Counting modular forms with a Galois representation mod p and the Atkin-Lehner eigenvalue at p fixed simultaneously

Samuele Anni
Novenas Jornadas de Teoría de Números 2022
Universidad de la Rioja
$\left(\begin{array}{c}\text { Aix } * \text { Marseille } \\ \text { universite }\end{array}\right.$
H INSTITUT DE MATHÉMATIQUES de MARSEILLE

Introduction

Modular forms

Let n be a positive integer, the congruence subgroup $\Gamma_{0}(n)$ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ given by

$$
\Gamma_{0}(n)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): n \mid c\right\} .
$$

Given a pair of positive integers n (level) and k (weight), a modular form f for $\Gamma_{0}(n)$ is an holomorphic function on the complex upper half-plane \mathbb{H} satisfying

$$
f(\gamma z)=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z) \quad \forall \gamma \in \Gamma_{0}(n), z \in \mathbb{H}
$$

and a growth condition for the coefficients of its power series expansion

$$
f(z)=\sum_{0}^{\infty} a_{m} q^{m}, \quad \text { where } \quad q=e^{2 \pi i z}
$$

Newforms

There are families of operators acting on the space of modular forms. In particular, the Hecke operators T_{p} for every prime p. These operators describe the interplay between different group actions on the complex upper half-plane.

We will consider only cuspidal newforms: cuspidal modular forms ($a_{0}=0$), normalized $\left(a_{1}=1\right)$, which are eigenforms for the Hecke operators and arise from level n.

We will denote by $S_{k}(n, \mathbb{C})$ the space of cuspforms and by $S_{k}(n, \mathbb{C})^{\text {new }}$ the subspace of newforms.

Hecke eigenvalue field

Definition

Let f be a newform, $f=\sum a_{m} q^{m}$. Then $\mathbb{Q}_{f}=\mathbb{Q}\left(\left\{a_{m}\right\}\right)$ is a number field, called the Hecke eigenvalue field of f.
The set $\left\{a_{m}\right\}$ is a Hecke eigenvalue system.

Hecke eigenvalue field

Definition

Let f be a newform, $f=\sum a_{m} q^{m}$. Then $\mathbb{Q}_{f}=\mathbb{Q}\left(\left\{a_{m}\right\}\right)$ is a number field, called the Hecke eigenvalue field of f.
The set $\left\{a_{m}\right\}$ is a Hecke eigenvalue system.

Example: $S_{2}(77, \mathbb{C})^{\text {new }}$

$f_{0}(q)=q-3 q^{3}-2 q^{4}-q^{5}-q^{7}+6 q^{9}-q^{11}+6 q^{12}-4 q^{13}+3 q^{15}+\ldots$
$f_{1}(q)=q+q^{3}-2 q^{4}+3 q^{5}+q^{7}-2 q^{9}-q^{11}-2 q^{12}-4 q^{13}+3 q^{15}+\ldots$
$f_{2}(q)=q+q^{2}+2 q^{3}-q^{4}-2 q^{5}+2 q^{6}-q^{7}-3 q^{8}+q^{9}-2 q^{10}+q^{11}+\ldots$
$f_{3,4}(q)=q+\alpha q^{2}+(-\alpha+1) q^{3}+3 q^{4}-2 q^{5}+(\alpha-5) q^{6}+q^{7}+\ldots$ where α satisfies $x^{2}-5=0$.
The Hecke eigenvalue fields are \mathbb{Q} for f_{0}, f_{1}, f_{2} and $\mathbb{Q}(\sqrt{5})$ for $f_{3,4}$.

Hecke algebra

Definition

The Hecke algebra $\mathbb{T}(n, k)$ is the \mathbb{Z}-subalgebra of $\operatorname{End}_{\mathbb{C}}\left(S_{k}(n, \mathbb{C})\right)$ generated by Hecke operators T_{p} for every prime p.

Newforms can be seen as ring homomorphisms $f: \mathbb{T}(n, k) \rightarrow \overline{\mathbb{Q}}$.

