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Abstract. We explain a derived version of the basic construction of localisations of module

categories by means of idempotent ideals, which lie at the heart of Faltings’ almost ring theory.

1. Introduction

Almost ring theory was introduced by Faltings in [Fal88Fal88, Fal02Fal02], as a way capturing and prop-
agating vanishing phenomena in Galois cohomology, building on initial work of Tate in [Tat67Tat67].
The basic set-up of the theory was then reworked by Gabber and Ramero in [GR03GR03, GR04GR04] to
simply rely on a commutative ring R, and ideal I ⊆ R satisfying two assumptions:

(1) I is idempotent (that is I = I2), and
(2) I is flat as an R-module.

The most prominent example of this situation is given by the ideal of topologically nilpotent
elements I inside the ring of power bounded elements R of a perfectoid field. Gabber and Ramero
in fact showed that, without much loss, the second condition can be generalised further by only
requiring I ⊗R I to be flat over R, and eventually that one can do largely without it.

In any case, one says that a morphism of R-modules is an I-almost isomorphism if its kernel
and cokernel are annihilated by all elements of I. The localisation aModI(R) of Mod(R) at
these maps, the category of I-almost R-modules, retains many good homological properties: For
example the tensor product of R-modules descends to it and its derived category can be described
as the localisation of the derived category of R-modules localised at those maps inducing I-almost
isomorphisms on homology groups.

In fact, these desirable properties are all consequences of the fact that the multiplication

R/I ⊗L
R R/I −→ R/I

is an equivalence, if I satisfies the properties listed above, making R→ R/I into what is sometimes
called a derived localisation. In the case that the flatness assumption is required only for I ⊗R I,
the analogous statement is that the commutative differential graded algebra R � (I ⊗R I) with

Hi(R � (I ⊗R I)) =


R/I i = 0

ker(I ⊗R I → I) i = 1

0 else

is a derived localisation of R.
The purpose of the present note is to explain that by passing to derived categories directly

one can do away with the flatness hypothesis entirely while still retaining this simple explanation
for the good properties of the derived category of I-almost modules. In fact, once attention is
restricted to derived categories, one can also replace the ring R by homotopical generalisations.
We show:

Theorem A. Let R be an animated commutative ring and consider the full subcategory LQR of
R/AnCRing spanned by the maps φ : R→ S for which

(1) the multiplication S ⊗L
R S → S is an equivalence, i.e. φ is a derived localisation, and

(2) π0(φ) : π0R→ π0S is surjective.

Then the functor

LQR −→ {I ⊆ π0R | I2 = I}, φ 7−→ ker(π0φ)
1
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is an equivalence of categories, where we regard the target as a poset via the inclusion ordering.
The inverse image of some I ⊆ π0(R) is given by the limit of the Amitsur complex for the map
R→ π0(R)/I.

In fact, there is an entirely analogous result for the Ek-rings of homotopy theory, which in
particular gives an existence result for ring structures on certain quotients, something that is
neither easy nor generally possible, see e.g. [Bur22Bur22]:

Theorem B. Let A be a connective Ek-ring with 1 ≤ k ≤ ∞, respectively. Consider again the
full subcategory LQR of A/AlgEk

(Sp) spanned by the maps φ : A→ B for which

(1) the multiplication B ⊗A B → B is an equivalence, i.e. φ is a localisation,
(2) B is connective, and
(3) π0(φ) : π0A→ π0B is surjective.

Then the functor
LQA −→ {I ⊆ π0A | I2 = I}, φ 7−→ ker(π0φ)

is an equivalence of categories, where we again regard the target as a poset via the inclusion
ordering. The inverse image of some I ⊆ π0(R) can be described more directly as A/I∞, where

I∞ = lim
n∈Nop

J⊗An
I

with JI → A the fibre of the canonical map A → H(π0(A)/I). Furthermore, this inverse system
stabilises on πi for n > i+ 1.

To connect to the discussion of almost modules before, recall that for R a commutative animated
(e.g. static) ring, the derived category of R depends only on its underlying E1-ring HR, that is
we have D(R) ≃ Mod(HR), and that the animated commutative ring S corresponding to some
idempotent I ⊆ π0(R) necessarly satisfies HS ≃ (HR)/I∞ by the uniqueness assertions of the
theorems above. We shall therefore denote this ring by R/I∞ and restrict the discussion to the
case of E1-rings from here on. Recall then that a map of E1-rings φ : A → B with B ⊗A B ≃ B
via the multiplication, gives rise to a stable recollement

Mod(B) Mod(A) Mod(A)[φ-eq’s−1]

homA(B,−)

B⊗A−

homA(fib(φ),−)

fib(φ)⊗A−

where the φ-equivalences are those maps of A-modules that become equivalences after tensoring
with B, see e.g. [CDH+20CDH+20, Appendix A.4]; the picture indicates four adjunctions with left adjoints
on top, arranged into three horizontal Verdier sequences.

