = lim−→i
Ai, which

corresponds to U . As both categories C(U) and lim←−iC(Ui) are full subcategories of C, essential

surjectivity reduces to the assertion that if X ∈ C is such that X = RHom([1 → Ai], X) for all i,
then also X = RHom([1→ A], X), which follows by passage to limits. �



5. LECTURE V: FROM FORMAL NONSENSE TO HOLOMORPHIC FUNCTIONS 51

Now we want to apply this formal nonsense to C = D(Liqp(C[T ])). To get things off the
ground, we need examples of idempotent algebras, which ought to correspond to the closed subsets
{|T | ≤ 1} and {|T | ≥ 1}. For this, we take the corresponding “rings of overconvergent holomorphic
functions”. Concretely, let

A({|T | ≤ 1}) :=
⋃
r>1

{
∞∑
n=0

anT
n | an ∈ C, anrn → 0} =

⋃
r>1

M<p({Tn/rn}n≥0)

and

A({|T | ≥ 1}) :=
⋃
r<1

{
∑
n<<∞

anT
n | an ∈ C, anrn → 0} =

⋃
r<1

⋃
m≥0

M<p({Tn/rn}n≤m).

The following is the only real computation we need to do.

Proposition 5.6. The liquid C[T ]-algebras A({|T | ≤ 1}) and A({|T | ≥ 1}) are idempotent.
The corresponding localization of C[T ] is given by

O({|T | > 1}) =
⋃
m≥0

⋂
r>1

{
−∞∑
n=m

anT
n | an ∈ C, anrn → 0} =

⋃
m≥0

⋂
r>1

M<p({Tn/rn}n≤m)

resp.

O({|T | < 1}) =
⋂
r<1

{
∞∑
n=0

anT
n | an ∈ C, anrn → 0} =

⋂
r<1

M<p({Tn/rn}n≥0) = O(D(0, 1)).

We note that in the first case, the localization gives only those holomorphic functions that are
meromorphic at ∞ – generally, the algebraicity at the boundary is remembered (which is what
makes GAGA theorems in the affine case possible).

Proof. We first show that A({|T | ≤ 1}) is idempotent. This implies that A({|T | ≥ 1}) is
idempotent as well, as it is in fact a C[T±1]-algebra obtained from the first by base change along
T 7→ T−1. Now, as p-liquid C-vector spaces, the tensor product of A = A({|T | ≤ 1}) with itself is⋃

r1,r2>1

M<p({TnUm/rn1 rm2 }n,m≥0) =
⋃
r>1

{
∞∑

n,m=0

an,mT
nUm | an,m ∈ C, an,mrn+m → 0}

where the equality again follows as all transition maps multiply by rapidly decaying sequences.
Now, to compute the tensor product over C[T ] instead, we need to mod out by the ideal U − T
(where U − T is evidently a nonzerodivisor). It is now a simple exercise that⋃
r>1

{
∞∑

n,m=0

an,mT
nUm | an,m ∈ C, an,mrn+m → 0}/(U − T )→

⋃
r>1

{
∞∑
n=0

anT
n | an ∈ C, anrn → 0}

is an isomorphism. Indeed, for all elements in the kernel, one can explicitly write down division by
U − T , and checks a very simple convergence condition.

It remains to compute the corresponding localizations. Here, it is enough to do it in the second
case: Indeed, the first localization must be a C[T±1]-algebra, which is necessarily obtained from
the second localization via base change along T 7→ T−1. Thus, we need to compute

RHomC[T ]([C[T ]→ A({|T | ≥ 1})],C[T ]).
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Note that C[T ] injects into A({|T | ≥ 1}), with quotient⋃
r<1

M<p({Tn/rn}n<0).

Commuting the union with the dual, we get

R lim←−
r<1

RHomC[T ](M<p({Tn/rn}n<0),C[T ])[1].

To compute the dual, we first compute the dual over C (instead of C[T ]). Then, as M<p(N) is
internally compact projective in Liqp∩CondAbω1 , the internal RHom sits in degree 0, and commutes
with the infinite direct sum C[T ] =

⊕
m≥0 C · Tm. Renaming T by U temporarily, we get

RHomC(M<p({Tn/rn}n<0),C[U ]) =
⊕
m≥0

C0({Tn/rn}n<0,C) · Um.

The space C0({Tn/rn}n<0,C) of continuous maps vanishing at∞ is naturally an `0-sequence space
with basis (Tn/rn)n>0. To compute the internal RHom over C[T ] instead, we need to quotient by
T − U . This will reintroduce the T 0-term, and in the limit over r we get

R lim←−
r<1

C0({Tn/rn}n≥0,C).

By the last lecture, the derived limit is concentrated in degree 0, and the precise choice of sequence
space does not matter, so we get

O({|T | < 1}) =
⋂
r<1

{
∞∑
n=0

anT
n | an ∈ C, anrn → 0} =

⋂
r<1

M<p({Tn/rn}n≥0). �

In order to apply this, we need to get some understanding of S(C[T ]) := S(D(Liqp(C[T ]))). It
is impossible to describe this whole locale, as there are way too many idempotent algebras: One
can give many different growth conditions on the coefficients an that define idempotent algebras.
(This makes it possible to localize to very precise growth conditions, and hence analyze algebras
of power series with growth conditions that are not convergent for any value of T in C! In other
words, the formulas still make sense, even if they do not define functions.) We will restrict to the
part of the locale that can be probed with obvious variants of the above idempotent algebras.

More precisely, for any f ∈ C[T ], we get the map C[T ′]→ C[T ] sending T ′ to f . This defines a
map

S(C[T ])→ S(C[T ′])

(in terms of idempotent algebras, this amounts to base changing them from C[T ′] to C[T ]). In
particular, we can define closed subsets

{|f | ≤ 1}, {|f | ≥ 1} ⊂ S(C[T ])

as the preimages of

{|T ′| ≤ 1}, {|T ′| ≥ 1} ⊂ S(C[T ′]).

As further notation, for any r > 0, we write

{|f | ≤ r} := {|f/r| ≤ 1} ⊂ S(C[T ]), {|f | ≥ r} := {|f/r| ≥ 1} ⊂ S(C[T ]).
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A priori, it is unclear how these different subsets of S(C[T ]) interact; each such question is a
question about the behaviour of the corresponding idempotent algebras. There are some obvious
expected properties that are simple to verify:

Proposition 5.7. Let f, g ∈ C[T ], α ∈ C and r, s > 0.

(1) {|f | ≤ 1} =
⋂
r>1{|f | ≤ r} and {|f | ≥ 1} =

⋃
r<1{|f | ≥ r};

(2) {|f | ≤ 1} ∪ {|f | ≥ 1} = S(C[T ]);
(3) for r < 1, one has {|f | ≤ r} ∩ {|f | ≥ 1} = ∅;
(4) {|f | ≤ 1} ∩ {|g| ≤ 1} ⊂ {|fg| ≤ 1};
(5) {|f | ≥ 1} ∩ {|g| ≥ 1} ⊂ {|fg| ≥ 1};
(6) {|α| ≤ 1} = S(C[T ]) if |α| ≤ 1;
(7) {|α| ≥ 1} = S(C[T ]) if |α| ≥ 1;
(8) {|f | ≤ r} ∩ {|g| ≤ s} ⊂ {|f + g| ≤ r + s}.

Proof. Each of these follows by unraveling definitions, and is a nice exercise. Let us do some
to give the spirit. For (1), it suffices to do the first in the universal case C[f ], i.e. C[T ] with f = T ,
and then recall that intersections of closed subsets correspond to filtered colimits of idempotent
algebras, and then this follows directly from the definition of the idempotent algebras A({|T | ≤ 1})
and A({|T | ≥ 1}). For (2), again we can assume f = T . The union {|T | ≤ 1} ∪ {|T | ≥ 1}
corresponds to the idempotent algebra

[A({|T | ≤ 1})⊕A({|T | ≥ 1})→ A({|T | ≤ 1})⊗C[T ]<p
A({|T | ≥ 1})].

Now one first computes that

A({|T | ≤ 1})⊗C[T ]<p
A({|T | ≥ 1}) =

⋃
r>1,s<1

{
∞∑

n=−∞
anT

n | ansn
n→−∞−−−−−→ 0, anr

n n→∞−−−→ 0}

are the overconvergent holomorphic functions on {|T | = 1}. This is a simple analogue of the
idempotence of A({|T | ≤ 1}). Splitting this according to negative and nonnegative powers of T ,
one sees that the map

A({|T | ≤ 1})⊕A({|T | ≥ 1})→ A({|T | ≤ 1})⊗C[T ]<p
A({|T | ≥ 1})

is surjective, and that the only elements in the kernel are C[T ], which gives the idempotent algebra
C[T ] corresponding to all of S(C[T ]).

We omit the proofs of (3)–(7). For (8), it suffices to consider the universal case C[f, g],
i.e. C[T,U ] with f = T and g = U . The left-hand side corresponds to the algebra⋃

r′>r,s′>s

{
∑
n,m≥0

an,mT
nUm | an,mr′ns′m → 0},

the right-hand side to the algebra

C[T,U ]⊗C[V ]

⋃
t>r+s

{
∑
n

anV
n | antn → 0}

where the map C[V ]→ C[T,U ] sends V to T + U . It is enough to construct a map⋃
t>r+s

{
∑
n

anV
n | antn → 0} →

⋃
r′>r,s′>s

{
∑
n,m≥0

an,mT
nUm | an,mr′ns′m → 0}
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linear over C[V ]→ C[T,U ] : V 7→ T + U . But this sends
∑

n anV
n to∑

n≥0

an(T + U)n =
∑
n≥0

n∑
m=0

an

(
n

m

)
TmUn−m =

∑
n,m≥0

an+m

(
n+m

n

)
TnUm.

Now if ant
n → 0 for some t > r+ s then if we choose r′ > r and s′ > s so that t ≥ r′ + s′ then also

|an+m|
(
n+m

n

)
r′ns′m ≤ |an+m|(r′ + s′)n+m ≤ |an+m|tn+m

converges to 0, giving the desired map. �

Let us unravel what this means for S(C[T ]).

Corollary 5.8. On the open subset U =
⋃
r>0{|T | < r} ⊂ S(C[T ]), one gets a unique

continuous map

U
|T |−−→ R≥0

so that the preimage of [0, r] is {|T | ≤ r} and the preimage of [r,∞) is {|T | ≥ r} ∩ U .

Indeed, this follows from Proposition 5.7 and the following general lemma.

Lemma 5.9. Let S be any locale. Then maps S → R≥0 are equivalent to collections of closed
subsets S(≤ r),S(≥ r) ⊂ S for all r > 0, subject to the following conditions:

(1) For all r > 0, one has S(≤ r) =
⋂
s>r S(≤ s) and S(≥ r) =

⋂
s<r S(≥ s).

(2) For r < s, one has S(≤ r) ⊂ S(≤ s), S(≥ s) ⊂ S(≥ r), S(≤ r) ∩ S(≥ s) = ∅ and
S(≥ r) ∪ S(≤ s) = S.

(3) One has
⋂
r S(≥ r) = ∅ as r gets large.

Here, a map f : S → R≥0 is mapped to S(≤ r) = f−1([0, r]) and S(≥ r) = f−1([r,∞)).

Proof. It is clear that f is uniquely determined by this collection of closed subsets, and
they satisfy these condition. We need to see that conversely, any such collection of closed subsets
determines a map f : S → R≥0. Using ((2) and) (3), we can write S as the (increasing) union of
the open sublocales S \ S(≥ r), and it suffices to construct the map on each of those; we can thus
assume that S(≥ r) = ∅ for r large. We can then replace R≥0 by some interval [0, c]. Now any
closed subset Z of [0, c] can be written as a cofiltered intersection of closed subsets that are finite
unions of closed intervals, and whose interior contains Z; and any two such cofiltered systems are
cofinal. One already knows where to send intervals, hence their finite unions (which for disjoint
intervals are disjoint by (2)) and hence their cofiltered intersections (as maps of locales commute
with those). It is easy to see that this determines a map of locales. One needs to see that it recovers
the given closed subsets, and for this one uses condition (1). �

In fact, we get the following more refined corollary. Here, for any C-algebra A, the Berkovich
spectrum

MBerk(A) = {| · | : A→ R≥0 | |fg| = |f ||g|, |f + g| ≤ |f |+ |g|, | · ||C = | · |C}

of bounded multiplicative seminorms is equipped with the closed subspace topology from
∏
f∈AR≥0

(cf. [Ber90]).
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Corollary 5.10. The map

U
|f |f∈C[T ]−−−−−→

∏
f∈C[T ]

R≥0

factors over the Berkovich spectrum MBerk(C[T ]).

Proof. First note that U ⊂
⋃
r>0{|f | < r} for all f ∈ C[T ], using the triangle inequality.

This means that the map is well-defined. The condition to factor over the Berkovich spectrum is a
collection of many conditions, each of which pertains only to at most two |f |, |g|: Namely, for any
f, g ∈ C[T ], we need to see that

U
|f |,|g|,|f+g|,|fg|−−−−−−−−−−→ R4

≥0

factors over the closed subset {(x, y, s, p) | xy = p, s ≤ x+ y} ⊂ R4
≥0. This follows easily from the

conditions of Proposition 5.7. �

So far, everything would have worked in exactly the same way over a nonarchimedean field like
Q2 in place of C. The crucial difference is in the identification of the Berkovich spectrum, which is
extremely simple for C-algebras.

Theorem 5.11 (Ostrowski, [Ost17]). Let A be any C-algebra. Then any multiplicative semi-
norm | · | ∈ MBerk(A) is given as a composite

A
f−→ C |·|C−−→ R≥0

for a unique C-algebra homomorphism A→ C, inducing a homeomorphism

MBerk(A) = HomC(A,C).

Before giving the proof, we note that this finishes the proof of Theorem 5.1: We get a map

S(C[T ]) ⊃ U →MBerk(C[T ]) ∼= HomC(C[T ],C) = C
and the pushforward of (the restriction to U of) the structure sheaf of S(C[T ]) to C is the desired
sheaf, by the simple computation of Proposition 5.6.

Proof of Theorem 5.11. We note that this is usually regarded as a consequence of the
Gelfand–Mazur theorem, which in turn is usually proved by complex analysis. To avoid any vicious
circles, we use the following elementary argument going back to Ostrowski.

The kernel of | · | is an ideal; quotienting it out, we can assume that |x| = 0 only if x = 0.
Our goal is then to show that A = C. Take any x ∈ A. By the triangle inequality, the function
C→ R≥0 : z 7→ |x− z| is continuous and gets large for large |z|, so attains a minimum. Replacing
x by some x− z, we can thus assume that for all z ∈ C, one has |x− z| ≥ |x|. Our goal is then to
show that x = 0, for which it suffices that |x| = 0. If not, we can rescale so that |x| = 2. For any
integer n, consider the equation

xn − 1 =

n−1∏
i=0

(x− ζin).

Taking absolute values, we find

2n + 1 ≥ |xn − 1| =
n−1∏
i=0

|x− ζin| ≥ 2n−1|x− 1| ≥ 2n
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as all |x− ζin| ≥ |x| = 2. Taking the limit n→∞, we find |x− 1| = 2. Thus, by induction

2 = |x| = |x− 1| = |x− 2| = . . . ,

which is impossible (for example as |x− 5| ≥ 5− |x| = 3). �

We note that it is exactly in this final line that we used that we are doing archimedean geometry
as opposed to non-archimedean geometry! In non-archimedean geometry, everything works in the
same way, but there is no analogue of Ostrowski’s theorem; there are many other multiplicative
seminorms in nonarchimedean geometry. From our point of view, the natural underlying space for
analytic spaces is something like the Berkovich spectrum, and it is only a weird coincidence that
in complex geometry, this happens to agree with the “classical points”.

Exercise 1. Show that any idempotent algebra in D(Z) is a localization Z[1/S] of Z (for some
multiplicative set S). Deduce that the locale S(D(Z)) is given by the opposite of Spec(Z) (i.e., the
same constructible topology, but with the order of specializations reversed). Describe the sheaf of
∞-categories on S(D(Z)).

Exercise 2. Show that for any noetherian ring R, the locale S(D(R)) is given by the opposite
of Spec(R).

Exercise 3. Give an example of a commutative ring R and an idempotent algebra A ∈ D(R)
that is not accounted for by the map S(D(R))→ Spec(R)op. (Hint: Almost mathematics.)
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Appendix to Lecture V: Spectral Theory

In this short appendix, we show how the techniques of the lecture also give a proof of the basic
result on spectral theory:

Theorem 5.12. Let V be a nonzero complex quasi-Banach space, and let T : V → V be an
endomorphism. Then the set of all x ∈ C for which T − x is not invertible is a nonempty compact
subset of C.

The set of all such x is usually called the spectrum of T . The key statement here is the really
the nonemptiness of the spectrum.

We will deduce this as a consequence of two propositions.

Proposition 5.13. Let V be a complex quasi-Banach space and let T : V → V be an endomor-
phism. Then the C[T ]-module structure on V extends to a module structure over O({|T | ≤ r}) for
some large enough r > 0.

Proof. Let r be the norm of T . Then any sum
∑

n≥0 anT
n with anr

′n → 0 for some r′ > r
gives a well-defined endomorphism of V . �

Thus, it suffices to prove the following slight generalization of Theorem 5.12:

Proposition 5.14. Let V be a nonzero p-liquid C-vector space such that any endomorphism
U : V → V has the property that the C[U ]-module structure on V extends to a module structure
over O({|U | ≤ r}) for some large enough r > 0. Let T : V → V be an endomorphism.

Then the set of all x ∈ C for which T −x is not an isomorphism agrees with the minimal closed
subset Z ⊂ C such that V ∈ C = D(Liqp(C[T ])) is contained in C(Z). Moreover, Z is a nonempty
compact subset of C.

Proof. Clearly if V is contained in some C(Z), then T − x is invertible for all x 6∈ Z. For
the converse, we note that if U = (T − x)−1 exists, then V is also a module over O({|U | ≤ r′})
for some r′ > 0. Reinterpreting in terms of T = U−1 − x, this means that V is a module over
O({|T −x| ≥ r′−1}). This implies that the spectrum Z is closed, and V is contained in C(Z). Also,
the spectrum is bounded as V is a module over O({|T | ≤ r}) for some r > 0, so the spectrum is
actually compact.

But as V is a nonzero object contained in C(Z), it follows that Z must be nonempty! �

The following is a standard corollary. We note that we did not use any of this before. (We only
used the existence of infinitely many roots of unity; but for example all 2-power roots of unity can
be written down explicitly by radicals.)

Corollary 5.15 (Fundamental Theorem of Algebra; Gelfand–Mazur Theorem). The field of
complex numbers C is algebraically closed. In fact, any (quasi-)Banach field over C is equal to C
itself.

Proof. Let K be a quasi-Banach field over C. Take any T ∈ K \C. By spectral theory, there
is some x ∈ C for which T −x is not invertible. But in a field, this means T −x = 0, i.e. T = x. �
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6. Lecture VI: Analytification and GAGA

Let’s recap what happened last time. To any cocomplete closed symmetric monoidal stable
∞-category C, we assigned a locale S(C) whose poset of “closed subsets” identifies, by definition,
with the opposite of the poset of idempotent algebras in C, i.e. if there is a (necessarily unique)
homomorphsim I → I ′ of idempotent algebras, then the corresponding closed subsets have the
inclusion relation Z ⊃ Z ′ (roughly, think of I as functions on Z).

We also showed that C localizes on this locale: to an open U ⊂ S(C) we assign the quotient
category

C(U) := C/ModI(C)

where I is the idempotent algebra corresponding the closed complement of U , and we had the result
that U 7→ C(U) is a sheaf of (cocomplete closed symmetric monoidal) ∞-categories on S(C). In
particular, by passing to endomorphisms of the unit objects, we get a “structure sheaf” on S(C).

We then specialized this abstract nonsense to the case C = D(Liqp(C[T ])), getting the locale
S(C[T ]) := S(D(Liqp(C[T ]))). For every r > 0, we produced closed subsets

{|T | ≤ r}, {|T | ≥ r} ⊂ S(C[T ]),

given by idempotent algebras of holomorphic functions which overconverge on the disk of radius r
(in the first case), or which overconverge on the exterior of the disk of radius r and are meromorphic
at ∞ (in the second case).

For any (discrete commutative) C-algebra A and any f ∈ A, we can then consider the closed
subsets

{|f | ≤ r}, {|f | ≥ r} ⊂ S(A)

obtained by base-changing the previous ones along the map C[T ]→ A, T 7→ f . We also showed that
these subsets satisfy relations which reflect the triangle inequality, multiplicativity, and behavior
on complex scalars expected of such a formal expression “|f |”. For example there is an inclusion
of closed subsets

{|f | ≤ r} ∩ {|g| ≤ r′} ⊂ {|f + g| ≤ r + r′},
for all f, g ∈ A and r, r′ > 0, which reflects the triangle inequality.

Next we consider, for f ∈ A, the open subset

S(A, f) = ∪r>0{|f | < r} ⊂ S(A).

We can think of this as the open subset of S(A) on which f behaves like an analytic variable as
opposed to an algebraic variable. In particular, in the ring O(S(A, f)), expressions of the form
ϕ(f), for any entire holomorphic function ϕ, have well-defined meaning, while in O(S(A)) = A we
can only evalute f on polynomials.

Thanks to the multiplicativity and triangle inequality, we have

S(A, fg),S(A, f + g) ⊃ S(A, f) ∩ S(A, g).

and it follows that if A is finite type, generated by X1, . . . Xn, then the “subset”

S(A,A) := ∩f∈AS(A, f)

is is in fact an open subset of S(A), being equal to the finite intersection

∩ni=1S(A,Xi).



6. LECTURE VI: ANALYTIFICATION AND GAGA 59

We can think of this S(A,A) as some kind of “analytification” of Spec(A): we have forced all the
variables f ∈ A to be analytic.

To make an explicit connection to the usual analytification, recall also from the previous lecture
that there is a natural map of locales

S(A,A)→MBerk(A) ∼= Spec(A)(C) = V (I) ⊂ Cn,

where we take A = C[X1, . . . , Xn]/I finite type. This map of locales was uniquely characterized by
the fact that for f ∈ A and r > 0, this sends the honest open subsets

{|f | < r}, {|f | > r} ⊂ V (I)

to the formally defined open subsets of the locale S(A,A) which we gave the same notation {|f | < r},
{|f | > r}, in some sense justifying this notation.

By pushforward along this map of locales S(A,A)→ Spec(A)(C), we deduce a sheaf of (cocom-
plete closed symmetric stable monoidal) ∞-categories on Spec(A)(C). This in particular yields a
“structure sheaf” on Spec(A)(C) with values in commutative algebra objects of D(Liqp), by taking
endomorphisms of the unit in these categories. The last thing we saw in the previous lecture was
the calculation of this structure sheaf when A = C[T ]: namely, its value on an open disk is the
usual algebra of convergent power series on that disk, as expected from the analytification of the
affine line.

The first thing we want to do here is generalize this calculation to arbitrary finite type C-
algebras A. In the previous lecture we did the calculation on A = C[T ] by using the formal fact
that the localization to the open subset corresponding to an idempotent algebra I in C is given
by RHom([1 → I],−). But this method is more complicated to carry out for A = C[X1, . . . , Xn]:
the corresponding idempotent algebra I cutting out S(A,A) lives in cohomological degrees [0, n],
calculated by iterating the operation I1, I2 7→ I1×I1⊗I2 I2 describing unions of closed subsets, and it
becomes annoying to perform this preliminary calculation, let alone the resulting RHom calculation.

Fortunately, there is another method, which is no more difficult for C[X1, . . . , Xn] than for
C[T ]. The idea is very simple: intuitively speaking, we should have

{|T | < 1} = ∪r<1{|T | ≤ r}.

This is a cover of an open subset by closed subsets, but since it is refined by the open cover

{|T | < 1} = ∪r<1{|T | < r},

it should be just as good for calculating the structure sheaf. Taking the idea that the structure sheaf
on the closed subset {|T | ≤ r} should be the corresponding idempotent algebra Ohol({|T | ≤ r}) of
overconvergent holomorphic functions, this gives

O({|T | < 1}) = R lim←−
r<1

Ohol({|T | ≤ r}),

yielding the desired result O({|T | < 1}) = Ohol({|T | < 1}) (using pro-isomorphisms and Mittag-
Leffler, as previously discussed).

The problem is that in the locale picture, open subsets and closed subsets are just formal
gadgets in formal bijection with one another, and we haven’t said what it means for one to be
contained in another in a way which justifies the above intuitive calculation. But we will introduce
another formal framework which does this, and deduce the following general result.
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Theorem 6.1. Let A = C[X1, . . . , Xn]/I be a finite type C-algebra. Take z = (z1, . . . , zn) ∈
V (I) ⊂ Cn and r = (r1, . . . , rn) with ri > 0 for all i, parametrizing the open polydisk D(z, r) of
polyradius r centered at z (implicitly, intersected with V (I)). Then:

(1) For the sheaf of categories on Spec(A)(C) = V (I) described above, we have

C(D(z, r)) = lim←−
r′<r

ModOhol(D(z,r′))/I(D(Liqp(C))).

(2) For the structure sheaf we get

O(D(z, r)) = Ohol(D(z, r))/I.

Moreover, for the global sections we similarly have

C(V (I)) = lim←−
r

ModOhol(D(0,r))/I(D(Liqp(C)))

and

O(V (I)) = Ohol(Cn)/I.

Here Ohol(D(z, r′)) (resp. Ohol(D(z, r))) is ring of power series in n variables centered at z
which overconverge on the polydisk of radius r′, (resp. converge on the open polydisk of radius r),
and Ohol(Cn) is the ring of power series which converge on all of Cn.

This theorem shows that we can reduce the study of our sheaf of categories to the study of
the “purely algebraic” categories of modules over various rings (of overconvergent functions, in the
base liquid category). This is an important complement to the formal flexibility provided by the
locale picture and its associated descent.

Remark 6.2. Note that the value C(D(z, r)) differs from the “naive guess” of

ModOhol(D(z,r))/I(D(Liqp(C))),

the category of modules over the value of the structure sheaf on D(z, r). In fact, C(D(z, r)) is
smaller than this naive guess: the natural functor

ModOhol(D(z,r))/I(D(Liqp(C)))→ C(D(z, r))

is a nontrivial localization.
However, the sheaf of categories C(−) on V (I) is nonetheless canonically determined by just

the structure sheaf (of commutative algebras in D(Liqp(C))): for example, we can describe C(−)
as the sheafification of this naive guess

D(z, r) 7→ ModOhol(D(z,r))/I(D(Liqp(C))).

(Another description will be given in the exercises.) This is not a general feature of the formalism,
but it follows in this case from the statement of the theorem.

To prove this theorem, as indicated above, we will find a framework in which we can work
with “open subsets” and “closed subsets” on equal footing. We will take the following maximalist
approach.6

6In the lecture, we restricted to a more minimalist context of “immersions”, but it seems this restriction is
actually irrelevant and distracting, so we take the maximalist approach here.
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Definition 6.3. Let Sym denote the (very large) ∞-category of cocomplete closed symmet-
ric monoidal stable ∞-categories, with morphisms the symmetric monoidal cocontinuous functors
between them. We denote such functors by formal expressions such as

f∗ : C → D,

and we will then write simply f for the same morphism, considered as a morphism in the opposite
category Symop instead.

As desired, we can view both closed subsets and open subsets in this common framework, and
the interactions between them are as expected from naive considerations:

Lemma 6.4. Let C ∈ Sym.

(1) There is a fully faithful finite-limit-preserving functor from the poset of closed subsets of
S(C) to (Symop)/C , sending the closed subset Z to the localization

i∗Z : C → ModI(C),

where I is the corresponding idempotent algebra.
(2) There is a fully faithful finite-limit-preserving functor from the poset of open subsets of
S(C) to (Symop)/C , sending the open subset U to the localization

j∗U : C → C/ModI(C)

where I is the idempotent algebra corresponding to U c.
(3) Let Z be a closed subset of S(C) and U an open subset of S(C). Then

i∗Z factors through j∗U ⇔ Zc ∪ U = S(C), i.e. “Z ⊂ U ′′.
and

j∗U factors through i∗Z ⇔ Zc ∩ U = ∅, i.e. “U ⊂ Z ′′.
(4) Let Z be a closed subset of S(C) with corresponding idempotent algebra I, and let f∗ :

C → D be a map in Sym. Then the pushout of i∗Z along f∗ exists in Sym and is given
by i∗Z′ where Z ′ corresponds to the idempotent algebra f∗I in D. Similarly, if U is the
complement of Z, then the pushout of j∗U along f∗ exists and is given by j∗U ′ where U ′ is
the complement of Z ′.

Proof. These claims are all straightforward. For (1), since i∗Z is a localization, iZ is a monomor-
phism in (Symop)/C , hence the full subcategory of (Symop)/C spanned by all these iZ is indeed
equivalent to a poset. Then the well-definedness and full faithfulness of the functor amounts to the
assertion that

ModI(C) ⊂ ModI′(C)⇔ Z ⊂ Z ′(⇔ I = I ′ ⊗ I),

where I corresponds to Z and I ′ to Z ′, and this is simple. The functor in (2) is well-defined and
fully faithful for the exact same reason.

The claim about finite limits in (1) and (2) is a simple consequence of the base-change result
(4), as is the claim in (3). Finally, the base-change result (4) follows from the description of the
kernel of i∗Z (resp. j∗U ) as the tensor ideal generated by [1→ I] (resp. I). �

A map in Symop isomorphic to one of the form iZ as in (1) will be called a closed immersion,
and a map in Symop isomorphic to one of the form jU as in (2) will be called an open immersion.
Thus we have seen that the poset of open immersions into a fixed C identifies with the poset of open
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subsets of S(C), and the poset of closed immersions into C identifies with the poset of closed subsets
of S(C). Also, closed and open subsets interact “as expected” in the larger poset of subobjects of
C in Symop. Moreover, both open and closed immersions are closed under base-change, and these
base-changes are calculated in the naive way in terms of corresponding algebras.

There is the following abstract characterization of open and closed immersions.

Proposition 6.5. Let f∗ : C → D in Sym. Then:

(1) f is a closed immersion if and only if f∗ has a fully faithful right adjoint f∗ which preserves
colimits and satisfies the projection formula

c⊗ f∗d
∼→ f∗(f

∗c⊗ d).

(2) f is an open immersion if and only if f∗ has a fully faithful left adjoint f\ which preserves
colimits (this is of course automatic for a left adjoint) and satisfies the projection formula

f\(d⊗ f∗c)
∼→ c⊗ f\d.

Moreover, in each of these cases the specified adjoint commutes with arbitrary base-change.

Proof. For (1), if f is a closed immersion corresponding to an idempotent algebra I, then
we have that f∗ is the forgetful functor ModI(C) → C, and the required properties are clear.
Conversely, if f∗ has a colimit-preserving right adjoint f∗ satisfying the projection formula, then
first of all we have that 1→ f∗1 makes f∗1 into an idempotent algebra, by the projection formula
applied to c = f∗1 and d = 1. Then to identify f∗ with the closed immersion corresponding to f∗1,
as both are localizations it suffices to see

f∗D = Modf∗1(C).

as full subcategories of C. The inclusion ⊂ is formal from f∗ being right adjoint to the symmetric
monoidal f∗. For ⊃, note that X ⊗ f∗1 = f∗f

∗X by the projection formula.
For (2), if f is an open immersion corresponding to an idempotent algebra I, then we can

identify D with the full subcategory of C consisting of those X with X ⊗ I = 0, and in these
terms f∗ becomes −⊗ [1→ I] and f\ becomes the inclusion. Then the projection formula is clear.
Conversely, suppose f∗ has the left adjoint f\ satisfying projection formula. Let I be the cofiber of
f\1→ 1. Then I is an idempotent algebra by the projection formula, and we need to see that

ker(f∗) = ModI(C).

as full subcategories of C. Certainly I, and hence ModI(C), is in the kernel because f∗f\1 = 1 by
fully faithfulness of f\. Conversely, if X ∈ ker(f∗), then X ⊗ f\1 = 0 by the projection formula,
whence X ∈ ModI(C).