Residual modular Galois representations

Theorem (Deligne, Serre, Shimura)

Let n and k be positive integers. Let \mathbb{F} be a finite field of characteristic ℓ, with $\ell \nmid n$, and $f: \mathbb{T}(n, k) \rightarrow \mathbb{F}$ a surjective ring homomorphism. Then there is a (unique) continuous semi-simple representation:

$$
\bar{\rho}_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{F}),
$$

unramified outside $n \ell$, such that for all p not dividing $n \ell$ we have:

$$
\operatorname{Tr}\left(\bar{\rho}_{f}\left(\operatorname{Frob}_{p}\right)\right)=f\left(T_{p}\right) \text { and } \operatorname{det}\left(\bar{\rho}_{f}\left(\operatorname{Frob}_{p}\right)\right)=f(\langle p\rangle) p^{k-1} \text { in } \mathbb{F}
$$

Computing $\bar{\rho}_{f}$ is "difficult", but theoretically it can be done in polynomial time in $n, k, \# \mathbb{F}$:

Edixhoven, Couveignes, de Jong, Merkl, Bruin, Bosman (\#F ≤ 32):
Example: for $n=1, k=22$ and $\ell=23$, the number field corresponding to $\mathbb{P} \bar{\rho}_{f}$ (Galois group isomorphic to $\mathrm{PGL}_{2}\left(\mathbb{F}_{23}\right)$) is given by:

$$
\begin{aligned}
x^{24} & -2 x^{23}+115 x^{22}+23 x^{21}+1909 x^{20}+22218 x^{19}+9223 x^{18}+121141 x^{17} \\
& +1837654 x^{16}-800032 x^{15}+9856374 x^{14}+52362168 x^{13}-32040725 x^{12} \\
& +279370098 x^{11}+1464085056 x^{10}+1129229689 x^{9}+3299556862 x^{8} \\
& +14586202192 x^{7}+29414918270 x^{6}+45332850431 x^{5}-6437110763 x^{4} \\
& -111429920358 x^{3}-12449542097 x^{2}+93960798341 x-31890957224
\end{aligned}
$$

Mascot, Zeng, Tian ($\# \mathbb{F} \leq 53$).

p-new forms

Fix $p \geq 5$ a prime, N a level prime to p, and let $k \geq 2$ be a weight.
Let $S_{k}:=S_{k}\left(\Gamma_{0}(N p), \overline{\mathbb{Q}}_{p}\right)$ be the space of p-new (i.e., not coming from level N) cuspidal modular forms of level $N p$ and weight k with coefficients in $\overline{\mathbb{Q}}_{p}$.

The Atkin-Lehner involution

The Atkin-Lehner involution

Fix $p \geq 5$ a prime and N a level prime to p, there exist $x, y, z, t \in \mathbb{Z}$ for which the matrix

$$
W_{p}=\left(\begin{array}{cc}
p x & y \\
N p z & p t
\end{array}\right)
$$

has determinant p.

The matrix W_{p} normalizes the group $\Gamma_{0}(N p)$, and for any weight k it induces a linear operator w_{p} on the space of cusp forms S_{k} that commutes with the Hecke operators T_{q} for all $q \nmid n$ and acts as its own inverse.

The Atkin-Lehner involution

The linear operator w_{p} does not depend on the choice of x, y, z, t and is called the Atkin-Lehner involution of S_{k}.

Any cusp form f in S_{k} which is an eigenform for all T_{q} with $q \nmid N$ is also an eigenform for w_{p}, with eigenvalue ± 1.

The matrix W_{p} induces an automorphism of the modular curve $X_{0}(N p)$ that is also denoted w_{p}.

The Atkin-Lehner involution w_{p} acts on S_{k} and splits it into a direct sum of plus/minus eigenspaces:

$$
S_{k}=S_{k}^{+} \oplus S_{k}^{-}
$$

Since we have dimension formulas for $s_{k}:=\operatorname{dim} S_{k}$, in order to understand the dimensions $s_{k}^{ \pm}=\operatorname{dim} S_{k}^{ \pm}$of the Atkin-Lehner eigenspaces, it suffices to understand the difference