In the case at hand, B = A/I∞, we show that the image of the fully faithful restriction
Mod(A/I∞) → Mod(A) consists exactly of those A-modules M with I · πn(M) = 0 for all n ∈ Z,
and that a map is a φ-equivalence if and only if it induces an I-almost isomorphism on all homotopy
groups. The recollement thus takes the form

Mod(A/I∞) Mod(A) aModI(A)

homA(A/I∞,−)

A/I∞⊗A−

homA(I∞,−)

I∞⊗A−

exhibiting the I-almost A-modules as a split Verdier quotient of Mod(A), as desired; furthermore,
if A is an Ek-algebra, the entire recollement is suitably Ek−1-multiplicative, though we shall not
further expound that here.

We end this introduction with a typical example, which illustrates the extended range of ap-
plicability offered by the removal of the flatness assumption: On the one hand, consider for K a
field the commutative ring

Rn = K[T
1/2∞

1 , . . . ,T 1/2∞

n ] ..= K[Ti,j , i, j ∈ N, j ≤ n]/(T 2
i+1,j − Ti,j , i, j ∈ N, j ≤ n),

together with the ideal

In = (T
1/2∞

1 , . . . ,T 1/2∞

n ) ..= (Ti,j , i, j ∈ N, j ≤ n).
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which is evidently idempotent. It is flat only for n = 1 but nevertheless In ⊗L
Rn

In = In so that

Rn/I
∞
n = Rn/In = K

is still static. On the other hand, in Rn = Rn/(T1, . . . ,Tn) the ideal In = In/(T1, . . . ,Tn) is no
longer flat even for n = 1 and

π∗Rn/I
∞
n = ΛK [T1, . . . Tn]

is the exterior algebra on n generators in degree 1: The module I1 ⊗R1
I1 is still flat over R1,

giving this calculation for n = 1 and the general case then follows by multiplicativity. In this
example, a well-behaved almost theory still exists at the level of modules for n = 1. This fails for
n > 1, but the derived theory is largely unaffected.
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2. The proof

For the proof recall the category Ek-Mod(A) of Ek-modules over A, as constructed in [Lur17Lur17,
Sections 3.3 & 3.4], which is again Ek-monoidal under ⊗A. In contrast Mod(A) is only Ek−1-
monoidal; one has E1-Mod(A) = BiMod(A,A) and E∞-Mod(A) = Mod(A).

Proof of Theorem B. We start with the observation that LQA is indeed equivalent to a poset,
i.e. its mapping spaces are either empty or contractible, by the characterisation of localisations
of an Ek-ring A as ⊗A-idempotent objects in Ek-modules under A (the analogue indeed holds
for collections of idempotent objects in any monoidal category). Let us also immediately verify
that ker(π0φ) is indeed idempotent for φ : A → B a π0-surjective localisation among connective
Ek-rings. Tensoring the fibre sequence F → A→ B with F gives

F ⊗A F −→ F −→ F ⊗A B
and the right hand term vanishes since one has a fibre sequence

F ⊗A B −→ A⊗A B −→ B ⊗A B
whose right hand map (after identifying A⊗AB ≃ B) is a section of the multiplication B⊗AB → B
and thus an equivalence. But F is connective and the map π0(F ) → kerπ0φ surjective by the long
exact sequence of φ, whence a chase in the diagram

ker(π0φ)⊗π0A ker(π0φ) ker(π0φ)

π0F ⊗π0A π0F π0(F ⊗A F ) π0F
∼ ∼

shows that the multiplication ker(π0φ)⊗π0A ker(π0φ) → ker(π0φ) is surjective as desired.
Next, we verify the last claim from the statement, i.e. that the inverse system J⊗An

I stabilises

degreewise. In fact we show slightly more, namely that the cofibre A/JI ⊗A J⊗An
I of the canonical

map J⊗An+1
I → J⊗An

I is n-connective. Since A/JI = H(π0(A)/I) is an Ek-ring annihilated by I,
we immediately deduce that the homotopy groups of this cofibre are annihilated by I (from both
sides).

