A diffeological approach to integrating Lie algebras

David Miyamoto

Max Planck Institute for Mathematics

BGW Retreat October 26, 2024

A motivating example

Let $(\mathfrak{g}, [\cdot, \cdot])$ be an *n*-dimensional Lie algebra, with

- center 3,
- inner automorphisms $\mathfrak{g}_{ad} := \mathfrak{g}/\mathfrak{z}$.

Consider the (aspirational) short-exact sequences:

- Π would be some topologically discrete subgroup of $(\mathfrak{z}, +)$.
- *G* would be constructed from G_{ad} , \mathfrak{Z}/Π , and $[\cdot, \cdot]$.

A motivating example

Choose a splitting

Let ω_1 denote the \mathfrak{z} -component of the bracket $\omega : \mathfrak{g}_{\mathsf{ad}} \times \mathfrak{g}_{\mathsf{ad}} \to \mathfrak{g}$.

Theorem (van Est-Korthagen [EK64], Cartan [Car52])

The Lie alg. \mathfrak{g} is integrable if and only if the period homomorphism's image

$$\Pi := \mathsf{image}\left(\mathsf{per}_{\omega_1} : \pi_2(\mathcal{G}_{ad}) \to \mathfrak{z}, \ \sigma \mapsto \int_{\sigma} \omega_1^L\right) \leq \mathfrak{z}$$

is topologically discrete, whence G comes from a $\Omega(\omega_1) \in H^2(G_{ad}, \mathfrak{z}/\Pi)$.

A motivating example

• $\pi_2(a \text{ Lie group}) = 0$, so we can always integrate $\mathfrak{g}!$

 There are Banach Lie algebras g for which everything works, except the group Π is not topologically discrete,

thus \mathfrak{z}/Π is not a (Banach) manifold. No integration exists.

Example (Douady-Lazard [DL66])

Let H be an ∞ -dim. complex Hilbert space. Fix α irrational. The quotient

 $(\mathfrak{u}(H) \times \mathfrak{u}(H))/\{(it \cdot \mathrm{id}_H, it\theta \cdot \mathrm{id}_H) \mid t \in \mathbb{R}\}$

is not integrable. We encounter an *irrational torus* $\mathfrak{z}/\Pi \cong \mathbb{R}/(\mathbb{Z} + \alpha \mathbb{Z})$.

 $\mathbb{R}/(\mathbb{Z} + \alpha \mathbb{Z})$ is not a manifold...but is a perfectly good diffeological space!

Theorem (Blohmann-M)

A Banach Lie algebra \mathfrak{g} which topologically splits $\mathfrak{g} \cong \mathfrak{z} \oplus \mathfrak{g}_{ad}$ integrates to an elastic diffeological group if Π is diffeologically discrete.

We may generalize "Banach" to "locally-exponential." Wockel and Zhu [WZ16] integrated such Lie algebras to Lie 2-groups.

- Define diffeology.
- Introduce a tangent functor.
- Introduce the Lie functor.
- View infinite-dimensional manifolds as diffeological spaces.

Definition (Souriau [Sou80], Chen [Che77])

A **diffeology** on a set X is a collection of maps (plots) $\mathscr{D} = \{U \xrightarrow{p} X\}$ from open subsets of Cartesian spaces into X such that

- ^a all locally constant maps are plots;
- ^b when $U' \xrightarrow{F} U$ is smooth, and $U \xrightarrow{p} X$ is a plot, so is $U' \xrightarrow{pF} X$;
- ^c when a map $U \xrightarrow{p} X$ is locally a plot, it is a plot.

A map $X \xrightarrow{f} Y$ is **smooth** if it pushes forward plots to plots.

^aconcreteness ^bpresheaf ^csheaf

 $\mathcal{D} flg$ has all (small) limits and colimits, and is locally Cartesian closed.

Diffeology propagates to:1

- A manifold M: $\mathscr{D}_M := \{p \mid p \text{ is smooth as usual}\}.$
- A subset $\iota : A \hookrightarrow X : \mathscr{D}_A := \{ p \mid \iota p \in \mathscr{D}_X \}.$
- A quotient pr : $X \to X/\sim$:

$$\mathscr{D}_{X/\sim} := \{ p \mid p \stackrel{\mathsf{loc.}}{=} \mathsf{pr} \circ q \text{ for various } q \in \mathscr{D}_X \}.$$

• The function space $C^{\infty}(X, Y)$:

$$\mathscr{D}_{\mathcal{C}^{\infty}(X,Y)} := \{ p \mid U \times X \to Y, \ (r,x) \mapsto p(r)(x) \text{ is smooth} \}.$$

¹for each set S under consideration, recall that p has the form $U \xrightarrow{p} S$.