$$
d_{k}:=s_{k}^{+}-s_{k}^{-}
$$

$s_{k}^{ \pm}=\operatorname{dim} S_{k}(p)^{ \pm}$

$p=5$			$p=11$			$p=59$			$p=101$		
k	s_{k}^{+}	s_{k}^{-}	k	s_{k}^{+}	s_{k}^{-}	k	s_{k}^{+}	s_{k}^{-}	k	s_{k}^{+}	s_{k}^{-}
2	0	0	2	0	1	2	0	5	2	1	7
4	1	0	4	2	0	4	10	4	4	16	9
6	0	1	6	1	3	6	9	15	6	17	24
8	2	1	8	4	2	8	20	14	8	33	26
10	1	2	10	3	5	10	19	25	10	34	41
12	3	2	12	6	4	12	30	24	12	50	43
14	2	3	14	5	7	14	29	35	14	51	58
16	4	3	16	8	6	16	40	34	16	67	60
18	3	4	18	7	9	18	39	45	18	68	75
20	5	4	20	10	8	20	50	44	20	84	77
22	4	5	22	9	11	22	49	55	22	85	92
24	6	5	24	12	10	24	60	54	24	101	94
26	5	6	26	11	13	26	59	65	26	102	109
28	7	6	28	14	12	28	70	64	28	118	111
30	6	7	30	13	15	30	69	75	30	119	126
$d_{k}= \pm 1$			$d_{k}= \pm 2$			$d_{k}= \pm 6$			$d_{k}= \pm 7$		

Classical result that d_{k} is constant in absolute value and alternates in sign, modulo a correction for the "missing" E_{2} in weight 2: Let

$$
d_{k}^{*}:= \begin{cases}d_{k}-1 & \text { if } k=2 \\ d_{k}, & \text { if } k \geq 4 \text { even }\end{cases}
$$

Theorem (Fricke, Yamauchi, Momose, Ogg, Wakatsuki, Helfgott, Martin et al.)

We have

$$
d_{k}^{*}=(-1)^{\frac{k}{2}} \frac{\# F P}{2},
$$

where \#FP is the number of fixed points of the Atkin-Lehner involution w_{p} on $X_{0}(N p)$.

Theorem (Fricke, Yamauchi, Momose, Ogg, Wakatsuki, Helfgott, Martin et al.)

We have

$$
d_{k}^{*}=(-1)^{\frac{k}{2}} \frac{\# F P}{2},
$$

where \#FP is the number of fixed points of the Atkin-Lehner involution w_{p} on $X_{0}(N p)$.

The fixed points of w_{p} on $X_{0}(N p)$ correspond to elliptic curves with level structure and CM by $\sqrt{-p}$, in fact the d_{k} are closely related to class numbers.

Theorem (Fricke, Yamauchi, Momose, Ogg, Wakatsuki, Helfgott, Martin et al.)

We have

$$
d_{k}^{*}=(-1)^{\frac{k}{2}} \frac{\# F P}{2},
$$

where \#FP is the number of fixed points of the Atkin-Lehner involution w_{p} on $X_{0}(N p)$.

The fixed points of w_{p} on $X_{0}(N p)$ correspond to elliptic curves with level structure and CM by $\sqrt{-p}$, in fact the d_{k} are closely related to class numbers.

$$
\# \mathrm{FP}=c_{p} \cdot h(\sqrt{-p}) \cdot \prod_{q \mid N, \text { prime }}\left(1+\left(\frac{-4 p}{q}\right)\right)
$$

A refinement - Main theorem

Our aim - joint work with A. Ghitza (University of Melbourne) and A. Medvedovsky (Boston University)

Systems of mod-p prime-to- $N p$ Hecke eigenvalues correspond to continuous semisimple Galois representations $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}_{p}}\right)$ which are odd and unramified outside $N p$.

Our aim - joint work with A. Ghitza (University of Melbourne) and A. Medvedovsky (Boston University)

Systems of mod-p prime-to- $N p$ Hecke eigenvalues correspond to continuous semisimple Galois representations $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}_{p}}\right)$ which are odd and unramified outside $N p$.

We can decompose

$$
S_{k}=\bigoplus_{\bar{\rho}} S_{k, \bar{\rho}},
$$

where $S_{k, \bar{\rho}}$ is the span of eigenforms with mod- p eigensystems corresponding to $\bar{\rho}$.