Now, for n = 0, the connectivity claim is clear, and if we inductively assume that A/JI⊗AJ⊗An
I

is n-connective, then
A/JI ⊗A J⊗An+1

I =
(
A/JI ⊗A J⊗An

I

)
⊗A JI
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is clearly also n-connective and its nth homotopy group is πn
(
A/JI ⊗A J⊗An

I

)
⊗π0A I. Since the

left hand term is annihilated by I, we compute

πn
(
A/JI ⊗A J⊗An

I

)
⊗π0A I = πn

(
A/JI ⊗A J⊗An

I

)
⊗π0(A)/I π0(A)/I ⊗π0A I

= πn
(
A/JI ⊗A J⊗An

I

)
⊗π0(A)/I I/I

2 = 0.

As the next step, we show that the tautological map M = A ⊗A M → A/I∞ ⊗A M is an
equivalence whenever the homotopy ofM is annihilated by I, or in other words that I∞⊗AM ≃ 0.
We start with the simplest case M = A/JI , where the claim is equivalent to the multiplication
map (

lim
n∈Nop

J⊗An
I

)
⊗A JI −→ lim

n∈Nop
J⊗An
I

being an equivalence. But since the limit stabilises degreewise and JI is connective, we can move
the limit out of the tensor product (the cofibre of the interchange map is a limit of terms with
growing connectivity), and then the statement follows from finality.

For an arbitrary A-module M concentrated in degree 0 and killed by the action of I, choose
a free resolution of π0M by π0(A)/I-modules, which by the Dold-Kan theorem yields a diagram
F : ∆op → D(π0(A)/I) with each Fn concentrated in degree 0, π0(Fn) free and colim∆op F ≃
(π0M)[0], so that colim∆op ιF ≃ M , where ι is the composite D(π0(A)/I) ≃ Mod(A/JI) →
Mod(A). But then

I∞ ⊗AM ≃ colimk∈∆op I∞ ⊗A ιFk ≃ 0

since each ιFk is a direct sum of A/JI . By exactness of I∞⊗A (−), the claim then follows for each
bounded A-module M whose homotopy is annihilated by I using the Postnikov tower of M . For
bounded below M , we have

I∞ ⊗AM ≃ I∞ ⊗A
(

lim
k∈Nop

τ≤kM

)
≃ lim
k∈Nop

I∞ ⊗A τ≤kM ≃ 0

by commuting the limit out using the same argument as above. Finally, for arbitrary M whose
homotopy is killed by I, we find

I∞ ⊗AM ≃ I∞ ⊗A (colimk∈N τ≥−kM) ≃ colimk∈N I
∞ ⊗A τ≥−kM ≃ 0.

Now, since A → A/JI = H(π0(A)/I) is a map of Ek-rings, it follows that JI → A is an
Ek-Smith-ideal in A. It then formally follows that so is J⊗An

I → A, whence A/J⊗An
I and thus

A/I∞ are Ek-rings; for completeness’ sake we briefly outline the argument at the end of this
section since we are unaware of a reference. Since π0(A/I

∞) = π0(A)/I, all homotopy groups
of A/I∞ are annihilated by I, and so the canonical map A → A/I∞ induces an equivalence
A/I∞ → A/I∞ ⊗A A/I∞, which shows that A→ A/I∞ is a localisation. Furthermore, it implies
that the homotopy of every A/I∞-module is a π0(A)/I-module, so combined with the previous
point, we learn that the image of the fully faithful restriction functor Mod(A/I∞) → Mod(A)
consists exactly of those modules whose homotopy is killed by I, as desired.

Finally, we are ready to verify that the construction I 7→ (A → A/I∞) induces an inverse to
taking kernels. The composition starting with an ideal is clearly the identity. So we are left to
show that for every φ : A→ B in LQA the canonical map ψ : A/ker(π0φ)

∞ → B, arising from the
homotopy of B being annihilated by ker(π0φ), is an equivalence. Per construction it induces an
equivalence on π0. By the lemma below, the functor ψ! = B⊗A/ker(φ)∞ − : Mod(A/ ker(π0ϕ)

∞) →
Mod(B) is thus conservative when restricted to bounded below modules. But the map

B ≃ ψ! (A/ ker(π0φ)
∞)

ψ!(φ)−−−→ ψ!(B) = B ⊗A/ ker(π0φ)∞ B ≃ B ⊗A B

is induced by the unit and thus an equivalence since φ is a localisation. □

2.1. Lemma If ψ : A→ B is a map of connective E1-rings which is an isomorphism on π0, then

B ⊗A − : Mod(A) −→ Mod(B)

is conservative when restricted to bounded below A-modules.



