Shifted symplectic Lie *n*-groupoids

Milena Weiershausen

Mathematical Institute, Georg-August-University Göttingen

October 27, 2024

Foundations 0000000000000000	Shifted symplectic	Symplectic ME 0000000000000	LG-model 00000	Outlook 00	References
Introduction					

Main Goals:

- Understand shifted symplectic structures.
- Prove invariance of shifted symplectic structures under Morita equivalence.
- Give an *LG*-model for *BG*.

Some foundations

- Lie groupoids
- Differentiable stacks
- Correspondence
- Simplicial Lie *n*-groupoids

2 Shifted symplectic Lie *n*-groupoids

- Recall: symplectic manifolds
- *m*-shifted presymplectic *k*-forms

< □ > < @ > < E > < E > < E = の < ○

IM-forms and nondegeneracy

3 Symplectic Morita equivalence

- Definition
- Invariance of cohomology
- Invariance of shifted symplectic structures

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An LG-model for BG

- ΩG-model
- Ideas for the LG-model

5 Outlook (to-do)

Foundations ●OOOOOOOOOOOOOOO	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Lie groupoids					

A *Lie groupoid* is a groupoid $G_1 \rightrightarrows G_0$ (i.e. a (small) category where all morphisms are invertible) such that G_1 and G_0 are (smooth) manifolds, all structure maps are smooth, and the source and target maps are surjective submersions.

Foundations 000000000000000000000000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Lie groupoids					

A Hilsum-Skandalis morphism from G_{\bullet} to H_{\bullet} consists of a triple (E, J_G, J_H) , E a manifold (HS bibundle), $J_G : E \to G_0$ and $J_H : E \to H_0$ morphisms such that:

• $J_G: E \to G_0$ is a right H_{\bullet} -principal bundle with moment map J_{H} .

2 E has a left G_{\bullet} -action with moment map J_G .

So The G_● and H_● actions on E commute, i.e. (g * x) * h = g * (x * h).

Foundations 000000000000000000000000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Lie groupoids					

Given a levelwise morphism $f_{\bullet} = (f_0, f_1) : G_{\bullet} \to H_{\bullet}$ between Lie groupoids, we can construct an HS bibundle from this as

Definition

An HS bibundle is invertible iff the left G_{\bullet} -action on E makes $E \rightarrow H_0$ into a G_{\bullet} -principal bundle as well. In this case, we call G_{\bullet} and H_{\bullet} Morita equivalent (ME) and E a Morita bibundle.

Foundations 000000000000000000000000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Lie groupoids					

A (levelwise) morphism $f_{\bullet} = (f_0, f_1) : G_{\bullet} \to H_{\bullet}$ is a hypercover if

$$\begin{array}{cccc} \bullet & f_0 : G_0 \twoheadrightarrow H_0 \text{ is a surjective submersion} \\ & G_1 \xrightarrow{t_G \times s_G} G_0 \times G_0 \\ \bullet & f_1 & & & \\ & f_1 \downarrow & & & \\ & H_1 \xrightarrow{t_H \times s_H} H_0 \times H_0 \end{array}$$

i.e.
$$G_1 \cong (G_0 \times G_0) \times_{(H_0 \times H_0)} H_1$$
.

 G_{\bullet} and H_{\bullet} are ME iff there exists K_{\bullet} and a zig-zag of hypercovers

Foundations	Shifted symplectic	Symplectic ME 0000000000000	LG-model 00000	Outlook 00	References
Differentiable	stacks				

A *stack* over a site $(\mathcal{C}, \mathcal{T})$ is a c.f.i.g $\pi : \mathfrak{X} \to \mathcal{C}$ such that:

- (Gluing of morphisms.) For X ∈ Obj(C) and x, y ∈ Obj(X_X): *Isom*(x, y) : C^{op} → Set U ↦ {(f, φ)|f ∈ Hom_C(U, X), φ ∈ Hom_{X_X}(f*x, f*y)} is a sheaf over C.
- (Gluing of objects.) For X ∈ Obj(C) and any covering U → X, every family {x_i}_{i∈I} of objects x_i ∈ X_U and every family {φ_{ij}}_{i∈I, j∈J} of morphisms φ_{ij} : x_j|_{U×xU} → x_i|_{U×xU} satisfying the cocycle condition φ_{kj} ∘ φ_{ji} = φ_{ki}, there exists a global object x over X together with isomorphisms φ_i : x|_U → x_i such that φ_{ij} ∘ φ_i = φ_i over U ×_X U.

Foundations	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Differentiable	stacks				

Let M be a differentiable manifold. Define a category \underline{M} as:

- $Obj(\underline{M}) = \{(S, u) | S \in Diff, u \in Hom(S, M)\}$
- $Hom_{\underline{M}}((S, u) \rightarrow (T, v)) = \{f | f : S \rightarrow T, u = v \circ f\}$

Definition

A stack which is isomorphic to \underline{M} for some manifold M is called *representable*.

Foundations	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Differentiable	stacks				

A morphism between stacks $f : \mathfrak{X} \to \mathcal{Y}$ is a *representable* submersion if for any morphism $\underline{M} \to \mathcal{Y}$, $\mathfrak{X} \times_{\mathcal{Y}} \underline{M}$ is representable as some \underline{N} and the induced morphism $N \to M$ is a submersion. If $N \to M$ is always surjective, f is called a *representable surjective* submersion.

