Lower bounds on dimensions of mod- p Hecke algebras

The nilpotence method

Anna Medvedovsky

ICERM Institue Postdoc

Fall 2015

1. Definitions

p : prime
$M \subset \mathbb{F}_{p} \llbracket q \rrbracket$: space of modular forms of level one modulo p (span of q-expansions $\bmod p$ of all m.f. of level one and any weight)
$M^{0} \subset M:$ forms in M coming from weight $k \equiv 0 \bmod p-1$ (equivalently, regular functions on $X_{0}(1)_{\mathbb{F}_{p}}$ ((supersingular points))
$A \subset \operatorname{End}_{\mathbb{F}_{p}}(M):$ completed Hecke algebra acting on M, generated by T_{n} with $\operatorname{gcd}(n, p)=1$

Goal

We want to show that A is big (lots of modular forms).

2. How big? Prior results about A

Theorem (Nicolas-Serre, 2012)

If $p=2$, then $A=\mathbb{F}_{2} \llbracket T_{3}, T_{5} \rrbracket$.
Method: computation in characteristic 2. Proof uses Hecke recursion (slide 4); is very technical, entirely elementary.

Improvements by Mathilde Gerbelli-Gauthier; generalization to level 3 by Monsky. Method does not appear to generalize to $p>2$.

Theorem (Bellaïche-Khare, 2014)

For $p \geq 5$, each local piece of A has Krull dimension ≥ 2.
Method: deduction from characteristic-zero results. Infinite fern of Gouvêa-Mazur implies that local pieces of \mathbb{T} (characteristic-zero analogue of A) have dim at least 4 ; study the kernel of $\mathbb{T} \rightarrow A$.

Generalized by Shaunak Deo to level N.

3. The nilpotence method idea

Let \mathfrak{m} be a maximal ideal of A.

Goal

To show that $\operatorname{dim} A_{\mathfrak{m}} \geq 2$ using characteristic-p methods.
Since $A_{\mathfrak{m}}$ is a noetherian local ring, it is enough to see that the Hilbert-Samuel function

$$
k \mapsto \operatorname{dim}_{\mathbb{F}_{p}} A / \mathfrak{m}^{k}
$$

grows faster than linearly (that is, $\operatorname{dim} A_{\mathfrak{m}}>1$).
Dually, it suffices to find many generalized eigenforms killed by \mathfrak{m}^{k}.
In fact, it is enough to find an infinite sequence of linearly independent generalized eigenforms $f_{1}, f_{2}, f_{3} \ldots$ so that the power of \mathfrak{m} that kills f_{n} grows slower than linearly in n.

Example (Nilpotence method for $p=3$)

Here $M=M^{0}=\mathbb{F}_{3}[\Delta]$, and A is local with $\mathfrak{m}=\left(T_{2}, 1+T_{7}\right)$. We look for many powers of Δ killed by T_{2}^{k} and $\left(1+T_{7}\right)^{k}$.

Key input (see slide 4): The sequence $\left\{T_{2}\left(\Delta^{n}\right)\right\}_{n}$ of forms in M satisfies a linear recursion with coefficients in M :

$$
T_{2}\left(\Delta^{n}\right)=\Delta T_{2}\left(\Delta^{n-2}\right)-\Delta^{3} T_{2}\left(\Delta^{n-3}\right), \quad n \geq 3
$$

Nilpotence Growth Theorem (slide 6)
\Longrightarrow the power of T_{2} that kills Δ^{n} grows slower than linearly in n \Longrightarrow number of forms killed by T_{2}^{k} grows faster than linearly in k.

Similar analysis for $1+T_{7}$.
Corollary: $\operatorname{dim} A \geq 2$. More precisely, $A=\mathbb{F}_{3} \llbracket T_{2}, 1+T_{7} \rrbracket$.

4. The Hecke recursion

Theorem (after Nicolas-Serre)

Let $\ell \neq p$ be prime and $f \in M$ coming from weight k. Then the sequence $\left\{T_{\ell}\left(f^{n}\right)\right\}_{n}$ satisfies a linear recursion over M with companion polynomial

$$
P_{\ell, f}=X^{\ell+1}+a_{1} X^{\ell}+\cdots a_{\ell} X+a_{\ell+1}
$$

with $a_{i} \in M$ coming from a form of weight ki.
The theorem belongs to the same circle of ideas as the modular equation for j : the a_{i} are symmetric functions of the $\ell+1$ forms of weight k obtained from f.

Remark: For $p=2,3,5,7,13$, the polynomial $P_{\ell, \Delta}$ is in $\mathbb{F}_{p}[\Delta, X]$ and symmetric. In particular, $\operatorname{deg}_{\Delta} a_{\ell+1}=\ell+1$.

5. Introducing recursion operators

Let k be any field.

Definition

A linear operator $T: k[y] \rightarrow k[y]$ is a recursion operator if the sequence $\left\{T\left(y^{n}\right)\right\}_{n}$ satisfies a linear recursion over $k[y]$.

Equivalently, T is a recursion operator if the sequence $\left\{T\left(f^{n}\right)\right\}_{n}$ is a recurrence sequence for any f in $k[y]$.
Key example: for $p=2,3,5,7,13$ and ℓ prime, the Hecke operator T_{ℓ} is a recursion operator on $M^{0}=\mathbb{F}_{p}[\Delta]$.