A NOTE ON HIGHER ALMOST RING THEORY 5

Proof. If M ∈ Mod(A) with πi(M) = 0 for i < n, then πn(B ⊗A M) = π0(B) ⊗π0(A) πn(M) =
πn(M), so if M is bounded below with B ⊗A M ≃ 0 then also M ≃ 0. Considering cofibres of
morphisms, this implies the statement. □

Now, the main step in the deduction of Theorem A from Theorem B is to establish the structure
of an animated commutative ring R/I∞ on (HR)/I∞, whenever R is itself an animated commu-
tative ring. To this end, recall the Amitsur (or cobar) complex of an algebra B in a monoidal
category (C,⊗): This is a cosimplicial object in C with [n] 7→ B⊗n+1 and face and degeneracy maps
induced by the unit and multiplication, respectively, see e.g. [MNN17MNN17, Section 2.1]. For a map
R→ S of animated commutative rings, we can consider it in (R/AnCRing,⊗L

R) and similarly for
a map A→ B of Ek-rings we can consider it in (A/AlgEk

(Sp),⊗A) and also in (Ek-Mod(A),⊗A);
these examples are connected by strong monoidal, limit preserving functors

(R/AnCRing,⊗L
R) −→ (HR/AlgE∞

(Sp),⊗HR) and (A/AlgEk
(Sp),⊗A) −→ (Ek-Mod(A),⊗A).

In [MNN17MNN17, Proposition 2.14] it is in particular shown, that the limit of the Amitsur complex
for A → H(π0(A)/I) formed in (Ek-Mod(A),⊗A) agrees with A/I∞ as an Ek-A-module. The
characterisation of the Ek-ring structure on A/I∞ as arising from being ⊗A-idempotent then
shows that this upgrades to an equivalence of Ek-algebras under A.

In particular, (HR)/I∞ is the limit of the Amitsur complex of HR → H(π0R/I) formed
in (HR/AlgE∞

(Sp),⊗HR), which allows us to lift this structure to that of an animated com-
mutative ring by letting R/I∞ denote the limit of the Amitsur complex for R → π0R/I in
(R/AnCRing,⊗L

R). In particular, we then have H(R/I∞) ≃ (HR)/I∞ as E∞-rings.

Proof of Theorem A. We again observe that LQR is a poset, since − ⊗L
R S : R/AnCRing →

R/AnCRing is a localisation onto its image for every φ : R → S in LQR. The construction
R 7→ R/I∞ in terms of the Amitsur complex thus gives a functor that is evidently right inverse to

LQR −→ {I ⊆ π0R | I2 = I}, φ 7−→ ker(π0φ).

Furthermore, from the case of E∞-rings we learn that the natural map S ≃ R⊗L
R S → R/I∞⊗L

R S
is an equivalence if and only if the homotopy groups of S are annihilated by I. In this case we
therefore obtain a map R/I∞ → S of animated commutative rings under R, and in particular
this applies in the case I = ker(φ). But by Theorem B there is only one map HR/ker(φ)∞ → HS
under HR and this is an equivalence. Since the functor H: AnCRing → AlgE∞

(Sp) is conservative,
we must thus also have R/ker(φ)∞ ≃ S under R as desired. □

Finally, we briefly sketch the background for our use of Smith-ideals for lack of a reference; see,
however, [Hov14Hov14] for a treatment of the E1-version in model categorical language. Consider then
an Ek-monoidally cocomplete stable category C, and give Ar(C) the induced Ek-monoidal Day
convolution structure with respect to taking minima on [1], which makes the evaluation functor
t : Ar(C) → C strongly Ek-monoidal. A Smith-ideal in an Ek-algebra A in C is an Ek-algebra
J → A in Ar(C) lifting the Ek-structure on A. Such objects correspond in a one-to-one fashion to
Ek-ring maps out of A by taking (co)fibres: To see this consider Fun([1]2, C) equipped with Day
convolution with respect to taking minima in the first, and maxima in the second component of
[1]2 (note that Day convolution with respect to taking maxima in [1] is just the pointwise monoidal
structure on Ar(C)). Now, the full subcategory of AlgEk

(Fun([1]2, C)) spanned by the cocartesian
squares with lower left corner (i.e. the entry at (1, 0)) vanishing is on the one hand equivalent to
the category of Ek-arrows in C by taking fibres, and on the other, to the category of Ek-Smith-
ideals in C by taking cofibres; this is clearly true at the level of the underlying categories, and the
claim follows from this since such cocartesian squares are closed under the Day convolution on all
squares.