Finally, the commutation with base-change follows from (4) in the previous lemma and the
explicit description of i∗i

∗ = −⊗ I and j\j
∗ = −⊗ [1→ I]. �

Next, we deduce the expected permanence properties related to composition.

Corollary 6.6. In Symop, we have the following.

(1) A composition of closed immersions is a closed immersion, and a composition of open
immersions is an open immersion.
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(2) Let f∗ : C → D and g∗ : D → D′ be composable maps such that f is a monomorphism
(which holds if it is either a closed or an open immersion). If f ◦ g is an open immersion,
then g is an open immersion, and if f ◦ g is a closed immersion, then g is a closed
immersion.

Proof. The claim in (1) follows from the characterization in terms of the projection formula.
The claim in (2) follows immediately from base-change stability of open and closed immersions. �

From these properties it follows for example that if j∗U : C → D is the pullback functor
corresponding to an open subset U ⊂ S(C), then S(D) identifies with the locale of open subsets of
U : a nice sanity check.

Furthermore we get the following, letting us formalize descent with respect to not-necessarily-
open covers:

Theorem 6.7. (1) There is a Grothendieck topology on Symop where the covering sieves
over a given C are those which contain some set of open immersions whose corresponding
open subsets cover S(C).

(2) The identity functor (Symop)op → Sym is a sheaf with respect to this Grothendieck topology.
(3) The poset of open immersions also satisfies descent with respect to this Grothendieck topol-

ogy; same for the poset of closed immersions.

Proof. Part (1) follows immediately from the compatibility under composition and base-
change properties discussed above. Part (2) then follows from the descent on the locale proved
in the previous lecture. Part (3) follows formally from part (2) and the description of base-changes
of open and closed immersions in terms of idempotent algebras. �

This concludes our detour into abstract nonsense. Now we turn to the proof of Theorem 6.1,
which now almost writes itself: note that for r′ < r, we have

D(z, r′) ⊂ D(z, r′) ⊂ D(z, r),

so the D(z, r′) for r′ < r give a collection of closed immersions into D(z, r) which is refined by the
cover by the open immersions D(z, r′). Thus we can calculate C(D(z, r)) by descent, getting

C(D(z, r)) = lim←−
r′<r

ModO(D(z,r′))(D(Liqp(C))),

where O(D(z, r′)) is the idempotent algebra in liquid A-modules which corresponds to the given
closed subset D(z, r′) = ∩ni=1{|Xi − zi| ≤ r′i}. When A = C[X1, . . . , Xn], a straightforward tensor
product calculation as in the previous lecture gives that

O(D(z, r′)) = Ohol(D(z, r′))

is indeed the usual ring of overconvergent functions on the given closed disk in Cn, and we deduce
the claims of the theorem in that case. For general A = C[X1, . . . , Xn]/I, we get that O(D(z, r′))
is given by the (derived) base-change

Ohol(D(z, r′))⊗C[X1,...,Xn] A

in liquid modules. For that we have the following, which thereby finishes the proof of Theorem 6.1:
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Lemma 6.8. Let I ⊂ C[X1, . . . , Xn] be an ideal with quotient A, let z = (z1, . . . , zn) ∈ Cn, and
let r = (r1, . . . , rn) ∈ Rn>0. Then in D(Liqp), we have

Ohol(D(z, r))⊗C[X1,...,Xn] A = Ohol(D(z, r))/I,

meaning the derived liquid tensor product on the left is concentrated in degree zero and given by the
naive modding out on the right, which is the cokernel of the map

Ohol(D(z, r))⊕m → Ohol(D(z, r))

given by m chosen generators of I.
Similarly,

Ohol(D(z, r))⊗C[X1,...,Xn] A = Ohol(D(z, r))/I,

and this is also equal to lim←−r′<rO
hol(D(z, r′))/I.

Proof. We claim that the condensed ring Ohol(D(z, r)) is flat as a module over the discrete
ring C[X1, . . . , Xn](∗), i.e. for any discrete module M over C[X1, . . . , Xn](∗) the derived tensor
product

Ohol(D(z, r))⊗C[X1,...,Xn](∗) M

is concentrated in degree zero.7 We will include the argument later when we discuss the finiteness
properties of such rings.

For the remainder of the claims, note that since C[X1, . . . , Xn](∗) is a regular noetherian ring,
a finitely generated module such as A has a finite resolution by finite free modules, so the derived
tensor product commutes with arbitrary (derived) limits, where in this setting “derived” is optional
due to Mittag-Leffler. �

Our next topic is globalization and GAGA. To recap, for any finite type C-algebra A, we have
assigned the open subset

S(A,A) ⊂ S(A),

with corresponding localization functor in Sym

C(A)→ C(A,A).

The source C(A) is the purely algebraic category of A-modules in derived liquid vector spaces,
while, as we’ve seen, the target is analytic: it localizes on the topological space Spec(A)(C) and is
simply described in terms of usual rings of convergent power series on disks.

Now, both assignments A 7→ C(A) and A 7→ C(A,A) form sheaves with respect to the Zariski
topology on finite type C-schemes (we will review an argument for this argument shortly). Hence
they globalize by descent to assignments

X 7→ C(X), C(X,X)

for arbitrary finite type C-schemes X. Naturally, the comparison functor also globalizes to a map
in Sym

f∗ : C(X)→ C(X,X).

Then we have the following result.

7However, beware that the map of liquid rings C[X1, . . . , Xn]→ Ohol(D(z, r)) is not flat! Indeed, if D′ is a closed

polydisk disjoint from D, then C[X1, . . . , Xn]→ Ohol(D′(z, r)) is an injection which base changes to the non-injective

map Ohol(D(z, r))→ 0.
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Theorem 6.9. Suppose X is a finite type C-scheme and consider the above algebraic-to-analytic
comparison functor

f∗ : C(X)→ C(X,X).

If X is proper, then f is an isomorphism.

As first sight, this seems a bit shocking: usually GAGA only holds for categories of coherent
sheaves, but here we’re saying it holds for these rather huge categories of (what amount to) qua-
sicoherent liquid sheaves. But in fact, the notion of quasi-coherent sheaf in analytic geometry has
been somewhat missing until now. Moreover it takes some extra work, which we’ll do, to identify
the usual categories of coherent sheaves inside our big categories of quasi-coherent sheaves so as to
see that the above theorem does imply the classical GAGA.

We will prove this theorem in a more general axiomatic framework. Suppose given the following
data:

(1) A commutative ring R. (In our example, R = C)
(2) An R-linear object C of Sym, i.e. a map in Sym of the form D(R)→ C. (In our example,

C = D(Liqp(C)).)
(3) An open subset U ⊂ S(ModR[T ](C)) (in our example, U = ∪r{|T | < r}.)

This gives rise to the following notation: for any R-algebra A and any f ∈ A, let

S(A, f) ⊂ S(A) := S(ModA(C))

denote the preimage of U under the map R[T ]→ A sending T to f ; this is the “subset of S(A) on
which f is analytic”.

We impose the following axioms:

(1) For any f ∈ R, we have S(R, f) = S(R), i.e. “constants are analytic”.
(2) For any A finite type over R and f, g ∈ A, we have

S(R, f) ∩ S(R, g) ⊂ S(R, fg),S(R, f + g),

i.e. “the sum and product of analytic functions are analytic”.
(3) For any A finite type over R and f ∈ A, the open subset

S(A[1/f ], 1/f) ⊂ S(A[1/f ])

is even open in S(A), meaning this composition of an open immersion and closed immersion
happens to also be an open immersion. Denote this open subset of S(A) by Dan(f); it
corresponds to “inverting f in the analytic sense”.

(4) For any A finite type over R and f ∈ A, we have

S(A) = S(A, f) ∪Dan(f).

(5) For any A finite type over R and f, g ∈ A, we have

Dan(f + g) ⊂ Dan(f) ∪Dan(g).

Given this data and axioms, for A finite type over R we can define

S(A,A) ⊂ S(A)

as the intersection of the S(A, xi) for any finite generating set xi; by axiom (2) above this is
independent of the generating set, and S(A,A) is contained in S(A, f) for all f ∈ A. We use C(−)
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to denote the canonical sheaf of categories on S(A). Then we have the following abstract GAGA
theorem:

Theorem 6.10. Both assignments

A 7→ C(A), C(A,A)

satisfy descent for the Zariski topology, hence they globalize by descent to assignments

X 7→ C(X), C(X,X)

for arbitrary finite type R-schemes X. For the induced comparison functor

f∗ : C(X)→ C(X,X),

we have that f is an isomorphism if X is proper.

Before proving this, let’s make sure it applies in our given example situation. Axiom (1), that
constants are analytic, follows from the previous lecture, as does axiom (2), using the triangle
inequality and multiplicativity. For axiom (3), by base change it suffices to consider T ∈ C[T ], and
then we claim that the desired open subset Dan(T ) is given by

Dan(T ) = ∪r{|T | > r}.
Indeed, the corresponding idempotent algebra is the ring of germs of holomorphic functions at 0;
every T -torsion C[T ]-module is a module over this ring, so T is inverted in the structure sheaf
on this open subset ∪r{|T | > r}, hence we can also view this as an open in S(C[T, T−1]). But
essentially by definition, when T is inverted the subset {|T | > r} is the same as {|T−1| < r−1}, and
when we take the union over r we exactly get S(C[T, T−1], T−1) as desired. For axiom (4), we can
again consider just T ∈ C[T ], and then we need to see that

∪r{|T | < r}
⋃
∪r{|T | > r} = S(C[T ]).

But already {|T | < 2} ∪ {|T | > 1} = S(C[T ]) by the calculations in the previous lecture. Finally,
axiom (5) follows from the triangle inquality, e.g.

{|f + g| > r} ⊂ {|f | > r/2} ∪ {|g| > r/2},
and taking the union over r gives the claim.

Having verified that the axiomatics hold in our given situation, let’s turn to the proof of the
abstract GAGA theorem. We start with the following simple lemma, which is essentially the affine
case of GAGA:

Lemma 6.11. Let A be an R-algebra and f, c0, . . . cn−1 ∈ A such that

fn + cn−1f
n−1 + . . .+ c0 = 0.

Then
∩iS(A, ci) ⊂ S(A, f),

i.e. “if f sastisfies a monic polynomial with analytic coefficients, then f is analytic”.

Proof. By axiom (4), to prove f is analytic, it suffices to show that f is analytic once we
analytically invert f . But

f = −cn−1 − . . .− c0f
−n+1,

so this follows from axiom (2). �
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It follows from this (and axioms (1) and (2)) that we have a well-defined open subset

S(A,A+) ⊂ S(A)

whenever A+ ⊂ A is the integral closure of a finitely generated R-subalgebra of A. Using this,
we can plug into the formalism of discrete Huber pairs, which we briefly review here, though see
[CS19] Lecture IX for more background.

To any pair (A,A+) of a commutative ring A and integrally closed subring A+, Huber assigns
the set Spa(A,A+) defined as

{v : A→ Γ∪{+∞} | v(fg) = v(f)+v(g), v(f+g) ≥ min{v(f), v(g)}, v(1) = 0, v(0) = +∞, v(A+) ≥ 0}/ ∼,
the set of equivalence classes of valuations on A which are non-negative on A+. Here Γ is a totally
ordered abelian group. Given such a valuation, the set of f ∈ A with v(f) = +∞ is always a prime
ideal, and in fact Spa(A,A+) is an enlargement of the usual spectrum of the ring A: besides the
prime ideal, we also get an induced valuation on the residue field, giving a corresponding subring
of elements ≥ 0 and maximal ideal of elements > 0. In terms of intuition, one can think of such
a valuation v as measuring some kind of “order of vanishing/pole” of a function at some fictional
point.

Moreover, the set Spa(A,A+) has the structure of a spectral topological space, with basis of
quasi-compact opens given by the rational open subsets

U(
g1, . . . , gn

f
) = {v | v(f) 6= +∞, v(gi) ≥ v(f)∀i}.

These subsets are parametrized by arbitrary elements f, g1, . . . gn of A. Different choices of these
elements can give rise to the same U(g1,...,gnf ); however, the discrete Huber pair

(A[1/f ], ˜A+[g1/f, . . . , gn/f ]),

where the tilde denotes integral closure, is canonically determined by the rational open subset
U(g1,...,gnf ); and conversely

U(
g1, . . . , gn

f
) = Spa(A[1/f ], ˜A+[g1/f, . . . , gn/f ]),

showing that the rational open is likewise determined by the corresponding discrete Huber pair.
More precisely, the poset of rational open subsets of Spa(A,A+) is canonically equivalent to the

opposite of the category of finitary localizations of (A,A+), meaning those maps discrete Huber
pairs

(A,A+)→ (B,B+)

under (A,A+) for which B is a finitary localization of A and B+ is generated, as an integrally
closed subring of B containing A+, by finitely many elements. Moreover, this equivalence of posets
preserves finite intersections.

We can therefore transfer the Grothendieck topology on the poset of basic quasi-compact open
subsets of Spa(A,A+) over to this category of finitary localizations of (A,A+). By definition, a
covering is a collection of maps which is surjective on Spa(−,−). However, there is also the following
finitary algebraic description:

Lemma 6.12. Let (A,A+) be a discrete Huber pair. Then the Grothendieck topology on the
opposite category of finitary localizations of (A,A+) is generated by covers of the following type:
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(1) For (B,B+) a finitary localization of (A,A+) and f ∈ B, the maps

(B,B+)→ (B, B̃+[f ])

and

(B,B+)→ (B[1/f ], B̃+[1/f ])

form a cover of (B,B+).
(2) For (B,B+) a finitary localization of (A,A+) and f1, . . . , fn ∈ B with f1 + . . . + fn = 1,

the maps

{(B,B+)→ (B[1/fi], ˜B+[1/fi])}i∈I
form a cover of (B,B+).

Proof. First note that each of these are covers. For (1), this is because of the tautology that
for any valuation v we either have v(f) ≥ 0 or v(f) < 0 (in which case v extends to a valuation
on B[1/f ] with v(1/f) ≥ 0, indeed < 0.). For (2), for any valuation v we must have v(fi) ≤ 0 for
some i by the ultrametric triangle inquality and the fact v(1) = 0; then the valuation extends to
B[1/fi] with v(1/fi) ≥ 0.

More the converse, first recall (see [CS19] Lecture X for the argument) that the Grothendieck
topology is generated by the covers in (1) together with the algebraic Zariski covers, i.e. those of
the following type: for (B,B+) a finitary localization of (A,A+) and f1, . . . , fn ∈ B generating the
unit ideal, take the cover

{(B,B+)→ (B[1/fi], B̃+)}i∈I .
Thus it suffices to see that any such algebraic Zariski cover is refined by a cover as in (2). However,
we get gi such that f1g1 + . . . fngn = 1; then replacing fi by figi we see that the cover (2) provides
a refinement. �

By this lemma, given a presheaf on the opposite category of finitary localizations of (A,A+)
which satisfies descent with respect to (1) and (2), we get a unique sheaf on the topological space
Spa(A,A+) whose value on a rational open is given by the value of our original presheaf on the
corresponding finitary localization.

Now we apply this in our axiomatic GAGA situation. Let (A,A+) be a discrete Huber pair
which is of finite type over (R,R), i.e. A is a finite type R-algebra and A+ is generated, as an
integrally closed R-subalgebra of A, by finitely many elements. To this data we can naturally
assign the object

C(A,A+) ∈ Sym,

which, we recall, is the the localization of C(A) = ModA(C) corresponding to the open subset
S(A,A+) ⊂ S(A). Given a finitary localization

(A,A+)→ (B,B+),

we have the induced map in Sym

f∗ : C(A,A+)→ C(B,B+).

Then f is a monomorphism in Symop, being the composition of an open inclusion (forcing the finitely
many generating elements of B+ to be analytic) and a closed inclusion (algebraically inverting some
f ∈ A to go from A to B). Moreover this functor from the opposite category of finitary localizations
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of (A,A+) to subobjects of C(A,A+) in Symop preserves finite intersections, by the same reasoning
and base-change properties for open and closed immersions. Finally arrive at the crucial:

Proposition 6.13. Suppose we are in the axiomatic GAGA set-up. Then the functor

(A,A+) 7→ C(A,A+)

from finite type discrete Huber pairs over (R,R) to Sym gives a morphism of sites from the Huber
topology on finitary localizations to the topology of open covers in Symop described earlier in the
lecture.

Proof. We have already seen that the functor preserves pullbacks, so it suffices to see that
it sends our generating covers (1),(2) in Lemma 6.12 open covers in Symop. For the first type (1)
of generating covers, this is exactly axiom (4) in our set-up. For the second type, it follows form
axiom (5) together with the equality Dan(1) = S(R) which follows from the definitions and axiom
(1). �

Corollary 6.14. For each discrete Huber pair (A,A+) finite type over (R,R), there is a
unique sheaf C(−) on Spa(A,A+) with values in Sym whose value on the basic quasicompact open
U(g1,...,gnf ) is given by

C

(
U(
g1, . . . , gn

f
)

)
= C(A[1/f ], A+[g1/f, . . . gn/f ]).

Now we are almost done with the proof of GAGA. Both assignments

A 7→ Spa(A,R)

and

A 7→ Spa(A,A)

glue with respect to the Zariski topology; indeed it is elementary to check in both cases that Zariski
covers of A go to covers of rational open subsets. Thus these assignments globalize to

X 7→ Spa(X,R)

and

X 7→ Spa(X,X)

for any finite type R-scheme X, hence likewise the sheaf C(−) in the corollary uniquely extends to
these global constructions by descent. Moreover, the natural open inclusion Spa(A,A) ⊂ Spa(A,R)
glues to a map

Spa(X,X)→ Spa(X,R)

of topological spaces. It is by construction locally an open inclusion on the source, but the valuative
criterion for properness exactly says that it is a bijection on underlying sets when X is proper. Thus
we deduce that it is an homeomorphism whenX is proper. This proves the abstract GAGA theorem.

Exercise 1. Show that for any open subset U ⊂ Cn, the category C(U) can be described
in terms of the structure sheaf (of liquid rings) O(−) on Cn as follows: C(U) identifies with the
full subcategory of O-module sheaves (in derived liquid C-vector spaces) consisting of thoseM for
which

M(D)⊗O(D) O|D
∼→M|D
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for every open polydisk D ⊂ U , i.e. in some sense C(Cn) is the category of quasicoherent liquid
sheaves on the analytic space Cn.

Exercise 2. Show that if f is a closed immersion and g is an open immersion, then f ◦ g can
be rewritten as g′ ◦ f ′ where g′ is an open immersion and f ′ is a closed immersion.

Exercise 3. Explicitly prove GAGA for PnC by refining a Zariski cover by an analytic cover.
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7. Lecture VII: Analytification and GAGA, redux

As a lot happened in the last two lectures, the live lecture mostly consisted of a question-and-
answer session, trying to give some intuition for the constructions. After the lecture, we realized
that one nice way to organize the discussion is using the following (insanely general, but still useful)
definition, a bit analogous to the notion of a ringed space.

Definition 7.1. A categorified locale is a pair (X,C) consisting of a locale X and a cocomplete
closed symmetric monoidal stable ∞-category C with a map f : S(C)→ X.

In particular, this gives rise to a sheaf of (cocomplete closed symmetric monoidal stable) ∞-
categories on X, taking any U to C(U) := C(f−1(U)). In particular, looking at the endomorphisms
of the unit object, one gets a sheaf of E∞-algebras on X, that one may call the structure sheaf.

Remark 7.2. For the purpose of this course, we will in some sense define an “analytic space”
to be a categorified locale over (∗,D(Cond(Ab))) (although in practice, we may ask for further
conditions). So while we may not fully settle on what the (∞-)category of analytic spaces is, it
ought to embed fully faithfully into categorified locales over (∗,D(Cond(Ab))).8

In the last lecture, several different functors from finite type C-algebras A to categorified locales
were defined. In all cases, these sentA = C to (∗,D(Liqp(C))), and so in general one gets categorified
locales over (∗,D(Liqp(C))).

Recall that to any A we can associate the derived ∞-category D(Liqp(A)) = ModA(D(Liqp))
of p-liquid A-modules. Inside S(A) := S(D(Liqp(A))), we defined open subsets {|f | < r} and
{|f | > r} for any f ∈ A and r > 0. In particular, for any f ∈ A, we can consider the open subset

{|f | <∞} =
⋃
r>0

{|f | < r} ⊂ S(A),

and then set

S(A,A) =
⋂
f∈A
{|f | <∞} ⊂ S(A).

As it is enough to take the intersection over a set of algebra generators, this is in fact an open
subset of S(A). Then the arguments from Lecture V defined a natural continuous map

S(A,A)→MBerk(A) = Spec(A)(C)

to the classical points of Spec(A) (with their complex topology), so that the loci {|f | < r} and
{|f | > r} are obtained as preimages of the evident loci in Spec(A)(C).

This construction glues for the Zariski topology, so for any scheme X locally of finite type over
C, one can define a categorified locale

(X(C), Can(X))

which we refer to the as the analytification of X. (In fact, we will later identify the usual category
of complex-analytic spaces as a full subcategory of categorified locales over (∗,D(Liqp(C))), and
under this identification, this corresponds to the usual complex-analytic space associated to X.
Most of the work here was done in the last lecture, where Can(X) was described explicitly.)

8This is not literally true for analytic spaces as defined in [CS20], but it is true in all examples of interest, and
in any case the definition in [CS20] is not meant to be final.
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One main goal of the last lecture was to indicate a proof of GAGA. This was in fact understood
not merely as an identification of the category of coherent sheaves, but of all of Can(X), in case X
is proper.

Namely, one can also pass to a very algebraic “categorified locale”. To any A, we associate all
of D(Liqp(A)), and we only use the map

S(A)→ Spec(A)op

coming from the usual Zariski localizations (which define idempotent algebras, and thus closed
subsets of S(A)). One has to be slightly careful, as now Zariski localizations give closed embeddings,
but one can still glue (finitely many) categorified locales along closed subsets. In particular, if X
is separated and of finite type over C, one can define a categorified locale

(X,Calg(X)).

This construction did not use any of the “topology” of C. In fact, it could have been carried not
with liquid C-vector spaces, but with all condensed C-vector spaces; the current version would then
simply be a base change to the liquid situation.

Now the GAGA theorem admits the following formulation.

Theorem 7.3. For proper X, there is a natural equivalence of (cocomplete closed symmetric
monoidal D(Liqp(C))-linear stable) ∞-categories

Can(X) ∼= Calg(X).

In fact, the proof will proceed by comparing them as categorified locales; but for this, Calg(X)
first needs a finer “structural map”:

Theorem 7.4. For a finite type C-algebra A, there is a natural map of locales

S(A)→ Spa(A,C)′.

Here, Spa(A,C)′ is the set of valuations | · | : A → Γ ∪ {0} with values in some totally ordered
abelian group Γ (satisfying |fg| = |f ||g|, |f + g| ≤ max(|f |, |g|), |0| = 0, |C×| = 1). We denote
the inequalities in Γ by the symbol �, and Spa(A,C)′ is given the topology for which the subsets
{|f | � |g|} form a generating family of closed subsets. The preimage of {|g| 6= 0} is S(A[1

g ]), and

the preimage of {|f | � |g|} ⊂ {|g| 6= 0} is⋂
r>0

{|fg | ≤ r} ⊂ S(A[1
g ]) ⊂ S(A).

Something slightly weird was done to the topology of Spa(A,C): Usually, in adic spectra,
{|f | 6= 0} and {|f | ≤ 1} define open subsets. For us, the first is closed, while the second is open.
Intuitively, the valuations considered here keep track only of “infinite” values of |f |. Namely, |f | ≤ 1
actually means |f | = O(1), i.e. |f | <∞ in usual notation. This is the reason we also write |f | � |g|
in place of |f | < |g|.9 For the same reason, we will also write |f | ≤ O(|g|) in place of |f | ≤ |g|.
In other words, this map to the adic spectrum is not keeping track of precise absolute values, but
only of asymptotics (for any pair of functions in A!). This also explains why one gets the strong
triangle inequality – if both |f1|, |f2| ≤ O(|g|), then also |f1 + f2| ≤ O(|g|).

9Beware however of a trap: While this reads well in the direction |f | is much smaller than |g|, which is always
true when f = 0, the condition 0� |g| might also be read as |g| � 0, i.e. g is much larger than zero. It doesn’t mean
that, 0� |g| only means |g| 6= 0.
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Another point worth making is that the valuations are not required to be continuous in any way
– we treat A as a discrete C-algebra in the above definition of Spa(A,C). In fact, we ask |C×| = 1
while |0| = 0.

Proof. The proof is similar to the construction of the map S(A,A) → MBerk(A): One can
describe the adic spectrum in terms of possible binary relations � on A, subject to some simple
axioms, see [Hub93, proof of Proposition 2.2]. One then has to see that the closed subsets of S(A)
we assigned by hand to {|f | � |g|} satisfy the correct intersection properties:

(1) {|0| � |1|} is everything;
(2) {|f | � |g|} ∩ {|g| � |f |} is empty;
(3) {|f | � |h|} ⊂ {|f | � |g|} ∪ {|g| � |h|};
(4) {|f | � |g + h|} ⊂ {|f | � |g|} ∪ {|f | � |h|};
(5) {|f | � |g|} ∩ {0� |h|} = {|fh| � |gh|}.

Properties (1), (2), and (5) are straightforward. For (3), note that h is invertible on the left-hand

side, so we can assume that h is invertible, and then replace f by f
h and g by g

h to assume that
h = 1. Now we can cover the whole space by the loci {|g| ≥ 1} and {|g| ≤ 1} as defined in Lecture
V. On the first, {|f | � 1} is contained in {|f | � |g|}, while on the second {|g| � 1} is everything
and hence {|f | � 1} ⊂ {|g| � 1}. It remains to prove (4). On its left-hand side, g+h is invertible,
so we can assume g + h is invertible; dividing by it, we can assume g + h = 1. Then the whole
space is covered by the loci {|g| ≥ 1

2} and {|h| ≥ 1
2} by the arguments from Lecture V. On the first,

{|f | � 1} ⊂ {|f | � |g|}, and on the second {|f | � 1} ⊂ {|f | � |h|}. �

There is a natural map from Spa(A,C)′ to Spec(A) (or its opposite). Namely, there is a map

Spa(A,C)′ → Spec(A)op

such that the preimage of {f 6= 0} is {|f | 6= 0}. In particular, the categorified locale

(Spec(A)op, Calg(A))

naturally refines to a categorified locale

(Spa(A,C)′, Calg(A)).

One can also glue this construction: for any separated finite type C-scheme X, one can glue
Spa(A,C)′ to a space Xad′/C; beware again that the gluing happens along closed subsets. This
gives a categorified locale

(Xad′/C, Calg(X))

refining (X,Calg(X)).
On the other hand, recall that for any integrally closed subalgebra A+ ⊂ A, one defines

Spa(A,A+)′ ⊂ Spa(A,C)′

as the open subset where |f | ≤ O(1) for all f ∈ A+. (It is enough to demand this condition
for a finite subset of A+, generating it as an integrally closed subalgebra of A.) Recall also that
{|f | ≤ O(1)} translates in S(A) into the condition {|f | <∞}, so we find that

S(A,A) ⊂ S(A)

is the preimage of
Spa(A,A)′ ⊂ Spa(A,C)′.
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In particular, there is an open immersion of categorified locales

(Spa(A,A)′, Can(A)) ⊂ (Spa(A,C)′, Calg(A)).

Now we glue this information. Gluing now along open subsets, one gets another adic space Xad

associated to X, glued from Spa(A,A)’s. If X is separated finite type, there is a natural open

immersion Xad ↪→ Xad′/C glued from the similar open immersions on affine pieces. Moreover, the
valuative criterion of properness says that X is proper if and only if this map is bijective, i.e. a
homeomorphism. In other words, for any separated X, we get an open immersion of categorified
locales

(Xad, Can(X)) ⊂ (Xad′/C, Calg(X)).

If X is proper, the two spaces are the same, and thus the categories are the same, giving Theo-
rem 7.3.

In fact, there is probably one small addition one should make, about how Can(X) is glued. In
the previous step, we glued it on Xad, while previously we glued it on X(C). What is the relation?

There is a natural continuous map

Spec(A)(C)→ Spec(A),

where the target is equipped with the Zariski topology, and there is also a natural continuous map

Spa(A,A)→ Spec(A),

where the preimage of {f 6= 0} is {|f | ≥ O(1)} (which translates to
⋃
r>0{|f | > r} in S(A,A)).

Over these comparison maps, one gets maps of categorified locales

(Spec(A)(C), Can(A))→ (Spec(A), Can(A))← (Spa(A,A), Can(A))

which glues to comparison maps

(X(C), Can(X))→ (X,Can(X))← (Xad, Can(X)).

In other words, to glue Can(X), Zariski covers suffice, and then one can refine the localizations
either to X(C) or to Xad.

What is striking about this proof of GAGA is its formality – the key is to construct the map to
the adic spectrum, which reduces to some formal calculations with idempotent algebras. Once one
has that, general nonsense reduces this version of GAGA to the purely valuation-theoretic assertion
that the map Xad → Xad′/C is a bijection.

We also note that S(A) has the striking property that it is globally algebraic – the global
functions are precisely A – while it is locally analytic – the functions on the open subset S(A,A)
are analytic functions. Using the map

S(A)→ Spa(A,C)′

one can also localize near the “boundary” of S(A) using specific growth conditions on functions.
This makes it possible to construct algebraic functions, or also coherent sheaves etc., by gluing
them after such “analytic” localizations. This is somewhat reminiscent of the “affine GAGA” of
Bakker–Brunebarbe–Tsimerman [BBT18], built on o-minimal techniques.



8. LECTURE VIII: NUCLEAR MODULES 75

8. Lecture VIII: Nuclear modules

In the previous lectures, we proved a GAGA theorem of the following type: if X is a proper
C-scheme, then two a priori different ∞-categories of “p-liquid derived quasicoherent sheaves” on
X actually agree. The first is Zariski-glued from the categories

C(A) = ModA(D(Liqp))

of derived A-modules in p-liquid vector spaces, while the second is Zariski-glued from the analytic
localizations of these,

C(A,A),

which localize on the underlying topological space Spec(A)(C) and therefore also Zariski-glue.
The usual GAGA theorem is a similar comparison theorem, but for coherent sheaves instead.

The above categories of quasi-coherent sheaves are much bigger than the categories of coherent
sheaves: first of all, there’s no finiteness condition on the A-modules in definition of C(A), and
second of all, our base category is Liqp and not the usual algebraic category of C-vector spaces. In
this lecture we want to work towards explaining how to recover the usual categories of coherent
sheaves inside these larger categories, so as to deduce the usual GAGA from the one we’ve just
proved.

The general mechanism for this fits into the familiar ansatz that “finite = compact + discrete”:
we will recover the category of coherent sheaves as the intersection of two different full subcategories
of our large categories, one which corresponds to a kind of compactness condition and the other
to a kind of discreteness condition. In this lecture, we talk about the appropriate discreteness
condition.

The first thing to emphasize is that there is a naive notion of discreteness for p-liquid vector
spaces. Indeed, the forgetful functor

Liqp → ModC,

X 7→ X(∗),
admits an exact fully faithful left adjoint M 7→M δ := M ⊗C(∗) C; more concretely, if M is a direct

sum of copies of C in the category of abstract vector spaces, then M δ is the “same” direct sum of
copies of the object C in the category of p-liquid spaces. (Note however that M δ is not discrete as
an underlying condensed set; it is only discrete “relative to C”).

We can call a p-liquid vector space “discrete” if it is in the essential image of this functor.
But this category of discrete p-liquid vector spaces, which is equivalent to the category of abstract
C-vector spaces, is not robust enough for our purposes. The reason is that the most relevant liquid
vector spaces for us are the rings of overconvergent holomorphic functions on closed polydisks, and
those are not discrete.