Definition

A differentiable stack is a stack \mathfrak{X} over (**Mfd**, $\mathcal{T}_{surj. subm.}$) together with a manifold X_0 and a representable surjective submersion $\pi : \underline{X_0} \to \mathfrak{X}$. In this case, the pair (X_0, π) is called a (differentiable) atlas for \mathfrak{X} .

Example: \underline{M} is a differentiable stack with atlas (M, id).

Foundations ○○○○○○○○○○○○○○○	Shifted symplectic	Symplectic ME 0000000000000	LG-model 00000	Outlook 00	References
Corresponden	се				

Let $\pi : X_0 \twoheadrightarrow \mathfrak{X}$ be a choice of atlas for a differentiable stack. Then, $X_0 \times_{\mathfrak{X}} X_0$ is representable and $X_{\bullet} := (X_0 \times_{\mathfrak{X}} X_0 \rightrightarrows X_0)$ is a Lie groupoid.

Definition

Given a Lie groupoid $G_{\bullet} = (G_1 \rightrightarrows G_0)$, we define the *category of principal* G_{\bullet} -bundles also denoted by $\mathcal{B}(G_{\bullet})$, as follows:

- $Obj(\mathcal{B}(G_{\bullet})) = \{P | P \text{ a principal } G_{\bullet}\text{-bundle}\}.$
- Hom_{B(G_•)}(P, P') = {F : P → P' a morphism of G_•-principal bundles}.

For any Lie groupoid G_{\bullet} , $\mathcal{B}(G_{\bullet})$ has the structure of a differentiable stack with G_0 as an atlas.

Foundations	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Simplicial obj	ects				

A simplicial manifold X_{\bullet} consists of:

- A tower of manifolds X_m
- smooth face maps $d_i^m: X_m o X_{m-1}$ for $i = 0, \dots, m$
- smooth degeneracy maps $s_i^m: X_m \to X_{m+1}$ for $i = 0, \ldots, m-1$

satisfying some simplicial identities.

We can define simplicial objects more abstractly as a contravariant functor $X_{\bullet} : \Delta^{op} \to \mathcal{C}$.

Foundations	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Simplicial obj	ects				

Example: The standard m-simplex $\Delta[m]$ is given by: $(\Delta[m])_k := \{f : [k] \to [m] \mid f(i) \le f(j) \text{ for all } 0 \le i \le j \le k\}.$

The levels $(\Delta[3])_k$ describe the k-simplices of a tetrahedron.

Foundations ○○○○○○○○○○○○○○○○	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Simplicial obj	ects				

Example: The horn $\Lambda[m, j]$ is given by $(\Lambda[m, j])_k := \{f \in (\Delta[m])_k | \{0, \dots, \hat{j}, \dots, m\} \nsubseteq \{f(0), \dots, f(k)\}\}.$

The levels of $\Lambda[2,1]$ form an angle.

In general, we can think of the horn as removing the highest non-degenerate face as well as the face opposite the j-th vertex from a simplex.

Foundations	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Lie <i>n</i> -groupoi	ds				

$$\begin{array}{ccc} \Lambda[m,j] \longrightarrow X_{\bullet} & 1 \\ & & & \downarrow \\ & & & \exists \text{ lift? (*)} \\ \Delta[m] & & & 0 \leftarrow \\ & & & \forall & b \\ 0 \leftarrow & & & \exists a \cdot b \\ \end{array}$$

Note that we have:

$$Hom(\Lambda[m, j], X_{\bullet}) = \{(m, j)\text{-horns in } X_{\bullet}\} =: \Lambda_j^m(X_{\bullet})$$
$$Hom(\Delta[m], X_{\bullet}) = \{m\text{-simplices in } X_{\bullet}\} = X_m.$$

<ロト < 部ト < 言ト < 言ト 三日日 のへの 17/48

Foundations ○○○○○○○○○○○○○○	Shifted symplectic	Symplectic ME 0000000000000	LG-model 00000	Outlook 00	References
Lie <i>n</i> -groupoi	ds				

A Lie n-groupoid X_{\bullet} is a simplicial manifold that satisfies:

- Kan(m, j) for all $m \ge 1$ and $0 \le j \le m$.
- 2 Kan!(m,j) for all $m \ge n+1$ and $0 \le j \le m$.

where

- Kan(m,j) means the restriction map Hom(Δ[m], X_•) → Hom(Λ[m,j], X_•) is a surjective submersion.
- Kan!(m,j) means the restriction map Hom(Δ[m], X_•) → Hom(Λ[m,j], X_•) is an isomorphism.

A Lie *n*-group is be a Lie *n*-groupoid X_{\bullet} where $X_0 = pt$.