Convolving two Smith ideals provides the higher categorical way of taking the sum of ideals,
and taking pointwise tensor products generalises taking the product of ideals. Since we used it
in the proof above, let us also briefly explain why this pointwise operation is well-defined. Recall
that Ek-monoids in the Day convolution structure are identified with lax Ek-monoidal functors.
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Consider then the functor Funlax-Ek([1],−) : AlgEk
(Cat) → Cat. Since it preserves products, it

lifts to a functor

Funlax-Ek([1],−) : AlgEk+l
(Cat) −→ AlgEl

(Cat)

or in other words, the category of lax Ek-monoidal functors to an Ek+l-monoidal category inherits
an El-monoidal structure, which unwinds to be given by the pointwise tensor product in the target.

3. Examples and Remarks

(1) A different way of phrasing Theorem B is that there is a one-to-one correspondence between
idempotent ideals in π0(A) and idempotent Smith-ideals in A for every connective Ek-
algebra A, which makes I ⊆ π0(A) and I

∞ → A correspond.
(2) As a consequence of the classification of stable recollements, one obtains a cartesian square

Mod(A) Ar(Mod(A/I∞))

aModI(A) Mod(A/I∞),

homA(A/I∞,−)⇒A/I∞⊗A−

cof

A/I∞⊗AhomA(I∞,−)

decomposing the module category of A for every idempotent I ⊆ π0(A), see [CDH+20CDH+20,
Section A.2].

(3) Either directly from the statement of the theorems, or via the construction using the
Amitsur complex, one finds that for the exterior sum I ⊞k J of two idempotent ideals
I ⊆ π0(A) and J ⊆ π0(A

′) in two k-algebras A and A′ (k some E2-ring), that is the image
of

(π0A⊗π0k J)⊕ (I ⊗π0k π0A
′) −→ π0A⊗π0k π0A

′ = π0(A⊗L
k A

′),

we have

(A⊗L
k A

′)/(I ⊞k J)
∞ ≃ A/I∞ ⊗L

k A
′/J∞,

or in other words (I ⊞k J)∞ is the exterior sum (over k) of the Smith-ideals I∞ in A and
J∞ in A′.

This formula evidently also holds for three animated commutative rings in place of k,A
and A′.

(4) If R is a static ring with an ideal I that is flat as a left or right R-module and satisfies

I2 = I, then I⊗
L
Rn = I⊗Rn = I, so I∞ = I and R/I∞ = R/I is static.

As mentioned in the introduction, a commutative ring R together with an idempotent,
flat ideal I ⊆ R is indeed one of the standard set-ups for almost mathematics, e.g. in
[Bha17Bha17, Section 4], and in this case aDI(R) ≃ aModI(HR) is the derived category of the
ordinary category of almost R-modules. Bhatt’s notes also cleanly explain that whenever
(K, | · |) is a perfectoid field, then m = {x ∈ K | |x| < 1} is a flat and idempotent ideal in
the valuation ring O = {x ∈ K | |x| ≤ 1}.

(5) Let us also immediately note, that a finitely generated idempotent ideal I in a (static)
commutative ring R is necessarily generated by single idempotent element e by Nakayama’s
lemma and thus, as a direct summand, even projective over R. In this case R/(e)∞ =
R/(e) is simply the factor of R singled out by e, which can also be described as the ordinary
localisation R[(1− e)−1] of R.

(6) In fact, for R static the animated ring R/I∞ is static if and only if I ⊗L
R I ≃ I via the

multiplication: The latter implies the former by the description of HR/I∞ in Theorem
B, and conversely if R/I∞ ≃ R/I we learn that R/I ⊗L

R R/I ≃ R/I, which by passing
to fibres along the exact sequence I → R → R/I first yields I ⊗L

R R/I ≃ 0 and then the
claim.

