Lower bounds on dimensions of mod-p Hecke algebras

The nilpotence method

Anna Medvedovsky

ICERM Institue Postdoc

Fall 2015

1. Definitions

p : prime

 $M\subset \mathbb{F}_p[\![q]\!]$: space of modular forms of level one modulo p (span of q-expansions mod p of all m.f. of level one and any weight)

 $M^0\subset M$: forms in M coming from weight $k\equiv 0 \mod p-1$ (equivalently, regular functions on $X_0(1)_{\mathbb{F}_p}$ – (supersingular points))

 $A\subset \operatorname{End}_{\mathbb{F}_p}(M)$: completed Hecke algebra acting on M, generated by T_n with $\gcd(n,p)=1$

Goal

We want to show that A is big (lots of modular forms).

2. How big? Prior results about A

Theorem (Nicolas-Serre, 2012)

If
$$p = 2$$
, then $A = \mathbb{F}_2[[T_3, T_5]]$.

Method: computation in characteristic 2. Proof uses Hecke recursion (slide 4); is very technical, entirely elementary.

Improvements by Mathilde Gerbelli-Gauthier; generalization to level 3 by Monsky. Method does not appear to generalize to p>2.

Theorem (Bellaïche-Khare, 2014)

For $p \ge 5$, each local piece of A has Krull dimension ≥ 2 .

Method: deduction from characteristic-zero results. Infinite fern of Gouvêa-Mazur implies that local pieces of \mathbb{T} (characteristic-zero analogue of A) have dim at least 4; study the kernel of $\mathbb{T} \twoheadrightarrow A$. Generalized by Shaunak Deo to level N.

3. The nilpotence method idea

Let \mathfrak{m} be a maximal ideal of A.

Goal

To show that dim $A_{\mathfrak{m}} \geq 2$ using characteristic-p methods.

Since $A_{\mathfrak{m}}$ is a noetherian local ring, it is enough to see that the Hilbert-Samuel function

$$k \mapsto \dim_{\mathbb{F}_n} A/\mathfrak{m}^k$$

grows faster than linearly (that is, dim $A_{\mathfrak{m}} > 1$).

Dually, it suffices to find many generalized eigenforms killed by \mathfrak{m}^k .

In fact, it is enough to find an infinite sequence of linearly independent generalized eigenforms $f_1, f_2, f_3 \dots$ so that the power of \mathfrak{m} that kills f_n grows slower than linearly in n.

Example (Nilpotence method for p = 3)

Here $M=M^0=\mathbb{F}_3[\Delta]$, and A is local with $\mathfrak{m}=(T_2,\ 1+T_7)$.

We look for many powers of Δ killed by T_2^k and $(1+T_7)^k$. Key input (see slide 4): The sequence $\{T_2(\Delta^n)\}_n$ of forms in M

Key input (see slide 4): The sequence
$$\{T_2(\Delta^n)\}_n$$
 of forms in M satisfies a linear recursion with coefficients in M :

 $T_2(\Delta^n) = \Delta T_2(\Delta^{n-2}) - \Delta^3 T_2(\Delta^{n-3}),$ n > 3.

Nilpotence Growth Theorem (slide 6) \implies the power of T_2 that kills Δ^n grows slower than linearly in n \implies number of forms killed by T_2^k grows faster than linearly in k.

Similar analysis for $1 + T_7$.

Corollary: dim $A \geq 2$. More precisely, $A = \mathbb{F}_3[T_2, 1 + T_7]$.

4. The Hecke recursion

Theorem (after Nicolas-Serre)

Let $\ell \neq p$ be prime and $f \in M$ coming from weight k. Then the sequence $\left\{T_{\ell}(f^n)\right\}_n$ satisfies a linear recursion over M with companion polynomial

$$P_{\ell,f} = X^{\ell+1} + a_1 X^{\ell} + \cdots a_{\ell} X + a_{\ell+1},$$

with $a_i \in M$ coming from a form of weight ki.

The theorem belongs to the same circle of ideas as the modular equation for j: the a_i are symmetric functions of the $\ell+1$ forms of weight k obtained from f.

Remark: For p=2,3,5,7,13, the polynomial $P_{\ell,\Delta}$ is in $\mathbb{F}_p[\Delta,X]$ and *symmetric*. In particular, $\deg_{\Delta} a_{\ell+1} = \ell+1$.

5. Introducing recursion operators

Let k be any field.

Definition

A linear operator $T: k[y] \to k[y]$ is a recursion operator if the sequence $\{T(y^n)\}_n$ satisfies a linear recursion over k[y].

Equivalently, T is a recursion operator if the sequence $\{T(f^n)\}_n$ is a recurrence sequence for any f in k[y].

Key example: for p=2,3,5,7,13 and ℓ prime, the Hecke operator T_{ℓ} is a recursion operator on $M^0=\mathbb{F}_p[\Delta]$.