Foundations	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Lie <i>n</i> -groupo	ids				

Examples:

• Lie groupoid $G_1 \rightrightarrows G_0$: simplicial nerve

 $\ldots G_1 \times_{G_0} G_1 \rightrightarrows G_1 \rightrightarrows G_0$

- Lie group $G: \ldots G \times G \Longrightarrow G \rightrightarrows pt$.
- Crossed module $\delta: H \to G$ with $\alpha: G \to Aut(H)$:
 - Equivalent to a strict Lie 2-group (cf. Baez and Lauda (2003)).
 - In particular, (simplicial) Lie 2-group

$$\dots$$
 $H \times G^2 \rightrightarrows G \rightrightarrows pt$

Non-strict Lie 2-group (cf. Baez and Lauda (2003)) G_● with
 m: G_● × G_● → G_●:

$$\ldots E_m \Longrightarrow G_0 \Rightarrow pt,$$

where E_m is the HS bibundle corresponding to m:

$$\mathsf{E}_m = (G_0 \times G_0) \times_{m_0, G_0, \mathsf{t}} G_1$$

Foundations	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Hypercover					

 $\partial_m(X_{\bullet}) \coloneqq Hom(\partial \Delta[m], X_{\bullet})$

Definition

 $f: X_{\bullet} \to Y_{\bullet}$ is a hypercover if the maps $q_i := ((d_0, \dots, d_m), f_m) : X_m \to \partial_m(X_{\bullet}) \times_{\partial_m(Y_{\bullet})} Y_m$ are a surj subm for $0 \le m \le n - 1$ and an isom for m = n.

In particular, $q_0 = f_0$ is a surjective submersion. For n = 1: $q_1 = ((d_0, d_1), f_1) = ((s, t), f_1) : G_1 \xrightarrow{\sim} (G_0 \times G_0) \times_{H_0 \times H_0} H_1$

Definition

 X_{\bullet} and Y_{\bullet} are ME if there exists a Z_{\bullet} and a zig-zag of hypercovers

Foundations 0000000000000000	Shifted symplectic ●○○○○○	Symplectic ME	LG-model 00000	Outlook 00	References
Recall: symn	lectic manif	olde			

A symplectic manifold is a smooth manifold M equipped with a closed non-degenerate differential 2-form ω . Such a 2-form is called symplectic form.

For $X \in \mathfrak{X}(M)$, we get an *associated* 1-*form* defined as

$$\omega_X : \mathfrak{X}(M) \to \mathcal{C}^{\infty}(M), Y \mapsto \omega_X(Y) \coloneqq \omega(X, Y).$$

This gives us an isomorphism between the tangent bundle and the cotangent bundle of M by sending $v \in T_p M$ to the associated 1-form $\omega_{p,v} : u \mapsto (\omega_p)(u, v), u \in T_p M$. We write this isomorphism as $\omega^{\#}$.

Foundations 0000000000000000	Shifted symplectic ○●0000	Symplectic ME	LG-model 00000	Outlook 00	References
<i>m</i> -shifted <i>k</i> -f	orms				

de Rham differential $d : \Omega^q(X_p) \to \Omega^{q+1}(X_p)$ simplicial differential $\delta : \Omega^q(X_{p-1}) \to \Omega^q(X_p), \ \delta = \sum_{i=0}^p (-1)^i d_i^*.$

Foundations 0000000000000000	Shifted symplectic ○○●○○○	Symplectic ME	LG-model 00000	Outlook 00	References
<i>m</i> -shifted <i>k</i> -f	orms				

The total complex
$$(K^{\bullet}, D)$$
:
 $K^n := \bigoplus_{p+q=n} \Omega^q(X_p), D = \delta + (-1)^p d$

Foundations Shifted symplectic Symplectic ME LG-model Outlook References

m-shifted presymplectic *k*-forms

We restrict this complex to the sub-complex $\hat{\Omega}^{\bullet}(X_{\bullet})$ of normalised differential forms. A differential form α is called normalised if it vanishes on degeneracies, i.e.

$$\hat{\Omega}^{\bullet}(X_{\bullet}) = \{ \alpha \in \Omega^{\bullet}(X_{\bullet}) | s_i^* \alpha = 0 \ \forall i \}.$$

Definition (cf. Cueca and Zhu (2023) Sect. 2.1)

An *m*-shifted *k*-form α_{\bullet} on X_{\bullet} is of the form

$$\alpha_{\bullet} = \sum_{i=0}^{m} \alpha_i \text{ with } \alpha_i \in \hat{\Omega}^{k+m-i}(X_i).$$

 α_{\bullet} is closed if $D\alpha_{\bullet} = 0$. A closed normalised *m*-shifted 2-form α_{\bullet} on X_{\bullet} is called an *m*-shifted presymplectic form.

IM-forms and	nondegener	acv			
Foundations 0000000000000000	Shifted symplectic ○○○○●○	Symplectic ME	LG-model 00000	Outlook 00	References

Definition (cf. Cueca and Zhu (2023) Sect. 2.2, Getzler (2014))

For $I \in \mathbb{Z}$, $v \in (\mathcal{T}_I K)_x \subseteq T_x K_I$, and $w \in (\mathcal{T}_{m-I} K)_x \subseteq T_x K_{m-I}$ in the tangent complex at $x \in K_0$, we define the IM-form

$$\lambda_{x}^{\omega_{\bullet}}(v,w) := \sum_{\sigma \in \mathsf{Shuff}_{l,m-l}} (-1)^{\sigma} \omega_{m}(T(s_{\sigma(m-1)} \dots s_{\sigma(l)})v, T(s_{\sigma(l-1)} \dots s_{\sigma(0)})w),$$

where $\text{Shuff}_{l,m-l} = (l, m-l)\text{-shuffles and } (-1)^{\sigma} = \text{sign of } \sigma$.