An example, where this occurs without I being flat is the ringRn = K[T
1/2∞

1 , . . . ,T
1/2∞

n ]

from the introduction with In = (T
1/2∞

1 , . . . ,T
1/2∞

n ). Then as a sequential colimit of prin-
cipal ideals I1 is flat over R1, so the multiplicativity statement for exterior sums of ideals
yields

Rn/I
∞
n ≃ (R1/I

∞
1 )⊗Kn ≃ (R1/I1)

⊗Kn ≃ K.
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But In is no longer flat for n ≥ 2: Setting Jn = (T1, . . . ,Tn) ⊆ Rn we for example have

TorRn
i (In,Rn/Jn) ∼=

{
In/Jn · In i = 0

K( n
i+1) i ≥ 1

,

which can be read off from the exact sequence

In ⊗L
Rn

Rn/Jn −→ Rn/Jn −→ K ⊗L
Rn

Rn/Jn

in D(Rn/Jn) together with

K ⊗L
Rn

Rn/Jn ≃ (K ⊗L
R1
R1/T1)

⊗Kn ≃ (ΛK(K[1]))⊗Kn ≃ ΛK(Kn[1]),

which in turn can be read off from the evident free resolution R1
T1−→ R1 of R1/T1.

(7) Whenever I ⊗R I is flat over R, one has R/I∞ = R � (I ⊗R I) as mentioned in the
introduction, where � denotes the cofibre in D(R), modelled by the commutative graded
differential algebra with

(R � (I ⊗R I))i =


R i = 0

I ⊗R I i = 1

0 else

so that

πi(R/I
∞) =


R/I i = 0

ker(I ⊗R I → I) i = 1

0 i ≥ 2

in this case: The multiplication map I⊗
L
R2 ⊗L

R I
⊗L

Rn → I⊗
L
Rn factors as

I⊗
L
R2 ⊗L

R I
⊗L

Rn −→ I⊗R2 ⊗L
R I

⊗L
Rn −→ I⊗

L
Rn

so the limit computing I∞ can be replaced by that over the terms I⊗R2 ⊗L
R I

⊗L
Rn. But

this system is constant, as can be seen inductively from the fibre sequence

I⊗R2 ⊗L
R I −→ I⊗R2 −→ I⊗R2 ⊗L

R R/I

whose last term is I⊗R2 ⊗R R/I = I/I2 ⊗R I = 0.
(8) Note that I⊗Rn ∼= I ⊗R I for all n ≥ 2 the moment I is idempotent, e.g. by the stability

assertion of Theorem B, so that no further flatness hypothesis can sensibly be put on
tensor powers of I.

(9) The condition I · πnM = 0 of M ∈ Mod(A) being almost zero is in fact equivalent to the
a priori stronger condition that I ⊗π0A πnM = 0: For the former condition makes πnM
into an π0(A)/I-module so that

I ⊗π0A πn(M) = I ⊗π0A π0(A)/I ⊗π0(A)/I πnM = I/I2 ⊗π0(A)/I πnM = 0.

(10) In contrast to this, it need not be true, however, that I ⊗L
RM ≃ 0 for M an I-almost zero

R-module: For example, let R = K[T 1/2∞ ]/T and I = (T 1/2∞), the ideal generated by all
the 2-power roots of T . Then R/I = K is clearly almost 0, but I ⊗L

RK ≃
⊕

i≥1K[2i− 1]

does not vanish: Writing R(n) = K[T 1/2n ]/T and I(n) = (T 1/2n) for the principal ideal
therein, so that R = colimnR(n) and I = colimn I(n) and consequently I ⊗L

R K =
colimn I(n)⊗L

R(n) K, we can freely resolve the inclusion I(n) → I(n+ 1) by the periodic

. . . R(n) R(n) R(n) R(n)

. . . R(n+ 1) R(n+ 1) R(n+ 1) R(n+ 1).

·T (2n−1)/2n

incl

·T 1/2n

·T 1/2n+1

·T (2n−1)/2n

incl T 1/2n+1

·T (2n+1−1)/2n+1
·T 1/2n+1

·T (2n+1−1)/2n+1

After tensoring with K each term is K with horizontal maps vanishing and vertical maps
alternating between 0 and idK . This gives the claim upon taking vertical colimits.
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(11) The algebra R = K[T 1/2∞ ]/T and ideal I = (T 1/2∞)/T from the previous point form a
typical example for which I⊗R I, but not I itself, is flat: We already used above that over
K[T 1/2∞ ] the ideal (T 1/2∞) is flat, and one easily checks that