But it turns out that there is an enlargement of the category of discrete p-liquid vector spaces,
which contains these rings of overconvergent holomorphic functions on closed polydisks (and rings
of convergent holomoprhic functions on open polydisks), but is still constrained enough that it can
be used as a replacement for discreteness in the ansatz “finite = compact + discrete”. This is the
category of nuclear modules which is the subject of our lecture.10

10The notion of nuclearity is due to Grothendieck and arose from his study of tensor products of locally convex
topological vector spaces, [Gro55]. It appears for us here in a slightly different guise, but the fundamental ideas are
the same.
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The definition of nuclear module is based on the notion of nuclear (or trace-class) map, which
we can give in the context of an arbitrary closed symmetric monoidal ∞-category C. First, some
notation: for x, y ∈ C, we will denote by

yx

the internal hom object from x to y. We will also set

x∨ := 1x

where 1 denotes the unit object of C, and

x(∗) := Hom(1, x),

the mapping anima from the unit to x.
Note for all x, y ∈ C that there is a natural map

x∨ ⊗ y → yx,

and in particular a natural map

(x∨ ⊗ y)(∗)→ Hom(x, y).

Definition 8.1. Let f : x→ y be a map in C. We say that f is trace-class or nuclear if f lies
in the image of the natural map

(x∨ ⊗ y)(∗)→ Hom(x, y).

Note that this is a π0 condition, i.e. we are asking that the component of the anima Hom(x, y)
containing f is hit by the map from (x∨ ⊗ y)(∗). The following lemma can be proved by some
diagram chasing.

Lemma 8.2. Let C be a closed symmetric monoidal ∞-category.

(1) If f : x → y is trace-class and g : y → y′ and h : x′ → x are arbitrary, then g ◦ f ◦ h is
trace-class.

(2) If f : x→ y and f ′ : x′ → y′ are trace-class, then f ⊗ f ′ : x⊗ x′ → y ⊗ y′ is trace-class.
(3) If f : x→ y is trace-class and c ∈ C is arbitrary, then the commutative square

c∨ ⊗ x //

��

c∨ ⊗ y

��
xc // yc

admits a diagonal map xc → c∨ ⊗ y making both triangles commute.

To continue, we add some hypotheses to our closed symmetric monoidal∞-category C, namely
we require:

(1) C is stable and compactly generated;
(2) The unit 1 ∈ C is a compact object.

Recall that an object x ∈ C is called compact if Hom(x,−) : C → An commutes with filtered
colimits, and C is compactly generated if it has all colimits, and there is a collection of compact
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objects C0 ⊂ C such that C is the smallest cocomplete full subcategory of C containing C0. We
can close C0 up under finite colimits, and then we even have the canonical expression

x = lim−→
c0∈C0,c0→x

c0

of x as a filtered colimit of objects in C0 for all x ∈ C, and indeed C ' Ind(C0).

Remark 8.3. Note that we do not require that the collection of compact objects be closed
under tensor product. We would love to be able to impose this very convenient hypothesis, but
unfortunately it is (probably) not satisfied in our main example of C = D(Liqp). Indeed, an object
of D(Liqp) is compact if and only if it can be represented by a finite complex of compact projective
objects of Liqp. As recorded in the appendix to Lecture III, the collection of compact projective
objects is not closed under tensor products; and there seems to be no reason why the tensor product
of two compact projective objects should be represented by a finite complex of compact projective
objects, either.

The main difficulty caused by this lack of closure under tensor products is the following: a
compact object c ∈ C need not be “compact in the sense of internal hom”, i.e. the functor x 7→ xc :
C → C need not commute with filtered colimits.

In the above abstract context we have the following simple lemma.

Lemma 8.4. Let C be a compactly generated closed symmetric monoidal ∞-category with com-
pact unit object. For any trace-class map f : x → y in C, there is a compact object c ∈ C and a
factoring of f as

x→ c→ y

where x→ c is also trace-class.

Proof. By definition, the map f comes from a class in π0((x∨⊗ y)(∗)). As the functor x∨⊗−
and the functor (−)(∗) both commute with filtered colimits, and y is a filtered colimit of compact
objects, we deduce that f lifts to a class in π0((x∨⊗c)(∗)) for some compact c mapping to y, giving
the claim. �

Definition 8.5. Let C be a stable compactly generated closed symmetric monoidal∞-category
with compact unit object.

(1) For x ∈ C, we say that x is nuclear if for all compact objects c ∈ C, the natural map

(c∨ ⊗ x)(∗)→ Hom(c, x)

is an isomorphism.
(2) For x ∈ C, we say that x is basic nuclear it is isomorphic to the colimit of a sequence

x0 → x1 → . . .

of trace-class maps between objects of C.

Note that by replacing c by its shifts, we see that condition (1) is insensitive to whether we use
mapping spectra or mapping anima. It’s more convenient to use mapping spectra because then we
stay in the stable context, so we’ll do that from now on.

Theorem 8.6. Let C be a stable compactly generated closed symmetric monoidal ∞-category
with compact unit object. Then:
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(1) The full subcategory Nuc of nuclear objects in C is stable, closed under colimits, and closed
under tensor products,

(2) The stable ∞-category Nuc is ℵ1-compactly generated, and the ℵ1-compact objects are
exactly the basic nuclear modules.

Proof. Stability and cocompleteness of Nuc follow from the fact that both functors (c∨⊗−)(∗)
and Hom(c,−) (with values in spectra) commute with all colimits. For closure under tensor
products, this follows from (2), since basic nuclears are clearly closed under tensor products.

So we just need to show (2). First note that basic nuclears are nuclear: indeed, if x is basic
nuclear given by lim−→xn as in the definition, then for c ∈ C, the two ind-systems

xc0 → xc1 → . . .

and

c∨ ⊗ x0 → c∨ ⊗ x1 → . . .

are isomorphic as a consequence of Lemma 8.2. When c is compact, we can take maps from the
unit object and then pull in the colimits. We deduce that x is nuclear.

Next, note that any basic nuclear is a sequential colimit of compact objects under trace-class
maps. Indeed, if x = lim−→xn along trace-class maps, by Lemma 8.4 we can factor each xn → xn+1

as xn → cn → xn+1 where cn is compact and xn → cn is trace-class. Then the cn with transition
maps given by the compositions cn → xn+1 → cn+1 provide an equivalent ind-system where the
terms are compact and the maps are trace-class, as desired.

It follows that any basic nuclear is ℵ1-compact in C, hence in particular in Nuc. Next we
claim that the basic nuclear objects form a stable subcategory closed under countable colimits.
It suffices to show it’s closed under cones and countable direct sums. For cones, the argument
is in [CS20] Lecture XIII: briefly, given a map between sequential colimits of compact objects
under trace-class maps, we can assume the map is given term-wise, and then we term-wise pass
to the cofiber; the transition maps in the cofiber isn’t necessarily trace-class, but the composition
of any two consecutive transition maps is, and that’s enough. For countable direct sums, we can
choose a representative of each term as a sequential colimit along trace-class maps, then rewrite
the countable direct sum as a sequential colimit of finite direct sums and pass to the diagonal in
the sequential colimit of sequential colimits.

Now we can prove (2). In the previous two paragraphs, we saw that every basic nuclear is
ℵ1-compact, and that the basic nuclears are stable closed under countable colimits. Thus it suffices
to show that for any nuclear x, if Hom(y, x) = 0 for all basic nuclear y, then x = 0. Thus suppose
Hom(y, x) = 0, and let c be compact. We will show that any map c→ x is 0, which will imply x = 0
because C is compactly generated. But indeed, by repeatedly applying Lemma 8.4, we deduce that
c→ x factors through a basic nuclear; hence by hypothesis it is the zero map. �

By this, every nuclear object is an ℵ1-filtered colimit of basic nuclear objects. Thus, to under-
stand nuclear objects, to a large degree we reduce to understanding basic nuclear objects.

Now we turn to our case of interest, which is

C = D(Liqp).

We would like to gain an understanding of the basic nuclear objects in C. By the above, every
basic nuclear is a sequential colimit of compact objects with trace-class transition maps. Actually,
it suffices to only look at those compact objects which can be represented by finite complexes where
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each term is of the form M<p(S) for S profinite, as these already contain a generating family of
compact objects closed under shifts and finite colimits.

Using this we can make the following further reduction.

Lemma 8.7. Every basic nuclear in D(Liqp) is represented by a complex which is a sequential
colimit of complexes

lim−→
n

C
(n)
•

such that:

(1) Each term C
(n)
k of each complex C

(n)
• is a measure space M<p(S) with S ∈ Prof;

(2) each map C
(n)
• → C

(n+1)
• is term-wise given by a trace-class map between measure spaces.

Proof. We will need to use the following non-trivial facts about these M<p(S): first, the
(derived) dual

M<p(S)∨ = RHom(M<p(S),R) = RHom(Z[S],R)

sits in degree 0; and second, M<p(S) is flat. The first was proved in [CS19] Lecture III and the
second was proved in Lecture III of these notes.

To prove the claim, we need to see that every trace-class map in the derived category between
finite complexes M•, N• with terms of the form M<p(S) can be represented by an honest map of
complexes which is trace-class in each term. But indeed, a trace-class map in the derived category
comes from a class in

H0(((M•)
∨ ⊗L N•)(∗)),

where we a priori use the derived dual and derived tensor product. But by the facts we just recalled,
these are the same as the underived dual and underived tensor product. Thus we see that classes
in H0((M•)

∨ ⊗L N•)(∗)) always come from degree 0 cycles in the tensor product of complexes

(Hom(M•,R)⊗N•)(∗).
Unwinding, such a degree 0 cycle exactly gives a map of complexes M• → N• which is trace-class
in each term and induces our original map in the derived category. �

Next we analyze these trace-class maps M<p(S) →M<p(T ). It will be convenient to allow S
and T also to be locally profinite as in Lecture IV, because we’ll soon want to switch to sequence
spaces.

Proposition 8.8. Let S and T be locally profinite spaces. Then a map f :M<p(S)→M<p(T )
in D(Liqp) is trace-class if and only there is a q < p and a q-summable sequence of real numbers
(λn) such that f factors as the following kind of composite:

M<p(S)→ c0(N)
·λ→ `q(N) ⊂M<p(N)→M<p(T ),

where the two outer maps are arbitrary and the displayed map is termwise multiplication by our
sequence (λn) (see Lemma 4.7).

Proof. Trace-class maps M<p(S)→M<p(T ) come from classes in

(C0(S;R)⊗R<pM<p(T ))(∗),
where here again we use that the derived dual of M<p(S) lives in degree 0, given by the Banach
space C0(S;R) of continuous functions S → R vanishing at ∞, and that M<p(T ) is flat. By
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Lemma 2.16 from Lecture II, C0(S;R) admits a surjection from a direct sum of copies ofM<p(N),
corresponding to nullsequences in the Banach space C0(S;R). On the other hand, we have

M<p(N)⊗R<pM<p(T ) =M<p(N× T )

by Lemma 4.4, and this is the subset of ∏
N
M<p(T )

consisting of those sequences of < p-measures on T which are of the form

(λnµn)n∈N

where (λn) is a sequence of real numbers which is < p-summable and the µn are uniformly bounded,
i.e. there is a q < p and C > 0 such that µn ∈M(T )`q≤C for all n.

In total, we deduce that trace-class maps f : M<p(S) → M<p(T ) are exactly those of the
following form: take the following data:

(1) A null-sequence ϕ1, ϕ2, . . . in C0(S;R);
(2) A < p-summable sequence λ1, λ2, . . . of real numbers;
(3) A uniformly bounded sequence µ1, µ2, . . . of < p-measures on T ;

and produce from them the map f :M<p(S)→M<p(T ) given by

f |S(s) =
∞∑
n=1

λnϕn(s)µn.

Up to replacing “uniformly bounded sequence µ1, µ2, . . . of < p-measures on T” by “nullsequence
µ1, µ2, . . . of < p-measures on T”, this corresponds exactly to writing f as a composite of three
maps as in the statement. So to finish it suffices to show that we can arrange it so that µ1, µ2, . . .
is a nullseuqence. For this we can write the nullsequence of norms of the ϕ1, ϕ2, . . . as a product of
two null-sequences and move one of them over as coefficients on the µn. �

It follows that any nuclear object in D(Liqp) lies in the stable cocomplete subcategory generated
by M<p(N), and in particular any nuclear object is ω1-condensed. However, by Proposition 3.15,
M<p(N) is a compact projective object in ω1-condensed p-liquid modules. It follows that we can
run the above arguments inside the smaller stable cocomplete category generated by M<p(N) to
deduce that, in the description of basic nuclears given by Lemma 8.7, we can useM<p(N)’s instead
of M<p(S)’s as the terms in our complex.

But now that we’re in this sequence space context, we have the following further refinement:

Proposition 8.9. Every basic nuclear in D(Liqp) is represented by a complex which is a se-
quential colimit of complexes

lim−→
n

C
(n)
•

such that:

(1) each C
(n)
k is equal to M<p(N);

(2) each map C
(n)
• → C

(n+1)
• is term-wise given by an injective trace-class map between

M<p(N)’s.
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Proof. The new information is that we can arrange the transition maps to be termwise in-
jective. Working our way along inductively, it suffices to show that if f : C• → D• is term-wise
trace class map of finite complexes with each term equal to M<p(N), then by direct summing an
acyclic complex to D• we can arrange that f be term-wise injective, but still trace-class. For that,
choose arbitrarily an injective trace-class map gi : Ci → Di for all i (e.g. take gi to be termwise
multiplication by a < p-summable sequence of nonzero real numbers), and replace D• by

D′• = D• ⊕ (⊕i
[
Di

id→ Di

]
[i])

and take the new map f ′ : C• → D′• to be the old map f on the D• component, and on the
i-component to be the map which is gi in degree i and gi ◦ d in degree i+ 1. �

In particular, every basic nuclear is represented by a complex where each term is a sequential
colimit of sequence spaces M<p(N) under injective trace-class maps. Next we will identify this
class of spaces with the classical dual nuclear Frechet spaces. But first, we start by recalling the
definition and some background on these.

The most convenient form of the definition of a DNF (dual nuclear Frechet) space involves
Hilbert spaces, which we may as well take to be `2(N). In the Hilbert space context, there is
a somewhat more direct analog of the notion of trace-class map, based on the singular value
decomposition, which we start with.

A map f : `2(N) → `2(N) is said to be a compact operator if f factors through the inclu-
sion `2(N) ⊂ M2(N). If f is a compact operator, then attached to f is a unique non-increasing
nullsequence of non-negative real numbers

σ1 ≥ σ2 ≥ . . . ,
called the singular values of f , such that after orthonormal basis change in both source and target
(independently), f is represented by the diagonal matrix with entries the σn. This is called the
singular value decomposition of f .

The proof is not difficult: the function |f | :M(N)`2≤1 → R≥0 attains a maximum value which
we call σ1, and it follows that there are e0, e

′
0 ∈ `2(N) of norm 1 such that f(e0) = σ1e

′
0. Then

we pass to the orthogonal complement of e0 in the source `2(N) and e′0 in the target `2(N), and
continue inductively.

This leads to the following definition, see [Sch13] for this and the unjustified claims below:

Definition 8.10. Let 0 < p < ∞. A map f : `2(N) → `2(N) is said to be p-Schatten if it is
compact, and its singular values satisfy ∑

n

σpn <∞.

We have the following properties:

(1) If f is p-Schatten and g, h are aribtrary, then g ◦ f ◦ h is p-Schatten.
(2) If f is p-Schatten and q > p, then f is q-Schatten.
(3) If f is p-Schatten and g is q-Schatten, then f ◦ g is r-Schatten where 1

r = 1
p + 1

q . (In

particular, the composition of two p-Schatten maps is p/2-Schatten.)

The first two are simple to prove, while the third is a bit tricky due to the change of basis
involved in putting f and g into diagonal form. But in the end it does reduce to the Hölder
inequality just as for compositions of diagonal matrices.
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The case of 2-Schatten maps is somehow nicest form a Hilbert space perspective, and has a
separate name: a 2-Schatten map is also called a Hilbert-Schmidt map. In terms of infinite matrices,
an operator is Hilbert-Schmidt if and only if the total `2-norm of the matrix is finite.

Here, then, is the definition of a dual nuclear Frechet space.

Definition 8.11. A condensed abelian group V is called a DNF space if it is a sequential
filtered colimit of Hilbert spaces along injective 2-Schatten transition maps.

By the above properties, we get an equivalent definition if we replace 2 by p in this definition,
for any 0 < p <∞. Now let us make the connection with our previous discussion. Recall that we
showed that every basic nuclear in D(Liqp) can be represented by a complex where each term is a
sequential colimit of sequence spaces M<p(N) under injective trace-class transition maps.

Lemma 8.12. A p-liquid V is a DNF space if and only if it is isomorphic to a sequential colimit
of sequence spaces M<p(N) under injective trace-class transition maps.

Proof. First, assume V is a DNF space, and write it as a union

V = lim−→
n

Hn

of Hilbert spaces under injective transition maps, such that the singular values of each transition
map can be written as a product

σk = αkλkβk,

where (αk) and (βn) are nullsequences and (λk) is a p/2-summable sequence. Then by choosing
suitable orthonormal bases, we can factor each transition map Hn → Hn+1 as

Hn
·α→ c0(N)

·λ→ `p/2(N) ⊂M<p(N)
β→ Hn+1,

where we use termwise multilication by the two null-sequences on the outside maps and the p/2-
summable sequence (λn) in the middle.

Note that all these maps are injective because each σn 6= 0 due to injectivity of our original
transition maps. Then if we consider just the M<p(N) terms and the induced transition maps
between them, then these transition maps are injective, but also trace class by the criterion of
Lemma 8.8. And we see that the ind-system of Hilbert spaces is isomorphic to the ind-system of
M<p(N)’s, in particular proving that V is a sequential union of M<p(N)’s under injective trace
class maps.

Conversely, suppose V is a sequential colimit ofM<p(N)’s along injective trace-class transition

maps. Factor the nth transition map as

M<p(N)→ c0(N)
·λ→ `q(N) ⊂M<p(N)→M<p(N)

according to Lemma 8.8, and then further factor c0(N)
·λ→ `q(N) as

c0(N)
·λ

q
2→ `2(N)

·λ
2−q
2→ `q(N).

(Implicitly, q < p and λ depend on n, but this is not relevant for the argument.) Then for the
ind-system formed by these `2(N) spaces, each transition map factors as

`2(N)→ c0(N)
·α→ `2(N)
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where the second map is given by termwise multiplication with a 2-summable sequence (αj) (= λ
q
2 ).

Now, the first map corresponds to a sequence of elements of the dual space of `2(N) which is in
particular uniformly bounded. However, the dual space of `2(N) identifies (on underlying Banach
spaces) with `2(N) again via the inner product. Thus we get a uniformly bounded sequence of
elements xi in `2(N) such that our transition map is given by the matrix whose (i, j)-entry is

αj · 〈δi, xj〉.
This matrix is clearly Hilbert-Schmidt, i.e. the transition maps are 2-Schatten. However, they need
not be injective. Nonetheless, our original V is a filtered union of qs spaces hence and hence is also
qs, so we can conclude that V is a DNF space thanks to the following lemma. �

Lemma 8.13. Let 0 < p < ∞. Suppose V = lim−→n
Hn is a sequential colimit of Hilbert spaces

with p-Schatten transition maps. If V is qs, then V is also a sequential colimit of Hilbert spaces
with injective p-Schatten transition maps, meaning V is a DNF space.

Proof. Let H ′n ⊂ V denote the image of Hn in V . Then H ′n is also a Hilbert space! Indeed,
the inclusion ker(Hn → V ) ⊂ Hn is a quasi-compact map since V is qs; thus, since Hilbert spaces
are compactly generated, this kernel corresponds to a closed subspace of the Hilbert space Hn.
But every closed subspace of a Hilbert space is a Hilbert space, and moreover the inclusion has a
complement given by the orthogonal subspace. It follows that H ′n, which is the quotient of Hn by
this kernel, is also a Hilbert space, since it identifies with this orthogonal complement. Moreover,
the inclusion H ′n ⊂ H ′n+1 then factors through Hn → Hn+1 → H ′n+1, so it is also p-Schatten. �

By similar arguments we prove the following permanence properties of DNF spaces, due to
Grothendieck.

Lemma 8.14.

(1) Let V be a DNF space, and W an arbitrary qs condensed R-module. For any homomor-
phism f : V →W , we have that ker(f) and im(f) are DNF spaces.

(2) Any extension of DNF spaces is a DNF space.

Proof. The proof of (1) is very similar to the argument in the previous lemma; we skip it. For
(2), write V = lim−→n

Vn as a sequential colimit of sequence spacesM<p(N) with injective trace-class

transition maps. Any extension 0 → W → Ṽ → V → 0 is split over each M<p(N), because these
M<p(N) are compact projective in ω1-condensed p-liquid spaces. Thus, choosing such a splitting
for each n with no mind for compatibility, we can write

Ṽ = lim−→
n

(Vn ⊕W ),

where the transition map
Vn ⊕W → Vn+1 ⊕W

is given by block upper triangular matrix: the map Vn → Vn+1 is the original transition map, the
map W →W is the identity, the map W → Vn+1 is 0, and the map Vn →W is just some arbitrary
map. However, any map Vn → W is trace class and moreover factors through a trace class map
to some Wϕ(n) with respect to an analogous presentation of W by M<p(N)’s. We can assume
ϕ : N→ N to be an increasing function, and then we can write

Ṽ = lim−→
n

(Vn ⊕Wϕ(n)),
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where now this is an expression which proves that Ṽ has the same form as V and W , meaning it’s
DNF. �

Now we can finally give the desired characterization of basic nuclear liquid modules.

Theorem 8.15. Let X ∈ D(Liqp). The following are equivalent:

(1) X is basic nuclear, i.e. X is a sequential colimit along trace-class maps;
(2) X can be represented by a complex of DNF spaces;
(3) Each homology group Hn(X) is isomorphic to a quotient of DNF spaces;
(4) X lies in the smallest countably cocomplete stable subcategory generated by the DNF spaces.

Proof. We have already seen that (1) ⇒ (2). The claim (2) ⇒ (3) follows from the first part
of the previous lemma. For the claim (3) ⇒ (4), by considering canonical truncations and shifting
we can assume X is concentrated in homologically non-negative degrees. It suffices to show that
there’s a DNF space V with a a map V → X surjective on H0, and that the cone of this map
also satisfies the same condition (3). For then we can continue inductively and get resolution of
X by DNF spaces, proving (4). However, by assumption we can find a DNF V with a surjective
map V → H0X whose kernel is a DNF. This map lifts to V → X because the obstructions to this
lifting all live in Exti(V ;−) for i ≥ 2 which vanishes because V is a sequential colimit of compact
projectives. To see that the cone also satisfies (3), we need to show that an extension of a DNF
space V by a quotient W/W ′ of DNF spaces is still a quotient of DNF spaces. However, the same
Ext2-vanishing used above shows that any extension of V by W/W ′ lifts to an extension of V by

W . Such an extension Ṽ is a DNF space by the previous lemma, and then our original extension

is Ṽ /W ′, a quotient of DNF spaces as desired. Finally, for (4) ⇒ (1), we have already seen that
DNF spaces are basic nuclear and that the full subcategory of basic nuclears is stable and closed
under countable colimits. �

We have a series of remarkable corollaries; the proofs are immediate.

Corollary 8.16. An object X ∈ D(Liqp) is basic nuclear if and only if each homology group
Hn(X)[0] is basic nuclear. Likewise, an object X ∈ D(Liqp) is nuclear if and only if each homology
group Hn(X)[0] is nuclear.

Corollary 8.17. The collection of basic nuclears living in degree 0 is an abelian subcategory
of Liqp, closed under extensions and countable colimits. It consists exactly of the quotients of DNF
spaces.

The collection of nuclear objects living in degree 0 is likewise an abelian subcategory of Liqp,
closed under extensions and arbitrary colimits. It consists exactly of the (ℵ1-filtered) colimits of
quotients of DNF spaces.

Corollary 8.18. The collections of nuclear and basic nuclear modules in D(Liqp) are inde-
pendent of p, and also independent of which uncountable strong limit cut-off cardinal one chooses
in the foundations for condensed sets. The derived liquid tensor product is likewise independent of
p on the class of nuclear modules.

We finish by discussing a technical issue which will arise in the following lecture. Recall that
the definition of nuclear was that

(c∨ ⊗ x)(∗)→ Hom(c, x)
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should be an isomorphism for all compact objects c. One could ask whether the a priori stronger
condition

c∨ ⊗ x ∼→ xc

then automatically holds. In the abstract set-up we see no reason why this should be true. But
now we can nonetheless prove it for liquid modules. In fact we have the more general:

Proposition 8.19. Let V be a nuclear object in D(Liqp), and let S be a compact Hausdorff
space. Then

RHom(Z[S],R)⊗L<p V
∼→ RHom(Z[S], V ).

Proof. First note that RHom(Z[S],R) = C(S;R) is concentrated in degree 0, by [CS19] Lec-
ture III. Now, the functor RHom(Z[S],−) commutes with ℵ1-filtered colimits, because Z[S] is a
countable colimit of compact projective Z[Si]’s via taking a hypercover of S by extremally discon-
nected profinite sets. Thus we reduce to proving the claim for basic nuclear V . Taking colimits of
canonical truncations, we can also assume V is homologically concentrated in nonnegative degrees.
Now we claim that on both sides, we can pull out the limit of canonical truncations of V . On the
right this is clear as RHom(Z[S],−) commutes with all limits. On the left, this is because each
homology group of V is a quotient of DNF’s, hence a quotient of flat objects, hence has uniformly
bounded tor-dimension, whereas we have already seen that RHom(Z[S],R) lives in degree 0. Thus
we can reduce to the case of V a quotient of DNF’s, which reduces us to the case of V a DNF.
To handle that case, by the intertwining argument and Lemma 8.2 part 3 it suffices to show that
RHom(Z[S],−) commutes with the sequential colimit presenting the DNF V .

But we claim that RHom(Z[S],−) does commute with certain filtered colimits, namely those
where the terms of the filtered colimit are all Banach spaces. Indeed, for a hypercover of a compact
Hausdorff space S by extremally disconnected profinite sets S• and a Banach space V , we know
that the associated complex

C(S;V )→ C(S0;V )→ . . .

is exact by the argument in [CS19] Lecture III. Each functor C(S′,−) here commutes with filtered
colimits as compact Hausdorff spaces are qcqs, so we get the same exactness claim when V is a
filtered colimit of Banach spaces. But then this shows that RHom(Z[S],−) on filtered colimits of
Banach spaces is concentrated in degree 0 and commutes with the given filtered colimit. Crossing
with an auxiliary profinite set T we deduce the same for the internal RHom, as desired. �

Corollary 8.20. Let A be a commutative algebra in D(Liqp) such that the underlying object
of A is nuclear in D(Liqp). Then an object M ∈ C = ModA(D(Liqp)) is nuclear (in the sense of
C) if and only if the underlying object of D(Liqp) is nuclear (in the sense of D(Liqp)).

Proof. For M ∈ ModA(D(Liqp)), nuclearity over A means that for all extremally disconnected
S, the map

(RHom(Z[S], A)⊗L<p,AM)(∗)→M(S)

is an isomorphism. But the left-hand side agrees with (RHom(Z[S],C)⊗L<pM)(∗), leading to the
definition of nuclearity of M in D(Liqp). �

Exercise 1. Recall that the category SolidZ of solid abelian groups has compact projective
generators of the form

∏
I Z, with

Hom(
∏
I

Z,
∏
J

Z) =
∏
J

⊕IZ,
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and with a tensor product such that ∏
I

Z⊗
∏
J

Z =
∏
I×J

Z.

Show that an object in D(SolidZ) is nuclear if and only if it is discrete, i.e. lies in the cocomplete
stable full subcategory generated by the unit Z.

Exercise 2. Show that the definition of compactness of an operator f : `2(N)→ `2(N) given in
the lecture, namely f is compact if f factors through M2(N), is equivalent to the usual definition:
f is compact if there is an open neighborhood U ⊂ `2(N) of the origin and a compact subset
K ⊂ `2(N) such that f(U) ⊂ K.
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9. Lecture IX: Coherent Sheaves, I

The goal of this lecture and the next is to develop the theory of coherent sheaves on complex-
analytic spaces, by isolating them inside the very large (derived) category of “liquid quasicoherent
sheaves”. In this lecture, our goal is to isolate the pseudocoherent complexes of (abstract) modules
inside the category of all liquid modules, and show that this category localizes on Cn. In the next
lecture, we will go from the level of complexes to the abelian level.

Let us start with the general nonsense. Take any closed symmetric monoidal compactly gener-
ated stable∞-category C, such that 1 ∈ C is compact. If A = End(1) is the endomorphism algebra
of 1 (a “commutative algebra in ∞-category land”, known as an E∞-algebra), then one gets a full
embedding

D(A) ↪→ C

of the category of A-modules in spectra into C. If A happens to be concentrated in degree 0, then
D(A) is just the usual derived ∞-category of (abstract) A-modules. For example, if C = D(Liqp),
one gets a full embedding

D(R) ↪→ D(Liqp)

from the derived ∞-category of (abstract) R-vector spaces into that of p-liquid R-vector spaces.

Definition 9.1. An object V ∈ C is discrete if it lies in the essential iamge of D(A) ↪→ C;
equivalently, if it lies in the subcategory generated under shift and colimits by 1 ∈ C.

As the subcategory of discrete objects is just the category of abstract modules over A, it is very
easy to understand. In particular, if one intersects it with the class of compact objects, one just
gets perfect complexes of A-modules:

Proposition 9.2. An object V ∈ C is compact and discrete if and only if it lies in the sub-
category generated under retracts, shifts, and finite colimits by 1 ∈ C, i.e. corresponds to a perfect
complex of A-modules.

Proof. Recall that D(A) is compactly generated, with compact objects the perfect complexes
of A-modules. As compact objects of C are stable under retracts, shifts, and finite colimits, all
perfect complexes of A-modules give compact (and discrete) objects of C. Conversely, if V ∈ C is
discrete and compact, then it is also compact as an object of D(A) (as D(A) ⊂ C is stable under
all colimits), and hence corresponds to a perfect complex of A-modules. �

On the other hand, it is a very fragile category – many natural operations leave the category
of discrete objects. For this reason, the more general class of nuclear objects was introduced in
the last lecture. It turns out that the previous proposition has a natural analogue when replacing
discrete by nuclear, in which case it singles out the important class of dualizable objects of C.
Recall that V ∈ C is dualizable if there exists some V ′ ∈ C together with maps α : 1 → V ′ ⊗ V ,
β : V ⊗ V ′ → 1 such that the composites

V
1⊗α−−→ V ⊗ V ′ ⊗ V β⊗1−−→ V

and

V ′
α⊗1−−→ V ′ ⊗ V ⊗ V ′ 1⊗β−−→ V ′

are the identity. In that case, for any W , one has a canonical isomorphism W V = V ′ ⊗W ; in
particular V ′ = V ∨ is the dual of V (making β the evaluation map).
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Proposition 9.3. An object V ∈ C is compact and nuclear if and only if it is dualizable.

Proof. Assume first that V is dualizable. Then Hom(V,−) = (V ′ ⊗−)(∗) commutes with all
colimits, so V is compact. Also, Hom(V, V ) = (V ′ ⊗ V )(∗), and in particular any map f : V → V
is trace-class, for example the identity. Then V is the sequential colimit of V , with transition maps
the identity, which is trace-class; so V is basic nuclear.

Conversely, assume V is compact and nuclear. Let V ′ = V ∨, with β the evaluation map. We
want to produce a coevaluation map α : 1 → V ∨ ⊗ V in order to show that V is dualizable. Such
an α is an element of (V ∨⊗V )(∗). As V is compact and V is nuclear, this agrees with Hom(V, V ).
But here we have the identity of V , giving the desired α. It is a simple exercise to check that the
diagrams commute. �

We note that this gives a way to construct dualizable objects.

Proposition 9.4. Let V ∈ C be compact and let f : V → V be a trace-class map. Then the

cone [V
1−f−−→ V ] of the endomorphism 1 − f on V is a dualizable object of C. Conversely, any

dualizable object of C is a retract of an object of this form.

Proof. Clearly, the cone of 1 − f is compact (as a finite colimit of compact V ’s). Now note

that the map f : V → V induces an isomorphism on [V
1−f−−→ V ] (as on the cone, f becomes equal

to 1). Thus, passing to the sequential colimit over multiplication by f , one can write the cone also

the cone of [W
1−f−−→ W ] where W is the sequential colimit of V

f−→ V
f−→ V . . .. Then W is (basic)

nuclear, and hence so is the cone.
For the converse, note that if V is dualizable, then it is compact, and the identity of V is

trace-class, so [V
0−→ V ] belongs to the class of dualizable objects produced in this way. But V is a

retract of [V
0−→ V ]. �

Remark 9.5. The proof shows more generally that if V ∈ C is compact and f : V → V is

an endomorphism such that some power fn : V → V is trace-class, then the cone [V
1−f−−→ V ] is

dualizable.

Example 9.6. Let us give an example of a dualizable object that is not discrete. Consider
A = C[T ], and C = D(Liqp(A)). Let V be the DNF space of sequences of at most polynomial
growth, and turn it into a C[T ]-module by letting T act via diagonal multiplication by (1, 2, 3, . . .).
We claim that V is dualizable. Indeed, if V0 =M<p(βN)⊗C[T ] is the compact projective generator,

and we consider the endomorphism f : V0 → V0 given by diagonal multiplication by (T, T2 ,
T
3 , . . .),

then fN is trace-class for sufficiently large N (depending on p). Moreover, to compute the cone

V0

1−(T,
T
2 ,
T
3 ,...)−−−−−−−−−→ V0

we can first take the colimit along diagonal multiplication by (1, 1
2 ,

1
3 , . . .), leading to the space V [T ]

of polynomials of sequences of at most polynomial growth. Then we get the cone

V [T ]
1−(T,

T
2 ,
T
3 ,...)−−−−−−−−−→ V [T ]

which can also be written as the cone

V [T ]
(1,2,3,...)−T−−−−−−−→ V [T ]
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and hence is given by V with T acting by multiplication by (1, 2, 3, . . .).

In many cases, it will turn out that all dualizable objects of C are in fact discrete, i.e. are

perfect complexes of A-modules. By Proposition 9.4 this is the case if and only if cones [V
1−f−−→ V ]

are discrete. Here, 1− f is a perturbation of the isomorphism 1 : V → V by a trace-class operator.
Classically, if V is say a Hilbert space, such things are Fredholm operators, and Fredholm operators
have finite-dimensional kernel and cokernel, leading to the desired discreteness. Abstractly, we make
the following definition:

Definition 9.7. Let C be a closed symmetric monoidal compactly generated stable∞-category
with compact unit, as above. Then C is Fredholm if all dualizable objects of C are discrete;
equivalently, if for all compact V ∈ C and trace-class endomorphisms f : V → V , the cone

[V
1−f−−→ V ] is discrete.

We will be interested in verifying this condition in our situations of interest. Thus, assume
from now on that C = D(A) for some closed symmetric monoidal abelian category A generated
by compact projective objects Acp ⊂ A, and with 1 ∈ A compact projective.11 In this situation,
A = End(1) is concentrated in degree 0, i.e. is a usual commutative ring.

We make the following auxiliary hypothesis:

Assumption 9.8. For all compact projective T ∈ A, the dual T∨ ∈ D(A) is concentrated in
degree 0. Equivalently, for all compact projective T, T ′ ∈ A, one has ExtiA(T1 ⊗ T2, A) = 0 for
i > 0, where A = End(1) as before.

It turns out that this is a pretty mild assumption. Under this assumption, we note that for
T ∈ A compact projective, trace-class endomorphisms come from (T∨⊗T )(∗), where all operations
can be performed in A (as opposed to D(A)), making things more concrete.

When C = D(A), one can consider a generalization of the notion of compact objects. Recall
that X ∈ C is compact if and only if it can be represented by a finite complex of compact projective
objects. Often, when building such projective resolutions, one can ensure finiteness in each degree,
but not necessarily termination. This leads to the notion of pseudocompact objects.

Definition 9.9. An object X ∈ D(A) is pseudocompact if it can be represented by a complex
of compact projectives that is bounded to the right. This is equivalent to Hom(X,−) commuting
with all direct sums of objects in D≤n(A), for all n.

In other words, a pseudocompact is one that can be approximated arbitrarily well (with respect
to the t-structure) by compact objects. It turns out that under Assumption 9.8, a similar assertion
holds true for compact objects replaced by dualizable objects.

Proposition 9.10. Assume Assumption 9.8. Then:

(1) The subcategory of dualizable objects of C is generated under shifts, cones, and retracts by

the cone [T
1−f−−→ T ] for compact projective T ∈ A with a trace-class endomorphism f .

(2) Any nuclear and pseudocompact object X of C can be written as a sequential colimit
X = lim−→n

Xn where each Xn is dualizable, and the cone of Xn → X lives in D≥n(A).

11In this situation, C can also be described as the finite-product preserving functors from (Acp)op to spectra.
One could more generally allow such functor categories from additive ∞-categories. This generalization is relevant
when one allows animated rings.
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In particular, by (1), C is Fredholm if and only if for all compact projective T ∈ A with trace-class

endomorphism f : T → T , the cone [T
1−f−−→ T ] is discrete. In that case, by (2) all nuclear and

pseudocoherent objects of C are discrete, and hence are given by Dpc(A) ⊂ C.

Proof. We show that any nuclear and pseudocompact object X of C can be written as a
sequential colimit X = lim−→n

Xn where each Xn lies in the subcategory generated under shifts and

cones by objects [T
1−f−−→ T ] as in (1), and the cone of Xn → X lies in D≥n(A). This clearly gives

part (2). But in (1), the object X is compact, and hence for some n it is a retract of Xn, giving
also (1).

To prove this claim, assume we already have Xn so that Yn := [Xn → X] ∈ D≥n(A). We will

find some Tn and fn with a map [Tn
1−fn−−−→ Tn][n] → Yn whose cone Yn+1 lies in D≥n+1(A). In

that case, the fibre Xn+1 of the composite X → Yn → Yn+1 is an extension of Xn and a shift of

[Tn
1−fn−−−→ Tn], giving the desired induction step.
Shifting, we can assume now that n = 0. Our task is to show that given X ∈ D≥0(A) that is

pseudocompact and nuclear, there is some compact projective T0 and some trace-class endomor-

phism f0 : T0 → T0 such that there is a map [T0
1−f0−−−→ T0] → X0 that is surjective in homological

degree 0. By pseudocompactness, we can represent X by a complex

. . .→ T2 → T1 → T0 → 0

of compact projective objects Ti in nonnegative homological degrees. In particular, we get a map
g : T0 → X. Note that by nuclearity of X, this comes from some class in (T∨0 ⊗X)(∗). But as T∨0
sits in degree 0 and g : T0 → X is surjective in degree 0, the map

(T∨0 ⊗ T0)(∗)→ (T∨0 ⊗X)(∗)
induced by g : T0 → X is surjective. In other words, we can find a trace-class endorphism f0 :
T0 → T0 such that gf0 = g in D(A). This means that the map g : T0 → X can be factored over a

map [T0
1−f0−−−→ T0]→ X. This is necessarily surjective in degree 0 as g is. �

This finishes the abstract nonsense. In order to apply this, we need to verify the Fredholm
property.

Proposition 9.11. Let A be a (p-)Banach algebra over R. Then C = D(Liqp(A)) satisfies
Assumption 9.8, and is Fredholm. More generally, this holds true if A is a filtered colimit of
p-Banach algebras.

Proof. First, we reduce the case of filtered colimits to the case of p-Banach algebras, so assume
A = lim−→i

Ai is a filtered colimit of Banach algebras. Any compact projective T in Liqp(A) is the

base change of a compact projective Ti in Liqp(Ai) (as any idempotent endomorphism of some
M<p(S)⊗<p A is already defined over some Ai). Its dual is then

RHomAi
(Ti, A) = lim−→

j≥i
RHomAi

(Ti, Aj),

which is the filtered colimit of the duals of Ti ⊗L<p,Ai
Aj . (The justification for the commutation

with the colimit is as in Proposition 8.19.) Also, any trace-class endomorphism f : T → T is also
the base change of some trace-class endomorphism fi : Ti → Ti for large enough i, in which case

[T
1−f−−→ T ] is the base change of [Ti

1−fi−−−→ Ti]. Thus, we can assume that A is a p-Banach algebra.



9. LECTURE IX: COHERENT SHEAVES, I 91

For any p-Banach vector space V , one has RHom(Z[S], V ) = C(S, V ), concentrated in degree
0, for any profinite S; this gives Assumption 9.8 (as any other compact projective is a retract of
a base change of Z[S]). Now we have to verify the key assertion that for all compact projective

T ∈ Liqp(A) with a trace-class endomorphism f : T → T , the cone [T
1−f−−→ T ] is discrete. Note

that if f : T → T factors as T
g−→ T ′

h−→ T , then letting f ′ = gh : T ′ → T ′, the map g induces an

isomorphism [T
1−f−−→ T ] ∼= [T ′

1−f ′−−−→ T ′] (with inverse induced by h). In particular, we can assume
T =M<p(S)⊗<pA is a standard generator, with S extremally disconnected. The trace-class maps
are then induced by elements of

C(S,A)⊗<pM<p(S).

By the arguments in the proof of Proposition 8.8, any trace-class map factors overM<p(N)⊗<pA.
Thus, we can also consider a trace-class endomorphism of M<p(N)⊗<p A, which is induced by an
element of

c0(N, A)⊗<pM<p(N).

This can be thought of as a matrix, whose rows are given by λ0v0, λ1v1, . . ., for a uniformly bounded
sequence of nullsequences v0, v1, . . . ∈ c0(N, A) and a < p-summable sequence λ0, λ1, . . .. We can
assume that all vi have supremum norm ≤ 1. Choose some N so that s = λN + λN+1 + . . . < 1,
and write the matrix in block form (

E F
G H

)
where E is an N ×N -matrix containing the coefficients {0, . . . , N − 1}2. Then 1−H is invertible,
as the geometric series 1 + H + H2 + . . . converges: The i-th row of Hj is bounded in supremum
norm by λN+is

j−1 (this is clear by definition for j = 1, and then follows by an easy induction),
and the geometric series 1 + s+ s2 + . . . converges as s < 1. (It is at this step that we use that A
is a Banach algebra – we need to guarantee the existence of this infinite sum.)

Now by easy matrix manipulations, this means that one can write(
1− E −F
−G 1−H

)
=

(
1 X
0 1

)(
E′ 0
0 1−H

)(
1 0
Y 1

)
,

where the first and last factor are invertible, as well as the lower part 1−H of the middle matrix.
This means that the cone of 1 − f on M<p(N) ⊗<p A can be rewritten as the cone of E′ on the
finite free A-module M<p({0, . . . , N − 1})⊗<p A = AN , which is thus discrete. �

Finally, we apply this machinery to complex analysis. We will use the following definition.12

Definition 9.12. A compact subset Z ⊂ Cn is Stein if the corresponding idempotent C[X1, . . . , Xn]-
algebra O(Z) ∈ D(Liqp(C[X1, . . . , Xn])) is concentrated in degree 0.

Note that, by the cofinality of open and closed neighborhoods, one can write

O(Z) = lim−→
U⊃Z

RΓ(U,O)

and by the computation of the structure sheaf, this sits in cohomological degrees ≥ 0. Thus, the
condition here is really that O(Z) sits in cohomological degrees ≤ 0, i.e. nonnegative homological
degrees.

12It agrees with the similar notion that exists in the literature.
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Any polydisc is Stein, and if Z1 and Z2 are Stein, then their intersection Z1 ∩ Z2 is also Stein,
as it corresponds to the idempotent algebra O(Z1 ∩ Z2) = O(Z1)⊗L<p,C[X1,...,Xn] O(Z2), which sits

in nonnegative homological degrees. Using a similar argument with filtered colimits, it follows that
any intersection of Stein compact subsets is again Stein.

Proposition 9.13. For any compact subset Z ⊂ Cn, the idempotent algebra O(Z) is basic
nuclear. Moreover, H0(O(Z)) is a sequential colimit of Banach algebras.

Proof. One can write Z as a sequential intersection of subsets that are finite unions of poly-
discs. The claim is stable under sequential intersections, so one can assume Z is a finite union
of polydiscs. By the formula for the idempotent algebras for finite unions, this reduces the claim
of nuclearity to intersections of polydiscs, and thus to polydiscs (for the claim about H0, one can
directly reduce to the polydiscs, as closed subalgebras of Banach algebras are Banach algebras).
But for polydiscs, the presentation

O({|X1|, . . . , |Xn| ≤ 1}) = lim−→
r>1

M<p({Xi1
1 · · ·X

in
n /r

i1+...+in}{i1,...,in≥0})

gives a presentation as a sequential colimit along trace-class maps, showing that it is basic nuclear.
One can also write down a similar presentation as a sequential colimit of Banach algebras. �

Recall also the following result that follows from the abstract nonsense of Lecture V. Here, we
endow the category of compact subsets of Cn with the topology of finite covers (so {Zi ⊂ Z} form
a cover if a finite family of Zi’s cover Z).

Proposition 9.14. The association taking any compact subset Z ⊂ Cn to ModO(Z)(D(Liqp))
defines a sheaf of ∞-categories.

In the following, we restrict to the site of compact Stein subsets (where this result then also
applies).

The main theorem of this lecture is the following.

Theorem 9.15. The association taking any compact Stein subset Z ⊂ Cn to Dpc(O(Z)) defines
a sheaf of ∞-categories.

Here, Dpc(O(Z)) ⊂ D(O(Z)) is the full subcategory of the derived ∞-category of (abstract!)
O(Z)-modules that can be represented by a complex of finite projective O(Z)-modules that is
bounded to the right.

The theorem will be the consequence of three individual results. First:

Proposition 9.16. The association taking any compact subset Z ⊂ Cn to

ModO(Z)(Nuc) ⊂ ModO(Z)(D(Liqp))

defines a sheaf of∞-categories. Moreover, ModO(Z)(Nuc) agrees with the nuclear objects in ModO(Z)(D(Liqp)).

Proof. The final sentence comes from Corollary 8.20.
First, note that it defines a presheaf, as the base change −⊗L<p,O(Z)O(Z ′) is given by a colimit

of
. . .→ −⊗L<p O(Z)⊗L<p O(Z ′)→ −⊗L<p O(Z ′)

and all occuring operations preserve nuclear C-vector spaces. The fully faithfulness part of the
sheaf axiom follows from Proposition 9.14. For essential surjectivity, we have to see that if V ∈
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ModO(Z)(D(Liqp)) is such that for a finite cover of Z by Zi’s, all Vi = V ⊗L<p,O(Z)O(Zi) are nuclear,

then V is nuclear. But V can be recovered via a finite Cech complex from Vi and the further base
changes to all finite intersections, and all of these are nuclear. �

Note that if Z is Stein, then

ModO(Z)(D(Liqp)) = D(Liqp(O(Z))

is the derived category of p-liquid O(Z)-modules. In that case, we denote the nuclear objects by
Dnuc(Liqp(O(Z)).

The second input:

Proposition 9.17. The association taking any compact Stein subset Z ⊂ Cn to

Dpc(Liqp(O(Z))) ⊂ D(Liqp(O(Z))) = ModO(Z)(D(Liqp))

defines a sheaf of ∞-categories.

Remark 9.18. The same result holds for actual compactness, in which case the argument is
even easier. The variant for pseudocompact objects is however sometimes slightly more useful.

Proof. The key observation is that for Z ′ ⊂ Z, the functor − ⊗L<p,O(Z) O(Z ′) is of bounded

Tor-dimension. By idempotence, this can also be written as the composite of the (exact) forgetful
functor to D(Liqp(C[X1, . . . , Xn])), and the base change of Z ′. The latter can also be written as the
filtered colimit over the base change to all open neighborhoods U of Z ′. But if U corresponds to a
complementary closed W , then the base change to U is given by RHom([1→ O(W )],−). Thus, it
suffices to bound the amplitude of O(W ) to the right. But O(W ) = RΓ(W,O), and the sheaf O is
concentrated in degree 0. As W ⊂ Cn has finite cohomological dimension, the result follows.

Again, the association clearly defines a presheaf of∞-categories that satisfies the fully faithful-
ness part of the sheaf axiom. For essential surjectivity, we need to see that if V ∈ D(Liqp(O(Z)) is

such that Vi = V ⊗L<p,O(Z)O(Zi) is pseudocompact for some finite cover of Z by Zi’s, then V is pseu-

docompact. But one can compute HomO(Z)(V,−) as a finite Cech-type limit of HomO(ZJ )(VJ ,−⊗L<p,O(Z)

O(ZJ)) over all nonempty finite subsets J of I. By the observation on finite Tor-dimension, any
direct sum of objects in D≤n(O(Z)) stays of a similar form after base change to any ZJ (for some
possibly different n), so the result follows. �

Thus Theorem 9.15 reduces to:

Proposition 9.19. For any compact Stein subset Z ⊂ Cn, one has an equality of full subcate-
gories:

Dpc(O(Z)) = Dnuc(Liqp(O(Z)) ∩ Dpc(Liqp(O(Z)) ⊂ D(Liqp(O(Z)).

Proof. By Proposition 9.10, it suffices to see that D(Liqp(O(Z)) is Fredholm. This follows
from Proposition 9.13 and Proposition 9.11. �



94 CONDENSED MATHEMATICS AND COMPLEX GEOMETRY

10. Lecture X: Coherent Sheaves, II

In the last lecture, we proved the following theorem.

Theorem 10.1. The association taking any compact Stein subset Z ⊂ Cn to Dpc(O(Z)) defines
a sheaf of ∞-categories (with respect to the finite cover topology).

Here, a compact subset Z ⊂ Cn was defined to be Stein if H i(Z,O) = 0 for i > 0, and
Dpc(O(Z)) ⊂ D(O(Z)) was the full subcategory of objects that admit a bounded to the right (but
not necessarily finite) representative by a complex consisting of finite projective O(Z)-modules.

In this lecture, we will refine this result by proving a descent result on the abelian level. As a
first preparation, we note that with an essentially formal argument, one can control the amplitude
of the complexes to the right.

Corollary 10.2. The association taking any compact Stein subset Z ⊂ Cn to the ∞-category
Dpc,≥0(O(Z)) of pseudocoherent complexes in nonnegative homological degrees defines a sheaf of
∞-categories (with respect to the finite cover topology).

This is some version of the Cartan–Oka Theorem on the vanishing of positive degree cohomology
of coherent sheaves on Stein spaces.

Proof. The pullback functors are well-defined, and by the previous theorem, it satisfies the
fully faithfulness part of the sheaf axiom. It remains to see that if V ∈ Dpc(O(Z)) is such that
Vi = V ⊗L<p,O(Z)O(Zi) (for some finite cover of Z by Zi’s) lies in D≥0 for all i, then V ∈ D≥0. This

follows from the next lemma applied to the lowest nonzero homology group of V . �

Lemma 10.3. Let Z ⊂ Cn be compact Stein, and let M be a finitely generated O(Z)-module.
Assume that for all z ∈ Z, the (non-derived!) base change M ⊗<p,O(Z) Oz = 0 vanishes. Then
M = 0.

This lemma holds true in very large generality for “analytic rings”. We note that, crucially, the
tensor products here are underived.

Proof. Assume M 6= 0. The hypothesis passes to any quotient of M , so we can assume that
M is generated by one element, so M = O(Z)/I for some ideal I ⊂ O(Z). In that case, M acquires
the structure of an O(Z)-algebra. Thus, M ⊗L<p,O(Z) O(Z ′) is a derived algebra, and in particular

is 0 as soon as 1 = 0 in its H0. By assumption, this happens in all the stalks, and thus in some
neighborhood. Thus, M ⊗L<p,O(Z) O(Zi) = 0 for some finite cover of Z by Zi’s. But M can be

recovered via a Cech complex from these base changes, so M = 0. �

Remark 10.4. Our arguments so far were of a very formal nature; we used no finiteness results
of the algebras O(Z), and one could obtain results for many variants. For example, [And21] argues
in a very similar way to obtain such descent results on analytic adic spaces, without any noetherian
hypotheses. In such situations, it may also happen that the localization maps like O(Z)→ O(Z ′)
are not flat. In such a large generality, getting descent for Dpc,≥0 is the best one can hope for;
basically, one is forced to replace modules by animated modules, and then the results say that for
pseudocoherent animated modules, descent works as expected.

It turns out that to go from Corollary 10.2 to the usual theory of coherent sheaves, one needs
to prove no further results about modules, but instead about the rings O(Z). Here, we have the
following theorem; it is a strong form of Oka’s (first) coherence theorem [Oka50].
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Theorem 10.5. Let Z ⊂ Cn be compact Stein.

(1) The ring O(Z) is coherent, i.e. any finitely generated ideal is finitely presented.
(2) The maximal ideals of O(Z) correspond to the points of Z. The complete local rings of
O(Z) at closed points are formal power series algebras, and are flat over O(Z). The ring
O(Z) is flat over C[X1, . . . , Xn].

(3) If Z ′ ⊂ Z is compact Stein, the restriction map O(Z)→ O(Z ′) is flat.
(4) If Z is contained in the interior of some compact Z ′ (not necessarily Stein), any ideal of
O(Z ′) becomes finitely generated after base change to O(Z).

(5) If Z is a point, then O(Z) is noetherian.
(6) If O(Z) is noetherian, then it is regular and excellent.

Remark 10.6. It is not in general true that O(Z) is noetherian, as for example if Z is totally
disconnected (and infinite), when there are infinitely many idempotents. In some sense, this is the
only obstruction: A theorem of Siu [Siu69] says that O(Z) is noetherian as soon as any closed
analytic subspace has only finitely many connected components. We will come back to the question
of noetherianity of O(Z) later.

Before going into the proof of Theorem 10.5, we deduce the following corollary.

Corollary 10.7. Assume that parts (1) and (3) of Theorem 10.5 hold in dimension n. Then
the functor taking any compact Stein Z ⊂ Cn to the category of finitely presented O(Z)-modules
defines a sheaf of categories (for the finite cover topology). It is naturally a subsheaf of Z 7→
Dpc,≥0(O(Z)).

Proof. Over a coherent ring, any finitely presented module admits a resolution that is finite
free in each degree, thus giving a full embedding of Coh(O(Z)) into Dpc,≥0(O(Z)). As O(Z) →
O(Z ′) is flat whenever Z ′ ⊂ Z is compact Stein, this defines a subpresheaf. It automatically satisfies
the fully faithfulness part of the sheaf axiom. For essential surjectivity, note that if one glues objects
in degree 0, the resulting glued object lives in homological degrees ≤ 0 (as it is computed by a
Cech complex). But by Corollary 10.2, it also lives in degrees ≥ 0, so it still lives in degree 0. But
the objects of Dpc,≥0(O(Z)) that are concentrated in degree 0 are precisely the finitely presented
O(Z)-modules. �

Remark 10.8. On a coherent scheme, the usual way to think about coherent sheaves is that on
affines, they correspond to finitely presented modules, and in general one glues such. The previous
corollary says that one can also think of coherent sheaves in complex-analytic geometry in this way,
if one regards compact Stein subsets as the analogues of affine subsets. Together with Remark 10.6,
one can even pretend to be on a noetherian scheme.

Before we start the proof, we recall the Weierstraß Preparation Theorem.

Theorem 10.9 (Weierstraß Preparation). Let O0 = O({(0, . . . , 0}) be the ring of germs of
holomorphic functions at the origin (0, . . . , 0) ∈ Cn. Let f ∈ O0 be such that

f(X1, 0, . . . , 0) 6= 0.

Let k be the order of vanishing of f(X1, 0, . . . , 0) at X1 = 0. Then one can uniquely write

f = gu

where u ∈ O0 is invertible and g ∈ O0 is a monic polynomial in X1 of degree k whose coefficients
are germs of holomorphic functions in X2, . . . , Xn vanishing at the origin.
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Proof. Inside formal power series, it is easy to solve for the coefficients of g and u inductively,
arguing modulo powers of (X2, . . . , Xn). More precisely, we will find inductively gi and ui so that
f − giui ∈ (X2, . . . , Xn)iO0. We may start with g1 = Xk

1 and u1 = f(X1, 0, . . . , 0)/Xk
1 . Given gi

and ui, we first compute
(f − giui)u−1

1 ∈ (X2, . . . , Xn)iO0,

let hi be the part of the power series where X1 appears to a power less than k, and then set
gi+1 = gi + hi. Then modulo Xk

1 , we have

f − gi+1ui = f − giui − (f − giui)u−1
1 ui = (f − giui)(1− u−1

1 ui) ∈ (X2, . . . , Xn)i+1.

Thus modulo (X2, . . . , Xn)i+1, we have

f − gi+1ui ≡ Xk
1 vi

for some vi ∈ (X2, . . . , Xn)iO0, and we set ui+1 = ui + vi. Then modulo (X2, . . . , Xn)i+1, we have

f − gi+1ui+1 = f − gi+1ui − gi+1vi ≡ Xk
1 vi − gi+1vi ≡ (Xk

1 − gi+1)vn ≡ 0,

giving the desired induction step. Uniqueness can also easily be shown.
One possibility to conclude is now to analyze this algorithm and deduce bounds on the coef-

ficients. Let us give an abstract argument. We argue by induction on n. Using this induction,
we already know that f(X1, . . . , Xn−1, 0) admits the desired factorization, or equivalently that
g(X1, . . . , Xn−1, 0) and u(X1, . . . , Xn−1, 0) have the desired growth of coefficients. Thus, the map

k−1⊕
j=0

O′0 ·X
j
1 → O0/f

is an isomorphism after quotienting by Xn. But this can be approximated by a similar map of
Banach algebras, where again it is an isomorphism after quotienting by Xn. But by Banach’s Open
Mapping Theorem, this means that the inverse of Xn has bounded norm, and in particular the
map becomes an isomorphism after localizing to the locus where |Xn| is sufficiently small. But this
gives the desired result.13 �

Now we can prove the finiteness results on rings of holomorphic functions.

Proof of Theorem 10.5. We argue by induction on n. For n = 0, there is nothing to prove.
Now assume the result in dimension n−1. Let Z ′ be any compact subset of Cn that contains Z

in its interior, and let I ′ be any ideal of O(Z ′). Let I = I ′O(Z) and M = O(Z)/I. We claim that
there is a finite cover of Z by Zi such that the (non-derived!) base changes Mi = M ⊗O(Z) O(Zi)

lie in Dpc,≥0(O(Zi)), and have the property that all further base changes Mi ⊗L<p,O(Zi)
O(Z ′i) are

concentrated in degree 0. To show this, it suffices to find a cover of Z by Zi such that each
Mi admits a (possibly infinite) resolution by finite free O(Zi)-modules and has the property that
Mi ⊗L<p,O(Zi)

Oz is concentrated in degree 0 for all z ∈ Zi. To find such a cover, we can argue

locally around a point z ∈ Z. We can assume z = 0 ∈ Cn is the origin. We can also assume that
both Z and Z ′ are polydiscs. If I = 0, there is nothing to show. Otherwise, we find some nonzero
f ∈ I, and after shrinking Z and changing coordinates, we can apply Theorem 10.9 to assume that
it is a monic polynomial in X1. In that case O(Z)/f is finite free over a similar polydisc W one
dimension lower. By the theorem in one dimension lower, it follows that O(Z)/I is pseudocoherent

13This argument is nicely presented in a paper of Ullrich, [Ull99].
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over O(W ), hence over O(W )[X1], and then also over O(Z) (as any resolution over O(W )[X1] base
changes to a resolution over the idempotent liquid O(W )[X1]-algebra O(Z)). Moreover, all further
base changes along compact Stein subsets W ′ ⊂ W stay in degree 0, and in particular this is true
for all stalks. But as O(Z)/f is finite over O(W ), this also recovers (up to direct summands) all
the stalks over Z.

Now given such a cover of Z by Zi’s, the Mi actually define a descent datum in Dpc,≥0, and hence
glue back to some M ′ ∈ Dpc,≥0(O(Z)), that is necessarily concentrated in degree 0, i.e. just a O(Z)-
module. Being pseudocoherent, it is in particular finitely presented. Also, Mi = M ′ ⊗LO(Z) O(Zi)

is also the derived base change, as M ′ is the result of gluing the Mi in the setting of Dpc,≥0. Now
the cokernel of M → M ′ is a finitely generated O(Z)-module that vanishes locally, so vanishes by
Lemma 10.3. Thus, M → M ′ is surjective. Let K ⊂ M be the kernel. This is again a finitely
generated O(Z)-module (as the kernel of a map from a finitely generated module to a finitely
presented module), and using that M ′ ⊗LO(Z) O(Zi) is concentrated in degree 0, one also sees that

it vanishes locally. Thus, also K = 0, and M →M ′ is an isomorphism. But M ′ is pseudocoherent,
i.e. has a resolution by finite freeO(Z)-modules, hence so is M = O(Z)/I. This implies in particular
that I is finitely presented, and hence that O(Z) is coherent. Moreover, M ′ gives rise to a sheaf that
is concentrated in degree 0, hence so does M . Thus, for all Z ′ ⊂ Z compact Stein, the base change
M ⊗LO(Z) O(Z ′) is concentrated in degree 0. As this is true for all finitely presented M = O(Z)/I,

we see that O(Z)→ O(Z ′) is flat.
At this point, we have proved parts (1), (3) and (4). Part (5) follows directly from Weier-

straßpreparation and induction on n. For part (2), consider a maximal ideal I ⊂ O(Z), and let
A = O(Z)/I. By Lemma 10.3, there is some z ∈ Z such that the base change Az = Oz/IOz is
nonzero. But Oz is local with maximal ideal the kernel of the evaluation at z. Thus, there is a
further quotient Az → C; as I was maximal, this means it is the kernel of evaluation at z. It is
clear that the complete local ring is a power series ring; in fact, the derived base change

C⊗LC[X1,...,Xn] O(Z) = C

as C is a module over O(Z) and O(Z) is idempotent. This means that the regular sequence
(X1 − z1, . . . , Xn − zn) generates the maximal ideal, and then one easily computes the completion.
To show that the completion is flat, we factor it as O(Z)→ Oz → C[[X1 − z1, . . . , Xn − zn]]. The
first map is flat by (3), so it suffices to show that the second map is flat, where it follows from (5).
To show that O(Z) is flat over C[X1, . . . , Xn] for all Z, note that for any ideal I ⊂ C[X1, . . . , Xn],
we get a sheaf Z 7→ O(Z) ⊗LC[X1,...,Xn] C[X1, . . . , Xn]/I, and to show that this is concentrated in

degree 0, we can check on stalks. These are given by Oz ⊗LC[X1,...,Xn] C[X1, . . . , Xn]/I. As Oz is

noetherian, the flatness can now be checked on complete local rings, where it is clear (as it agrees
with the complete local rings of the polynomial algebra).

Finally, part (6) follows from (2) and a criterion of Matsumura [Mat80, Theorem 102], using
the derivations ∂

∂Xi
for i = 1, . . . , n, which are “orthogonal” to a system of parameters at each

closed point, by (2).14 �

14Excellence was proved by Bingener [Bin78, Theorem 1.10] and Scheja–Storch [SS72, Satz 8.10].
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Appendix to Lecture X: Noetherianity

In this appendix, we discuss some results on the Noetherianity of O(Z) for compact Stein Z.
The goal is to prove the following theorem of Frisch [Fri67].15

Theorem 10.10. Assume that Z ⊂ Cn is a compact Stein subset given by finitely many in-
equalities of the form |f(z)| ≤ 1 for real-analytic f . Then O(Z) is noetherian.

Remark 10.11. The theorem implies, via excellence, Oka’s Second and Third Coherence Theo-
rem (as passing to the reduced quotient, and to normalizations, now passes to complete local rings,
and hence also to localizations O(Z)→ O(Z ′)).

We note that a consequence of this is that Z can have only finitely many connected compo-
nents. Such basic facts about (closed) semi-analytic sets, as established in [Loj64], usually enter
as ingredients into the proof of Theorem 10.10. The argument below avoids appeal to [Loj64] (but
still starts by proving some simple facts about semi-analytic sets by hand).

First, we note that we can restrict to the real-analytic case. More precisely, we can embed
Z ⊂ Cn ∼= R2n into C2n. Then, given that O(Z ⊂ C2n) is noetherian, the map O(Z ⊂ Cn) →
O(Z ⊂ C2n) is faithfully flat,16 and hence O(Z ⊂ Cn) is noetherian.

Thus, assume from now on that Z ⊂ Rn. Using a Zariski closed immersion, we can then reduce
to a cube Z = [−1, 1]n ⊂ Rn. We will now argue by induction on n, and work with the algebra
OR(Z) of real-analytic functions on Z (so O(Z) = OR(Z)⊗R C).

We will use the analogue of Weierstraß Preparation in this situation, so we need to discuss
finite algebras over OR([−1, 1]n); let A be such an algebra. The first result we need is the following
lemma on connected components.

Lemma 10.12. Let A be an OR([−1, 1]n)-algebra that is finitely presented as a module. Let
0 < c < 1. Then the image of the map

π0(A(R)×[−1,1]n [−c, c]n)→ π0(A(R))

is finite.

(Theorem 10.10 in fact implies that the target is finite.)

Proof. We need to see that A(R) has only finitely many connected components whose image
in [−1, 1]n meets a given compact subset contained in the interior (−1, 1)n of the cube. This can
be checked locally around points of the interior. We argue by induction on n. After passing to a
quotient by a nilpotent ideal, there is some f ∈ OR([−1, 1]n) such that

OR([−1, 1]n)[f−1]→ A[f−1]

is finite étale. In particular, over {f 6= 0} ⊂ [−1, 1]n, the map A(R) → [−1, 1]n becomes a finite
covering space. As {f 6= 0} has only finitely many connected components by Lemma 10.13 below,
there are only finitely many connected components of A(R) meeting the locus where f 6= 0. Thus,
it suffices to prove the similar result for A/f instead. But A/f locally admits a finitely presented
projection to an n− 1-dimensional cube, so we conclude by induction. �

15A simple proof of this was given by Langmann in [Lan77], but we believe that it is incorrect, as the proof
of [Lan77, Lemma 1] seems to work only in the complex-analytic case, but not in the real-analytic case where it is
applied later. The proof we give below fixes Langmann’s argument.

16By the classification of maximal ideals, it suffices to check flatness; but this can be done on local rings, and
then on complete local rings as the target is noetherian.
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Lemma 10.13. Let f ∈ OR([−1, 1]n). Then

{f 6= 0} ⊂ [−1, 1]n

has only finitely many connected components.

Proof. By induction, we can assume that this is true for the intersections with all the faces.
It is then enough to prove that {f 6= 0} ∩ (−1, 1)n has only finitely many connected components.
But f extends to [−C,C]n for some C > 1, and if we multiply f by the hyperplane equations
for all the faces, it is enough to prove that for any g ∈ OR([−C,C]n), the locus {g 6= 0} has
only finitely many connected components that meet [−1, 1]n. But then we can again locally find
a projection to an n − 1-dimensional cube so that the locus g = 0 is finite over it. Arguing as in
the previous proof, there is some nonzero function h on the n− 1-dimensional cube such that over
the nonvanishing locus h 6= 0, the locus g = 0 defines a finite topological cover. In that case, the
locus {g 6= 0, h 6= 0} ⊂ R × {h 6= 0} mapping to {h 6= 0} is, over each connected component, a
finite union of open intervals, and hence has also only finitely many connected components. But
by openness, no connected component of {g 6= 0} can map into {h = 0}. �

Coming back to the finite OR([−1, 1]n)-algebra A, we note that inside the corresponding com-
pact Hausdorff space A(C) of C-valued points, we have the closed subspace A(R) ⊂ A(C) of real
points, giving rise to an idempotent p-liquid A-algebra AR of real-analytic functions on A(R). Note
that AR is in general far from a finite OR([−1, 1]n)-algebra.

The key step is the following proposition, showing a local finite generation result in the interior
of the cube.

Proposition 10.14. Assume that OR([−1, 1]n) is noetherian. Let A be a finite OR([−1, 1]n)-
algebra and let I ⊂ AR be an ideal. Then there is some ε > 0 such that, denoting

AR
ε = AR ⊗liq

OR([−1,1]n)
OR([−ε, ε]n),

the ideal IAR
ε is finitely generated.

Proof. We argue by induction on n (noting that the noetherianity assumption for some n
implies it for smaller n, by passing to quotients). Passing to a smaller cube around the origin,
we can assume that A(C) has a unique point above 0n ∈ [−1, 1]n, and that this point is real. In
particular,

AR
0 = AR ⊗OR([−1,1]n) OR(0n) = A⊗OR([−1,1]n) OR(0n)

is the stalk at this point, and is a finite OR(0n)-algebra, where the latter is noetherian, regular and
excellent. The ideal IAR

0 is therefore finitely generated, and at the expense of replacing A by a
quotient by a finitely generated ideal, we can assume that IAR

0 = 0. The goal is then to show that
IAR

ε = 0 for some ε > 0. Note that as OR([−1, 1]n) is noetherian, we can replace A by its reduction
(arguing modulo powers of the nilradical).

Let Ã be the normalization of A, which is finite by excellence of OR([−1, 1]n). For any 0 < ε < 1,
the map

π0(Spec(AR
ε ⊗A Ã))→ π0(Spec(AR ⊗A Ã))

has finite image by Lemma 10.12 (writing Ã, as a finite A-algebra, by adjoining 2 real variables
each algebraic variable (as its real and imaginary part), which are also implicitly added into the
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coordinates of the base cube, which can be taken large in these directions).17 Taking ε small enough,
it then follows that the image agrees with the image of

π0(Spec(AR
0 ⊗A Ã))→ π0(Spec(AR ⊗A Ã)).

But now the kernel of AR → AR
0 is contained in the kernel of AR ⊗A Ã → AR

0 ⊗A Ã, and as this
map is flat and the source is normal (as normality passes to analytic localizations, as it can (by
excellence) be checked on complete local rings), any element in the kernel of this map must vanish

on the whole connected components containing Spec(AR
0 ⊗A Ã). But then it also vanishes on the

image of Spec(AR
ε ⊗A Ã), and hence the kernel of AR ⊗A Ã → AR

0 ⊗A Ã is equal to the kernel of

AR ⊗A Ã→ AR
ε ⊗A Ã. This implies that IAR

ε ⊗A Ã = 0 and hence also IAR
ε = 0. �

Finally, we can prove [Lan77, Lemma 1], at least assuming the inductive hypothesis.

Lemma 10.15. Assume that OR([−1, 1]n) is noetherian. Let I ⊂ OR([−1, 1]n+1) be any ideal.
Then for 0 < c < 1, the ideal IOR([−c, c]n+1) of OR([−c, c]n+1) is finitely generated.

Proof. Using Lemma 10.3, it is enough to prove that any point in the interior of (−1, 1)n+1

admits a closed neighborhood Z such that IOR(Z) is finitely generated. If I = 0, there is nothing
to prove, so take some nonzero f ∈ I. Then locally around any point, we can find a finite projection
to an n-dimensional cube, reducing us to Proposition 10.14. �

Now the rest of the proof of Theorem 10.10 is as in [Lan77]. Namely, assume by induction
that OR([−1, 1]n) is noetherian, and consider any sequence f0, f1, . . . ,∈ OR([−1, 1]n+1) generating
an ideal I. By induction, for every face Z of the cube, OR(Z) is noetherian: Indeed, if the
face is given by say x1 = 1, then its x1 − 1-adic completion is OR([−1, 1]n)[[x1 − 1]], which is
noetherian by induction, and faithfully flat over OR(Z). In particular, there is some N such that
(f0, . . . , fN )OR(Z) = IOR(Z) for all faces Z of the cube. For every N ′ > N , the quotient

(f0, . . . , fN ′)/(f0, . . . , fN ) ⊂ OR([−1, 1]n+1)/(f0, . . . , fN )

defines a coherent sheaf whose support is a compact subset of (−1, 1)n. Note that

OR([−1, 1]n+1)/(f0, . . . , fN )

extends to a coherent sheaf on a small neighborhood [−1− ε, 1 + ε]n+1 of [−1, 1]n (as all f0, . . . , fN
extend to a small neighborhood), and so do these coherent subsheaves (f0, . . . , fN ′)/(f0, . . . , fN )
(via extending by zero outside [−1, 1]n+1). Each of them thus defines a coherent submodule of
OR([−1− ε, 1 + ε]n+1)/(f0, . . . , fN ), and in particular an ideal of OR([−1− ε, 1 + ε]n+1) via taking

the preimage. Let Ĩ ⊂ OR([−1 − ε, 1 + ε]n+1) be their union. By construction, one has I =

ĨOR([−1, 1]n+1). We conclude with Lemma 10.15.

17Here, the connected components of the spectrum can also be understood in terms of connected components of
the maximal spectrum, with its archimedean topology.
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11. Lecture XI: Complex analytic spaces

The goal in this lecture will be to formally introduce a category of complex analytic spaces in
which we will work. But first we want to add some small things to the discussion of the previous
lecture. Recall from the previous lecture the following:

(1) For every compact Stein K ⊂ Cn, the ring O(K)(∗) is coherent, and in particular an object
in D(ModO(K)(∗)) is pseudocompact if and only if it is homologically bounded below and
each homology group is finitely presented as an O(K)(∗)-module. (In fact, in the appendix
we also saw that for enough K, including closed polydisks, the ring O(K)(∗) is even
noetherian, so for these K we can replace “finitely presented” by “finitely generated”.)

(2) The association K 7→ Dpc(O(K)(∗)) satisfies descent for the topology of finite covers of
compact Steins.

(3) For K ′ ⊂ K, the restriction map O(K)(∗)→ O(K ′)(∗) is flat.

It follows that assigning to every K the category of finitely presented O(K)(∗)-modules is a
sheaf of abelian categories with respect to the topology of finite covers. We would now like prove
the following “hygienic” properties of this sheaf of abelian categories.

Proposition 11.1. Suppose K is a compact Stein in Cn. Then:

(1) For any finitely presented O(K)-module M , we have that M , viewed as an underlying
object of Liqp, is a DNF space (see Lecture VIII). In particular M is quasi-separated.

(2) For any O(K)(∗)-module M , we have that O(K)⊗LO(K)(∗) M ∈ D(Liqp) lives in degree 0.

The claim in (2) is a bit subtle: we know that D(O(K)(∗)) embeds fully faithfully into
D(ModO(K)(Liqp)) viaM 7→ O(K)⊗LO(K)(∗)M for formal reasons (the unit object inD(ModO(K)(Liqp))

is compact and has endomorphism ring O(K)(∗)), but there’s nothing formal guaranteeing that
this functor is t-exact. Nonetheless, that’s what (2) claims. Note that this property, combined
with flatness of C[x1, . . . , xn](∗) → O(K)(∗), was used above in Lemma 6.8 in the calculation of
the structure sheaf of the analytification of a finite type C-algebra.

Proof. For (1), note that the DNF spaces are exactly the basic nuclear objects concentrated in
degree 0 which are quasi-separated. (Indeed, without being quasi-separated, we know from Theorem
8.15 that we have a quotient of DNF spaces; but by Lemma 8.14 a quasiseparated quotient of DNF
spaces is DNF.) So it suffices to show that M is basic nuclear and quasi-separated. For M = O(K),
basic nuclearity is Proposition 9.13, and general M ’s are a quotient of a finite direct sum of such,
which is still basic nuclear. Thus, it remains to see that M is quasiseparated. We can embed M
into a product of copies of the local rings at x ∈ K. It suffices to see that these are qs, as a product
of qs spaces is qs, and a subobject of a qs space is qs. Thus, it suffices to show that any finitely
generated module M over the local ring OCn,x is qs, or equivalently DNF. Because an extension of
DNF spaces is DNF (Lemma 8.14), we can use induction to reduce to the case of one generator.
Then M = OCn,x/I for an ideal I. If I = 0, we’re done by the explicit formula for the local
ring; otherwise there is 0 6= f ∈ I, and after a linear change of coordinates we can use Weierstraß
preparation to conclude that OCn,x/f is finite free over a local ring in one dimension lower. Then
OCn,x/I is finitely generated over a local ring in one dimension lower, so we conclude by induction
on the dimension.

For (2), by writing every O(K)(∗)-module as a filtered colimit of finitely presented ones, we
reduce to the case when M is finitely presented. Then by coherence of O(K)(∗), we can resolve
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M by a complex of finite free O(K)(∗)-modules. It follows that O(K)⊗LO(K)(∗) M is calculated by

a complex where each term is a finite direct sum of copies of O(K). These terms are then DNF
spaces, and by construction this complex has the property that, after applying (−)(∗), it is acyclic
in positive degrees. We want to see that the same holds also before applying (−)(∗). But this is a
consequence of the following lemma. �

Lemma 11.2. Suppose C• is a complex of DNF spaces. If C•(∗) is exact, then C• is exact.

Proof. Considering the kernels of the differentials, which are also DNF spaces by Lemma
8.14, it suffices to show that if f : V →W is a map of DNF spaces which is surjective on applying
−(∗), then f is surjective. For that, we will only use that W = ∪iWi is a filtered union of Banach
spaces and V = ∪nKn is a countable union of compact Hausdorff spaces. Indeed, for n and m,
consider the closed subspace f(Kn)∩Wm ⊂Wm. Fixing m, the union over all n of these subsets is
set-theoretically equal to Wm by hypothesis. By the Baire category theorem, it follows that one of
these subsets has non-empty interior. Thus there exists an open ball in Wm which is contained in
some f(Kn). Translating and scaling, we see that every open ball in Wm is contained in the image
of a compact subset of V . Thus, for all m, every compact subset of Wm is contained in the image
of a compact subset of V . Every compact subset of W is contained in Wm for some m, so this gives
the conclusion. �

Remark 11.3. Recall that the basic nuclear objects in D(Liqp) are exactly those which can be
represented by a complex of DNF spaces. Thus, another interpretation of the above lemma is that
the functor

X 7→ X(∗)
from basic nuclears to D(C) is conservative, i.e. detects isomorphisms.

Now we turn to our main task, a definition of complex analytic space. Classically, the definition
is based on the formalism of locally ringed spaces. More precisely, a complex analytic space is a
locally ringed space (X,OX) which is locally isomorphic to one of the following form: take the
following data:

(1) An open polydisk Dn ⊂ Cn, which may as well be the unit polydisk;
(2) Finitely many holomorphic functions f1, . . . , fm ∈ O(Dn),

and produce the following locally ringed space:

(1) X = Z(f1, . . . , fm) ⊂ Dn;
(2) OX = ODn/(f1, . . . , fm), a sheaf of rings on Dn supported on X which therefore corre-

sponds to a sheaf of rings on X.

The definition we give will be more general, in two different directions:

(1) We want to allow (certain) compact Stein subsets K ⊂ Cn also to count as complex
analytic spaces, meaning in some sense we want to allow our complex analytic spaces to
have “boundaries”. This makes for more convenient reduction to algebra, as the rings of
functions O(K) have nice finiteness properties like those proved in the previous lectures.

(2) We want to allow derived structure sheaves as well, in order to have clean formulations of
base-change theorems.

Except for this derived nonsense and the fact that we are in the complex analytic context, we
essentially follow the set-up of Grosse-Klönne’s theory of dagger spaces, [GK00], in terms of which
local models we allow.
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Definition 11.4. A commutative algebra A in D≥0(Liqp) is called affinoid if there exists an
n ≥ 0 and a homomorphism

O(Dn)→ A

of commutative algebras in D≥0(Liqp), such that A ∈ Dpc(O(Dn)) as an underlying O(Dn)-module
in D(Liqp).

In other words, by the noetherianness of O(Dn) proved in the appendix to the previous lecture,

an affinoid algebra is a connective algebra over the ring O(Dn) of holomoprhic fuctions on some

closed polydisk, such that each homology group is finitely generated as a module over O(Dn).
The following will be useful for reducing some questions about A to H0A.

Lemma 11.5. Let d ≥ 0, let B be an idempotent C[x1, . . . , xd]-algebra in D≥0(Liqp), and let A
be a commutative algebra object in D≥0(Liqp). Then the map

Hom(B,A)→ Hom(B,H0A)

is a bijection on π0. Here we take homomorphisms of commutative algebra objects in D≥0(Liqp).

Proof. Because of idempotency, Hom(O(K),−) is a full sub-anima of Hom(C[x1, . . . , xd],−).
But the latter identifies with (−)d since C[x1, . . . , xd] is free on d generators.18 As Ad → H0A

d is
evidently a bijection on π0, we reduce to showing the following: given a map f : C[x1, . . . , xd]→ A,
we have that f factors through B if and only if the composition C[x1, . . . , xd]→ A→ H0A factors
through B. “Only if” is obvious. For “if”, by idempotency it suffices to show that A, viewed
as an C[x1, . . . , xd]-module, lies in the full subcategory of B-modules. Again by idempotency the
collection of B-modules is closed under limits and colimits, so we reduce to the claim that HiA is
an B-module for any i, which follows from the hypothesis as HiA is a module over H0A. �

For our definition of complex analytic space, instead of using the standard formalism of locally
ringed space, we will use the formalism of categorified locale discussed in Lecture VII. Recall that
a categorified locale is a triple

(X,C, f : S(C)→ X)

where X is a locale, C is a cocomplete closed symmetric monoidal stable ∞-category, and f is a
map of locales. Essentially, the idea is this: the locale S(C) is much too huge to work with in its
entirety, so we use a well-chosen map f to a simpler locale X in order to single out part of the
“geometry” of C.

Our next task will be to assign a canonical categorified locale to any affinoid algebra A, where
the category C will be

CA = ModA(D(Liqp)),

and the locale will be the topological space

XA = Hom(A(∗),C) =MBerk((H0A)(∗)),
following the pattern from Lecture V.

We will denote the locale S(CA) also just by S(A). Recall from Lecture V that for a liquid ring
A and f ∈ A(∗), there is a native notion of “f being analytic”: it means that

S(A) = ∪r{|f | < r},
18Here we implicitly use that C has characteristic zero: otherwise the free commutative algebra in D≥0(Liqp)

would have contributions from the derived functors of Σn-coinvariants.
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where the open subsets {|f | < r} are base-changed from defining idempotent algebras over C[T ]
via the homomorphism C[T ]→ A classifying f . It is actually equivalent to say that there exists an
c > 0 for which

S(A) = {|f | ≤ c}.
Indeed, since the unit object in CA is compact, the locale S(A) is quasicompact.

For affinoid rings, it turns out that every element is analytic.

Lemma 11.6. Let A be an affinoid algebra, and let f ∈ A(∗). Then

S(A) = ∪r{|f | < r},
or equivalently there exists c > 0 such that

S(A) = {|f | ≤ c}.

Proof. By Lemma 11.5, we can assume A = H0A. Then by definition A is a finite algebra
over some O(Dn). In particular, by the noetherian property, any f ∈ A is the root of a monic

polynomial with coefficients in O(Dn). By Lemma 6.11, this reduces us to A = O(Dn) itself. But
if we let

f =
∑

ai1,...,inz
i1
1 . . . zinn ,

then taking c =
∑
|ai1,...,in | we can factor

C[T ]
T 7→f−→ O(Dn)

through O(c · D) by substitution of power series. �

As a corollary, we note the following, showing in particular that affinoid algebras in degree 0
are also the same thing as quotients of rings of the form O(Dn) by ideals:

Lemma 11.7. Suppose A is affinoid. Then there exists an n ≥ 0 and a homomorphism

O(Dn)→ A

such that A ∈ Dpc(O(Dn)) and the induced map

O(Dn)� H0A

is surjective.

Proof. We start with an arbitrary O(Dn) → A such that A ∈ Dpc(O(Dn)). Then H0A is

finite over O(Dn), so we can choose finitely many generators f1, . . . , fk. By the previous lemma,

each of these generators is analytic, so we can add them to the presentation, getting O(Dn+k
)→ A

surjective on H0, as desired. �

Now we state the result giving the categorified locale structure on an affinoid.

Theorem 11.8. Suppose A is an affinoid algebra. Then:

(1) There is a unique map of locales

πA : S(A)→ XA := HomC(A(∗),C) = HomC(H0A(∗),C) ⊂
∏

f∈(H0A)(∗)

C

such that for f ∈ (H0A)(∗), the map to the f -factor in the target is given by

S(A)→ S(C[T ],C[T ])→ C,
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where the first map is induced by the homomorphism C[T ] → A classifying f and the
second map is from Lecture V.

(2) If we write H0A = O(Dn)/I for an ideal I, then XA = Z(I) ⊂ Dn, the common zero set
of I in the closed unit polydisk with its standard Euclidean topology. In particular, XA is
a compact Hausdorff space.

(3) The map πA is “surjective” in the sense that for two closed subsets Z,W of XA, we have
Z ⊂W ⇔ π−1

A Z ⊂ π−1
A W .

Proof. Consider part (1). First, the map S(A) → S(C[T ]) induced by f does indeed land in
S(C[T ],C[T ]): this is a restatement of Lemma 11.6. Then the rest follows as in Lecture V: we need
to see that the map S(A) →

∏
f∈(H0A)(∗) C lands inside the closed subset Hom(A(∗),C), but all

the required relations come from polynomial algebras mapping to A, and then it follows from the
material in Lecture V (plus Lemma 11.5 to reduce to H0A).

For part (2), the claim set-theoretically follows from the description of maximal ideals in O(Dn)
in the previous lecture. This resulting bijection XA → Z(I) is continuous because it corresponds to
projection onto the C-factors given by the coordinate functions x1, . . . , xn ∈ H0A(∗). The inverse
is also continuous because every f ∈ (H0A)(∗) does indeed evaluate to a continuous function
Z(I)→ C.

For part (3), the direction ⇒ holds by definition. For ⇐, let O(Z) be the idempotent algebra
in CA corresponding to Z, and O(W ) the idempotent algebra corresponding to W . Thus our
assumption is that there is a map O(W ) → O(Z). If x 6∈ W , then O({x}) ⊗A O(W ) = 0, hence
O({x}) ⊗A O(Z) = 0. But if x ∈ Z then we have a homomorphism O(Z) → O({x}). To get a
contradiction and thereby finish the proof, we therefore need to check that O({x}) 6= 0 for any
x ∈ XA. But indeed it has a homomorphism to C given by evaluation at x. �

We have just assigned a categorical locale (XA, CA, πA : S(A) → XA) to each affinoid A. In
fact, we will generally not view this as a bare categorified locale, but rather as a categorified locale
over the base categorified locale

(∗,D(Liqp)).

With this extra structure, we have:

Corollary 11.9. The assignment A 7→ (XA, CA, πA) defines a fully faithful contravariant
functor from the ∞-category of affinoid algebras to the ∞-category of categorified locales over
(∗,D(Liqp)).

Proof. The first bit of data in a map of such categorified locales (XB, CB, πB)→ (XA, CA, πA)
is a symmetric monoidal colimit-preserving functor

CA → CB.

Taking into account our base categorified locale, this map should be linear over the base category
D(Liqp). Certainly, given a homomorphism A→ B we get such a functor by relative tensor product.
Conversely, considering endomorphisms of the unit objects we get a homomorphism A → B from
any such functor CA → CB. These two associations are mutually inverse by [Lur17] Corollary
4.8.5.21.

Moreover, the construction A 7→ (XA, CA, πA) is evidently functorial. So to conclude it suffices
to show that the map of locales XB → XA completing the data of a map of categorified locales is
uniquely determined by the functor CA → CB. But this follows from part (3) of the theorem. �
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Remark 11.10. It seems that in the categorified locale picture, in contrast to the locally ringed
space picture, there is automatically a tighter relation between the algebra of the category and the
topology of the locale. This means that there is no analog of the usual technical annoyance that
one needs to impose an at first sight slightly obscure “locality” condition on the straightforward
notion of a map of ringed spaces when defining a map of schemes.

Example 11.11. Given two closed polydisks Dn and Dm, maps of the corresponding categorified
locales are the same as holomorphic maps Dn → Dm in the usual sense, i.e. we give an m-tuple of
elements of O(Dn) such that the induced map

Dn → Cm

lands inside Dm.

Let us also treat fiber products.

Proposition 11.12. If B ← A → C are maps of affinoid algebras as indicated, then B ⊗A C
is also affinoid, where we use the derived relative tensor product in p-liquid vector spaces over C.
For the associated topological spaces we have

XB⊗AC = XB ×XA
XC ,

and we also get a fiber product in the ∞-category of categorified locales.

Proof. Let’s first consider the claim about affinoids being closed under relative tensor prod-
ucts. Writing A as pseudocompact over someO(Dn) and using that a composition of pseudocompact

maps is pseudocompact, we reduce to A = O(Dn). Then by idempotency it suffices to show the
analogous claim with A = C[x1, . . . , xn]. But then if we choose presentations for B and C as in

Lemma 11.7, meaning we get pseudocompact maps O(Dm) → B and O(Dp) → B which are sur-
jective on H0, then we see that the maps C[x1, . . . , xn] → B and C[x1, . . . , xn] → C lift to maps

C[x1, . . . , xn]→ O(Dm) and C[x1, . . . , xn]→ O(Dp), letting us reduce to showing that

O(Dm)⊗C[x1,...,xn] O(Dp)

is affinoid. But we can rewrite this as(
O(Dm)⊗O(Dp)

)
⊗C[x1,...,xn;x′1,...x

′
n] C[x1, . . . , xn],

and then we conclude using pseudocompactness (in fact compactness) of the surjection

C[x1, . . . , xn;x′1, . . . x
′
n]→ C[x1, . . . , xn].

For the claim about topological spaces, recall that

XA = Hom(H0A(∗),C)

with a natural topology which we proved to be compact Hausdorff in Theorem 11.8. Because a
bijective continuous map of compact Hausdorff spaces is a homeomorphism, we can check the claim
set-theoretically. But then using the universal property of relative tensor product, it suffices to
show that

Hom(H0A(∗),C) = Hom(H0A,C),

i.e. the homomorphisms of condensed C-algebras H0A → C are in bijection with the homomor-
phisms of discrete C-algebras H0A(∗)→ C via applying (−)(∗). The map is injective because H0A
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is quasiseparated (Lemma 11.1), and the map is surjective because we classified all the homomor-
phisms H0A(∗)→ C: they all come from evaluations at points of Z(I), and these evaluations also
define homomorphisms H0A→ C. The final claim about pullbacks of categorical locales follows by
combining the two previous claims. �

Using this one can see that the notion of affinoid is rather robust. In fact, though the definition
of affinoid is based only on one kind of compact Stein, namely closed polydisks, there are many
other compact Steins which also turn out to be affinoid. For example, if A is affinoid and f ∈ A,
then for all r > 0 the closed sub-categorified locales of XA defined by

{|f | ≤ r}, {|f | ≥ r}
are also (the categorified locales associated to) affinoids. Indeed, we can get to {|f | ≤ r} by first
taking the product with r ·D (i.e., on the level of affinoids, adjoining a variable T with |T | ≤ r), and
then passing to the “Zariski-closed subset” given on the level of affinoids by modding out T − f ;
and for the second one we can take the product with r−1 · D and then mod out by Tf − 1. Then
also, if g is invertible we can impose

|f | ≤ |g|
and still remain affinoid, by imposing |f/g| ≤ 1. By the above result on fiber products, we can also
take finite intersections of affinoids and we still get affinoids, so we can also simultaneously impose
finitely many such inequalities. Then when we do this, we get more functions to play with, and so
on.

Warning 11.13. Be careful to distinguish two ways of “setting f equal to 0”, given an affinoid
A and f ∈ A. One is by considering the closed subset {|f | ≤ 0} in the locale picture, and the other
is by modding out by f on the level of affinoids, passing from A to A/(f). The first corresponds to
the idempotent A-algebra given by “germs of functions in neighborhood of Z(f)”. The second does
not correspond to an idempotent algebra: although A/(f) is of course idempotent over A with the
underived tensor product, it is not idempotent with the derived tensor product, which is the one
we have to use to get the locale picture to work.

We’ve already gotten used to the idea that, in this locale picture, Zariski opens are actually
closed; now we have to get used to the idea that Zariski closed subsets are not really closed subsets
(nor are they open subsets).

Finally, let us give the definition of complex analytic space we’ll use.

Definition 11.14. A (generalized) complex analytic space is a categorified locale over (∗,D(Liqp))
which is locally (in the sense of open subsets) isomorphic to an open subset of the categorified locale
over (∗,D(Liqp)) associated to an affinoid A.

The affinoids in degree zero are exactly those of the form

A = O(Dn)/I

for some ideal I (automatically finitely generated, by noetherianness). For an example of an open
subset of the corresponding categorified locale, we can take the intersection with the open polydisk.
If we only consider those generalized complex analytic spaces which are locally isomorphic to such a
local model, we get an equivalent category to the usual category of complex analytic spaces. (This
local model is slightly less general than the usual local model for complex analytic spaces, because
we require that the generators of our ideal actually come by restriction from holomorphic functions
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on the closed polydisk. But once we globalize this doesn’t matter, because any open polydisk D is
covered by smaller open polydisks whose closures still lie inside D.)

Exercise 1. Let A be an affinoid and x ∈ XA. Show that, potentially after shrinking A
to an affinoid neighborhood of x, we can find an n ≥ 0 and a pseudocoherent homomorphism
ϕ : O(Dn) → A (as in the definition of affinoid) such that ϕ is injective. (This is an analog of the
Noether normalization theorem.)

Exercise 2. Let A be an affinoid and x ∈ XA. Using the previous exercise, show that the
topological dimension of XA at x identifies with the Krull dimension of the ring H0(Ax)(∗), where
Ax is the idempotent algebra corresponding to the closed subset {x} ⊂ XA.
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12. Lecture XII: Proper pushforward

Picking up from the previous lecture, we discuss the notion of (generalized) complex analytic
space. Recall the definition: a complex analytic space is a categorified locale over (∗,D(Liqp))
which is locally isomorphic to an open subset of the categorified locale Spa(A) over (∗,D(Liqp))
associated to an affinoid A. Recall that this categorified locale is the triple

(Spa(A), CA, πA)

where CA = ModA(D(Liqp)), Spa(A) = HomC(A(∗),C) (= Z(I) ⊂ Dn if H0A = O(Dn)/I), and

πA : S(CA)→ A

is determined by the fact that if f ∈ A(∗), then the open subsets {|f | < 1}, {|f | > 1} ⊂ XA pull
back to the corresponding open subsets of S(CA), defined by base-change from the open subsets
{|T | < 1}, {|T | > 1} in S(C[T ]) constructed in Lecture V.

We will generally abuse notation and refer to a categorified locale (X,C, π) just by X, with
the rest of the data being implicit. We will also use the phrase “affinoid” to refer to a categorified
locale over (∗,D(Liqp)) isomorphic to one of the form Spa(A).

In general, we can study complex analytic spaces by reduction to affinoids via two step process:

(1) First, reduce a general complex analytic space to a quasi-affinoid complex analytic space,
i.e. one which is isomorphic to an open subset of an affinoid. This is done by working
locally.

(2) Second, given a quasi-affinoid U , we can reduce to affinoids in either of two ways: first,
choose an ambient affinoid X in which U is an open subset; or second, use the fact that a
quasi-affinoid U is indeed locally affinoid in the following sense: there is a closed cover of
U by affinoids which is refined by an open cover. (This follows from the fact that closed
polydisks give a neighborhood basis of any point x ∈ Spa(A).)

Let’s give an example of this kind of reduction in action.

Proposition 12.1. Let X
f→ Z

g← Y be maps of complex analytic spaces as indicated. Then
the pullback X ×Z Y exists in the ∞-category of categorified locales and is itself a complex analytic
space, in particular giving a pullback in the ∞-category of complex analytic spaces. The forgetful
functor to topological spaces also preserves this pullback.

Proof. In the case where X,Y, Z are all affinoid, we saw this in the previous lecture; in that
case X ×Z Y is also affinoid. Now suppose X,Y, Z are all quasi-affinoid. Putting Z inside an
affinoid, we can reduce to where Z is an affinoid. Finding a cover of X,Y by closed sub-affinoids
which is refined by an open cover, we reduce to where X,Y are open subsets of affinoids X ′, Y ′

which still map to Z. Then the pullback X ×Z Y is given by the obvious open subset of X ′ ×Z Y ′.
In the general case, we work locally on Z, then on X and Y to reduce to the quasi-affinoid case. �

Warning 12.2. It is special to this complex analytic situation that the pullback in complex
analytic spaces is also a pullback in categorified locales (and on underlying topological spaces).
In nonarchimedean geometry or scheme theory, this does not hold: the product topological space
of the spectrum of two k-algebras is generally not fine enough to give the spectrum of the tensor
product. The essential reason for this special behavior of the complex analytic situation is the
Gelfand-Mazur theorem, showing that “points” are the same as homomorphisms to C.
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We can also give an abstract formulation of this kind of descent procedure for reducing arbitrary
complex analytic spaces to affinoids.

Proposition 12.3. Consider the following two sites:

(1) The ∞-category of all complex analytic spaces, equipped with the topology of open covers;
(2) The ∞-category of affinoid complex analytic spaces, equipped with the topology of (finite)

closed covers which can be refined by open covers.

Then the associated∞-toposes are equivalent, via restriction from sheaves on the first site to sheaves
on the second site.

In other words, giving a presheaf on the category of all complex analytic spaces which satisfies
descent for open covers is equivalent to giving a presheaf on the category of all affinoid complex
analytic spaces which satisfies descent for those closed covers which can be refined by open covers.

Proof. Consider the intermediate site of all quasiaffinoids with the open cover topology. By
descent, the restriction of sheaves from the site (1) to this site is an equivalence of ∞-toposes.
On the other hand, inside the site of quasi-affinoids, the affinoids form a basis closed under fiber
products, so the restriction functor on sheaves is an equivalence. �

A basic example is the following. By definition, to every complex analytic space X is attached
its large∞-category CX of “derived liquid quasicoherent sheaves”. For the formal reasons explained
in Lecture V, this assignment X 7→ CX is a sheaf of ∞-categories for the open cover topology. It
follows that this assignment X 7→ CX is determined by its restriction to affinoids Spa(A), where
we have

CSpa(A) = CA = ModA(D(Liqp)),

with pullback functoriality coming from relative tensor product along maps A→ B. Thus quasico-
herent sheaves are determined on affinoids, where they are simply given by modules over the ring
of functions.

We can also use this descent procedure to single out a nice full subcategory of CX consisting
of “derived coherent” objects, which on affinoids gives the ∞-category Dpc(A) of bounded be-
low complexes of A(∗)-modules which can be resolved by finite free modules, or equivalently by
noetherianness, where each homology group is finitely generated. Recall from Lecture X that this
assignment

A 7→ Dpc(A) ⊂ ModA(D(Liqp))

satisfies descent for the topology of finite covers of affinoids; in particular it satisfies descent for the
topology of finite covers refined by open covers, so it globalizes to

X 7→ Dpc(X)

for complex analytic spaces X. To be specific, Dpc(X) is the full subcategory of CX consisting of
those F ∈ CX such that f∗F ∈ Dpc(A) for any map f : Spa(A)→ X from an affinoid. (It is enough
to check this condition on a collection of maps from affinoids which is refined by an open cover of
X.)

Moreover, since the transition maps A(∗) → B(∗) are flat when Spa(B) ⊂ Spa(A) is a closed
sub-affinoid of the affinoid XA (10.5), there is a t-structure on Dpc(X) defined by gluing the local
t-structures on Dpc(A), and in particular we have an abelian category of coherent sheaves, given
by those F ∈ Dpc(X) which lie in degree 0.
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Warning 12.4. Although for A affinoid the big∞-category CA does have a natural t-structure
induced from the t-structure on the derived category of p-liquid vector spaces, the transition maps
CA → CB are not t-exact in general for A → B corresponding to a closed sub-affinoid Spa(B) ⊂
Spa(A); see the footnote in the proof of Lemma 6.8 for the counterexample. In particular, unlike
with the situation of the smaller category Dpc(X), there is no way to get a t-structure on CX
by descent from the affinoid case. However, the functors CA → CB are t-bounded with a bound
depending only on the dimension by the argument in the proof of Proposition 9.17, and this is a
reasonable substitute for the t-structure in some situations.

Next we discuss some properties of maps of complex analytic spaces.

Definition 12.5. Let f : X → Y be a map of complex analytic spaces. We say that f is

(1) an open inclusion if f identifies X with (U,CY (U), πY |π−1
Y U ) for some open subset U ⊂ Y ;

(2) a closed inclusion if f identifies X with (Z,ModA(CY ), πY |π−1
Y Z) for some closed subset

Z ⊂ Y with corresponding idempotent algebra A in CY ;
(3) a Zariski closed immersion if for every affinoid A with a map Spa(A) → Y , the pullback

Spa(A)×Y X is represented by an affinoid Spa(B), and moreover the map A→ B satisfies
the following two conditions: one, it exhibits B as an object in Dpc(A), and two, the
induced map H0A→ H0B is surjective;

(4) separated if the map on underlying topological spaces is separated, i.e. the diagonal X →
X ×Y X is a closed inclusion of topological spaces;

(5) proper if the map on underlying topological spaces is proper;
(6) smooth if, locally on both source and target, f is isomorphic to a projection map Y ×Dn →

Y , where Dn is the open polydisk (open subset of the affinoid Dn given by |z1|, . . . , |zn| < 1,
where the zi are the coordinate functions);

(7) boundaryless if, locally on both source and target, f is isomorphic to a Zariski closed
immersion followed by a projection map Y × Dn → Y , where Dn is the open polydisk.

Note that a boundaryless map f : X → ∗ to point is simply the derived analog of a usual
complex analytic space.

It is easy to see that all of these properties of maps are closed under base-change and compo-
sition, and satisfy descent for the open cover topology. From this and descent we can deduce the
following classification of Zariski closed immersions as “relative spectra”:

Lemma 12.6. Let Y be a complex analytic space. The ∞-category of Zariski closed immerions
i : X → Y identifies with the opposite of the ∞-category of commutative algebra objects B ∈
Dpc(Y )≥0 such that the unit map OY → B is surjective on H0.

Proof. By descent for Dpc(Y ) together with its t-structure, we reduce to case Y = Spa(A).
Then to prove the claim we only need to see that if A → B is such that B ∈ Dpc(A) and H0A �
H0B, then the same holds after base-change along any map of affinoids A → A′. But this is
clear. �

Next we discuss separated maps. Recall that separatedness was defined by a condition on the
underlying map of topological spaces. The following lemma shows that this matches with the analog
of the usual definition in scheme theory.

Lemma 12.7. Let f : X → Y be a map of complex analytic spaces. Then f is separated if and
only if the diagonal ∆f : X → X ×Y X is a Zariski closed immersion.
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Proof. Note that if i is a Zariski closed immersion of complex analytic spaces, then i is a
closed inclusion on underlying topological spaces. Indeed, we can work locally on the target to
reduce to the affinoid case, when the claim is clear. Since fiber products of complex analytic spaces
commute with the forgetful functor to topological spaces, this shows that if ∆f is Zariski closed
then f is separated. Now suppose f is separated. To show that ∆f is a Zariski closed immersion,
we can work locally on Y and therefore assume Y is quasi-affinoid. In this case, ∆Y is a Zariski
closed immersion, as one easily sees by reduction to an affinoid containing Y as an open subset,
then further reducing to Y = D1 where the claim follows from

O(D2)/(z1 − z2) = O(D1).

Then to show ∆f is a closed immersion, by standard diagrams it is enough to show that ∆X is a
closed immersion.

Therefore, it suffices to show that if the underlying topological space of X is Hausdorff, then
∆X : X → X ×X is a Zariski closed immersion. We check this locally on X ×X. Let (x1, x2) ∈
X×X. If x1 = x2 = x, then choose a quasi-affinoid open neighborhood U of x and use U ×U as an
open neighborhood of X ×X. The pullback of ∆X is ∆U , which we’ve already seen to be a Zariski
closed immersion in the previous paragraph. If x1 6= x2, choose quasi-affinoid U1 3 x1, U2 3 x2 with
U1 ∩U2 = ∅. Then with U1×U2 as a neighborhood of (x1, x2), the pullback of ∆X is ∅ → U1×U2,
also clearly Zariski closed. �

Recall that for a general complex analytic space, the reduction to affinoids goes through this
somewhat annoying two-step process: work open-locally to reduce to quasi-affinoids, then cover a
quasi-affinoid by affinoids with a closed cover (refined by an open cover) to reduce to affinoids. In
particular, the basic affinoids are only locally closed subspaces, not closed subspaces in general.
However, when X → ∗ is separated (i.e. X is Hausdorff), basic affinoids are closed and we can do
the descent in just one step:

Lemma 12.8. Let X be a Hausdorff complex analytic space. Then:

(1) The collection of affinoid closed subspaces of X is closed under finite intersection (= fiber
product).

(2) For any x ∈ X, the affinoid closed neighborhoods of x form a neighborhood basis for the
topology at x.

(3) If K ⊂ X is a compact subset, then there is another compact subset K ′ ⊂ X such that:
(a) K ′ contains an open neighborhood of K, or in symbols K b K ′;
(b) K ′ admits a finite cover by affinoid closed subspaces refined by an open cover.

In particular such a K ′ is itself a complex analytic space.

Proof. Since ∆X is a closed immersion, it is relatively affinoid, and (1) follows. For (2), we
know for general X that the affinoid closed subsets of a quasi-affinoid open neighborhood of X form
a neighborhood basis; but these are also closed in X because they are compact and X is Hausdorff.
And (3) follows immediately from (2). �

Now we turn to our main goal: discussion of pushforward functors on these categories CX
attached to a complex analytic space X. First, a preliminary remark. Let us denote by Γ : CX →
D(Liqp) the functor represented by OX ∈ CX . By descent, we have

Γ(F) = lim←−
f :Spa(A)→X

Γ(f∗F);
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where on an affinoid Spa(A) this global sections functor Γ is just the forgetful functor

ModA(D(Liqp))→ D(Liqp).

In the limit above, it also suffices to restrict to those f given by a closed immersion from an affinoid
to some quasi-affinoid open subset of X, and if X is Hausdorff, then thanks to the previous lemma
it even suffices to restrict to just closed immersions from affinoids.

Now, coming back to general X, we can define a functor

sh : CX → Sh(X;D(Liqp))

by
(shF)(U) = Γ(U ;F |U ).

For formal reasons, this promotes to

sh : CX → ModOX
(Sh(X;D(Liqp)),

where OX is the image of the unit object under sh. Then this last functor is fully faithful. Indeed,
we can work locally to assume X is Hausdorff, and then this can be deduced from the following
lemma (whose statement is all we really need — not the fully faithfulness claim):

Lemma 12.9. Let X be a Hausdorff complex analytic space and F ∈ CX . Then for a closed
inclusion f : Spa(A)→ X from an affinoid, we have

Γ(f∗F) = lim−→
U⊃Spa(A)

Γ(F |U ) ∈ ModA(D(Liqp))

where the filtered colimit is over open neighborhoods of Spa(A) in X. More generally, this holds
with Spa(A) replaced by any compact subspace of X, replacing ModA by ModΓ(OX).

Proof. We claim that
lim−→

j:U⊂X,U⊃Spa(A)

j∗j
∗F → f∗f

∗F

is an iso in CX . Here the transition maps and comparison map come from the fact that the poset
of locally closed subsets of X embeds fully faithfully contravariantly in the poset of localizations of
CX , via g∗g

∗ where g is the inclusion of the locally closed subset, by the material in Lecture VI.
If this isomorphism claim is known, then we can deduce the claim of the lemma as follows: using

Lemma 12.8, we can shrink X to assume X is a finite union of affinoids with affinoid intersections.
Then the global sections functor on CX commutes with colimits, being a finite limit of forgetful
functors from module categories. Whence the claim of the lemma by taking global sections.

Now, to prove the above isomorphism claim, we can replace the filtered colimit over open
neighborhoods of Spa(A) by a filtered colimit over arbitrary locally closed subsets containing an
open neighborhood of Spa(A), by cofinality of the former in the latter. But then by a similar
cofinality we can replace this with the filtered colimit over aribitrary compact neighborhoods of
Spa(A). The intersection of such compact neighborhoods reduces to Spa(A) itself, so for the
corresponding idempotent algebras in CX we get a filtered colimit. Since for closed subsets the
localization g∗g

∗ is just given by tensoring with the idempotent algebra, this proves the claim. �

Now let us discuss the pushforward functor for a general map of complex analytic spaces.

Proposition 12.10. Let f : X → Y be a map of complex analytic spaces. Then:

(1) the pullback functor f∗ : CY → CX admits a right adjoint f∗ : CX → CY ;
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(2) the formation of f∗ commutes with base-change along open inclusions;
(3) if Y is Hausdorff and i : Spa(A)→ Y is a closed inclusion from an affinoid, then

i∗f∗F = lim−→
U⊃Spa(A)

Γ(F |f−1U ) ∈ ModA(D(Liqp)),

where U runs over open neighborhoods of Spa(A) in X.

Proof. Since f∗ commutes with colimits, the existence of f∗ is automatic modulo set-theoretic
issues. In particular, if we work in the κ-condensed context, then f∗ exists. Then (2) and (3) would
give a formula for f∗ which in particular shows that f∗ is independent of κ and therefore gives us
existence of f∗ without the κ-bound. Thus, for the purposes of proving all three points, we can just
as well assume f∗ exists and prove (2) and (3) hold.

For (2), recall from Lecture VI that for an open inclusion j, the pullback j∗ has a left adjoint
j\ which commutes with arbitrary base-change. Passing to right adjoints in this statement proves
(2). Then (3) follows from the previous lemma applied to f∗F , plus the base-change claim (2). �

Now we can prove the first version of a proper base change theorem.

Theorem 12.11. Let f : X → Y be a proper map of complex analytic spaces. Then the functor
f∗ : CX → CY commutes with colimits and arbitrary base-change, and satisfies the projection
formula: for G ∈ CY and F ∈ CX , we have

G ⊗ f∗F
∼→ f∗((f

∗G)⊗F).

Proof. Working locally on Y , we can assume that Y , hence also X, is Hausdorff. Then if
i : Spa(A)→ Y is a closed inclusion from an affinoid, the open neighborhoods f−1U of f−1 Spa(A)
in X are cofinal in all open neighborhoods of f−1 Spa(A), by properness of f . Then combining
Lemma 12.9 and Proposition 12.10 we deduce that f∗ commutes with i∗. This in turn reduces us to
the case where Y = Spa(A) is affinoid; similarly, for checking the commutation with base-change,
we only need to consider base-change along maps of affinoids.

But when Y is affinoid, it is compact, so X is also compact, hence a finite union of affinoids
with affinoid intersection by Lemma 12.8. Thus the pushforward from X to Y is a finite limit of
pushforwards from affinoids mapping to Y , letting us reduce to the case where X is also affinoid.
But then our categories are just categories of modules and pushforwards are forgetful functors, and
the claims follow from obvious base-change properties in that algebraic context. �

Our next goal will be to “repair” the failure of the proper base-change theorem to hold outside
the proper case, by introducing a modification to the functor f∗, denoted f! : CX → CY , for which
the conclusion of proper base-change does hold (and with f! = f∗ for f proper). Although in
principle we should define such a f! for any separated map f : X → Y (or indeed for any map
whatsoever, as long as we don’t ask for a natural transformation f! → f∗), for simplicity we will
only consider the case where both X and Y are Hausdorff (in which case any map f : X → Y is
separated).

The construction of f! will be by formal extension from the full subcategory of compactly
supported objects F ∈ CX . To define this condition, note that for F ∈ CX , the set of open subsets
U ⊂ X for which F |U= 0 is closed under arbitrary unions, by the sheaf property. Hence there is
a maximal U for which F |U= 0. The complement of this U is a closed subset Z = SuppF of X
called the support of F . If i : Z → X denotes the closed inclusion, then it follows that F lies in
the essential image of the fully faithful functor i∗.
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Definition 12.12. Let X be a Hausdorff complex analytic space. We say that an F ∈ CX is
compactly supported if SuppF is compact; or equivalently, if F is pushed forward from a compact
subset. By Lemma 12.8, this is also equivalent to saying that F is pushed forward from a compact
closed sub-analytic space, a finite union of affinoids.

The first thing to note is the following.

Lemma 12.13. The base-change and projection formula for f∗ from the proper base-change
theorem hold for arbitrary maps f : X → Y of complex analytic spaces, provided we restrict to the
full subcategory of CX consisting of those objects whose support is proper over Y . (In particular, if
Y is Hausdorff then they hold on compactly supported objects of CX .) Similarly, the claim about f∗
preserving colimits holds if all the terms in the colimit diagram have support in a common subset
of X which is proper over Y .

Proof. This follows by the same argument used to prove the proper base-change theorem.
Namely, using the tube lemma we reduce to a base affinoid. Then the support is compact, and
we invoke Lemma 12.8 to place our compact subset inside a finite union of affinoids with affinoid
intersections to conclude. �

The technical result we have to prove to get a good f! functor by extension from the compactly
supported case is that every F ∈ CX is canonically approximated by compactly supported sheaves.

Lemma 12.14. Let F ∈ CX . Then the natural map

lim−→
G→F

G ∼→ F

is an iso, where the colimit runs over all compactly supported G with a map to F . Moreover,
this colimit is filtered, and the Ind-system giving the diagram on the left is isomorphic both to the
Ind-system giving

lim−→
i:K⊂X

i∗i
!F ,

where K runs over all compact subsets of X, and to the Ind-system giving

lim−→
i:V⊂X

Fib(F → i∗i
∗F),

where V runs over all closed subsets of X whose complement is contained in a compact subset.
All of these Ind-systems are, more precisely, isomorphic objects in the Ind-category of the full

subcategory of compactly supported objects of CX .

Proof. The indexing ∞-category for the first colimit is filtered because the collection of com-
pactly supported objects is closed under finite colimits. Note that the indexing poset for the second
colimit maps to the indexing ∞-category for the first poset by

(i : K ⊂ X) 7→ (i∗i
!F → F),

where this is well-defined and functorial because i∗i
! is the co-localization functor associated to

K ⊂ X. To prove the Ind-systems are isomorphic, it suffices to show cofinality for this functor
between filtered indexing categories. But indeed, if G → F with G compactly supported, then for
K = SuppG, setting j : X \K ⊂ X, we get j∗j

∗G = 0, hence the composition

G → F → j∗j
∗F
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gets a canonical nullhomotopy, hence G → F factors through

i∗i
!F = Fib(F → j∗j

∗F),

giving the required cofinality.
To show that the last two Ind-systems are isomorphic, note that i∗i

!F = Fib(F → j∗j
∗F), then

use another cofinality argument.
Finally, to show that all of these three colimits give F , looking at the third colimit, it suffices

to show that
lim−→

i:V⊂X
i∗i
∗F = 0,

But the intersection of all such V is ∅, so for the corresponding idempotent algebras we find that
their colimit is 0, whence the claim. �

Before we state the theorem constructing the proper pushforward functors, note that if f :
X → Y is any map of Hausdorff complex analytic spaces, then f∗ : CX → CY sends compactly
supported objects to compactly supported objects. Indeed, this follows from compatibility of f∗
with pullbacks along open inclusions, together with the fact that the image of a compact subset is
compact.

Theorem 12.15. Let f : X → Y be a map of Hausdorff complex analytic spaces. Then there
is a unique colimit-preserving functor

f! : CX → CY

equipped with an isomorphism of f! with f∗ when restricted to the full subcategory of compactly
supported objects of CX . Moreover:

(1) There is a unique natural transformation f! → f∗ restricting to the given isomorphism on

compactly supported objects of CX ; and f!F
∼→ f∗F is an iso more generally when SuppF

is proper over Y .
(2) There is a unique functorial isomorphism G ⊗ f!F ' f!((f

∗G) ⊗ F) for G ∈ CY , F ∈
CX which restricts to the projection formula isomorphism G ⊗ f∗F ' f∗((f

∗G) ⊗ F) for
compactly supported F .

(3) Given another map g : Y → Z of Hausdorff complex analytic spaces, there is a unique
isomorphism (g ◦ f)! ' g! ◦ f! which, on compactly supported objects of CX , restricts to the
natural isomorphism (g ◦ f)∗ ' g∗ ◦ f∗.

(4) Given another map ϕ : Y ′ → Y of Hausdorff complex analytic spaces, there is a unique
“base-change” isomorphism ϕ∗◦f! ' f ′! ◦ϕ′∗ which, on compactly supported objects, restricts
to the natural isomorphism ϕ∗ ◦ f∗ ' f ′∗ ◦ ϕ′∗ from the proper base-change theorem.

(5) If f is an open inclusion, then there is a unique isomoprhism f! ' f\ compatibile with the
natural maps of both of these functors to f∗. (Recall f\ denotes the left adjoint of f∗.)

Note that there should also be coherence data relating these different isomorphisms of functors.
We will not need more than a small finite number of these coherences, and what we do need can
be easily produced by hand using the uniqueness claims.

Proof. Lemma 12.14 implies, by the objectwise formula for left Kan extensions, that any
colimit-preserving functor out of CX identifies with the left Kan extension of its restriction to
the full subcategory of compactly supported objects. More precisely, the ∞-category of colimit
preserving functors out of CX is equivalent to that of functors out of the full subcategory of
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compactly supported objects whose left Kan extension to CX commutes with colimits. Thus to
prove the claim giving and characterizing f!, we need to see that the left Kan extension of f∗ from
the compactly supported objects does preserve colimits.

For this we use the more economical presentation of the colimit over all compactly supported
objects mapping to F to calculate the left Kan extension. For the functor f! we then get the
definition

f!F := lim−→
i:V⊂X

f∗ Fib(F → i∗i
∗F),

where V runs over all closed subsets of X whose complement is contained in a compact subset. To
see that this preserves colimits in F , it suffices to fix such a V and show that f∗ Fib(F → i∗i

∗F)
preserves colimits in F . But Fib(F → i∗i

∗F) preserves colimits in F and is supported on a
compact subset independent of F , so the conclusion comes from the proper base change theorem
proved earlier.

The abstract nonsense with left Kan extensions then gives the natural transformation in (1),
and repeating the argument we just gave proves it’s an isomorphism on properly supported objects,
proving (1). Part (2) is clear from left Kan extension, and so is (3) from left Kan extension and
the proper base-change theorem. For (4), by left Kan extension it suffices to show that the natural
map f\ → f∗ is an iso on compactly supported objects of CX . But indeed

f\F = Fib(f∗F → i∗i
∗f∗F)

where i is the inclusion of the closed complement Z of X ⊂ Y , and if F is supported in the compact
K ⊂ U then we get i∗i

∗f∗F = 0 from K ∩ Z = ∅. �

Now that we have this well-behaved colimit preserving functor f! : CX → CY , we can ask
about its right adjoint. It turns out the right adjoint is also fairly well-behaved when the morphism
f : X → Y is boundaryless, i.e. locally on X and Y identifies with a Zariski closed immersion
followed by projection off an open polydisk. To phrase this precisely, we need the notion of an
object of CX being “homologically bounded”. As we don’t have a global t-structure on CX , this
needs to be phrased with a bit of care. But the two possible definitions thankfully coincide:

Lemma 12.16. Let X be a complex analytic space, F ∈ CX , x ∈ X, and d ∈ Z. The following
conditions are equivalent:

(1) There is a quasi-affinoid open neighborhood U of x such that for all affinoid closed subspaces
SpaA ⊂ U , we have Γ(F |SpaA) ∈ D(Liqp)≤d.

(2) There is a quasi-affinoid open neighborhood U of x such that the D(Liqp)-valued sheaf
shF |U on U is d-truncated, i.e. for all y ∈ U the stalk at y lies in D(Liqp)≤d.

Furthermore, if X is affinoid and Γ(F) ∈ D(Liqp)≤d, then F satisfies the above conditions at
all x ∈ X with d replaced by (d−N −1), where N is the cohomological dimension of the topological
space X.

Proof. Suppose (1) is satisfied. Then as the affinoid closed subspaces SpaA ⊂ U form a
neighborhood basis at x, the stalk of shF |U at x is a filtered colimit of the Γ(F |SpaA). Thus
(2) is satisfied. Now suppose (2) is satisfied. Then for any affinoid closed subspace SpaA ⊂ U ,
Γ(F |SpaA) is the filtered colimit of sections of shF over open neighborhoods of SpaA, hence it
is also d-truncated. Finally, the last claim about affinoid A follows from the proof of Proposition
9.17. �
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If F satisfies these two equivalent conditions, we say that F is homologically d-bounded at x.
If for all x ∈ X there is a d ∈ Z such that F is homologically d-bounded at x, we say that F is
homologically bounded. If a collection (Fi)i∈I of objects of CX is such that for all x ∈ X there is a
d ∈ Z such that Fi is homologically d-bounded at x for all i ∈ I, we say that (Fi)i∈I is uniformly
homologically bounded.

Theorem 12.17. Suppose f : X → Y is a boundaryless morphism between Hausdorff complex
analytic spaces. If (Fi)i∈I is a collection of objects of CY which is uniformly homologically bounded,
then the collection (f !F)i∈I of objects of CX is also uniformly homologically bounded, and the natural
map

⊕if !(Fi)
∼→ f !(⊕iFi)

is an iso.

Proof. Since j! = j∗ for open inclusions j, we can work locally on X and Y , hence reduce
to the case where f is the composition of a Zariski closed immersion and projection off an open
polydisk. The collection of maps f satisfying the conclusion is closed under composition, so we
separately reduce to the case of a Zariski closed immersion and projection off the one-dimensional
unit disk D.

For Zariski closed immersions, by Lemma 12.16 it suffices to show that if A→ B gives a Zariski
closed immersion of affinoids f : SpaB → SpaA, then

f ! : ModA(D(Liqp))→ ModB(D(Liqp))

sends ModA(D(Liqp))≤0 to ModB(D(Liqp))≤0. But indeed we have

f !M = RHomA(B,M),

so this follows from the fact that B ∈ ModA(D(Liqp))≥0.

For projections f : D× Y → Y , we claim that f ! commutes with base-change, satisfies

f∗G ⊗ f !(OY )
∼→ f !(G),

and for Y = ∗ we have f !(O∗) = OD[1]. Given these claims we easily deduce that f ! = f∗[1] for
general Y , which implies the statement of the theorem.

To prove the claims, by descent, we can reduce to the case Y = SpaA affinoid. Then we factor
f as the open inclusion j : D×Y ⊂ D×Y followed by the (proper) projection π to Y . The functor
j! is fully faithful, and furthermore

CD×Y = ModO(D)⊗A(D(Liqp))

embeds fully faithfully into ModA[T ](D(Liqp)) by the forgetful functor, due to idempotency. The
essential image of j! in this latter category consists exactly of those N ∈ ModA[T ](D(Liqp)) which
become 0 on base-change along C[T ] → O(|T | ≥ 1). Moreover, since π is a map of affinoids we
have that π! = π∗ is just a forgetful functor on module categories.

Now, let N ∈ ModA[T ](D(Liqp)) which dies on base-change along C[T ] → O(|T | ≥ 1), and let
M ∈ ModA(D(Liqp)). Then from the above we get

RHomCD×Y
(N, f !M) = RHomA(N,M).
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Now we calculate further, using only that N dies on base-change along C((T−1)) so that any
A[T ]-module map from N to an A⊗ C((T−1))-module vanishes:

RHomCD×Y
(N, f !M) = RHomA(N,M)

= RHomA[T ](N,RHomA(A[T ],M))

= RHomA[T ](N,M((T−1))/M [T ])

= RHomA[T ](N,M [T ])[1].

This gives f ! ' f∗[1] via an isomorphism compatible with base-change, proving all the claims. �

Now we can prove the main theorem of this lecture, the finiteness of proper pushforwards.

Theorem 12.18 (Grauert’s Coherence Theorem). Let f : X → Y be a boundaryless proper map
between complex analytic spaces. Then the functor f∗ : CX → CY sends Dpc(X) to Dpc(Y ).

Remark 12.19. The same proof applies also for “families of complex-analytic spaces over other
bases”, as in the work of Houzel [Hou73].

Proof. Working locally on Y , we can assume Y = SpaA is affinoid, in particular compact
Hausdorff, hence X is also compact Hausdorff. By Proposition 9.19, it suffices to show that if
F ∈ CX is nuclear (meaning its pullback to every affinoid is nuclear), then so is f∗F , and if
F ∈ CX is pseudocompact (meaning its pullback to every affinoid is pseudocompact), then so is
f∗F .

For the preservation of nuclearity, we can cover X by finitely many affinoids with affinoid
intersections to reduce to the fact that forgetful functors from module categories over nuclear
algebras preserve nuclearity, Lemma 8.20. For the preservation of pseudocompactness, suppose
(Mi)i∈I is a uniformly homologically bounded collection of elements of ModA(D(Liqp)). First note

RHomA(f∗F ,⊕iMi) = RHomCX
(F , f !(⊕iMi))

because f∗ = f! by properness. But by Theorem 12.17, f ! commutes with this direct sum, and
for any affinoid closed i : SpaB ⊂ X the B-modules (i∗f !Mi)i∈I are also uniformly homologically
bounded. Applying this to a finite cover of X by closed affinoids with affinoid intersection and
using descent, we deduce that

RHomCX
(F ,⊕if !Mi) = ⊕i RHomCX

(F , f !Mi) = ⊕i RHomA(f∗F ,Mi),

whence the conclusion. �

Taking Y = ∗, this shows in particular that if X is a compact complex analytic space in the
classical sense, and F is a coherent sheaf on X, then the total cohomology ⊕iH i(X;F) is finite
dimensional as a C-vector space. The proof we gave has some kinship with the classical Cartan–
Serre method for establishing such finite-dimensionality claims. But it is “local” in the sense that
the key point is a more general property of the functor f! for possibly non-proper maps, namely
that its right adjoint f ! commutes with (homologically bounded) direct sums.
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13. Lecture XIII: Serre Duality, and GAGA for coherent sheaves

In the first lecture, we promised to prove four theorems: Finiteness of Coherent Cohomology;
Serre Duality; GAGA; Hirzebruch–Riemann–Roch. The first of those theorems was proved in
the last lecture, even in the relative case. Moreover, we already did some of the work towards
GAGA, and in the previous lecture also towards Serre Duality. The goal of this lecture is to finish
the discussion of Serre Duality and GAGA. Next week, we will discuss the proof of Hirzebruch–
Riemann–Roch.

As before, we fix some 0 < p ≤ 1. Recall that we defined a (generalized) complex-analytic space
to be a categorified locale (X,CX , πX : S(CX) → X) over (∗,D(Liqp(C)), π : S(D(Liqp(C))) → ∗)
that is locally isomorphic to an open subspace of the categorified locale

Spa(A) := (HomC(A(∗),C),ModA(D(Liqp)), πA)

associated to some affinoid algebra A. We note that this notion depends on the choice of p. But
actually for a different p′ ≤ p, there is a base change functor from the notion for p′ to the notion
for p, and this turns out to be an equivalence of ∞-categories (Exercise!); thus, the ∞-category
of (generalized) complex-analytic spaces is independent of the choice of p. (But given X, the
∞-category CX depends on p.)

In the last lecture, several kinds of maps f : X → Y of complex-analytic spaces were introduced:

(1) The map f is a Zariski closed immersion if locally on Y it for every affinoid A with a map
Spa(A) → Y , the pullback X ×Y Spa(A) is affinoid, given by some Spa(B), and A → B
makes B ∈ Dpc,≥0(A) with H0A→ H0B surjective.

(2) The map f is separated if the diagonal ∆f : X → X ×Y X is a Zariski closed immersion;
equivalently, if |X| → |X×Y X| = |X|×|Y | |X| is a closed immersion of topological spaces.

(3) The map f is proper if it is separated and quasicompact; equivalently, if |f | : |Y | → |X| is
proper.

(4) The map f is smooth if locally on source and target f is isomorphic to a projection
Y × Dn → Y from an open polydisc.

(5) The map f is boundaryless if locally on source and target f is isomorphic to a Zariski
closed immersion followed by a smooth map.

Moreover, we introduced for any separated map f : X → Y the functor

f! : CX → CY ,

the pushforward with compact support, with a natural transformation f! → f∗. Actually, we
worked under the small restriction that Y is itself separated over ∗, i.e. |Y | is Hausdorff. (Then f
is separated if and only if also |X| is Hausdorff.) Then f! is the colimit-preserving approximation
to f∗. In fact, it agrees with f∗ on all objects that are compactly supported over Y . In particular, if
f is proper, then f! = f∗ is just the usual pushforward. Moreover, f! satisfies arbitrary base-change
and a projection formula. Writing X as an increasing union of closed subspaces proper over Y , one
can then write f! explicitly as a filtered colimit of sections with support in those closed subspaces.

Let

f ! : CY → CX

be the right adjoint of f!. (It is unique when it exists, and if we fixed a cutoff cardinal κ, the
existence of f ! would follow from the adjoint functor theorem for presentable ∞-categories. It is
not hard to show that in fact these functors for different sufficiently large κ are compatible; in any
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case, in all situations below where we compute f !, that formula simultaneously shows that it is
well-defined.) To prove Serre duality, we need to identify f ! for smooth morphisms. First, note
that there is always a natural transformation

f !OX ⊗OY
f∗M → f !M

from a twisted version of f∗ to f !. Indeed, this is adjoint to the natural transformation

f!(f
!OX ⊗OY

f∗M) = f!f
!OX ⊗OX

M →M

coming from the projection formula and the counit f!f
!OX → OX .

Proposition 13.1. Let f : X → Y be a smooth morphism of complex-analytic spaces. Then
the natural transformation

f !OX ⊗OY
f∗ → f !

is an isomorphism. Moreover, f !OX is locally isomorphic to OY [d] where d is the dimension of f ,
and the formation of f ! commutes with any base change in Y .

Proof. We can work locally on X and Y . One can then reduce to the case X = Y × Dn.
By induction on n, one can assume n = 1. It suffices to prove all claims when Y is affinoid.
(Indeed, when one knows base change compatibility in that case, one can use this to show by
descent to affinoid Y that f ! is always given by the desired formula, and commutes with base
change to affinoids.) Now the result follows from the computations in the end of the proof in
Theorem 12.17. �

To finish the proof of Serre duality, we need to identify f !OX with Ωd
Y/X [d]. Here, in case Y

is not derived, one can define Ω1
Y/X as usual as I/I2 where I ⊂ OX×YX is the ideal sheaf of the

diagonal. When Y is derived, one has to be more careful with the meaning of I2. It can, however,
still be defined:

Proposition 13.2. There is a functorial definition of a filtered graded A-algebra (In)n≥0 (in
D(A)) for any Zariski closed immersion A→ B of affinoid algebras, such that I0 = A and I1 = I
is the homotopy fibre of A → B. All In lie in Dpc,≥0(A). The filtered graded A-algebra (In)n≥0

commutes with any base change in A, and if A and B are concentrated in degree 0 and A(∗)→ B(∗)
is a local complete intersection, then (In)n≥0 sits in degree 0 and agrees with the usual filtered A-
algebra of powers of I = ker(A→ B).

Note that everything here is relatively discrete over A, so it suffices to prove the analogous
result for the map of abstract derived rings A(∗) → B(∗). More generally, one has the following
result; a very related (and more detailed) discussion is in [Mao21, Section 3]. (Here, we use the
notion of animated commutative rings, which are “simplicial commutative rings up to homotopy”.
In characteristic 0, this is the same thing as a connective E∞-algebra, as used previously. In positive
or mixed characteristic, the notions diverge. There is still a functor from animated rings to E∞-
rings; for geometric questions, generally animated rings behave better. For example, free animated
rings are given by polynomial algebras, while free E∞-rings are very hard to understand.)

Proposition 13.3 (cf. [Mao21, Corollary 3.54]). Let A → B be a map of animated commu-
tative rings that is surjective in degree 0. Consider the initial animated filtered A-algebra (In)n≥0

equipped with a map of animated A-algebras B → I0/I1. Then the natural maps A → I0 and
B → I0/I1 are isomorphisms; in particular I = I1 is the fibre of A → B. Moreover, there is a
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natural isomorphism LB/A[−1] ∼= I1/I2, and the natural maps Symn
B(I/I2) → In/In+1 are iso-

morphisms. The formation of (In)n≥0 commutes with any base change in A, and if A and B are
concentrated in degree 0 and A→ B is a local complete intersection, then (In)n≥0 sits in degree 0
and agrees with the usual filtered A-algebra of powers of I.

We stress that we need this result only in case the base space Y is derived.

Proof. It is clear that the formation of (In)n≥0 commutes with all colimits in B, and is
compatible with base change. Moreover, there are maps A→ I0, B → I0/I1 and LB/A → I/I2[1]

(as A/I2 is a square-zero extension of B by I1/I2) and Symn(I/I2)→ In/In+1 (the latter exists for
any animated filtered algebra). We claim that these are isomorphisms. As everything commutes
with all sifted colimits, one can assume that

B = A/L(a1, . . . , an) = A⊗LZ[X1,...,Xn] Z

for some set of elements a1, . . . , an ∈ A; indeed, under sifted colimits such animated A-algebras
generate all animated A-algebras B with H0A → H0B surjective. By base change compatibility,
one can then assume that A = Z[X1, . . . , Xn] and B = Z (with all Xi mapping to 0). It is then
enough to prove the final claim, that for complete intersections, it gives the usual algebra of powers
of I. By Künneth, this can be reduced to the case of one variable, so to A = Z[X] → B = Z.
But in this case one gets the free animated filtered A-algebra on a generator Y in filtered degree
1, modulo the relation Y = X. The first step gives Z[X,Y ] filtered by Y nZ[X,Y ], and the second
cuts it down to Z[X] filtered by XnZ[X], as desired. �

Using this construction, we can define a general deformation to the normal cone. Namely, recall
that filtered objects can equivalently be considered as Gm-equivariant objects over A1, by the Rees
construction. We can always glue them to Gm-equivariant objects over P1 by using the trivial
filtration at ∞. In this language, we arrive at the following construction, if we extend the above
filtered algebra (In)n≥0 to the full Z-indexed case by setting In = A for n ≤ 0. (Actually, we ignore
the Gm-action here for simplicity.)

Construction 13.4. Let f : A→ B be a map of animated commutative rings that is surjective
on H0, let I be the fibre of f , and consider In as in Construction 13.3. Then there is a Zariski
closed immersion

Ỹ = P1
B → X̃

of affine derived schemes over P1
Z such that over P1

Z \ {0} it is isomorphic to the base change of
Spec(B)→ Spec(A) from Spec(Z) to P1

Z \ {0}, and the fibre over 0 is isomorphic to the embedding

Spec(B)→ Spec(
⊕
n≥0

In/In+1) = Spec(Sym•(LB/A[−1])),

the (derived) normal cone on LB/A[−1].

The cotangent complex L
Ỹ /X̃

is isomorphic to the pullback of LB/A to P1
B, twisted by O(−1).

If B is pseudocoherent over A, then also Ỹ → X̃ is pseudocoherent.

Proof. One takes X̃ as corresponding to the animated filtered commutative ring
⊕

n∈Z I
n,

and Ỹ corresponding to
⊕

n≤0B. Only the statement that L
Ỹ /X̃

is isomorphic to the pullback of

LB/A twisted by O(−1) must be proved. Note that D(B) → D(P1
B) is fully faithful, so it suffices
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to see that L
Ỹ /X̃

(1) lies in the essential image. This condition is stable under sifted colimits in B,

so as in the last construction we can reduce to A = Z[X1, . . . , Xn] and B = Z. In that case, one
gets the usual deformation to the normal cone, and the result is readily verified. �

Remark 13.5. Another consequence of Construction 13.3 is the construction of blow-ups of
derived schemes, by taking the projective spectrum of the animated graded A-algebra

⊕
n≥0 I

n.

The previous construction can be understood as an open subscheme of the blow-up of P1
A along

Spec(B)× {0} → P1
A.

To identify the dualizing complex f !OY for smooth maps f : X → Y , we note that it is enough
to identify the pullback s∗f !OX along a section s : Y → X. Indeed, pulling back f : X → Y along
the map g : Y ′ → Y given by f = g : X = Y ′ → Y , with fibre product

f ′ : X ′ = X ×Y Y ′ → Y ′,

and g′ : X ′ → X the other projection, it acquires the universal section s : Y ′ → X ′ given by the
diagonal Y ′ = X → X ′ = X ×Y X, and then the base change compatibility of f ! shows that

s∗f ′!OY ′ = s∗g′∗f !OX = f !OY .

Thus, to compute f !OY , it suffices to compute s∗f ′!OY ′ , as promised.
Thus, assume from now on that the smooth map f : X → Y comes with a section s : Y → X.

To compute s∗f !OY , we deform Y → X to the normal cone (locally on the corresponding affinoid
algebras, and then analytify). This gives a map of complex-analytic spaces

f̃ : X̃ → Ỹ = P1
Y

with a section s̃ : Ỹ → X̃, such that away from 0 ∈ P1 this is isomorphic to the base change of
Y → X, and over 0 it is isomorphic to the normal cone Y → NY⊂X over Y .

Now consider

s̃∗f̃ !OP1
Y

(1) ∈ CP1
Y
.

The pullback functor

π∗ : CY → CP1
Y

is fully faithful – for this, it suffices to see that π∗π
∗ is the identity, but this is given by tensoring

with π∗OP1
Y

by the projection formula, and the latter is just OY . We claim that

s̃∗f̃ !OP1
Y

(d) ∈ π∗CY ⊂ CP1
Y

where d is the dimension of f . This can be checked locally on Y and after replacing X by an open
neighborhood of the section, so we can assume that X = Y × Dd. Then we can assume Y = ∗ is a
point, where it follows from a direct computation.

But this means that all fibres of s̃∗f̃ !OP1
Y

(d) along sections of P1
Y → Y are canonically isomorphic

(as they map isomorphically to π∗s̃
∗f̃ !OP1

Y
(d)). But the fibre over 1 ∈ P1 is just s∗f !OY , while the

fibre over 0 ∈ P1 is the similar object for the normal cone Y ⊂ NY⊂X . The latter evidently only
depends on s∗Ω1

X/Y . In fact, we can now consider the association that takes any Y equipped with

a rank d vector bundle f : E → Y to 0∗f !OY . This defines an invertible object of C[∗/GLd] for the
stack [∗/GLd] (for the open cover topology). As it is given by a line bundle shifted into degree d,
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to identify it, it suffices to identify it for Y = ∗ a point, with the GLd-action on it. This can be
done easily, finally showing that there is a natural isomorphism

s∗f !OY ∼= Ωd
X/Y [d].

We have proved the following theorem.

Theorem 13.6 (Serre Duality). For a d-dimensional smooth map f : X → Y of (generalized)
complex-analytic spaces, there is a natural isomorphism

f !M ∼= f∗M ⊗OX
Ωd
X/Y [d]

of functors CY → CX .

Let us discuss this theorem in case Y = ∗ is a point. If X is proper, it gives the usual Serre
duality, extended from coherent sheaves to all “liquid quasicoherent sheaves”. Indeed, for any
M ∈ CX , we get

Hom(f∗M,C) = Hom(f!M,C) = f∗Hom(M,f !C) = f∗(Hom(M,OX)⊗ Ωd
X)[d],

identifying the dual of the cohomology RΓ(X,M) = f∗M with the cohomology RΓ(X,M∨ ⊗ Ωd
X)

up to a shift by degree d. Here M∨ := Hom(M,OX).
But we can also apply this result in case X is not proper. Then it is still true that the dual of

RΓc(X,M) = f!M ∈ D(Liqp(C))

is given by RΓ(X,M∨⊗Ωd
X). We note that if X ∈ Dpc(X) is (pseudo)coherent, then RΓc(X,M) is

basic nuclear, as follows from the formula for f! from the proof of Theorem 12.15. In particular, all
cohomology groups H i

c(X,M) are quotients of DNF spaces. Note that if V is a DNF space, then
by Mittag-Leffler, one has ExtiC(V,C) = 0 for i > 0. Thus, for quotients of DNF spaces, one gets
vanishing of Exti for i > 1. The derived duality therefore induces short exact sequences

0→ Ext1
C(Hd−i+1

c (X,M),C)→ H i(X,M∨ ⊗ Ωd
X)→ HomC(Hd−i

c (X,M),C)→ 0.

This gives a statement on the level of individual cohomology groups even if these cohomology groups
are not quasiseparated. The algebra here is very similar to the algebra in Poincaré duality in case
there is torsion in the cohomology. More precisely, if V is any quotient of DNF spaces, there is a
maximal quasiseparated quotient V , which is a DNF space; the kernel of V → V can be identified
with the closure V 0 ⊂ V of 0 ∈ V . We get a short exact sequence

0→ V 0 → V → V → 0.

Then HomC(V,C) = HomC(V ,C) while Ext1
C(V,C) = Ext1(V 0,C). Using the (underived) duality

between DNF and NF spaces, one can show that V 0 6= 0 if and only if Ext1
C(V 0,C) 6= 0, and that

in the latter {0} is dense. Thus, the above short exact sequence can be rewritten as

0→ Ext1
C(Hd−i+1

c (X,M)0,C)→ H i(X,M∨ ⊗ Ωd
X)→ HomC(Hd−i

c (X,M),C)→ 0,

where the first term is precisely the closure of 0 ∈ H i(X,M∨ ⊗ Ωd
X), and the last term is the

quasiseparated quotient of H i(X,M∨ ⊗ Ωd
X) (and is a nuclear Fréchet space). In particular:

Corollary 13.7. If X is a complex manifold of dimension d and M ∈ Dpc(X), then Hd−i+1
c (X,M)

is quasiseparated if and only if H i(X,M∨ ⊗ Ωd
X) is quasiseparated.
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Finally, let us say a few words about GAGA. Generalizing our previous discussion slightly, we
can actually start with any affinoid algebra A and a proper derived scheme X over A. It admits an
analytification Xan over A, and there is an equivalence CX ∼= CXan ; the proof is the same as before.
We note that Xan is actually proper (over Spa(A), or, as that one is proper, equivalently in the
absolute sense). It is easy to see that it is separated, using the compatibility of all constructions
with fibre products, and with Zariski closed immersions. For quasicompacity, we use the following
proposition:

Proposition 13.8. For any complex-analytic space Y , the map πY : S(CY ) → |Y | has the
property that a closed subset Z ⊂ |Y | is quasicompact if and only if the preimage of Z in S(CY ) is
quasicompact.

Proof. This can be checked on affinoid pieces, where it follows from the construction, which
associated to closed subsets of the compact Hausdorff space |Spa(A)| idempotent algebras (whose
corresponding locale is quasicompact). �

Thus, to see that |Xan| is quasicompact, it suffices to see that S(CXan) is quasicompact. But
this agrees with S(CX), and the latter is quasicompact for any scheme X that is separated and of
finite type. Indeed, it is glued in finitely many steps from S(CA) for liquid algebras A, and those
are quasicompact.

Remark 13.9. This gives a proof that for X a proper scheme over C, the space X(C) is
compact Hausdorff that does not use Chow’s lemma in order to reduce to projective space, but
instead directly uses the valuative criterion.

Inside CX , we have Dpc(X) ⊂ CX , by gluing on affine pieces the derived ∞-category of pseu-
docoherent complexes; these can be characterized as the discrete pseudocompact objects (and
using this description one can prove that this glues). The functor CX → CXan takes Dpc(X) into
Dpc(Xan). Finally, we can formulate the “usual” form of GAGA.

Theorem 13.10 (GAGA). The fully faithful functor Dpc(X) ↪→ Dpc(Xan) is an equivalence of
∞-categories.

We note that the mere fully faithfulness already includes the comparison of cohomology.

Proof. It remains to see that for all M ∈ Dpc(Xan) and any affine Spec(B) ⊂ X, letting
i∗ : CXan ∼= CX → CB be the pullback functor, the preimage i∗M lies in Dpc(B) ⊂ CB =
ModB(D(Liqp))). We already know that it is pseudocompact (as i∗ commutes with all direct
sums). Thus, it remains to see that it is discrete. As B itself is discrete, it suffices to see that
RΓ(i∗M) = RΓ(Xan, i∗i

∗M) is discrete. We note that by blowing up (some ideal sheaf supported
at) the boundary D = X \Spec(B), we can assume that the boundary D is a Cartier divisor. Then
i∗i
∗M = colimnM(−nD), and

RΓ(Xan, i∗i
∗M) = colimnRΓ(Xan,M(−nD)).

Here each M(−nD) ∈ Dpc(Xan), so by Theorem 12.18, one has RΓ(Xan,M(−nD)) ∈ Dpc(A),
which in particular is discrete. Thus, also the colimit over n is discrete, as desired. �

Exercise 13.11. A map f : X → Y is a local complete intersection if it is locally the composite
of a Zariski closed immersion that is a (derived) base change of ∗ → Dn, and a smooth map. Show
that the natural transformation

f !OY ⊗OX
f∗ → f !
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is an isomorphism, and that f !OY is naturally isomorphic to det(LX/Y ). Here LX/Y is the cotangent
complex, which is a perfect complex with amplitude [0, 1]; and for a 2-term complex of finite
projective modules [P1 → P0], one defines

det([P1 → P0]) =

r0∧
(P0)[r0]⊗ (

r1∧
P1)∨[−r1],

with ri = rk(Pi). (Hint: For the isomorphism f !OY ∼= det(LX/Y ), follow the argument in the
smooth case, by base change to the case with a universal section, and a deformation to the normal
cone. This time, this will introduce truly derived spaces even in case A and B are in degree 0.
Finally, analyze the universal case [Mr0×r1/GLr0 ×GLr1 ] directly.)
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14. Lecture XIV: Hirzebruch–Riemann–Roch, part I

The set-up for the following discussion will be a pair (X,V ) where X is a compact complex
manifold, meaning f : X → ∗ is a proper smooth map of complex analytic spaces without boundary
in the terminology of the previous lectures, and V is a vector bundle on X (a locally free OX -module
sheaf of finite rank). By Theorem 12.18, the total cohomology of V is finite-dimensional in each
degree:

f∗V = RΓ(X;V ) ∈ Dpc(C).

But actually we can also see that f∗V lives in only finitely many degrees, for example because the
space X has finite cohomological dimension.

In any case, a crucial question for applications is what the dimensions

dimCH
i(X;V )

of the individual cohomology groups of (X,V ) are. However, this is difficult to answer in generality,
because these dimensions are highly sensitive to the geometry of (X,V ). In particular, they can
jump in families. To obtain a more robust invariant, we instead look at the Euler characteristic

χ(X,V ) :=
∞∑
i=0

(−1)i dimCH
i(X;V ).

As a consequence of the proper base change theorem, this integer is (locally) constant in families.
The Hirzebruch-Riemann-Roch (HRR) Theorem provides a formula for χ(X,V ) where all the terms
in the formula are in some sense “topological” invariants of (X,V ). In particular they are quite
computable, and they also give another explanation for this robustness of χ(X,V ). The formula
looks as follows:

χ(X,V ) =

∫
X

ch(V ) · Td(TX).

To make sense of the right-hand side, we need to choose a cohomology theory on compact complex
manifolds. We will take what is in some sense the simplest (or at least the easiest to relate to
coherent cohomology), namely Hodge cohomology.

Definition 14.1. Let X be a complex manifold. Define:

Hdg(X) = ⊕i≥0Ωi[i] ∈ Perf(X) ⊂ CX ,

and

Hdg(X) = RΓ(X;Hdg(X)) ∈ D(Liqp).

Thus, in degree 0 we get

H0 Hdg(X) = ⊕i≥0H
i(X; Ωi).

Remark 14.2. As usual, for purposes of reducing questions to affinoids, it’s useful to extend
this definition to the case where X is a complex manifold “with boundary”, meaning X is a complex
analytic space which is locally isomorphic to an open subspace of a closed polydisk. The bundle of
one-forms Ω1, hence of i-forms Ωi, can be just as well defined for such X, namely Ω1 = I/I2 where
I is the ideal in OX×X giving the Zariski closed immersion ∆X : X → X ×X.
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Note that Hdg(X) and Hdg(X) are contravariantly functorial, via pullback of differential forms.
They also have commutative ring structures, induced by wedge product of differential forms. The
classes ch(V ),Td(TX) will lie in H0 Hdg(X), and

∫
X will be a map∫

X
: Hdg(X)→ C,

allowing to make sense of the right-hand side of the HRR formula. To explain this in more detail,
let’s start with the following basic observation.

Lemma 14.3. Let X be a compact complex manifold. Then Hdg(X) ∈ Perf(C), and for every
other complex manifold with boundary Y the Künneth map

Hdg(X)⊗Hdg(Y )
∼→ Hdg(X × Y )

is an isomorphism.

Proof. Note that Ωi
X = 0 for i > dim(X), so the direct sum defining Hdg(X) is actually

finite, so Hdg(X) ∈ Perf(X). As remarked above, this implies that Hdg(X) ∈ Perf(C) as well (see
also Lemma 14.8). The second claim follows from applying the proper base-change theorem to the
pullback of X → ∗ ← Y . �

Next, we introduce the first Chern class for line bundles, with values in Hodge cohomology.
Line bundles are locally free sheaves of rank one, so they are classified by elements of H1(X;O×X),
and we simply take the map

c1 : H1(X;O×X)→ H1(X; Ω1) ⊂ H0 Hdg(X)

induced by the homomorphism d log : O×X → Ω1 given by

d log(f) =
df

f
.

With the first Chern class in hand, we can state the projective bundle formula.

Proposition 14.4. Let X be a complex manifold with boundary and V a vector bundle over X
of rank d. For the associated projective bundle π : P(V )→ X, we have that

⊕d−1
i=0 Hdg(X)

∼→ Hdg(P(V )),

where the map on the ith summand is given by pulling back via π and then multiplying with c1(O(1))i.

Proof. Note that both sides satisfy descent in X, and the map is natural. So it suffices to show
this when V is trivial. But then π : P(V ) → X is pulled back from Pd−1 → ∗, so by the Künneth
formula we reduce to calculating the Hodge cohomology of Pd−1. By GAGA we can perform this
calculation in the algebraic category instead, and then it is a standard exercise. �

Following Grothendieck ([Gro58]), this lets us define Chern classes for vector bundles. First,
there is the all-important splitting principle:

Lemma 14.5. For any vector bundle V over a complex manifold with boundary X, there exists
a map of complex manifolds with boundary f : Y → X such that:

(1) f∗V admits a full flag, i.e. a filtration by sub-bundles where each successive quotient is a
line bundle.

(2) f∗ : H0 Hdg(X) ↪→ H0 Hdg(Y ) is injective.
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Moreover, if X is smooth then Y can be chosen smooth, and if X is proper then Y can be chosen
proper.

Proof. Take Y to be the relative Grassmannian classifying full flags in X. Then (1) holds by
construction, and (2) follows by the projective bundle formula, since Y → X is a composition of
projective bundles. �

Theorem 14.6. The exists a unique assignment V 7→ c(V ) ∈ H0 Hdg(X)[[t]] for an arbitrary
vector bundle V over a complex manifold with boundary X, such that:

(1) V 7→ c(V ) commutes with pullbacks;
(2) If 0 → V ′ → V → V ′′ → 0 is a short exact sequence of vector bundles on X, then

c(V ) = c(V ′) · c(V ′′);
(3) If V = L is a line bundle, then c(L) = 1 + c1(L) · t.

Proof. Uniqueness is clear by the splitting principle. For existence, define c(V ) to be given by
the coefficients (with some signs, and in reverse order) of c1(O(1))d as a polynomial in the previous
powers of c1(O(1)), using the projective bundle formula. We refer to [Gro58] for the details. �

Using these Chern classes, we can define the Chern character and Todd class, which appear in
the HHR formula.

Theorem 14.7. There exists a unique assignment V 7→ ch(V ) ∈ H0 Hdg(X) for an arbitrary
vector bundle V over a complex manifold with boundary X, such that:

(1) V 7→ ch(V ) commutes with pullbacks;
(2) If 0 → V ′ → V → V ′′ → 0 is a short exact sequence of vector bundles on X, then

ch(V ) = ch(V ′) + ch(V ′′).

(3) If V = L is a line bundle, then ch(L) = ec1(L).

Moreover, we have ch(V ⊗W ) = ch(V ) · ch(W ). Here ec1(L) is to be understood as a formal power
series in c1(L), which is actually a polynomial as c1(L)i ∈ H i(X; Ωi) = 0 for i > dim(X).

Similarly, there exists a unique assignment V 7→ Td(V ) ∈ H0 Hdg(X) for an arbitrary vector
bundle V over a complex manifold with boudnary X, such that:

(1) V 7→ Td(V ) commutes with pullbacks;
(2) If 0 → V ′ → V → V ′′ → 0 is a short exact sequence of vector bundles on X, then

Td(V ) = Td(V ′) · Td(V ′′).

(3) If V = L is a line bundle, then Td(L) = c1(L)

1−e−c1(L)
.

Proof. Uniqueness is clear by the splitting principle. For existence, one writes down the
appropriate universal power series in the Chern classes. See [HBS66] for the details. �

To finish explaining the meaning of the HRR formula, which we recall reads

χ(X,V ) =

∫
X

ch(V ) · Td(TX),

we need to define the “trace” map ∫
X

: Hdg(X)→ C
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for a compact complex manifold X. This is done using Serre duality. Namely, by projecting on to
the d-summand where d is the dimension of X (working separately on each connected component
if X is not connected), we get a map

Hdg(X) = ⊕i≥0Ωi[i]→ Ωd[d] ' f !C,
whence

Hdg(X)→ f∗f
!C→ C,

as desired. Here the isomorphism Ωd[d] ' f !C is Serre duality, and the map f∗f
!C → C is the

counit for the adjunction.
This finishes the statement of the HRR formula. But before moving on to start the proof, let

us make a further remark about this trace map we just introduced. Namely, the object Hdg(X) ∈
Perf(X) is canonically self-dual with respect to the invertible object Ωd[d] ' f !C. More precisely,
the map

Hdg(X)⊗Hdg(X)→ Hdg(X)→ Ωd[d]

induced by multiplication followed by projection to the top-dimensional component is a perfect
pairing in Perf(X). This is a general fact about exterior algebras. Combining with Serre duality,
we deduce that Hdg(X) ∈ Perf(C) is also canonically self-dual via the perfect pairing

Hdg(X)⊗Hdg(X)→ Hdg(X)

∫
X→ C

where the first map is multiplication. In terms of this self-duality, we can say that
∫
X is dual to

the unit map C→ Hdg(X).
Now let’s move towards the proof of HRR. For this, we will actually need to state and prove

a generalization, called the Grothendieck-Riemann-Roch (GRR) theorem. The idea is to at first
forget about the Todd class, and focus only on the Chern character. This is a map

ch : Vect(X)/ ∼−→ H0 Hdg(X)

from isomorphism classes of vector bundles to Hodge cohomology, but Grothendieck explains how
to promote it to a natural transformation of cohomology theories, by introducing K-theory, a
cohomology theory which is formally built out of vector bundles. Namely, K0(Vect(X)) is the free
abelian group on Vect(X)/ ∼ modulo the relations

[V ] = [V ′] + [V ′′]

running over all short exact sequences 0 → V ′ → V → V ′′ → 0. There is a ring structure
on K0(Vect(X)) induced by tensor product of vector bundles, and then we can view the Chern
character as a natural transformation

ch : K0(Vect(X)) −→ H0 Hdg(X)

of cohomology theories, i.e. contravariant functors from complex manifolds to commutative rings.
Then Grothendieck rephrases the HRR question as that of how to address the compatibility of

ch with the natural pushforward structures which exist on both cohomology theories. But actually,
to do this we have to work with a modification of the K-theory of vector bundles, namely the K-
theory of perfect complexes, since it is only on the level of perfect complexes that we actually have a
pushforward functoriality. The K-theory of perfect complexes, K0(Perf(X)), is defined analogously
to that of vector bundles, but we replace short exact sequences with distinguished triangles (or
cofiber sequences in the stable ∞-category language).
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Then the pushforward on K-theory of perfect complexes comes from the following category-level
statement.

Lemma 14.8. Let f : X → Y be a map of compact complex manfiolds. Then f∗ : CX → CY
sends Perf(X) to Perf(Y ).

Proof. Let us more generally prove the claim when f is a boundaryless proper map between
complex manifolds with boundary. By descent and proper base-change, we can reduce to where Y
is a closed polydisk, in particular proper. From Theorem 12.18 we know that f∗F ∈ Dpc(Y ) for
F ∈ Dpc(X), so in particular for F ∈ Perf(X). Thus it suffices to show that f∗F is a compact
object of CY when F ∈ Perf(X). But a perfect complex on a compact analytic space is a compact
object (by descent from the affinoid case), so for this it suffices to show that f∗ preserves compact
objects. And for that it suffices to see that the right adjoint f ! commutes with direct sums. But
we can factor f as the composition of an lci Zariski closed immersion followed by a smooth map
using the graph trick, so this follows claim follows from the formulas given for f ! in those two cases
in the previous lecture. �

Thus, for a map f : X → Y of compact complex manifolds, we have not just the contravariant

f∗ : K0(Perf(Y ))→ K0(Perf(X))

induced by pullback of perfect complexes, but also the covariant

f∗ : K0(Perf(X))→ K0(Perf(Y ))

induced by pushforward of perfect complexes.
We also have a pushforward structure on Hodge cohomology, defined in a completely different

way: we can take

f∗ : Hdg(X)→ Hdg(Y )

to be the dual to f∗ : Hdg(Y )→ Hdg(X) via the self-duality of Hdg(−) coming from Serre duality.
Then the fact of life is that our natural transformation

ch : K0(Vect(X)) −→ H0 Hdg(X)

does not intertwine these pushforward structures (why should it?). However, this can be corrected
by modifying the pushforward structure on Hodge cohomology, namely, by conjugating with the
Todd classes of the tangent bundles. Formally:

Theorem 14.9. We work in the category of compact complex manifolds.

(1) There is a natural transformation c̃h : K0(Perf(X))→ H0 Hdg(X) of multiplicative coho-
mology theories on compact complex manifolds extending ch : K0(Vect(X)) −→ H0 Hdg(X).

(2) If f : X → Y is a map of compact complex manifolds, then for c ∈ K0(Perf(X)), we have

c̃h(f∗c) · Td(TY ) = f∗(c̃h(c) · Td(TX)) ∈ H0 Hdg(Y ).

When Y = ∗, this GRR theorem exactly recovers the HRR theorem. But to prove even that
special case, we need to consider the general case.

Remark 14.10. In principle, one should state and prove this result more generally, for an
arbitrary proper map of not-necessarily-compact complex manifolds. The proof we present here
does not directly give that generalization.



132 CONDENSED MATHEMATICS AND COMPLEX GEOMETRY

Now we can explain the strategy of proof. We will introduce an intermediary cohomology theory
HH(X), which in some sense lies halfway between K(Perf(X)) and Hdg(X). This HH(X) also has

a natural pushforward structure. We will define c̃h as a composition of natural transformations of
multiplicative cohomology theoreis

K0(Perf(X))
α−→ H0 HH(X)

β−→ H0 Hdg(X),

where:

(1) α also commutes with pushforwards, on the nose, without any Todd classes or correction
factors;

(2) β is an isomorphism.