(Getzler 2014): $\lambda^{\omega_{\bullet}}$ is graded anti-symm (by def), vanishes on deg vectors (since ω_{\bullet} is normalised), and is infinitesimal mult, i.e. $\lambda^{\omega_{\bullet}}(\partial u, w) + (-1)^{l+1}\lambda^{\omega_{\bullet}}(u, \partial w) = 0$ (since ω_m is mult, i.e. $\delta\omega_m = 0$).

(日) (周) (日) (日) (日) (日) (10)

Foundations 0000000000000000	Shifted symplectic ○○○○○●	Symplectic ME	LG-model 00000	Outlook 00	References
IM-forms and	nondegener	асу			

These properties of $\lambda^{\omega_{\bullet}}$ were proven by Florian Dorsch (cf. Cueca and Zhu (2023) Appendix). In particular, since ω_{\bullet} is closed, $\lambda^{\omega_{\bullet}}$ descends to homology groups.

An *m*-shifted 2-form ω_{\bullet} is called *non-degenerate* if the induced pairing $\lambda^{\omega_{\bullet}}(-,-)$ on the homology groups is pt-wise non-deg. Equivalently: $\lambda^{\omega_{\bullet}}$ induces a quasi-isom between $\mathcal{T}_{\bullet}K$ and $\mathcal{T}_{\bullet}^{*}K$.

Definition (cf. Cueca and Zhu (2023) Def. 2.14)

A pair $(K_{\bullet}, \omega_{\bullet})$ is an *m*-shifted symplectic Lie *n*-groupoid if K_{\bullet} is a Lie *n*-groupoid and ω_{\bullet} is a closed, normalised, and non-degenerate *m*-shifted 2-form on K_{\bullet} .

Foundations 0000000000000000	Shifted symplectic	Symplectic ME ●0000000000000	LG-model 00000	Outlook 00	References
Definition					

Definition (cf. Cueca and Zhu (2023) Def. 2.31)

Two *m*-shifted symplectic Lie *n*-groupoids $(K_{\bullet}, \alpha_{\bullet})$ and $(J_{\bullet}, \beta_{\bullet})$ are symplectic Morita equivalent if there exists another Lie *n*-groupoid Z_{\bullet} with an (m-1)-shifted 2-form Φ_{\bullet} and hypercovers

satisfying $f_{\bullet}^* \alpha_{\bullet} - g_{\bullet}^* \beta_{\bullet} = D \Phi_{\bullet}$.

Foundations	Shifted symplectic	Symplectic ME 0●00000000000	LG-model 00000	Outlook 00	References
Definition					

Lemma (cf. Cueca and Zhu (2023) Lemma 2.27)

Let $f_{\bullet} : K_{\bullet} \twoheadrightarrow J_{\bullet}$ be a hypercover of Lie n-groupoids. Then, the induced maps $Tf_i : T_i K \to T_i J$ form a quasi-isomorphism.

Lemma (cf. (Cueca and Zhu 2023) Lemma 2.30)

Let $(K_{\bullet}, \alpha_{\bullet})$ be an m-shifted symplectic Lie n-groupoid and $f_{\bullet} : J_{\bullet} \twoheadrightarrow K_{\bullet}$ a hypercover of Lie n-groupoids. Then, $(J_{\bullet}, f_{\bullet}^* \alpha_{\bullet})$ is also an m-shifted symplectic Lie n-groupoid.

Foundations 0000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Definition					

Example 2.34 and Prop. 2.35 in Cueca and Zhu (2023):

 Strict morphisms: Let f_• : K_• → J_• be a hypercover of Lie n-groupoids and α_• an m-shifted symplectic form on K_•. Then,

$$(J_{\bullet}, f_{\bullet}^* \alpha_{\bullet}) \xleftarrow{id_{\bullet}} (J_{\bullet}, 0) \xrightarrow{f_{\bullet}} (K_{\bullet}, \alpha_{\bullet})$$

is a symplectic Morita equivalence.

Gauge transformations: Let (K_●, α_●) be an *m*-shifted symplectic Lie *n*-groupoid and Φ_● an (*m* − 1)-shifted 2-form on K_●. Then,

$$(K_{\bullet}, \alpha_{\bullet} + D\Phi_{\bullet}) \xleftarrow{id_{\bullet}} (K_{\bullet}, \Phi_{\bullet}) \xrightarrow{id_{\bullet}} (K_{\bullet}, \alpha_{\bullet})$$

is a symplectic Morita equivalence.

(Cueca and Zhu 2023): Any symplectic ME decomposes into three symplectic ME of the two types above.

Foundations 0000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References		
Invariance of cohomology							

Facts about hypercovers and double complexes (Behrend 2004):

 If the rows of an augmented double complex are exact, then the cohomology of the total complex is isomorphic to that of the initial column. (Bott and Tu 1982)

 $I_{\bullet}: X_{\bullet} \twoheadrightarrow Y_{\bullet} \text{ admits a section if } f_0: X_0 \twoheadrightarrow Y_0 \text{ does.}$

- $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ induces a hom $f_{\bullet}^*: H_{\delta}^{\bullet}(Y, \Omega^q) \to H_{\delta}^{\bullet}(X, \Omega^q)$ between the simplicial cohomology groups.
- 2-isomorphic groupoid morphisms induce identical homomorphisms between the simplicial cohomology groups.
- A hypercover admitting a section induces an isomorphism between the simplicial cohomology groups.

Foundations 0000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Invariance of	cohomology				

Let $f : X_0 \rightarrow Y$ be a surjective submersion. Then, we can construct the *banal groupoid* X_{\bullet} using $X_1 = X_0 \times_Y X_0$. This automatically gives us a hypercover from X_{\bullet} to $Y_{\bullet} = (Y \rightrightarrows Y)$

Proposition (cf. (Behrend 2004) Prop. 2)

Let X_{\bullet} be the banal groupoid corresponding to $f : X_0 \twoheadrightarrow Y$. Then, $H^k_{\delta}(X_{\bullet}, \Omega^q) = 0$ for all k > 0, $q \ge 0$ and $H^0_{\delta}(X_{\bullet}, \Omega^q) = \Omega^q(Y)$ for all $q \ge 0$.

Note that for the trivial case $X_{\bullet} = Y_{\bullet} = (Y \rightrightarrows Y)$ corresponding to $id : Y \rightarrow Y$, this is satisfied.

Foundations	Shifted symplectic	Symplectic ME ○○○○○●○○○○○○	LG-model 00000	Outlook 00	References
Invariance of	cohomology				

Proof (Sketch from Behrend (2004)):

- Case 1: If {U_i} is an open cover of Y and X₀ = II_iU_i, X₁ = II_{i,j}U_{ij}: proven e.g. in Bott and Tu (1982) (Generalized Mayer-Vietoris sequence).
- Case 2: If f : X₀ → Y admits a section s : Y → X₀, then this induces a unique morphism s_• : Y_• → X_• such that there exists θ : s ∘ f ⇒ id_{X•}. This gives us an isomorphism between the cohomology groups of X_• and Y_•, the latter of which trivially fulfills the proposition.
- General Case: Define {U_i} to be an open cover of Y over which f admits local sections and set V_• to be the Čech groupoid corresponding to this cover. Then we define W_{mn} := X_m ×_Y V_n, wich makes W_{mn} into a bisimplicial manifold.

Foundations 00000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Invariance of	cohomolog	у			

Proof (Sketch from Behrend (2004)):

33 / 48

Foundations 0000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References
Invariance of	cohomology				

Proof (Sketch from Behrend (2004)):

- The rows are the nerve of the banal groupoid corresponding to $W_{0n} \rightarrow V_n$, which admits a section, i.e. the rows are exact due to case 2
- The columns are the nerve of the banal groupoid corresponding to W_{m0} → X_m, which is a submersion coming from an open cover, so the columns are exact due to case 1.

$$\begin{array}{ccc} H^k_D(W_{\bullet\bullet}, \Omega^q) & \stackrel{\cong}{\longrightarrow} & H^k_{\delta}(V_{\bullet}, \Omega^q) \\ \cong & \downarrow & \cong \\ H^k_{\delta}(X_{\bullet}, \Omega^q) & & H^k_{\delta}(Y \rightrightarrows Y, \Omega^q) \end{array}$$

Invariance of	cohomology				
Foundations 0000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References

ວງ

Corollary (cf. (Behrend 2004) Cor. 3)

Let $f_{\bullet} : X_{\bullet} \twoheadrightarrow Y_{\bullet}$, then $f^* : H^{\bullet}_{\delta}(Y_{\bullet}, \Omega^q) \xrightarrow{\sim} H^{\bullet}_{\delta}(X_{\bullet}, \Omega^q)$. Proof (Sketch from Behrend (2004)): Let $\pi : Y_0 \twoheadrightarrow \mathfrak{X}$ be an atlas. Then, $\pi \circ f_0 : X_0 \twoheadrightarrow \mathfrak{X}$ is also an altas. Define $Z_{mn} := X_m \times_{\mathfrak{X}} Y_n$:

Invariance of	cohomology				
Foundations 0000000000000000	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook 00	References

Proposition (cf. (Behrend 2004) Def. 9)

The total cohomology of the de Rham-simplicial double complex is invariant under Morita equivalence. Proof (Idea):

Proposition (cf. (Behrend 2004) Def. 9)

The total cohomology of the de Rham-simplicial double complex is invariant under Morita equivalence. Proof (Idea): q-cross-section $\ldots \xleftarrow{\delta} \Omega^q(Z_{11}) \xleftarrow{\delta} \Omega^q(Z_{01}) \xleftarrow{\delta} \Omega^q(Y_1)$ $\ldots \xleftarrow{\delta} \Omega^q(Z_{10}) \xleftarrow{\delta} \Omega^q(Z_{00}) \longleftrightarrow \Omega^q(Y_0)$ $\ldots \leftarrow \Omega^q(X_1) \leftarrow \Omega^q(X_0)$

(日) (周) (日) (日) (日)

be a Morita equivalence of Lie n-groupoids and α_{\bullet} an m-shifted symplectic form on K_{\bullet} .

Then, there is also an induced m-shifted symplectic form β_{\bullet} on J_{\bullet} and an (m-1)-shifted 2-form on Z_{\bullet} such that the zig-zag of hypercovers becomes a symplectic Morita equivalence.

Foundations Shifted symplectic Symplectic ME LG-model Outlook References

Invariance of shifted symplectic structures

Proof (Sketch): Assume that $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ implies $f_{\bullet}^{*}: H_{D}^{k}(Y_{\bullet}, \Omega^{\bullet}) \xrightarrow{\sim} H_{D}^{k}(X_{\bullet}, \Omega^{\bullet})$. $[\alpha_{\bullet}] \in H_{D}^{2+m}(K_{\bullet}, \Omega^{\bullet})$ $g_{\bullet}^{*}[\alpha_{\bullet}] = [g_{\bullet}^{*}\alpha_{\bullet}] \in H_{D}^{2+m}(Z_{\bullet}, \Omega^{\bullet})$ $(h_{\bullet}^{*})^{-1}g_{\bullet}^{*}[\alpha_{\bullet}] = [(h_{\bullet}^{*})^{-1}g_{\bullet}^{*}\alpha_{\bullet}] \in H_{D}^{2+m}(J_{\bullet}, \Omega^{\bullet})$ We can define $\beta_{\bullet} := (h_{\bullet}^{*})^{-1}g_{\bullet}^{*}\alpha_{\bullet}$ up to a gauge transformation.

- β_{\bullet} is a closed *m*-shifted 2-form on J_{\bullet} by definition.
- β_{\bullet} is normalised since the pullback of a simplicial morphism commutes with degeneracy maps.
- β_{\bullet} is non-degenerate: Analogous to Lemma 2.30 in Cueca and Zhu (2023).
- $[g_{\bullet}^*\alpha_{\bullet} h_{\bullet}^*\beta_{\bullet}] = [0]$, hence we can choose an (m-1)-shifted 2-form Φ_{\bullet} on Z_{\bullet} such that $g_{\bullet}^*\alpha_{\bullet} h_{\bullet}^*\beta_{\bullet} = D\Phi_{\bullet}$.

Foundations	Shifted symplectic	Symplectic ME	LG-model ●○○○○	Outlook 00	References
ΩG -model					

Definition (cf. (Cueca and Zhu 2023) Sect. 3.2)

Let G be a Lie group with quadratic Lie algebra \mathfrak{g} , i.e. equipped with a symm non-deg pairing st. $\langle [a, b], c \rangle + \langle b, [a, c] \rangle = 0$. Then,

$$\mathbb{G}_{\bullet} = \dots \Omega G \rightrightarrows P_e G \rightrightarrows pt$$

is a 2-shifted symplectic Lie 2-group with $\omega_{\bullet} = \omega + 0 + 0$ given by Segal's 2-form $\omega \in \Omega^2(\Omega G)$ defined as

$$\omega_{\tau}(\mathbf{a}, \mathbf{b}) = \int_{\mathbb{S}^1} \langle \frac{d}{dt} T L_{\tau(t)^{-1}} \mathbf{a}(t), T L_{\tau(t)^{-1}} \mathbf{b}(t) \rangle dt$$

for $\tau \in \Omega G$, $a, b \in T_{\tau} \Omega G$, and L the left translation map.

With this, we get $String(G) = \dots \widehat{\Omega G} \Longrightarrow P_e G \Longrightarrow pt$.

A D N A B N A B N A B N B B

Foundations 0000000000000000	Shifted symplectic	Symplectic ME	LG-model ○●○○○	Outlook 00	References
Ideas for the	LG-model				

Idea: Look for a Lie 2-group model of the string group using LG (cf. Murray, Roberts, and Wockel (2017)) and remove the central extension to get a model for $\mathcal{B}G$.

Action groupoid from Murray, Roberts, and Wockel (2017) (without the central extension):

 $LG \times QG$ $s = pr_2 \bigsqcup_{t=\rho} t = \rho$ QG

LG := loops. QG := quasiperiodic paths.

Problem: No multiplication (Lie 2-group structure)

Foundations 0000000000000000	Shifted symplectic	Symplectic ME 0000000000000	LG-model ○○●○○	Outlook 00	References
Ideas for the <i>LG</i> -model					

(Murray, Roberts, and Wockel 2017): Have strict Lie 2-group structure on

$$\widetilde{\Omega_{b}G} \rtimes Q_{b,*}G$$

$$s = pr_{2} \bigsqcup_{t=\rho} Q_{b,*}G$$

 $\Omega_b G \coloneqq$ flat based loops. $Q_{b,*}G \coloneqq$ flat based quasiperiodic paths.

given by $m_0(\gamma, \gamma') = \gamma \cdot \gamma'$ extending pointwise mult on [0, 1] to \mathbb{R} , and $m_1((\eta, \gamma), (\eta', \gamma')) = (\eta \cdot \eta', \gamma')$.

Foundations 0000000000000000	Shifted symplectic	Symplectic ME	LG-model ○○○●○	Outlook 00	References
Ideas for the	<i>LG</i> -model				

(Murray, Roberts, and Wockel 2017): The inclusion

is a weak equivalence of Lie groupoids. This gives us a non-strict Lie 2-group structure on the *LG*-model.

