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1. Definitions

p : prime

M ⊂ FpJqK : space of modular forms of level one modulo p

(span of q-expansions mod p of all m.f. of level one and any weight)

M0 ⊂ M : forms in M coming from weight k ≡ 0 mod p − 1

(equivalently, regular functions on X0(1)Fp − (supersingular points))

A ⊂ EndFp(M): completed Hecke algebra acting on M,
generated by Tn with gcd(n, p) = 1

Goal

We want to show that A is big (lots of modular forms).



2. How big? Prior results about A

Theorem (Nicolas-Serre, 2012)

If p = 2, then A = F2JT3,T5K.

Method: computation in characteristic 2. Proof uses Hecke
recursion (slide 4); is very technical, entirely elementary.

Improvements by Mathilde Gerbelli-Gauthier; generalization to
level 3 by Monsky. Method does not appear to generalize to p > 2.

Theorem (Belläıche-Khare, 2014)

For p ≥ 5, each local piece of A has Krull dimension ≥ 2.

Method: deduction from characteristic-zero results. Infinite fern of
Gouvêa-Mazur implies that local pieces of T (characteristic-zero
analogue of A) have dim at least 4; study the kernel of T � A.

Generalized by Shaunak Deo to level N.



3. The nilpotence method idea

Let m be a maximal ideal of A.

Goal

To show that dimAm ≥ 2 using characteristic-p methods.

Since Am is a noetherian local ring, it is enough to see that the
Hilbert-Samuel function

k 7→ dimFp A/m
k

grows faster than linearly (that is, dimAm > 1).

Dually, it suffices to find many generalized eigenforms killed by mk .

In fact, it is enough to find an infinite sequence of linearly
independent generalized eigenforms f1, f2, f3 . . . so that the power
of m that kills fn grows slower than linearly in n.



Example (Nilpotence method for p = 3)

Here M = M0 = F3[∆], and A is local with m =
(
T2, 1 + T7

)
.

We look for many powers of ∆ killed by T k
2 and (1 + T7)k .

Key input (see slide 4): The sequence {T2(∆n)}n of forms in M
satisfies a linear recursion with coefficients in M:

T2(∆n) = ∆T2(∆n−2)−∆3T2(∆n−3), n ≥ 3.

Nilpotence Growth Theorem (slide 6)
=⇒ the power of T2 that kills ∆n grows slower than linearly in n
=⇒ number of forms killed by T k

2 grows faster than linearly in k .

Similar analysis for 1 + T7.

Corollary: dimA ≥ 2. More precisely, A = F3JT2, 1 + T7K.



4. The Hecke recursion

Theorem (after Nicolas-Serre)

Let ` 6= p be prime and f ∈ M coming from weight k . Then the
sequence

{
T`(f

n)
}
n

satisfies a linear recursion over M with
companion polynomial

P`,f = X `+1 + a1X
` + · · · a`X + a`+1,

with ai ∈ M coming from a form of weight ki .

The theorem belongs to the same circle of ideas as the modular
equation for j : the ai are symmetric functions of the `+ 1 forms of
weight k obtained from f .

Remark: For p = 2, 3, 5, 7, 13, the polynomial P`,∆ is in Fp[∆,X ]
and symmetric. In particular, deg∆ a`+1 = `+ 1.



5. Introducing recursion operators

Let k be any field.

Definition

A linear operator T : k[y ]→ k[y ] is a recursion operator if the
sequence {T (yn)}n satisfies a linear recursion over k[y ].

Equivalently, T is a recursion operator if the sequence {T (f n)}n is
a recurrence sequence for any f in k[y ].

Key example: for p = 2, 3, 5, 7, 13 and ` prime, the Hecke
operator T` is a recursion operator on M0 = Fp[∆].

Proposition (M.)

The space of recursion operators over Fp[y ] that commute with
the pth power map is closed under addition and composition.



6. Key technical result (NGT)

Nilpotence Growth Theorem (M.)

Let F be a finite field. Suppose T : F[y ]→ F[y ] is a
degree-lowering linear operator so that the sequence {T (yn)}n
satisfies a linear recurrence whose companion polynomial

PT = X d + a1X
d−1 + · · ·+ ad in Fp[y ][X ]

has deg ai ≤ i for all i < d and deg ad = d .

Then the minimal power of T annihilating yn grows as O(nα) for
some α < 1: slower than linearly in n.

What is α? If PT = (X + cy)d + LOT, then α = logd(d − 1).

Conditions are optimal: Result is false if...

• F has characteristic zero (Counterex: PT = X 2 − yX − y2)

• F contains Fp(t) (Counterex: PT = X 2 − tyX − y2)

• deg ad < d (Counterex: PT = X 2 − yX )



Example (Experimental data for α in the NGT)

We plot ordered pairs (n, minimum power of T that kills yn)
for two recursion operators on F3[y ] satisfying the hypotheses of
the NGT (slide 6). Computationally, α = 1

2 for the Hecke operator
on the left, and α = log3(2) on the right.
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7. Main theorem (Nilpotence method for p = 2, 3, 5, 7, 13)

Theorem (M., but see Nicolas-Serre, Belläıche-Khare)

If p = 2, 3, 5, 7, 13 and m ⊂ A maximal, then Am
∼= FpJx , yK.

Sketch of proof.

1. Reduce to m appearing in M0 (use theta twists).

2. Find generators m = (S1, . . . ,Sr ) so each Si is a polynomial in
the T` and is in every maximal ideal of A0.

3. Theory of recursion operators implies each Si satisfies
conditions of NGT (see slides 5–6).

4. Find sequence {fn}n of generalized eigenforms for m with
weight filtration linear in n (use 70s Jochnowitz results).

5. NGT (slide 6) implies that minimum power of Si killing fn
grows sublinearly in n. Hence same is true for m.

6. Therefore, the Hilbert-Samuel function of Am (slide 3) grows
faster than linearly, and dimAm ≥ 2.

7. Conclude Am
∼= FpJx , yK (obstruction thy for deformations).



8. Future work

1. Extend method to all primes, all levels: Main obstruction
is to extend NGT with a filtered Dedekind domain over F
replacing F[y ].

For example, if p = 11 then M0 = Fp[y , y−1] with y = E 5
4 .

2. Theory of recursion operators: Study algebra of recursion
operators on k[y ]. Generalize to Dedekind domains.

3. Better bound in NGT: Given that dimAm is often 2, one
may generically expect α = 1

2 for Hecke operators (p = 2
known by Nicolas-Serre; p = 3, 5 observed). But in the NGT,
α tends to 1 as recursion order increases. Do better?

4. Implications for characteristic zero?: What is the minimum
additional information required to recover Gouvêa-Mazur lower
bound for dimTm from that for dimAm? (cf. Belläıche-Khare)

5. Higher-rank groups?: Can this method say anything in
characteristic p? In characteristic zero?



More experimental data: T2 modulo p = 11

Here M0 = F11[y , y−1] with y = E 5
4 , and weight filtration

w(y) = 2 and w(y−1) = 3. The Hecke recursion poly for T2 is

P2,y = X 3 + (y + 7)X 2 + 3y−1X + 10y−2 ∈ M0[X ].

The operator T = T2(T 2
2 − 1)(T 2

2 − 5)(T 2
2 − 3) ∈ A0 is in every

maximal ideal and lowers filtration on M0. Below, plot for T :
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