Miyamoto (MPIN

- The sets of all maps, and of locally constant ones, are diffeologies.
- The subset $x^2 = y^3$ in \mathbb{R}^2 is isomorphic to \mathbb{R} . [Jor82]
- The subset $\mathbb{Q} \subseteq \mathbb{R}$ has discrete diffeology (all plots are loc. constant).
- No two $\mathbb{R}^n/O(n)$ are iso., and none are iso. to $[0,\infty)\subseteq\mathbb{R}.$
- $\mathbb{R}/(\mathbb{Z} + \alpha \mathbb{Z})$ is isomorphic to $\mathbb{R}/(\mathbb{Z} + \beta \mathbb{Z})$, for α, β irrational,

if and only if
$$\alpha = \frac{a+b\beta}{c+d\beta}$$
 for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}).^2$ [DI85].

- The spaces $\mathbb{C}^n/U(n)$ and $\mathbb{R}^{2n}/O(2n)$ are isomorphic.
- \mathbb{R}^2 has a "spaghetti" diffeology: { $p \mid p$ factors through curves}.

²which holds if and only if the action groupoids are Morita equivalent.

There is a left-adjoint functor $D : \mathcal{D}flg \to \mathcal{T}op$.

Definition

The **D**-topology of X is the final (most opens) one induced by the plots.

Lemma (Christensen-Sinnamon-Wu [CSW14])

The D-topology is the final one induced by the smooth curves $C^{\infty}(\mathbb{R}, X)$.

- Warning: in general $D(X \times Y) \neq D(X) \times D(Y)$.³
- $D(X/\sim) = D(X)/\sim$, but in general $D(A \subseteq X) \neq A \subseteq D(X)$.

³But they are isomorphic if one factor is a manifold.

A tangent functor Definition of the tangent functor

There are several proposals for tangent functors on $\mathcal{D}\mathsf{flg}.$

Definition

We take $T : \mathcal{D}flg \to \mathcal{D}flg$ to be the left Kan extension

$$\mathcal{D} flg$$

$$y=Yoneda \qquad \qquad \downarrow T:=Lan_y y \hat{T}$$

$$\mathcal{C}art \xrightarrow{y \hat{T}} \mathcal{D} flg,$$

where $\hat{T} : Cart \to Cart$ is the usual tangent functor, $\hat{T}U := U \times \mathbb{R}^n$.

The space TX already has a diffeology; we do not begin with " $\bigsqcup_x T_x X$."

A tangent functor

Examples of tangent bundles

- T preserves finite products (because \hat{T} does).
- TX is a quotient of $C^\infty(\mathbb{R},X)$. Namely $\gamma\sim\gamma'$ if there is a zig-zag⁴

where the $\hat{T}f_i$ preserve the indicated tangent vectors.

Example (M)

 $T_0[0,\infty) = [0,\infty)$. Use that the Hessian of p_i is preserved.

Miyamoto (MPIM)

⁴Any top arrow may be reversed.

A tangent functor

Examples of tangent bundles

Proposition (M)

For a diffeological groupoid $\mathscr{G} \rightrightarrows X$, we have

The map ρ is an isomorphism if $\mathscr{G} \rightrightarrows X$:

- is étale and proper (i.e. an orbifold groupoid), or
- is $(G \rtimes H \rightrightarrows G)$ for $H \leq G$.

Elastic groups Elasticity

Let $\mathbb{L}(\cdot) := \operatorname{Lan}_{y} y(\cdot)$. A tangent structure on \mathcal{D} flg could be (π) $TX \xrightarrow{\mathbb{L}(\hat{\pi})} X$. (0) $X \xrightarrow{\mathbb{L}(\hat{0})} TX$. (+) $T_{2}X \xrightarrow{\theta_{2,X}^{-1}} \mathbb{L}(\hat{T}_{2})(X) \xrightarrow{\mathbb{L}\hat{+}} TX$. But $\theta_{2,X}$ may not be an iso. (τ) τ such that

$$\begin{array}{ccc} (\mathbb{L}\hat{T}^2)X & \xrightarrow{(\mathbb{L}\hat{\tau})_X} & (\mathbb{L}\hat{T}^2)X \\ & \downarrow_{\theta^2_X} & & \downarrow_{\theta^2_X} & \text{But } \tau \text{ may not exist.} \\ & T^2X & \xrightarrow{\tau} & T^2X. \end{array}$$

(λ) $TX \xrightarrow{\mathbb{L}(\hat{\lambda})} \mathbb{L}(\hat{T}^2)(X) \xrightarrow{\theta_X^2} T^2X$. But λ may not be a kernel.

Tangent stability

Theorem (Blohmann)

There is a full subcategory \mathcal{E} lst of \mathcal{D} flg such that $(\mathcal{E}$ lst, $(T, \pi, 0, +, \tau, \lambda))$ is a tangent category. We call its objects **elastic** spaces.