Proposition (M.)

The space of recursion operators over $\mathbb{F}_p[y]$ that commute with the p^{th} power map is closed under addition and composition.

6. Key technical result (NGT)

Nilpotence Growth Theorem (M.)

Let \mathbb{F} be a finite field. Suppose $T : \mathbb{F}[y] \to \mathbb{F}[y]$ is a degree-lowering linear operator so that the sequence $\{T(y^n)\}_n$ satisfies a linear recurrence whose companion polynomial

$$P_T = X^d + a_1 X^{d-1} + \dots + a_d$$
 in $\mathbb{F}_p[y][X]$

has $\deg a_i \leq i$ for all i < d and $\deg a_d = d$.

Then the minimal power of T annihilating y^n grows as $O(n^{\alpha})$ for some $\alpha < 1$: slower than linearly in n.

What is
$$\alpha$$
? If $P_T = (X + cy)^d + \text{LOT}$, then $\alpha = \log_d(d-1)$.

Conditions are optimal: Result is false if...

- \mathbb{F} has characteristic zero (Counterex: $P_T = X^2 yX y^2$)
- \mathbb{F} contains $\mathbb{F}_p(t)$ (Counterex: $P_T = X^2 tyX y^2$)
- deg $a_d < d$ (Counterex: $P_T = X^2 yX$)

Example (Experimental data for α in the NGT)

We plot ordered pairs $(n, \text{ minimum power of } T \text{ that kills } y^n)$ for two recursion operators on $\mathbb{F}_3[y]$ satisfying the hypotheses of the NGT (slide 6). Computationally, $\alpha = \frac{1}{2}$ for the Hecke operator on the left, and $\alpha = \log_3(2)$ on the right.

7. Main theorem (Nilpotence method for p = 2, 3, 5, 7, 13)

Theorem (M., but see Nicolas-Serre, Bellaïche-Khare)

If p = 2, 3, 5, 7, 13 and $\mathfrak{m} \subset A$ maximal, then $A_{\mathfrak{m}} \cong \mathbb{F}_p[\![x, y]\!]$.

Sketch of proof.

- 1. Reduce to \mathfrak{m} appearing in M^0 (use theta twists).
- 2. Find generators $\mathfrak{m}=(S_1,\ldots,S_r)$ so each S_i is a polynomial in the T_ℓ and is in every maximal ideal of A^0 .
- 3. Theory of recursion operators implies each S_i satisfies conditions of NGT (see slides 5–6).
- 4. Find sequence $\{f_n\}_n$ of generalized eigenforms for \mathfrak{m} with weight filtration linear in n (use 70s Jochnowitz results).
- 5. NGT (slide 6) implies that minimum power of S_i killing f_n grows sublinearly in n. Hence same is true for \mathfrak{m} .
- 6. Therefore, the Hilbert-Samuel function of $A_{\mathfrak{m}}$ (slide 3) grows faster than linearly, and dim $A_{\mathfrak{m}} \geq 2$.
- 7. Conclude $A_{\mathfrak{m}} \cong \mathbb{F}_p[\![x,y]\!]$ (obstruction thy for deformations).

8. Future work

- 1. Extend method to all primes, all levels: Main obstruction is to extend NGT with a filtered Dedekind domain over \mathbb{F} replacing $\mathbb{F}[y]$.
 - For example, if p=11 then $M^0=\mathbb{F}_p[y,y^{-1}]$ with $y=E_4^5$.
- 2. **Theory of recursion operators**: Study algebra of recursion operators on k[y]. Generalize to Dedekind domains.
- 3. **Better bound in NGT**: Given that dim $A_{\mathfrak{m}}$ is often 2, one may generically expect $\alpha = \frac{1}{2}$ for Hecke operators (p=2 known by Nicolas-Serre; p=3,5 observed). But in the NGT, α tends to 1 as recursion order increases. Do better?
- 4. **Implications for characteristic zero?**: What is the minimum additional information required to recover Gouvêa-Mazur lower bound for dim $\mathbb{T}_{\mathfrak{m}}$ from that for dim $A_{\mathfrak{m}}$? (cf. Bellaïche-Khare)
- 5. **Higher-rank groups?**: Can this method say anything in characteristic *p*? In characteristic zero?

More experimental data: T_2 modulo p = 11

Here $M^0 = \mathbb{F}_{11}[y, y^{-1}]$ with $y = E_4^5$, and weight filtration w(y) = 2 and $w(y^{-1}) = 3$. The Hecke recursion poly for T_2 is $P_{2,y} = X^3 + (y+7)X^2 + 3y^{-1}X + 10y^{-2} \in M^0[X]$.

The operator $T = T_2(T_2^2 - 1)(T_2^2 - 5)(T_2^2 - 3) \in A^0$ is in every maximal ideal and lowers filtration on M^0 . Below, plot for T:

