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Introduction

Main Goals:

Understand shifted symplectic structures.

Prove invariance of shifted symplectic structures under Morita
equivalence.

Give an LG -model for BG .
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Lie groupoids

Definition

A Lie groupoid is a groupoid G1 ⇒ G0 (i.e. a (small) category
where all morphisms are invertible) such that G1 and G0 are
(smooth) manifolds, all structure maps are smooth, and the source
and target maps are surjective submersions.
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Lie groupoids

Definition

A Hilsum-Skandalis morphism from G• to H• consists of a triple
(E , JG , JH), E a manifold (HS bibundle), JG : E ! G0 and
JH : E ! H0 morphisms such that:

G1 E H1

G0 H0

s, t
JHJG

s, t

1 JG : E ! G0 is a right H•-principal bundle with moment map
JH .

2 E has a left G•-action with moment map JG .

3 The G• and H• actions on E commute, i.e.
(g ∗ x) ∗ h = g ∗ (x ∗ h).
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Lie groupoids

Given a levelwise morphism f• = (f0, f1) : G• ! H• between Lie
groupoids, we can construct an HS bibundle from this as

G1 G0 ×f0,H0,t H1 H1

G0 H0

s, t s, t

Definition

An HS bibundle is invertible iff the left G•-action on E makes
E ! H0 into a G•-principal bundle as well. In this case, we call G•
and H• Morita equivalent (ME) and E a Morita bibundle.
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Lie groupoids

Definition

A (levelwise) morphism f• = (f0, f1) : G• ! H• is a hypercover if

1 f0 : G0 � H0 is a surjective submersion

2

G1 G0 × G0

H1 H0 × H0

f1

tG×sG

(f0,f0)

tH×sH

is a pullback diagram,

i.e. G1
∼= (G0 × G0)×(H0×H0) H1.

G• and H• are ME iff there exists K• and a zig-zag of hypercovers

K•

G• H•
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Differentiable stacks

Definition

A category fibred in groupoids /C: cat X with π : X! C s.t.:

1 (Pullback.)
∃y x

V U

∃f ∗

π π

f

2 (Composition.)

z y x

W V U

∃!g∗

(f ◦g)∗

π

f ∗

π π

g

f ◦g

f
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Differentiable stacks

Definition

A stack over a site (C, T ) is a c.f.i.g π : X! C such that:

1 (Gluing of morphisms.) For X ∈ Obj(C) and x , y ∈ Obj(XX ):
Isom(x , y) : Cop ! Set
U 7! {(f , φ)|f ∈ HomC(U,X ), φ ∈ HomXX

(f ∗x , f ∗y)}
is a sheaf over C.

2 (Gluing of objects.) For X ∈ Obj(C) and any covering
U

r
−! X , every family {xi}i∈I of objects xi ∈ XU and every

family {φij}i∈I , j∈J of morphisms φij : xj |U×XU ! xi |U×XU

satisfying the cocycle condition φkj ◦ φji = φki , there exists a
global object x over X together with isomorphisms
φi : x |U ! xi such that φij ◦ φj = φi over U ×X U.
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Differentiable stacks

Definition

Let M be a differentiable manifold. Define a category M as:

Obj(M) = {(S , u)|S ∈ Diff , u ∈ Hom(S ,M)}
HomM((S , u)! (T , v)) = {f |f : S ! T , u = v ◦ f }

S T

M

f

u v

Definition

A stack which is isomorphic to M for some manifold M is called
representable.
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Differentiable stacks

Definition

A morphism between stacks f : X! Y is a representable
submersion if for any morphism M ! Y, X×Y M is representable
as some N and the induced morphism N ! M is a submersion.
If N ! M is always surjective, f is called a representable surjective
submersion.

Definition

A differentiable stack is a stack X over (Mfd, Tsurj . subm.) together
with a manifold X0 and a representable surjective submersion
π : X0 ! X. In this case, the pair (X0, π) is called a
(differentiable) atlas for X.