Proposition (M.)

The space of recursion operators over $\mathbb{F}_{p}[y]$ that commute with the $p^{\text {th }}$ power map is closed under addition and composition.

6. Key technical result (NGT)

Nilpotence Growth Theorem (M.)

Let \mathbb{F} be a finite field. Suppose $T: \mathbb{F}[y] \rightarrow \mathbb{F}[y]$ is a degree-lowering linear operator so that the sequence $\left\{T\left(y^{n}\right)\right\}_{n}$ satisfies a linear recurrence whose companion polynomial

$$
P_{T}=X^{d}+a_{1} X^{d-1}+\cdots+a_{d} \quad \text { in } \mathbb{F}_{p}[y][X]
$$

has deg $a_{i} \leq i$ for all $i<d$ and deg $a_{d}=d$.
Then the minimal power of T annihilating y^{n} grows as $O\left(n^{\alpha}\right)$ for some $\alpha<1$: slower than linearly in n.

What is α ? If $P_{T}=(X+c y)^{d}+$ LOT, then $\alpha=\log _{d}(d-1)$.
Conditions are optimal: Result is false if...

- \mathbb{F} has characteristic zero (Counterex: $P_{T}=X^{2}-y X-y^{2}$)
- \mathbb{F} contains $\mathbb{F}_{p}(t)$ (Counterex: $P_{T}=X^{2}-t y X-y^{2}$)
- $\operatorname{deg} a_{d}<d$ (Counterex: $\left.P_{T}=X^{2}-y X\right)$

Example (Experimental data for α in the NGT)

We plot ordered pairs (n, minimum power of T that kills y^{n}) for two recursion operators on $\mathbb{F}_{3}[y]$ satisfying the hypotheses of the NGT (slide 6). Computationally, $\alpha=\frac{1}{2}$ for the Hecke operator on the left, and $\alpha=\log _{3}(2)$ on the right.

7. Main theorem (Nilpotence method for $p=2,3,5,7,13$)

Theorem (M., but see Nicolas-Serre, Bellaïche-Khare)

$$
\text { If } p=2,3,5,7,13 \text { and } \mathfrak{m} \subset A \text { maximal, then } A_{\mathfrak{m}} \cong \mathbb{F}_{p} \llbracket x, y \rrbracket \text {. }
$$

Sketch of proof.

1. Reduce to \mathfrak{m} appearing in M^{0} (use theta twists).
2. Find generators $\mathfrak{m}=\left(S_{1}, \ldots, S_{r}\right)$ so each S_{i} is a polynomial in the T_{ℓ} and is in every maximal ideal of A^{0}.
3. Theory of recursion operators implies each S_{i} satisfies conditions of NGT (see slides 5-6).
4. Find sequence $\left\{f_{n}\right\}_{n}$ of generalized eigenforms for \mathfrak{m} with weight filtration linear in n (use 70s Jochnowitz results).
5. NGT (slide 6) implies that minimum power of S_{i} killing f_{n} grows sublinearly in n. Hence same is true for \mathfrak{m}.
6. Therefore, the Hilbert-Samuel function of $A_{\mathfrak{m}}$ (slide 3) grows faster than linearly, and $\operatorname{dim} A_{\mathfrak{m}} \geq 2$.
7. Conclude $A_{\mathfrak{m}} \cong \mathbb{F}_{p} \llbracket x, y \rrbracket$ (obstruction thy for deformations).

8. Future work

1. Extend method to all primes, all levels: Main obstruction is to extend NGT with a filtered Dedekind domain over \mathbb{F} replacing $\mathbb{F}[y]$.
For example, if $p=11$ then $M^{0}=\mathbb{F}_{p}\left[y, y^{-1}\right]$ with $y=E_{4}^{5}$.
2. Theory of recursion operators: Study algebra of recursion operators on $k[y]$. Generalize to Dedekind domains.
3. Better bound in NGT: Given that $\operatorname{dim} A_{\mathfrak{m}}$ is often 2 , one may generically expect $\alpha=\frac{1}{2}$ for Hecke operators ($p=2$ known by Nicolas-Serre; $p=3,5$ observed). But in the NGT, α tends to 1 as recursion order increases. Do better?
4. Implications for characteristic zero?: What is the minimum additional information required to recover Gouvêa-Mazur lower bound for $\operatorname{dim} \mathbb{T}_{\mathfrak{m}}$ from that for $\operatorname{dim} A_{\mathfrak{m}}$? (cf. Bellaïche-Khare)
5. Higher-rank groups?: Can this method say anything in characteristic p ? In characteristic zero?

More experimental data: T_{2} modulo $p=11$ Here $M^{0}=\mathbb{F}_{11}\left[y, y^{-1}\right]$ with $y=E_{4}^{5}$, and weight filtration $w(y)=2$ and $w\left(y^{-1}\right)=3$. The Hecke recursion poly for T_{2} is

$$
P_{2, y}=X^{3}+(y+7) X^{2}+3 y^{-1} X+10 y^{-2} \quad \in M^{0}[X]
$$

The operator $T=T_{2}\left(T_{2}^{2}-1\right)\left(T_{2}^{2}-5\right)\left(T_{2}^{2}-3\right) \in A^{0}$ is in every maximal ideal and lowers filtration on M^{0}. Below, plot for T :