Theorem (Blohmann [Blo24])

A diffeological group G is elastic if and only if the map

$$T_eG := \mathfrak{g} \to T_0\mathfrak{g}, \quad \xi \mapsto \frac{d}{dt}\Big|_{t=0} t\xi = \partial[t \mapsto t\xi]$$

is an isomorphism. We call such \mathfrak{g} (themselves elastic) tangent stable.

The tangent structure gives a Lie functor

 $\mathsf{Lie}: \{\mathsf{elastic groups}\} \to \{\mathsf{tangent stable Lie algebras}\}.$

Example (Blohmann-M)

(M) If G is elst., $H \leq G$, and $TH \cong T\iota(TH) \leq TG$, then G/H is elst.

- Also $\text{Lie}(G/H) \cong \mathfrak{g}/\mathfrak{h}$.
- G/H is elastic for diffeologically discrete H. Then $\text{Lie}(G/H) \cong \mathfrak{g}$.
- G/H is elastic for all H when G is a Lie group.
- (B) If $F \to M$ is a fiber bundle, $T\Gamma(F \to M) \cong \Gamma(VF \to M)$.
 - Even when *M* is not compact!
 - For example, $TC^{\infty}(M, M) \cong C^{\infty}(M, TM)$.
- (BM) For *M* compact, Lie(Diff(*M*)) \cong ($\mathfrak{X}(M), -[\cdot, \cdot]$).
 - Possibly also for *M* non-compact.

(M) Banach, Fréchet, and "convenient" manifolds are elastic.

Definition

Definition

A diffeological vector space V is

- (I.g.) **linearly generated** if $U \xrightarrow{p} V$ is a plot if and only if $U \xrightarrow{lp} \mathbb{R}$ is smooth for all $l \in L^{\infty}(V, \mathbb{R})$.
- (I.s.) linearly separated if $L^{\infty}(V, \mathbb{R})$ separates points.
 - (c.) **convenient** if l.g. and l.s., and every smooth curve *c* has a "weak-derivative":

a smooth curve \dot{c} such that $\widehat{I \circ c} = I \circ \dot{c}$ for all $I \in L^{\infty}(V, \mathbb{R})$.

Proposition (M)

V is convenient if and only if it is l.g. and l.s. and tangent stable.

Banach diffeologies

Definition

Definition

A map $E \xrightarrow{f} E'$ of Banach spaces is **MB-smooth** if it has all derivatives

$$E \times E \xrightarrow{Df} E', \quad (E \times E) \times (E \times E) \xrightarrow{DDf} E', \dots$$

The canonical diffeology on E is $\mathscr{D}_{MB}(E) := \{p \mid p \text{ is MB-smooth}\}.$

A different approach: a curve $\mathbb{R} \xrightarrow{c} E$ is **c-smooth** if it has all derivatives

$$\dot{c}(t) := \lim_{h \to 0} rac{c(t+h) - c(t)}{h}, \quad \ddot{c}, \dots$$

A map $E \xrightarrow{f} E'$ is **c-smooth** if *fc* is c-smooth for all c-smooth *c*.

Banach diffeologies

An embedding

Theorem (Hain [Hai79], Losik [Los92])

The functor \mathscr{D}_{MB} : $\mathcal{B}_{anach} \rightarrow \mathcal{D}_{flg}$ is an embedding over \mathcal{T}_{op} :

Consequently MB-smooth and c-smooth coincide.

Proposition (M)

It lands in the category of convenient vector spaces.

Thus Banach manifolds are elastic spaces.

Miyamoto (MPIM)

Integration again

- Take \mathfrak{g} a Banach Lie algebra with $\mathfrak{g} \cong \mathfrak{z} \oplus \mathfrak{g}_{ad}$.
- Assume Π is diffeologically discrete.

Neeb [Nee02] constructs the bottom short-exact sequence of groups:

We can⁵ is import this into \mathcal{E} lst.

- In this talk, we justified the outer Lie arrows.
- The inner Lie arrow also holds.

➡ The End

⁵Here we do not elucidate the diffeology of G

Other settings

- A convex bornological vector space X is a vector space with a compatible bornology B = {B ⊆ X}.
 - *B* contains singletons, is closed under finite union, and contains all subsets of its members ("bounded" sets).
 - A, B bounded implies A + B and $[-1, 1] \cdot A$ are all bounded.
 - the convex hull of a bounded set is bounded.
- A locally convex topological vector space *E* is a vector space with topology generated by a collection of semi-norms.
- A dual vector space F is a vector space equipped with a subset $F' \subseteq L(F, \mathbb{R})$.