Example: M is a differentiable stack with atlas (M, id).
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Correspondence

Let π : X0 � X be a choice of atlas for a differentiable stack.
Then, X0 ×X X0 is representable and X• := (X0 ×X X0 ⇒ X0) is a
Lie groupoid.

Definition

Given a Lie groupoid G• = (G1 ⇒ G0), we define the category of
principal G•-bundles also denoted by B(G•), as follows:

Obj(B(G•)) = {P|P a principal G•-bundle}.
HomB(G•)(P,P ′) = {F : P ! P ′

a morphism of G•-principal bundles}.

For any Lie groupoid G•, B(G•) has the structure of a
differentiable stack with G0 as an atlas.
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Simplicial objects

Definition

A simplicial manifold X• consists of:

• A tower of manifolds Xm

• smooth face maps dm
i : Xm ! Xm−1 for i = 0, . . . ,m

• smooth degeneracy maps smi : Xm ! Xm+1 for
i = 0, . . . ,m − 1

satisfying some simplicial identities.

We can define simplicial objects more abstractly as a contravariant
functor X• : ∆op ! C.
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Simplicial objects

Example: The standard m-simplex ∆[m] is given by:
(∆[m])k := {f : [k]! [m] | f (i) ≤ f (j) for all 0 ≤ i ≤ j ≤ k}.

0

1

2

3

The levels (∆[3])k describe the k-simplices of a tetrahedron.
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Simplicial objects

Example: The horn Λ[m, j ] is given by
(Λ[m, j ])k := {f ∈ (∆[m])k |{0, . . . , ĵ , . . . ,m} * {f (0), . . . , f (k)}}.

0 2

1

The levels of Λ[2, 1] form an angle.
In general, we can think of the horn as removing the highest
non-degenerate face as well as the face opposite the j-th vertex
from a simplex.
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Lie n-groupoids

Λ[m, j ] X•

∆[m]

∃ lift? (∗)

1

0 2

a

∃a·b

b

Note that we have:

Hom(Λ[m, j ],X•) = {(m, j)-horns in X•} =: Λm
j (X•)

Hom(∆[m],X•) = {m-simplices in X•} = Xm.
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Lie n-groupoids

Definition

A Lie n-groupoid X• is a simplicial manifold that satisfies:

1 Kan(m, j) for all m ≥ 1 and 0 ≤ j ≤ m.

2 Kan!(m, j) for all m ≥ n + 1 and 0 ≤ j ≤ m.

where

Kan(m, j) means the restriction map
Hom(∆[m],X•)! Hom(Λ[m, j ],X•) is a surjective
submersion.

Kan!(m, j) means the restriction map
Hom(∆[m],X•)! Hom(Λ[m, j ],X•) is an isomorphism.

A Lie n-group is be a Lie n-groupoid X• where X0 = pt.
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Lie n-groupoids

Examples:

Lie groupoid G1 ⇒ G0: simplicial nerve

. . .G1 ×G0 G1−!−!
−!G1 ⇒ G0

Lie group G : . . .G × G−!−!−!G ⇒ pt.
Crossed module δ : H ! G with α : G ! Aut(H):

Equivalent to a strict Lie 2-group (cf. Baez and Lauda (2003)).
In particular, (simplicial) Lie 2-group

. . .H × G 2
−!−!
−!G ⇒ pt

Non-strict Lie 2-group (cf. Baez and Lauda (2003)) G• with
m : G• × G• ! G•:

. . .Em−!−!
−!G0 ⇒ pt,

where Em is the HS bibundle corresponding to m:

Em = (G0 × G0)×m0, G0, t G1

19 / 48



Foundations Shifted symplectic Symplectic ME LG-model Outlook References

Hypercover

∂m(X•) := Hom(∂∆[m],X•)

Definition

f : X• ! Y• is a hypercover if the maps

qi := ((d0, . . . , dm), fm) : Xm ! ∂m(X•)×∂m(Y•) Ym

are a surj subm for 0 ≤ m ≤ n − 1 and an isom for m = n.