Foundations 0000000000000000	Shifted symplectic	Symplectic ME 0000000000000	LG-model ○○○○●	Outlook 00	References
Ideas for the	<i>LG</i> -model				

Recall that given a (non-strict) 2-group $G_1 \rightrightarrows G_0$, the corresponding simplicial picture has the form

 $\dots X_2 \rightrightarrows X_1 \rightrightarrows X_0$

with $X_0 = pt$, $X_1 = G_0$, and $X_2 = E_m$. In my case, this would give me $X_0 = pt$, $X_1 = QG$, and

$$X_2 = E_m = (QG \times QG) \times_{m_0, QG, \rho} (LG \times QG).$$

Applying the cancellation lemma, this could potentially be simplified to $LG \times QG^2$.

Foundations	Shifted symplectic	Symplectic ME	LG-model 00000	Outlook ●0	References
Outlook (to-do)					

- Fix some of the gaps in my current understanding.
- Finish the proof on invariance under ME (go through triple complex argument and try to find a generalization to *n*-gpds).
- Finish the LG-model and check that it is ME to the ΩG -model.
- Transport the shifted symplectic structure from the Ω*G*-model to the *LG*-model via the ME.

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

References I

- Baez, John C and Aaron D Lauda (2003). "Higher-dimensional algebra V: 2-groups". In: *arXiv preprint math/0307200*.
- Behrend, Kai (2004). "Cohomology of stacks". In: Intersection theory and moduli, ICTP Lect. Notes 19, pp. 249–294.
- Bott, Raoul and Loring W Tu (1982). Differential forms in algebraic topology. Vol. 82. Springer.
- Bursztyn, Henrique et al. (2004). "Integration of twisted Dirac brackets". In.
- Cueca, Miquel and Chenchang Zhu (2023). "Shifted symplectic higher Lie groupoids and classifying spaces". In: Advances in Mathematics 413.
- Getzler, Ezra (2014). *Differential forms on stacks (slides)*. cf. homepage: sites.northwestern.edu/getzler/.

- Murray, Michael, David Michael Roberts, and Christoph Wockel (2017). "Quasi-periodic paths and a string 2-group model from the free loop group". In: J. Lie Theory 27, pp. 1151–1177. arXiv: 1702.01514 [math.DG].
- Pressley, Andrew and Graeme Segal (1986). Loop groups. The Clarendon Press.
- Xu, Ping (2004). "Momentum maps and Morita equivalence". In: Journal of Differential Geometry 67.2, pp. 289–333.

Remark (from Cueca and Zhu 2023)

Let X_{\bullet} be a simplicial manifold. Then, we can define a simplicial vector bundle over X_0 as

$$\dots TX_2|_{X_0} \Longrightarrow TX_1|_{X_0} \rightrightarrows TX$$

Definition (Def 2.8 in Cueca and Zhu 2023)

Let K_{\bullet} be a Lie *n*-groupoid. We define the *tangent complex* $(\mathcal{T}_{\bullet}K, \partial)$ as the following complex of vector bundles over K_0 :

$$\mathcal{T}_{l}\mathcal{K} := \begin{cases} kerTp_{l,l}|_{\mathcal{K}_{0}} & \text{for } l > 0, \\ \mathcal{T}\mathcal{K}_{0} & \text{for } l = 0, \\ 0 & \text{for } l < 0. \end{cases}$$

with $\partial := (-1)^{l} Td_{l}^{l}$. We write $H_{\bullet}(\mathcal{T}K)$ for the homology groups of the tangent complex $(\mathcal{T}_{\bullet}K, \partial)$.

where $p_{I,I} : K_I \twoheadrightarrow Hom(\Lambda[I, I], K_{\bullet})$ is the natural projection of *I*-simplices in K_{\bullet} to [I, I]-horns in K_{\bullet} .

Proposition (Prop 2.10 in Cueca and Zhu 2023)

Let K_{\bullet} be a Lie n-groupoid. Then, for all $l \ge 0$, by using Dold-Kan (point-wise), we get an isomorphism

$$\mathcal{T}_{I}K \cong TK_{I}|_{K_{0}}/\oplus_{i=0}^{l-1} im(Ts_{i}^{l-1}),$$

sending ∂ to $\sum_{i=0}^{l} (-1)^{i} T d_{i}^{l}$. Additionally, this gives us $\mathcal{T}_{l} K = 0$ for l > n. Example: Let $K \rightrightarrows M$ be a Lie groupoid. Then, its nerve NK_{\bullet} is a Lie 1-groupoid and the corresponding tangent complex has the form of its Lie algebroid $A = kerTs|_M$:

$$\mathcal{T}_i \mathcal{K} \coloneqq egin{cases} A & ext{for } i = 1, \ T \mathcal{M} & ext{for } i = 0, \ 0 & ext{for else}. \end{cases}$$

with $\partial = \rho$ the anchor $\rho = Tt|_A$.

Example: Let $K \rightrightarrows M$ be a Lie groupoid. A 1-shifted symplectic form on the nerve NK_{\bullet} consists of $\omega_{\bullet} = \omega + H$ with $\omega \in \Omega^{2}(K)$ and $H \in \Omega^{3}(M)$ normalised such that $\delta \omega = 0$, $d\omega = \delta H$, and dH = 0 such that the pairing induced by the IM-form $\lambda^{\omega_{\bullet}}$ is non-degenerate.

The non-degeneracy in this case is equivalent to $ker\omega_x \cap A_x \cap ker\rho_x = 0, \forall x \in M.$ (cf. Cueca and Zhu (2023)). In total, this recovers the definition of a *quasi-symplectic Lie* groupoid in Xu (2004) also known as a *twisted presymplectic Lie* groupoid in Bursztyn et al. (2004).