Other settings

- δ dualizes.
- σ_s assigns F the diffeology $\{p \mid lp \text{ smooth for all } l \in F'\}$.
- σ_b assigns F the bornology $\{B \mid I(B) \text{ is bounded for all } I \in F'\}$.
- μ assigns F the finest l.c. topology τ for which $L^{cts}((F,\tau),\mathbb{R}) = F'$.
- β assigns *E* the topology generated by the semi-norms that are bounded on absorbing sets.⁶

⁶sets *B* such that for all zero-neighbourhoods *U*, eventually $tU \supseteq B$ for some *t*.

Other settings

$$\mathcal{D}\mathsf{flgVS} \xrightarrow{\delta} \mathcal{D}\mathsf{ualVS} \xrightarrow{\sigma_b} \mathcal{B}\mathsf{ornVS}$$

$$s \uparrow \downarrow \mu$$

$$\mathcal{L}\mathsf{CTVS}. \qquad \beta$$

Theorem (Frölicher-Kriegl [FK88])

We have $\delta \sigma_s = \delta \sigma_b = \delta \beta \mu$. We have isomorphisms of categories

$$\{ \sigma_{s} \delta(V) = V \} \xleftarrow{\sigma_{s} = \delta^{-1}}{} \{ \delta \sigma_{s}(F) = F \} \xrightarrow{\sigma_{b} = \delta^{-1}}{} \{ \sigma_{b} \delta(X) = X \}$$

$$\downarrow^{\mu = \delta^{-1}}$$

$$\{ \beta(E) = E \}$$

$$bornological$$

Other settings

Under these isomorphisms, convenient vector spaces correspond to

- Convenient convex bornological vector spaces as in [FK88].
 - Also called "topological, separated, and complete" cbvs.
- Convenient bornological topological vector spaces as in [KM97].

Proposition

The category of convenient manifolds embeds into \mathcal{E} lst.

Moreover, this is probably an embedding of tangent categories.

Thank You!

Thank You!

References I

[Blo24] Christian Blohmann. "Elastic diffeological spaces". In: Recent advances in diffeologies and their applications. Vol. 794. Contemp. Math. Amer. Math. Soc., [Providence], RI, 2024, pp. 49–86.

- [Car52] Élie Cartan. "Le troisième théorème fondamental de Lie". In: Oeuvres complètes. Part I. Groupes de Lie. Gauthier-Villars, Paris, 1952, pp. 1143–1148.
- [Che77] Kuo Tsai Chen. "Iterated path integrals". In: *Bull. Amer. Math. Soc.* 83.5 (1977), pp. 831–879.
- [CSW14] J. Daniel Christensen, Gordon Sinnamon, and Enxin Wu. "The D-topology for diffeological spaces". In: Pacific J. Math. 272.1 (2014), pp. 87–110.

References II

- [DI85] Paul Donato and Patrick Iglésias. "Exemples de groupes difféologiques: flots irrationnels sur le tore". In: C. R. Acad. Sci. Paris Sér. I Math. 301.4 (1985), pp. 127–130.
- [DL66] Adrien Douady and Michel Lazard. "Espaces fibrés en algèbres de Lie et en groupes". In: *Invent. Math.* 1 (1966), pp. 133–151.
- [EK64] Willem T. van Est and Theodorus J. Korthagen.
 "Non-enlargible Lie algebras". In: *Indag. Math.* 26 (1964).
 Nederl. Akad. Wetensch. Proc. Ser. A 67, pp. 15–31.
- [FK88] Alfred Frölicher and Andreas Kriegl. Linear spaces and differentiation theory. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1988, pp. xvi+246.

References III

- [Hai79] Richard M. Hain. "A characterization of smooth functions defined on a Banach space". In: Proc. Amer. Math. Soc. 77.1 (1979), pp. 63–67.
- [Jor82] Henri Joris. "Une C[∞]-application non-immersive qui possède la propriété universelle des immersions". In: Arch. Math. (Basel) 39.3 (1982), pp. 269–277.
- [KM97] Andreas Kriegl and Peter W. Michor. The convenient setting of global analysis. Vol. 53. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997, pp. x+618.
- [Los92] Mark V. Losik. "Fréchet manifolds as diffeological spaces". In: Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1992), pp. 36–42.

References IV

[Nee02] Karl-Hermann Neeb. "Central extensions of infinite-dimensional Lie groups". In: Ann. Inst. Fourier (Grenoble) 52.5 (2002), pp. 1365–1442.

[Sou80] Jean-Marie Souriau. "Groupes différentiels". In: Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979). Vol. 836. Lecture Notes in Math. Springer, Berlin-New York, 1980, pp 91–128.

[WZ16] Christoph Wockel and Chenchang Zhu. "Integrating central extensions of Lie algebras via Lie 2-groups". In: J. Eur. Math. Soc. (JEMS) 18.6 (2016), pp. 1273–1320.