In particular, q0 = f0 is a surjective submersion. For n = 1:

q1 = ((d0, d1), f1) = ((s, t), f1) : G1
∼
−! (G0 × G0)×H0×H0 H1

Definition

X• and Y• are ME if there exists a Z• and a zig-zag of hypercovers

Z•

X• Y•
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Recall: symplectic manifolds

Definition

A symplectic manifold is a smooth manifold M equipped with a
closed non-degenerate differential 2-form ω. Such a 2-form is
called symplectic form.

For X ∈ X(M), we get an associated 1-form defined as

ωX : X(M)! C∞(M),Y 7! ωX (Y ) := ω(X ,Y ).

This gives us an isomorphism between the tangent bundle and the
cotangent bundle of M by sending v ∈ TpM to the associated
1-form ωp,v : u 7! (ωp)(u, v), u ∈ TpM.
We write this isomorphism as ω#.
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m-shifted k-forms

...
...

...

Ω2(X0) Ω2(X1) Ω2(X2) . . .

Ω1(X0) Ω1(X1) Ω1(X2) . . .

Ω0(X0) Ω0(X1) Ω0(X2) . . .

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

de Rham differential d : Ωq(Xp)! Ωq+1(Xp)
simplicial differential δ : Ωq(Xp−1)! Ωq(Xp), δ =

∑p
i=0(−1)id∗i .
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m-shifted k-forms

...
...

...

Ω2(X0) Ω2(X1) Ω2(X2) . . .

Ω1(X0) Ω1(X1) Ω1(X2) . . .

Ω0(X0) Ω0(X1) Ω0(X2) . . .

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

The total complex (K •,D):
Kn :=

⊕
p+q=n Ωq(Xp), D = δ + (−1)pd
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m-shifted presymplectic k-forms

We restrict this complex to the sub-complex Ω̂•(X•) of normalised
differential forms. A differential form α is called normalised if it
vanishes on degeneracies, i.e.

Ω̂•(X•) = {α ∈ Ω•(X•)|s∗i α = 0 ∀i}.

Definition (cf. Cueca and Zhu (2023) Sect. 2.1)

An m-shifted k-form α• on X• is of the form

α• =
m∑
i=0

αi with αi ∈ Ω̂k+m−i (Xi ).

α• is closed if Dα• = 0.
A closed normalised m-shifted 2-form α• on X• is called an
m-shifted presymplectic form.
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IM-forms and nondegeneracy

Definition (cf. Cueca and Zhu (2023) Sect. 2.2, Getzler (2014))

For l ∈ Z, v ∈ (TlK )x ⊆ TxKl , and w ∈ (Tm−lK )x ⊆ TxKm−l in
the tangent complex at x ∈ K0, we define the IM-form

λω•
x (v ,w) :=∑
σ∈Shuffl,m−l

(−1)σωm(T (sσ(m−1) . . . sσ(l))v ,T (sσ(l−1) . . . sσ(0))w),

where Shuffl ,m−l = (l ,m − l)-shuffles and (−1)σ = sign of σ.

(Getzler 2014): λω• is graded anti-symm (by def),
vanishes on deg vectors (since ω• is normalised),
and is infinitesimal mult, i.e. λω•(∂u,w) + (−1)l+1λω•(u, ∂w) = 0
(since ωm is mult, i.e. δωm = 0).
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IM-forms and nondegeneracy

These properties of λω• were proven by Florian Dorsch (cf. Cueca
and Zhu (2023) Appendix). In particular, since ω• is closed, λω•

descends to homology groups.

An m-shifted 2-form ω• is called non-degenerate if the induced
pairing λω•(−,−) on the homology groups is pt-wise non-deg.
Equivalently: λω• induces a quasi-isom between T•K and T ∗• K .

Definition (cf. Cueca and Zhu (2023) Def. 2.14)

A pair (K•, ω•) is an m-shifted symplectic Lie n-groupoid if K• is a
Lie n-groupoid and ω• is a closed, normalised, and non-degenerate
m-shifted 2-form on K•.
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Definition

Definition (cf. Cueca and Zhu (2023) Def. 2.31)

Two m-shifted symplectic Lie n-groupoids (K•, α•) and (J•, β•) are
symplectic Morita equivalent if there exists another Lie n-groupoid
Z• with an (m − 1)-shifted 2-form Φ• and hypercovers

Z•

K• J•

f• g•

satisfying f ∗• α• − g∗•β• = DΦ•.
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Definition

Lemma (cf. Cueca and Zhu (2023) Lemma 2.27)

Let f• : K• � J• be a hypercover of Lie n-groupoids. Then, the
induced maps Tfi : TiK ! TiJ form a quasi-isomorphism.