I ⊗R I ≃ R⊗K[T 1/2∞ ] (T
1/2∞)⊗K[T 1/2∞ ] (T

1/2∞),

whereas I itself is not the base change of (T 1/2∞). From the fibre sequence I ⊗L
R I → I →

I ⊗L
R K and the calculation in the previous point, one then reads off that ker(I ⊗R I →

I) ∼= K which gives

π∗(R/I
∞) = ΛK(K[1]),

an exterior algebra on one generator in degree 1.
(12) For

Rn = K[T
1/2∞

1 , . . . ,T 1/2∞

n ]/(T1, . . . ,Tn)

and In = (T
1/2∞

1 , . . . ,T
1/2∞

n ), we then have Rn/I
∞
n = (R1/I

∞
1 )⊗

L
Kn , so

π∗(Rn/I
∞
n ) = ΛK(Kn[1]),

by the previous point. This in particular shows that even for static rings R, the animated
rings R/I∞ can have arbitrarily high non-trivial homotopy in the absence of any flatness
assumption on I.

(13) Theorem A shows that an animated commutative ring structure on R induces a unique
compatible one on R/I∞; using the desciption of animated commutative rings as algebras
over the monad of derived symmetric powers [Rak20Rak20, Section 4.2], this implies that D(R)
and D(R/I∞) are equipped with derived functors of Symn, compatible under extension of
scalars. It follows that also the category aDI(R) of derived almost modules carries such
operations compatible with the left adjoint to the localisation D(R) → aDI(R). In most
examples, these derived symmetric powers in fact simply descend from D(R) to aDI(R):
This is true precisely if for every k ≥ 2 the ideal I is generated by the k-th powers of its
elements and in particular it happens in all the examples above and always when I⊗R I is
flat; to see this combine [GR03GR03, Proposition 2.1.7 (ii)], [GR04GR04, Theorem 14.1.57], [GR04GR04,
Example 14.1.60] and recall that LSymn

R(M [2]) ∼= LΓnR(M)[2n], so that ruling out descent
for derived symmetric powers is the same as ruling it out for derived divided powers. For
an explicit example where it fails, let S denote the set of finite strings of 0’s and 1’s and
take

R = Fp[Ts | s ∈ S]/(Ts − Ts∗0 · Ts∗1,T ps | s ∈ S)

with I generated by all the variables; then the ideal generated by the p-th powers of
elements of I is trivial.

This is the only important structural result we are aware of, that actually requires such
a flatness assumption.

(14) Incidentally, as the algebra R/I∞ from the previous item pulls back to R under Frobenius,
i.e. R/I∞ ⊗L

R Fr∗R ≃ R (by Theorem A this can be checked on π0 after all), it also yields
an example, where the Frobenius endomorphism of R does not induce the identity, or even
an isomorphism, on the locale of derived localisations of R, i.e. the smashing spectrum of
D(R), answering a question of Efimov.

(15) Finally, let us remark that the categories aModI(A), alongside categories of sheaves on
locally compact Hausdorff spaces, and categories of nuclear modules in condensed mathe-
matics, are typical examples of compactly assembled categories that need not be compactly
generated, e.g. for I = (T 1/2∞) ⊂ K[T 1/2∞ ] = R this is due to Keller [Kel94Kel94]. In long
anticipated work Efimov [Efi24Efi24] recently defined a version of algebraic K-theory for such
categories, and there results a fibre sequence

K(aModI(A)) −→ K(A) −→ K(A/I∞)

of spectra for every idempotent I ⊆ π0A. It is this connection to algebraic K-theory that
originally sparked the present note.



A NOTE ON HIGHER ALMOST RING THEORY 9

References

[Bha17] B. Bhatt, Lectures for a class on perfectoid spaces, available from the author’s webpagewebpage.
[Bur22] R. Burklund, Multiplicative structures on Moore spectra, arXiv: 2203.14787v2 (2022).

[CDH+20] B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin, T. Nikolaus &

W. Steimle, Hermitian K-theory for stable ∞-categories II: Cobordism categories and additivity, arXiv:
2009.07224v4 (2023).

[Efi24] A.I. Efimov, K-theory and localizing invariants of large categories, arXiv: 2405.12169v2

[Fal88] G. Faltings, p-adic Hodge theory, Journal of the AMS 1 (1988), no. 1, 255–299.
[Fal02] , Almost étale extensions, Astérisque 279 (2002), 185–270.
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