This reduces the GRR problem to showing that two different pushfowards structures on the
same cohomology theory agree: namely, the cohomology theory is Hodge cohomology, and the two
different pushforwards are the one from Serre duality twisted by the Todd class, and the one coming
from HH(X) via the isomorphism β.

In the rest of this lecture, we will define HH(X) and produce the isomorphism β, and in the
next lecture we will do the remainder of the work.

Definition 14.11. Let X be a complex manifold with boundary, and let ∆ : X → X × X
denote the diagonal. Define the Hochschild homology

HH(X) := ∆∗∆∗OX ∈ Perf(X),

and
HH(X) = RΓ(X;HH(X)) ∈ D(Liqp).

Note that these are commutative algebra objects, contravariantly functorial in X via pullback.
By descent, they are determined by the affinoid case, and if X = Spa(A) is affinoid, then

HH(X) = A⊗A⊗A A,
where all tensor products are derived tensor products of liquid spaces. Here let’s say that A-algebra
structure on HH(X), promoting it to HH(X), comes from the right hand factor.

The first step to constructing the isomorphism β relating Hochschild homology to Hodge coho-
mology is the Hochschild-Kostant-Rosenberg (HKR) theorem.

Theorem 14.12. Let X be a complex manifold with boundary. Then there is a natural isomor-
phism

H∗HH(X) ' ⊕iΩi[i]

of graded commutative algebra objects in the category of coherent sheaves on X.

Proof. By descent, it suffices to construct such a natural isomorphism when X = Spa(A) is an
affinoid isomorphic to a closed polydisk. Take the boundary map associated to the fiber sequence

I → A⊗A→ A

and apply −⊗A⊗A A; this gives a natural map of A-modules

HH(A)→ ΣI ⊗A⊗A A,
whence on H1 a natural map of A-modules

H1HH(A)→ Ω1
A.
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It suffices to show that this map is an isomorphism, and that

Λ∗AH1HH(A)
∼→ H∗HH(A).

Choosing an isomorphism with the closed unit disk, the resulting map

C[x1, . . . , xn]→ A

is idempotent in liquid algebras and flat as a map of discrete rings, so we reduce to the analogous
claims for A = C[x1, . . . , xn], where it is a simple Koszul complex calculation. (One can even use
a Künneth argument to reduce to the case n = 1.) �

Now we would like to promote this to a natural commutative algebra isomorphism HH(X) '
⊕iΩi[i] in CX . For that we will use a trick: the action of Adams operations on HH(X). Again, by
descent it suffices to consider the affinoid case X = Spa(A). Then

HH(A) = A⊗A⊗A A = A⊗S
1
,

the coproduct of A indexed by the anima S1 in the ∞-category of commutative algebra objects of
D(Liqp). Indeed, this holds because the anima S1 is the pushout of ∗ ← ∗ t ∗ → ∗. Moreover, the
A-algebra structure on HH(A), promoting it to HH(A), comes from the inclusion of a base-point
in S1.

We consider the degree two map S1 → S1. It sends the base-point to the base-point, so it
induces a natural commutative A-algebra endomorphism

ψ2 : HH(A)→ HH(A).

The key is the following.

Lemma 14.13. On Hi HH(A), the endomorphism ψ2 induces the map of multiplication by 2i.

Proof. By multiplicativity and HKR, it suffices to check this on H1, and as in the previous
proof we can reduce to the case of a polynomial algebra in one generator, where it is a simple
calculation after choosing a simplicial model for the degree two map on S1. �

Now we have the more refined HKR theorem.

Theorem 14.14. Let X be a complex manifold with boundary. Then there is a natural isomor-
phism

HH(X) ' ⊕iΩi[i] = Hdg(X)

of commutative algebra objects in CX , and hence on global sections a natural isomorphism

β : HH(X) ' Hdg(X)

of commutative algebra objects in D(Liqp).

Proof. Note that Hdg(X) is the free commutative algebra object on Ω1[1]. Indeed, we are in
characteristic 0, so there are no higher derived functors of Σn-invariants, and as Ω1[1] lives in odd
degree the symmetric power becomes an alternating power due to the Koszul sign rule. Thus, by
the above HKR theorem on homology, it suffices to show that there’s a natural map

(H1HH(X))[1]→ HH(X)

in CX inducing an isomorphism on H1. For this, work on affinoids, and consider ψ2 just as an
A-module endomorphism of HH(A), giving an A[T ]-module structure where T acts by ψ2. Then
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as T −2 and T −2i generate the unit ideal for i 6= 1, the previous lemma implies that the A-module
map

HH(A)→ HH(A)[
1

T − 2
]

is an isomorphism on homology in all degrees 6= 1. But in degree 1 the target has vanishing
homology because T −2 acts both as 0 and as an isomorphism. It follows that the fiber of this map
identifies with (H1HH(A))[1], giving the required construction. �

Finally, in order to segue into the next lecture, we explain a categorical reinterpretation of this
Hochschild homology HH(X) in the case where X is compact (proper over ∗). In fact, we will see
in this case that HH(X) only depends on the ∞-category CX , tensored over our base symmetric
monoidal ∞-category C∗ = D(Liqp).

More precisely, we will implicitly fix a cut-off cardinal in our condensed world, so that all our
∞-categories are presentable. Then our ambient setting will be

ModC∗(PrL).

Here PrL is the ∞-category of presentable ∞-categories, with morphisms given by the colimit-
preserving functors, or equivalently those which admit a right adjoint. This PrL is a symmetric
monoidal ∞-category with respect to Lurie’s tensor product, which is characterized by the fact
that maps

C ⊗ D → E
in PrL are the same as functors

C × D → E
which preserve colimits in each variable separately. Moreover PrL admits all colimits, and the
tensor product on PrL preserves colimits in each variable. Note finally that C∗ is a commutative
algebra object in this symmetric monoidal ∞-category PrL, because of the liquid tensor product
on C∗ which commutes with colimits in each variable. Thus ModC∗(PrL) is defined, and is itself
symmetric monoidal, via relative tensor product over C∗.

As an example of a tensor product calculation in ModC∗(PrL) (valid more generally with C∗
replaced by any commutative algebra object in PrL), suppose given two algebras A and B in C∗.
Then ModA(C∗),ModB(C∗) ∈ ModC∗(PrL), and we have

ModA(C∗)⊗C∗ ModB(C∗) ' ModA⊗B(C∗),

see [Lur17] Remark 4.8.5.17.
We can use this basic fact to prove the following.

Lemma 14.15. Let X and Y be complex analytic spaces. Then

CX ⊗C∗ CY
∼→ CX×Y .

Proof. If X = Spa(A) is affinoid, then CX×Y ' ModA(CY ) and the claim follows as in
the previous remarks. Now suppose X is quasiaffinoid, inside an affinoid Spa(A) with closed
complement given by the idempotent algebra B ∈ ModA. The localization sequence

ModB
i∗→ ModA

j∗→ CX

is C∗-linear, and the left adjoints are also C∗-linear. It then follows from the symmetric monoidal
(∞, 2)-category structure of ModC∗(PrL) that −⊗C∗CY sends this localization sequence to another
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such localization sequence, see [HSS17], and combining again with the remarks about tensoring
with module categories this implies the claim. For general X, by descent we have that in Cat∞ the
pullback functors give

CX = lim←−
U⊂X

CU ,

where U ⊂ X runs over all quasi-affinoid open subsets of X. As the pullback functors along open
inclusions have left adjoints which are C∗-linear by the projection formula, this gives

CX = lim−→
U⊂X

CU

in ModC∗(PrL), via left adjoint to pullback, see [Lur09] 5.5.3.18. In this manner we reduce the
general case to the quasi-affinoid case, giving the result. �

Now we can give the promised categorified interpretation of HH(X) for X proper. This is
based on the concept of “dimension” of a dualizable object in a symmetric monoidal ∞-category.
If c ∈ C⊗ is dualizable, then by definition we have

dim(c) =
[
1→ c⊗ c∨ → 1

]
∈ EndC(1).

Here 1 is the unit object of C, the first map is the coevaluation for the duality, and the second map
is the evaluation for the duality.

In our case, where C = ModC∗(PrL), we have

EndC(1) = C∗,

or more precisely the anima of objects of C∗, so given a dualizable object M of ModC∗(PrL) we get
an object

dim(M) ∈ C∗.
Then the result is the following.

Theorem 14.16. Let X be a proper complex manifold with boundary. Then there is a natural
identification

dim(CX) = HH(X).

Proof. We claim that CX is canonically self-dual as an object of ModC∗(PrL), with coevalu-
ation map given by pull-push along

∗ ← X
∆→ X ×X,

and evaluation map given by pull-push along

X ×X ∆← X → ∗.

Here we use that CX×X = CX ⊗ CX by the previous lemma to correctly interpret these maps
as candidate evaluation and coevaluation maps. To prove these give a duality datum, we just
need to check the adjunction identities, but they follow immediately from the proper base-change
theorem. Composing coevaluation and evaluation we find exactly the definition of HH(X), proving
the identification with the dimension of CX . �

In the next lecture we will be more specific about the functoriality of this identification, and
carry out the rest of the argument for GRR.



136 CONDENSED MATHEMATICS AND COMPLEX GEOMETRY

Remark 14.17. Even if X is not proper, we still have that CX is canonically self-dual: one just
uses proper pushforward instead of usual pushforward in the push-pull formalism. The conclusion
in that case is that dim(CX) identifies with the compactly supported cohomology of HH(X).
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15. Lecture XV: Hirzebruch–Riemann–Roch, part 2

This is the final lecture of the course. The goal is to finish the proof of the (Grothendieck–
)Hirzebruch–Riemann–Roch theorem for compact complex manifolds. Given the work done in the
previous lecture, this naturally splits into two pieces:

(1) For any compact complex manifold X, construct the (extended) Chern character

c̃h : K0(Perf(X))→ H0HH(X) ∼= H0Hdg(X)

as a map of contravariant functors from compact complex manifolds to rings, and show
that after restriction along the natural map K0(Vect(X)) → K0(Perf(X)) it agrees with
the Chern character ch defined in the last lecture.

(2) For any map f : X → Y of compact complex manifolds, show that the diagram

K0(Perf(X))
td(TX)·c̃h //

f∗
��

H0Hdg(X)

f∗
��

K0(Perf(Y ))
td(TY )·c̃h // H0Hdg(Y )

commutes.

For the first part, we will need to study the functoriality of the association taking any dualizable
C ∈ ModC∗(PrL) to the (relative) Hochschild homology HH(C) := HH(C/C∗). Here C∗ = D(Liqp)
(or rather, a truncated version for some fixed κ). This discussion actually works more generally
in symmetric monoidal (∞, 2)-categories M ; for us M will be ModC∗(PrL). A detailed discussion
of this functoriality is in the work of Hoyois–Scherotzke–Sibilla [HSS17]. We note that we can
actually get by with the same constructions for symmetric monoidal 2-categories (ignoring all
higher morphisms).

Recall that X ∈ M is dualizable if there is some object X∨ ∈ M , a coevaluation map c : 1 →
X ⊗X∨, and an evaluation map d : X∨ ⊗X → 1, such that the composites

X
c⊗1−−→ X ⊗X∨ ⊗X 1⊗d−−→ X

and

X∨
1⊗c−−→ X∨ ⊗X ⊗X∨ d⊗1−−→ X∨

are equal (via implicit invertible 2-morphisms) to the identity. In this case X∨ is necessarily the
internal Hom from X to 1; in fact, for all Y , the internal Hom from X to Y is given by X∨ ⊗ Y .

Now given any endomorphism f : X → X, one can define an endomorphism of 1 in M as the
composite

trM (f |X) := (1
c−→ X ⊗X∨ f⊗1−−→ X ⊗X∨ d−→ 1) ∈ EndM (1).

This gives a natural functor of (∞, 1)-categories

trM (−|X) : EndM (X)→ EndM (1).

In particular, this can be applied to the identity f = idX , giving

dimM (X) ∈ EndM (1).

An important property of the trace construction is its cyclic invariance. This mirrors the
property tr(AB) = tr(BA) for matrices. In this abstract situation, assume given dualizable X,Y ∈
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M and maps a : X → Y and b : Y → X. Let f = ba : X → X and g = ab : Y → Y be the induced
endomorphisms. Then there is an isomorphism

trM (f |X) ∼= trM (g|Y )

defined by the following diagram

1
cX // X ⊗X∨

a⊗b∨

&&

f⊗1 // X ⊗X∨ dX // 1

1
cY // Y ⊗ Y ∨

g⊗1 // Y ⊗ Y ∨ dY // 1.

Now we want to analyze the functoriality of dimM (X) in X. It will be useful to study more
generally the functoriality of trM (f |X). Assume given dualizable X,Y ∈M and a map F : X → Y
that admits a right adjoint G : Y → X in M . (Recall that the theory of adjoints works in the
generality of 2-categories, or more generally (∞, 2)-categories – it is a morphism in the opposite
direction together with unit and counit transformations making some obvious diagrams commute.
Adjoints are unique (up to unique isomorphism) when they exist.) Moreover, consider a diagram

X
F //

f
��

Y

g

��
X

F // Y

(with an implicit 2-morphism, which actually does not need to be invertible – it can be any map
in the direction Ff → gF ). Then one gets an induced map

trM (f |X)→ trM (fGF |X) ∼= trM (FfG|Y )→ trM (gFG|Y )→ trM (g|Y ).

In [HSS17], it is shown that this gives in particular a symmetric monoidal functor of symmetric
monoidal (∞, 1)-categories

dimM : Mdual → EndM (1)

where Mdual ⊂ M is the sub-(∞, 1)-category whose objects are the dualizable objects of M , and
whose morphisms are those morphisms that admit right adjoints (and whose 2-morphisms are
equivalences). As stated before, we will actually only require the version of this result that ignores
n-morphisms for n > 2.

Now for any proper map π : X → Y of complex-analytic spaces, the pullback functor

π∗ : CY → CX

admits a right adjoint π∗ which satisfies the projection formula, and thus indeed defines a mor-
phism in M = ModC∗(PrL). In particular, using also Lemma 14.15 and the dualizability (in fact
selfduality) of CX , the functor X 7→ CX gives a symmetric monoidal functor from the category of
compact complex manifolds to Mdual. Composing with Hochschild homology, we get a contravariant
symmetric monoidal functor

X 7→ HH(X) ∈ D(Liqp).

(Let us stress again that since many lectures, all liquid vector spaces are over C, not R.) Moreover,
Theorem 14.14 shows that, as a symmetric monoidal functor, this is isomorphic to

X 7→ Hdg(X),
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giving the symmetric monoidal comparison isomorphism β : HH(X) ∼= Hdg(X).
Finally, we can discuss the construction of the refined Chern character

c̃h : K0(Perf(X))→ H0HH(X) ∼= H0Hdg(X).

Indeed, given E ∈ Perf(X), we get the functor −⊗CE : C∗ → CX , whose right adjoint RΓ(X,−⊗OX

E∨) : CX → C∗ is also C∗-linear. In particular, it induces a map C = HH(C∗) → HH(X), and we
let

c̃h(E) ∈ H0HH(X)

be the image of 1 ∈ C under this map.

Proposition 15.1. For a cofiber sequence E′ → E → E′′ in Perf(X), one has

c̃h(E) = c̃h(E′) + c̃h(E′′) ∈ H0HH(X).

Proof. Let S2(CX) be the C∗-linear presentable stable ∞-category of cofiber sequence A′ →
A → A′′ in CX . It comes with three projections to CX , given respectively by A′, A, and A′′, and
the given cofiber sequence induces a functor C∗ → S2(CX) in Mdual. It suffices to see that the
projections S2(CX)→ CX given by A′ and A′′ induce an isomorphism

HH(S2(CX)) ∼= HH(CX)⊕HH(CX)

under which the map HH(S2(CX))→ HH(CX) induced by the projection to A is given by the sum
map. The second claim actually follows from the first, using the natural splitting CX × CX →
S2(CX) given by split cofiber sequences.

For the first claim, it suffices to see that the inclusion CX → S2(CX) given by A′ 7→ (A′ →
A′ → 0) and the projection (A′ → A→ A′′) 7→ A′′ induce a cofiber sequence

HH(CX)→ HH(S2(CX))→ HH(CX).

But the identity endofunctor idS2(CX) : S2(CX)→ S2(CX) naturally sits in a cofiber sequence

((A′ → A→ A′′) 7→ (A′ → A′ → 0))→ idS2(CX) → ((A′ → A→ A′′) 7→ (0→ A′′ → A′′))

which induces a cofiber sequence after applying tr(−|S2(CX)). Using cyclic symmetry of the trace,
one can identify the first term with the trace of the identity on CX , and similarly for the last term,
and this gives the desired result. �

Thus, we get the desired map

c̃h : K0(Perf(X))→ H0HH(X) ∼= H0Hdg(X),

and it follows from the construction that it is a contravariant map of rings.

Proposition 15.2. The restriction of c̃h along K0(Vect(X)) → K0(Perf(X)) agrees with the
Chern character ch.

Proof. By the splitting principle and Proposition 15.1, it suffices to check this on the class of
line bundles. One can now make an argument using the classifying stack [∗/Gm], and computing

its Hodge cohomology to be C[[c1]]; but this really requires the ∞-categorical functoriality of c̃h.
We give a more ad hoc argument below.

We first observe that if Z ⊂ X is a closed submanifold with coherent ideal sheaf I ⊂ OX , then
one can look at the full subcategory CX−Z of CX of all objects whose reduction modulo I vanishes;
if Z would be a Cartier divisor, this would amount to algebraically inverting I. Then CX−Z is still
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dualizable in ModC∗(PrL), and still satisfies a Hochschild–Kostant–Rosenberg theorem. For any
vector bundle F on X, the map RΓ(X,F )→ RΓ(X −Z,F ) is an isomorphism in degrees less than
codim(Z ⊂ X)− 1.

Now given a line bundle L on X, consider the projective space X̃ = PX(LN ⊕ ONX ) for some

large N . This contains PX(LN ) ∼= X × PN−1 and PX(ONX ) ∼= X × PN−1; let Z ⊂ X̃ be their
disjoint union. Away from Z, there are two projection maps to PN−1, and the pullback of L to

X̃ − Z (i.e. to C
X̃−Z) is isomorphic to the ratio of the pullbacks of the corresponding line bundles

OPN−1(1). Also, the pullback map H0Hdg(X) → H0Hdg(X̃ − Z) is injective if N is chosen large
enough. All of this reduces us to the case of the line bundle OPN−1(1).

Now H0Hdg(PN−1) ∼= C[c1]/cN1 where c1 = c1(O(1)). It follows that c̃h(O(1)) is given by some
truncated power series in c1(O(1)). In fact, these truncated power series are compatible under

pullback, giving a formula c̃h(O(1)) = f(c1(O(1))) for some f ∈ C[[t]]. Computing for P1, one

checks that f(t) ≡ 1 + t modulo t2. On the other hand, c̃h is multiplicative, and using this on
(PN−1)2 along with c1(L ⊗ L′) = c1(L) + c1(L′), we get

f(t+ t′) = f(t)f(t) ∈ C[[t, t′]].

This means that f(t) = exp(λt) for some λ ∈ C, which (by f(t) ≡ 1 + t modulo t2) must be given
by λ = 1. �

This finishes the first part. It remains to prove the following theorem.

Theorem 15.3. For any map f : X → Y of compact complex manifolds, the diagram

K0(Perf(X))
td(TX)·c̃h //

f∗
��

H0Hdg(X)

f∗
��

K0(Perf(Y ))
td(TY )·c̃h // H0Hdg(Y )

commutes.

In fact, given the definition of c̃h, this naturally splits into two diagrams. Note that any map
f : X → Y of compact complex manifolds is a local complete intersection (by factoring it via the
graph) and hence the right adjoint f ! : CY → CX to f∗ : CX → CY is given by f !OY ⊗OX

f∗, and
in particular is C∗-linear. Thus, f∗ induces a covariant functoriality on Hochschild homology.

Proposition 15.4. For any map f : X → Y of compact complex manifolds, the diagram

K0(Perf(X))
c̃h //

f∗
��

H0HH(X)

f∗
��

K0(Perf(Y ))
c̃h // H0HH(Y )

commutes.

Proof. This is a formal consequence of the functoriality of Hochschild homology. Indeed,
take any E ∈ Perf(X). Going via the upper right corner, one gets the element of H0HH(Y )
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corresponding to the effect on Hochschild homology of the functor

C∗
−⊗CE−−−−→ CX

f∗−→ CY .

But by the projection formula, this functor agrees with

C∗
−⊗Cf∗E−−−−−→ CY ,

whose effect on Hochschild homology gives the element of H0HH(Y ) one obtains when going via
the left lower corner. �

Thus, it remains to prove the following result.

Proposition 15.5. For any map f : X → Y of compact complex manifolds, the diagram

HH(X)
td(TX)·//

f∗
��

Hdg(X)

f∗
��

HH(Y )
td(TY )·// Hdg(Y )

commutes (up to equivalence), where the upper maps are the HKR isomorphisms multiplied with
the Todd class.

To prove this, we will actually pass to an abstraction, as follows.

Definition 15.6. Consider the category Man of compact complex manifolds, and let (S,⊗) be
a symmetric monoidal 1-category.

(1) An abstract S-valued cohomology theory on Man is a contravariant symmetric monoidal
functor

H∗ : Manop → S

that takes disjoint unions to products, and about which we ask the following weak form
of the projective bundle formula: For any X ∈ Man and any vector bundle E of positive
rank on X, the pullback map

H∗(X)→ H∗(PX(E))

is a monomorphism.
(2) Let H∗ be an abstract S-valued cohomology theory on Man. A pushforward structure on

H∗ is a covariant functor
H∗ : Man→ S

with an identification
H∗|Man'

∼= H∗|Man'

to the subcategory Man' ⊂ Man of all objects, but only isomorphisms as morphisms,
subject to the following conditions:
(a) For any transverse pullback square

X ′
g′ //

f ′

��

X

f
��

Y ′
g // Y,
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one has

g∗f∗ = f ′∗g
′∗ : H∗(X)→ H∗(Y ′),

where we denote g∗ = H∗(g) and f∗ = H∗(f), etc.
(b) For any map f : X → Y and any Z, the map

(f × idZ)∗ : H∗(X × Z) = H∗(X)⊗H∗(Z)→ H∗(Y × Z) = H∗(Y )⊗H∗(Z)

agrees with f∗ ⊗H∗(Z).
(c) Moreover, we ask a weak form of the projective bundle formula: for any X and line

bundle L on X, the map

H∗(PX(L⊕ 1))
(π∗,∞∗)−−−−−→ H∗(X)×H∗(X)

is a monomorphism.

Example 15.7. We will take S to be D(Liqp), the derived 1-category of p-liquid C-vector spaces.
(In fact, everything will take place in D(C) ⊂ D(Liqp).) We have two pushforward structures on
H∗ = HH ∼= Hdg: The first by the covariant functoriality of Hochschild homology, and the second
as constructed in the last lecture, using Serre duality.

Remark 15.8. If (H∗, H∗) is any abstract cohomology theory with pushforwards, one gets a
version of the projection formula. Namely, for any map f : X → Y and classes x ∈ H∗(X) and
y ∈ H∗(Y ) (where x ∈ H∗(X) is meant to be read as x : 1S → H∗(X)), one has

f∗x · y = f∗(x · f∗y).

The product used here is defined as the composite of pullback to the diagonal and the exterior
product (coming from the symmetric monoidal structure of H∗). Thus

f∗x · y = ∆∗Y (f∗x⊗ y) = ∆∗Y (f × idY )∗(x⊗ y)

using condition (b). On the other hand

f∗(x · f∗y) = f∗∆
∗
X(x⊗ f∗y) = f∗∆

∗
X(idX × f)∗(x⊗ y)

by the symmetric monoidal nature of H∗ in the second equation. Finally, the result follows from
the transverse pullback square

X
(idX ,f)//

f
��

X × Y

f×idY

��
Y

∆Y // Y × Y.

Remark 15.9. Given any abstract cohomology theory with pushforward (H∗, H∗), one can
define some rudimentary theory of characteristic classes. We will only require Euler classes of
line bundles: If L is a line bundle on X, let PX(L∨ ⊕ 1) be the projective space over X that
compactifies the A1-bundle corresponding to L into a P1-bundle. It comes with a zero section
0 : X → PX(L∨ ⊕ 1), and we set

e(L) = 0∗0∗(1) ∈ H∗(X).
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Example 15.10. In Hodge cohomology, the Euler class of a line bundle is given by its first
Chern class c1. In Hochschild homology, the Euler class is given by 1 − e−c1 . Indeed, using the
pushforward compatibility of 0∗ with the Chern character, 0∗(1) comes from the perfect complex
that is given by the zero section, which is resolved by the structure sheaf and the ideal sheaf of the
zero section. The first corresponds to 1, the second corresponds to O(−1), whose Chern character
is e−c1 .

Note that in the previous example, one precisely sees a discrepancy of c1 versus 1−e−c1 , getting
us close to the definition of the Todd class.

Remark 15.11. Let (H∗, H∗) be an abstract cohomology theory with a pushforward structure.
Assume that t : K0(Vect(X)) → H∗(X)× is a contravariant natural transformation from the
additive group K0(Vect(X)) to the multiplicative group of units of the ring H∗(X) (i.e. maps 1S →
H∗(X) that admit a map 1S → H∗(X) that is a multiplicative inverse under H∗(X) ⊗H∗(X) ∼=
H∗(X ×X)

∆∗X−−→ H∗(X)). Then one can define t-twisted pushforward maps f t∗ = t(TY )−1f∗t(TX)
for f : X → Y , and it is easy to see that this is still a pushforward structure.

The previous discussion then shows that it is enough to prove the following abstract result.

Theorem 15.12. Let (H∗, H∗) and (H ′∗, H ′∗) be two abstract S-valued cohomology theories with
pushforward structures, and let α : H∗ → H ′∗ be a map of abstract S-valued cohomology theories.
Assume that α is compatible with Euler classes of line bundles, i.e. for any X and any line bundle
L on X, one has α(e(L)) = e′(L).

Then α commutes with all pushforward maps.

Proof. First, we note that given any such (H∗, H∗), there is a natural self-duality of H∗(X) ∈
S, given by the coevaluation

1S = H∗(∗)
π∗X−−→ H∗(X)

∆X∗−−−→ H∗(X ×X) ∼= H∗(X)⊗H∗(X)

and evaluation

H∗(X)⊗H∗(X) = H∗(X ×X)
∆∗X−−→ H∗(X)

πX∗−−→ H∗(∗) = 1S .

Moreover, with respect to this self-duality (which depends on the pushforward structure), the
maps f∗ : H∗(X) → H∗(Y ) are the duals of f∗ : H∗(Y ) → H∗(X). In particular, to show that α
commutes with the pushforward maps, it is enough to show that it commutes with the self-dualities,
for which in turn it is enough to show that it is compatible with the coevaluation maps (as these
determine the self-duality). Thus, it suffices to show that

α(∆X∗(1)) = ∆′X∗(1).

As H∗ takes disjoint unions to products, we can assume that X is connected.
We will now show more generally that for any closed immersion i : Z ↪→ X of compact complex

manifolds (of codimension c), one has α(i∗(1)) = i′∗(1). Consider first the case where Z is of
codimension c = 1. In that case, we can define the line bundle L = OX(Z), which comes with
a natural section s : X → L vanishing exactly along Z, and 0 : X → L. In particular, we get a
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transverse pullback square

Z
i //

i
��

X

s
��

X
0 // PX(L∨ ⊕OX).

Now note that s∗ = 0∗ : H∗(X)→ H∗(PX(L∨ ⊕OX)): By the weak form of the projective bundle
formula we asked for, it suffices to check this after pushing forward to X (where it follows as s and
0 are both sections) and pulling back to ∞ (where it follows from the transverse pullback formula,
and the emptiness of the intersection with ∞). Thus,

i∗(1) = 0∗s∗(1) = 0∗0∗(1) = e(L),

and the claim follows from compatibility with Euler classes.
Note that if we know α(i∗(1)) = i′∗(1) for some i : Z ⊂ X, then in fact for all z ∈ H∗(Z) in the

image of i∗ : H∗(X)→ H∗(Z), one has α(i∗(z)) = i′∗(α(z)). Indeed, if z = i∗(x), then

α(i∗(z)) = α(i∗(i
∗(x))) = α(i∗(1) · x) = α(i∗(1)) · α(x) = i′∗(1) · α(x) = i′∗i

′∗(α(x)) = i′∗α(z)

using the compatibility of α with pullback and multiplication.
Next, consider the situation of a vector bundle E of rank r on a compact complex manifold

X, and the embedding of the zero section 0 : X ↪→ PX(E∨ ⊕ OX). We want to show that
α(0∗(1)) = 0′∗(1). By the splitting principle, we can assume that E admits a complete flag

0 = E0 ⊂ E1 ⊂ . . . ⊂ Er = E.

In that case, one can factor

X = PX(OX) ⊂ PX(E∨1 ⊕OX) ⊂ . . . ⊂ PX(E∨r ⊕OX) = PX(E∨ ⊕OX)

into a series of codimension 1 embeddings. Moreover, the corresponding line bundles

OPX(E∨i ⊕OX)(PX(E∨i−1 ⊕OX))

on PX(E∨i ⊕OX) lift to PX(E∨ ⊕OX) (they are twists of O(1) by the pullback of the line bundle
Ei/Ei−1 on X). Thus, the result can be inductively reduced to the case of codimension 1.

Finally, we consider the general case i : Z ↪→ X. The following argument is inspired by an
argument in [Ful98, Chapter 15]. Let D be the blow-up of X × P1 along Z × {0}. Then there is a

projection D → P1 with a map ĩ : Z × P1 ↪→ D over P1, which after pullback to P1 \ {0} becomes
isomorphic to (Z ↪→ X)× (P1 \ {0}), while after pullback to 0 ∈ P1, we get

Z ↪→ PZ(N∨ ⊕ 1) ↪→ D ×P1 {0}
where N is the normal bundle of Z in X, and the second map is an inclusion of an irreducible
component, where the other irreducible component does not meet Z.

Let iZ,1 : Z = Z × {1} ↪→ Z × P1 and iZ,0 : Z = Z × {0} ↪→ Z × P1 be the inclusions. Then
iZ,0∗(1) = iZ,1∗(1) = e(O(1)). Also consider iX,1 : X = X × {1} ↪→ D and i0 : PZ(N∨ ⊕ 1) ↪→ D
and 0 : Z ↪→ PZ(N∨ ⊕ 1). Then

iX,1∗i∗(1) = ĩ∗iZ,1∗(1) = ĩ∗iZ,0∗(1) = i0∗0∗(1).

In particular,

α(iX,1∗i∗(1)) = α(i0∗0∗(1)) = i′0∗α(0∗(1)) = i′0∗0
′
∗(1)
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by the codimension 1 case and embedding of the zero section case handled before (and noting that

0∗(1) is in the image of i∗0, as it is in fact i∗0 applied to ĩ∗(1)).
Now we observe that also

i′X,1∗α(i∗(1)) = α(iX,1∗i∗(1))

using the codimension 1 case for iX,1 (and again noting that i∗(1) is in the image of i∗X,1, again

when applied to ĩ∗(1)), and
i′X,1∗i

′
∗(1) = i′0∗0

′
∗(1)

as we proved the similar assertion for the unprimed version before. In total, we get

i′X,1∗α(i∗(1)) = α(iX,1∗i∗(1)) = i′0∗0
′
∗(1) = i′X,1∗i

′
∗(1).

But i′X,1∗ is a (split) monomorphism (as iX,1 : X ↪→ D admits a splitting), so we get α(i∗(1)) = i′∗(1),
as desired. �
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