Lemma (cf. (Cueca and Zhu 2023) Lemma 2.30)

Let (K•, α•) be an m-shifted symplectic Lie n-groupoid and
f• : J• � K• a hypercover of Lie n-groupoids. Then, (J•, f

∗
• α•) is

also an m-shifted symplectic Lie n-groupoid.
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Definition

Example 2.34 and Prop. 2.35 in Cueca and Zhu (2023):

Strict morphisms: Let f• : K• � J• be a hypercover of Lie
n-groupoids and α• an m-shifted symplectic form on K•.
Then,

(J•, f
∗
• α•)

id• −− (J•, 0)
f•−! (K•, α•)

is a symplectic Morita equivalence.

Gauge transformations: Let (K•, α•) be an m-shifted
symplectic Lie n-groupoid and Φ• an (m − 1)-shifted 2-form
on K•. Then,

(K•, α• + DΦ•)
id• −− (K•,Φ•)

id•−−! (K•, α•)

is a symplectic Morita equivalence.

(Cueca and Zhu 2023): Any symplectic ME decomposes into three
symplectic ME of the two types above.
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Invariance of cohomology

Facts about hypercovers and double complexes (Behrend 2004):

1 If the rows of an augmented double complex are exact, then
the cohomology of the total complex is isomorphic to that of
the initial column. (Bott and Tu 1982)

2 f• : X• � Y• admits a section if f0 : X0 � Y0 does.

3 A section s : Y0 ! X0 of f• : X• � Y• induces a unique
s• : Y• ! X• s.t. f• ◦ s• = idY• and ∃θ : s• ◦ f• ⇒ idX• .

4 f• : X• ! Y• induces a hom f ∗• : H•δ (Y ,Ωq)! H•δ (X ,Ωq)
between the simplicial cohomology groups.

5 2-isomorphic groupoid morphisms induce identical
homomorphisms between the simplicial cohomology groups.

6 A hypercover admitting a section induces an isomorphism
between the simplicial cohomology groups.
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Invariance of cohomology

Let f : X0 � Y be a surjective submersion. Then, we can
construct the banal groupoid X• using X1 = X0 ×Y X0. This
automatically gives us a hypercover from X• to Y• = (Y ⇒ Y )

Proposition (cf. (Behrend 2004) Prop. 2)

Let X• be the banal groupoid corresponding to f : X0 � Y .
Then, Hk

δ (X•,Ω
q) = 0 for all k > 0, q ≥ 0

and H0
δ (X•,Ω

q) = Ωq(Y ) for all q ≥ 0.

Note that for the trivial case X• = Y• = (Y ⇒ Y ) corresponding
to id : Y ! Y , this is satisfied.
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Invariance of cohomology

Proof (Sketch from Behrend (2004)):

Case 1: If {Ui} is an open cover of Y and X0 = qiUi ,
X1 = qi ,jUij : proven e.g. in Bott and Tu (1982) (Generalized
Mayer-Vietoris sequence).

Case 2: If f : X0 � Y admits a section s : Y ! X0, then this
induces a unique morphism s• : Y• ! X• such that there
exists θ : s ◦ f ⇒ idX• . This gives us an isomorphism between
the cohomology groups of X• and Y•, the latter of which
trivially fulfills the proposition.

General Case: Define {Ui} to be an open cover of Y over
which f admits local sections and set V• to be the Čech
groupoid corresponding to this cover. Then we define
Wmn := Xm ×Y Vn, wich makes Wmn into a bisimplicial
manifold.
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Invariance of cohomology

Proof (Sketch from Behrend (2004)):

...
...

...

. . . W11 W01 V1

. . . W10 W00 V0

. . . X1 X0 Y

f1

p1

f0
p0 p

f
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Invariance of cohomology

Proof (Sketch from Behrend (2004)):

The rows are the nerve of the banal groupoid corresponding
to W0n � Vn, which admits a section, i.e. the rows are exact
due to case 2

The columns are the nerve of the banal groupoid
corresponding to Wm0 � Xm, which is a submersion coming
from an open cover, so the columns are exact due to case 1.

Hk
D(W••,Ω

q) Hk
δ (V•,Ω

q)

Hk
δ (X•,Ω

q) Hk
δ (Y ⇒ Y ,Ωq)

∼=

∼=

∼=
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Invariance of cohomology

Corollary (cf. (Behrend 2004) Cor. 3)

Let f• : X• � Y•, then f ∗ : H•δ (Y•,Ω
q)
∼
−! H•δ (X•,Ω

q).
Proof (Sketch from Behrend (2004)): Let π : Y0 � X be an atlas.
Then, π ◦ f0 : X0 � X is also an altas. Define Zmn := Xm ×X Yn:

...
...

...

. . . Z11 Z01 Y1

. . . Z10 Z00 Y0

. . . X1 X0 X

π

π◦f0
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Invariance of cohomology

Proposition (cf. (Behrend 2004) Def. 9)

The total cohomology of the de Rham-simplicial double complex is
invariant under Morita equivalence.
Proof (Idea):

...
...

...

. . . Z11 Z01 Y1

. . . Z10 Z00 Y0

. . . X1 X0 X

π

π◦f0
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Invariance of cohomology

Proposition (cf. (Behrend 2004) Def. 9)

The total cohomology of the de Rham-simplicial double complex is
invariant under Morita equivalence.
Proof (Idea): q-cross-section

...
...

...

. . . Ωq(Z11) Ωq(Z01) Ωq(Y1)

. . . Ωq(Z10) Ωq(Z00) Ωq(Y0)

. . . Ωq(X1) Ωq(X0)

δ

δ

δ

δ δ

δ

δ

δ

δ δ

δ δ
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Invariance of shifted symplectic structures

Proposition

Let

Z•

K• J•

g• h•

be a Morita equivalence of Lie n-groupoids and α• an m-shifted
symplectic form on K•.
Then, there is also an induced m-shifted symplectic form β• on J•
and an (m − 1)-shifted 2-form on Z• such that the zig-zag of
hypercovers becomes a symplectic Morita equivalence.
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Invariance of shifted symplectic structures

Proof (Sketch):
Assume that f• : X• � Y• implies f ∗• : Hk

D(Y•,Ω
•)
∼
−! Hk

D(X•,Ω
•).

[α•] ∈ H2+m
D (K•,Ω

•)
g∗• [α•] = [g∗•α•] ∈ H2+m

D (Z•,Ω
•)

(h∗•)
−1g∗• [α•] = [(h∗•)

−1g∗•α•] ∈ H2+m
D (J•,Ω

•)
We can define β• := (h∗•)

−1g∗•α• up to a gauge transformation.

β• is a closed m-shifted 2-form on J• by definition.

β• is normalised since the pullback of a simplicial morphism
commutes with degeneracy maps.

β• is non-degenerate: Analogous to Lemma 2.30 in Cueca and
Zhu (2023).

[g∗•α• − h∗•β•] = [0], hence we can choose an (m − 1)-shifted
2-form Φ• on Z• such that g∗•α• − h∗•β• = DΦ•.
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ΩG -model

Definition (cf. (Cueca and Zhu 2023) Sect. 3.2)

Let G be a Lie group with quadratic Lie algebra g, i.e. equipped
with a symm non-deg pairing st. 〈[a, b], c〉+ 〈b, [a, c]〉 = 0. Then,

G• = . . .ΩG−!−!−!PeG ⇒ pt

is a 2-shifted symplectic Lie 2-group with ω• = ω + 0 + 0 given by
Segal’s 2-form ω ∈ Ω2(ΩG ) defined as

ωτ (a, b) =

∫
S1

〈 d

dt
TLτ(t)−1a(t),TLτ(t)−1b(t)〉dt

for τ ∈ ΩG , a, b ∈ TτΩG , and L the left translation map.