Example: For $K \rightrightarrows M$ be a Lie groupoid with a 1-shifted symplectic form $\omega_{\bullet} = \omega + H$ with $\omega \in \Omega^2(K)$ and $H \in \Omega^3(M)$, the IM-form $\lambda^{\omega_{\bullet}}$ has the form

$$\lambda^{\omega_{ullet}}(\mathbf{v},\mathbf{a}) = \pm \omega(\mathsf{Ts}(\mathbf{v}),\mathbf{a})$$

 $\lambda^{\omega_{ullet}}(\mathbf{a},\mathbf{v}) = \pm \omega(\mathbf{a},\mathsf{Ts}(\mathbf{v}))$

 $\forall v \in (\mathcal{T}_0 K_{\bullet})_x = T_x M, a \in (\mathcal{T}_1 K_{\bullet})_x = A_x.$

$$\begin{array}{ccc} A_{x} & \stackrel{\rho}{\longrightarrow} & T_{x}M \\ \lambda^{\omega \bullet} \downarrow & & \downarrow \lambda^{\omega \bullet} \\ (T_{x}M)^{*} & \stackrel{\rho}{\longrightarrow} & (A_{x})^{*} \end{array}$$

Let Y be a manifold. Then, we can form the Lie groupoid $Y_{\bullet} = (Y \rightrightarrows Y)$, where the objects are elements $y \in Y$ and the morphisms are the unit arrows $id_y \ \forall y \in Y$. Then, the simplicial nerve NY_{\bullet} has the form:

$$..Y \equiv Y \equiv Y$$

where all the face maps are identity (viewed as $id : id_y \mapsto y$). Thus, we can form the complex

$$0 \to \Omega^q(Y) \xrightarrow{0} \Omega^q(Y) \xrightarrow{id} \Omega^q(Y) \xrightarrow{0} \Omega^q(Y) \xrightarrow{id} \dots$$

The cohomology $H^k(Y, \Omega^q)$ of this complex is zero for k > 0 and $H^0(Y, \Omega^q) = \Omega^q(Y)$.

Q

Path and loop spaces (cf. Murray, Roberts, and Wockel (2017)):

$$P_e G := \{\gamma : [0,1] \to G | \gamma(0) = e\}$$
$$\Omega G := \{\gamma \in P_e G | \gamma(1) = e\}$$
$$\Omega_b G := \{\gamma \in \Omega G | \gamma(0)^{(n)} = \gamma(1)^{(n)} = 0 \ \forall n\}$$
$$LG := \{\gamma : \mathbb{R} \to G | \gamma(0) = \gamma(1)\}$$
$$QG := \{\gamma : \mathbb{R} \to G | \gamma(t+1) \cdot \gamma(t)^{-1} \text{ constant } \forall t\}$$
$$b_{b,*} G := \{\gamma \in QG | \gamma(0) = e, \ \gamma(0)^{(n)} = \gamma(1)^{(n)} = 0 \ \forall n\}$$

三日 のへで

The string group is defined by the central extension

$$1
ightarrow B\mathbb{S}^1
ightarrow \mathit{String}(G)
ightarrow G
ightarrow 1$$

Locally, String(G) looks like $G \times BS^1$, which has the form

Finite dimensional model: Taking a good cover $\{U_i\}$ of G, we can form the Čech groupoid, which gives us the Morita equivalence

$$\begin{array}{ccc} G & \amalg_{i,j} U_{ij} \\ \\ & & & & & \\ G & & \amalg_i U_i \end{array}$$

Thus, we get the central extension

and a finite dimensional Lie groupoid model for String(G) with $String(G)_1 = \coprod_{i,j} U_{ij} \times \mathbb{S}^1$ and $String(G)_0 = \coprod_i U_i$.

Infinite dimensional model: Pointwise multiplication defines a free and proper action of ΩG on $P_e G$ and we get a Morita equivalence (even a hypercover) between the action groupoid and $G \rightrightarrows G$:

We get a central extension and a strict Lie 2-group model for String(G) as

$$\begin{array}{c} \mathbb{S}^{1} \to \widetilde{\Omega G} \ltimes P_{e}G \to \Omega G \ltimes P_{e}G \\ \downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \downarrow \\ pt \longrightarrow P_{e}G \longrightarrow P_{e}G \end{array}$$

Central extensions of $L\mathfrak{g}$ are in 1:1 correspondence to invertible symmetric bilinear forms on \mathfrak{g} by setting $\omega(a,b) = \int_{\mathbb{S}^1} \langle \frac{d}{dt} a(t), b(t) \rangle dt$ (cf. Pressley and Segal (1986)). With this, we can define a Lie bracket on $\widetilde{LG} = LG \oplus \mathbb{R}$ as $[(a,t), (b,s)] := ([a,b], \omega(a,b)).$ On the level of groups, we can use the left translation map $L_{\lambda^{-1}} : \eta \mapsto \lambda^{-1} \cdot \eta$ and to define a form

$$\omega_{\lambda}^{LG}(a,b) \coloneqq \omega(TL_{\lambda^{-1}}a,TL_{\lambda^{-1}}b)$$

on LG, which we can then restrict to ΩG .