With this, we get String(G ) = . . . Ω̂G−!−!−!PeG ⇒ pt.
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Ideas for the LG -model

Idea: Look for a Lie 2-group model of the string group using LG
(cf. Murray, Roberts, and Wockel (2017)) and remove the central
extension to get a model for BG .

Action groupoid from Murray, Roberts, and Wockel (2017)
(without the central extension):

LG × QG

QG

t=ρs=pr2

LG := loops.
QG := quasiperiodic paths.

Problem: No multiplication (Lie 2-group structure)
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Ideas for the LG -model

(Murray, Roberts, and Wockel 2017): Have strict Lie 2-group
structure on

Ω̃bG o Qb,∗G

Qb,∗G

t=ρs=pr2

ΩbG := flat based loops.
Qb,∗G := flat based quasiperiodic paths.

given by m0(γ, γ′) = γ · γ′ extending pointwise mult on [0, 1] to R,
and m1((η, γ), (η′, γ′)) = (η · η′, γ′).
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Ideas for the LG -model

(Murray, Roberts, and Wockel 2017): The inclusion

Ω̃bG o Qb,∗G

Qb,∗G

with s = pr2, t = ρ.

↪−!

LG × QG

QG

with s = pr2, t = ρ.

is a weak equivalence of Lie groupoids. This gives us a non-strict
Lie 2-group structure on the LG -model.
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Ideas for the LG -model

Recall that given a (non-strict) 2-group G1 ⇒ G0, the
corresponding simplicial picture has the form

. . .X2−!−!
−!X1 ⇒ X0

with X0 = pt, X1 = G0, and X2 = Em.
In my case, this would give me X0 = pt, X1 = QG , and

X2 = Em = (QG × QG )×m0, QG , ρ (LG × QG ).

Applying the cancellation lemma, this could potentially be
simplified to LG × QG 2.
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Outlook (to-do)

Fix some of the gaps in my current understanding.

Finish the proof on invariance under ME (go through triple
complex argument and try to find a generalization to n-gpds).

Finish the LG -model and check that it is ME to the
ΩG -model.

Transport the shifted symplectic structure from the ΩG -model
to the LG -model via the ME.
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Appendix

Remark (from Cueca and Zhu 2023)

Let X• be a simplicial manifold. Then, we can define a simplicial
vector bundle over X0 as

. . .TX2|X0−!
−!−!TX1|X0 ⇒ TX
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Appendix

Definition (Def 2.8 in Cueca and Zhu 2023)

Let K• be a Lie n-groupoid. We define the tangent complex
(T•K , ∂) as the following complex of vector bundles over K0:

TlK :=


kerTpl ,l |K0 for l > 0,

TK0 for l = 0,

0 for l < 0.

with ∂ := (−1)lTd l
l . We write H•(T K ) for the homology groups

of the tangent complex (T•K , ∂).

where pl ,l : Kl � Hom(Λ[l , l ],K•) is the natural projection of
l-simplices in K• to [l , l ]-horns in K•.
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Appendix

Proposition (Prop 2.10 in Cueca and Zhu 2023)

Let K• be a Lie n-groupoid. Then, for all l ≥ 0, by using Dold-Kan
(point-wise), we get an isomorphism

TlK ∼= TKl |K0/⊕
l−1
i=0 im(Ts l−1

i ),

sending ∂ to
∑l

i=0(−1)iTd l
i .

Additionally, this gives us TlK = 0 for l > n.
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Appendix

Example: Let K ⇒ M be a Lie groupoid. Then, its nerve NK• is a
Lie 1-groupoid and the corresponding tangent complex has the
form of its Lie algebroid A = kerTs|M :

TiK :=


A for i = 1,

TM for i = 0,

0 for else.

with ∂ = ρ the anchor ρ = Tt|A.
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Appendix

Example: Let K ⇒ M be a Lie groupoid. A 1-shifted symplectic
form on the nerve NK• consists of ω• = ω + H with ω ∈ Ω2(K )
and H ∈ Ω3(M) normalised such that δω = 0, dω = δH, and
dH = 0 such that the pairing induced by the IM-form λω• is
non-degenerate.
The non-degeneracy in this case is equivalent to
kerωx ∩ Ax ∩ kerρx = 0, ∀x ∈ M. (cf. Cueca and Zhu (2023)).
In total, this recovers the definition of a quasi-symplectic Lie
groupoid in Xu (2004) also known as a twisted presymplectic Lie
groupoid in Bursztyn et al. (2004).
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Appendix

Example: For K ⇒ M be a Lie groupoid with a 1-shifted
symplectic form ω• = ω + H with ω ∈ Ω2(K ) and H ∈ Ω3(M), the
IM-form λω• has the form

λω•(v , a) = ±ω(Ts(v), a)

λω•(a, v) = ±ω(a,Ts(v))

∀v ∈ (T0K•)x = TxM, a ∈ (T1K•)x = Ax .

Ax TxM

(TxM)∗ (Ax)∗

λω•

ρ

λω•

ρ∗
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Appendix

Let Y be a manifold. Then, we can form the Lie groupoid
Y• = (Y ⇒ Y ), where the objects are elements y ∈ Y and the
morphisms are the unit arrows idy ∀y ∈ Y . Then, the simplicial
nerve NY• has the form:

...Y−!−!−!Y ⇒ Y

where all the face maps are identity (viewed as id : idy 7! y).
Thus, we can form the complex

0! Ωq(Y )
0
−! Ωq(Y )

id
−! Ωq(Y )

0
−! Ωq(Y )

id
−! . . .

The cohomology Hk(Y ,Ωq) of this complex is zero for k > 0 and
H0(Y ,Ωq) = Ωq(Y ).
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Appendix

Path and loop spaces (cf. Murray, Roberts, and Wockel (2017)):

PeG := {γ : [0, 1]! G |γ(0) = e}

ΩG := {γ ∈ PeG |γ(1) = e}

ΩbG := {γ ∈ ΩG |γ(0)(n) = γ(1)(n) = 0 ∀n}

LG := {γ : R! G |γ(0) = γ(1)}

QG := {γ : R! G |γ(t + 1) · γ(t)−1 constant ∀t}

Qb,∗G := {γ ∈ QG |γ(0) = e, γ(0)(n) = γ(1)(n) = 0 ∀n}
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Appendix

The string group is defined by the central extension

1! BS1 ! String(G )! G ! 1

Locally, String(G ) looks like G × BS1, which has the form

G S1 G × S1

× =

G pt G
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Appendix

Finite dimensional model: Taking a good cover {Ui} of G , we can
form the Čech groupoid, which gives us the Morita equivalence

G qi ,jUij

∼

G qiUi

Thus, we get the central extension

S1 qi ,jUij × S1 qi ,jUij

pt qiUi qiUi

and a finite dimensional Lie groupoid model for String(G ) with
String(G )1 = qi ,jUij × S1 and String(G )0 = qiUi .
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Appendix

Infinite dimensional model: Pointwise multiplication defines a free
and proper action of ΩG on PeG and we get a Morita equivalence
(even a hypercover) between the action groupoid and G ⇒ G :

ΩG n PeG G

PeG G

ev1◦pr2

ev1

We get a central extension and a strict Lie 2-group model for
String(G ) as

S1 Ω̃G n PeG ΩG n PeG

pt PeG PeG
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Appendix

Central extensions of Lg are in 1:1 correspondence to invertible
symmetric bilinear forms on g by setting
ω(a, b) =

∫
S1〈 ddt a(t), b(t)〉dt (cf. Pressley and Segal (1986)).

With this, we can define a Lie bracket on L̃G = LG ⊕ R as
[(a, t), (b, s)] := ([a, b], ω(a, b)).
On the level of groups, we can use the left translation map
Lλ−1 : η 7! λ−1 · η and to define a form

ωLG
λ (a, b) := ω(TLλ−1a,TLλ−1b)

on LG , which we can then restrict to ΩG .
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