Since w_{p} commutes with prime-to- $N p$ Hecke operators, $S_{k, \bar{\rho}}$ also splits into Atkin-Lehner eigenspaces:

$$
S_{k, \bar{\rho}}=S_{k, \bar{\rho}}^{+} \oplus S_{k, \bar{\rho}}^{-},
$$

once again let $s_{k, \bar{\rho}}^{ \pm}$denote $\operatorname{dim} S_{k, \bar{\rho}}^{ \pm}$.

The behavior of dimensions $s_{k, \bar{\rho}}:=\operatorname{dim} S_{k, \bar{\rho}}$ have been studied by Jochnowitz ($N=1$) and Bergdall-Pollack, so once again we focus on the dimension difference $d_{k, \bar{\rho}}:=s_{k, \bar{\rho}}^{+}-s_{k, \bar{\rho}}^{-}$.

As before, $k=2$ and $\bar{\rho}$ forces us to make an adjustment, so let

$$
d_{k, \bar{\rho}}^{*}:= \begin{cases}d_{k, \bar{\rho}}-1, & \text { if } k=2 \text { and } \bar{\rho}=1 \oplus \omega \\ d_{k, \bar{\rho}}, & \text { otherwise }\end{cases}
$$

where ω is the $\bmod p$ cyclotomic character.

Theorem (Anni, Ghitza, Medvedovsky)

For $k \geq 2$ and any $\Gamma_{0}(N p)$-modular $\bar{\rho}$ we have

$$
d_{k+2, \bar{\rho}[1]}^{*}=-d_{k, \bar{\rho}}^{*} .
$$

Here $\bar{\rho}[1]$ is a Tate twist: on the Galois side it corresponds to tensoring $\bar{\rho}$ by the mod- p cyclotomic character ω; on the Hecke side by having T_{ℓ} act by ℓT_{ℓ}.

From this result and related formulations we recover both the classical alternation statement $d_{k+2}^{*}=-d_{k}^{*}$ and the Bergdall-Pollack dimension formulas, but with very different techniques.

Example: $p=5, N=23$

k	$\left(s_{k}^{+}, s_{k}^{-}\right)$
2	$(5,6)$
4	$(18,16)$
6	$(28,30)$
8	$(42,40)$
10	$(52,54)$
12	$(66,64)$
14	$(76,78)$
16	$(90,88)$
18	$(100,102)$
20	$(114,112)$
$d_{k}= \pm 2$	

Example: $p=5, N=23$

In weight k for $\bar{\rho}$ the entry is $\left(s_{k, \tau}^{+}, s_{k, \tau}^{-}\right)$for $\tau=\bar{\rho}\left[\frac{k-2}{2}\right]$.
Two twists of $\bar{\rho}$ can appear in any given weight: $\bar{\rho}$ and its quadratic twist $\bar{\rho}^{\prime}=\bar{\rho}[2]=\bar{\rho} \otimes \omega^{2}$.

- e is the Eisenstein thread: $e=1 \oplus \omega$ in weight 2;
- p is a peu ramifié form, appearing in weight 2 ;
- t is a très ramifié form, here appearing in weight 2 ;
 weight 2;
- f, g, h are locally reducible, globally irreducible forms; h is an $\mathbb{F}_{5^{3}}$-orbit of 3 forms.

Example: $p=5, N=23$

$k \backslash \bar{\rho}$	e	e^{\prime}	p	p^{\prime}	t	t^{\prime}	$s \times 4$	$s^{\prime} \times 4$	$\begin{gathered} f, f^{\prime} ; g, g^{\prime} ; \\ h, h^{\prime} \times 3 \end{gathered}$	Total
2	$(0,0)$	$(0,0)$	$(3,2)$	$(0,0)$	$(2,0)$	$(0,0)$	$(0,1)$	$(0,0)$	$(0,0)$	$(5,6)$
4	$(2,1)$	$(0,0)$	$(2,3)$	$(0,0)$	$(0,2)$	$(0,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(18,16)$
6	$(1,2)$	$(1,1)$	$(3,2)$	$(5,5)$	$(2,0)$	$(2,2)$	$(0,1)$	$(1,1)$	$(1,1)$	$(28,30)$
8	$(2,1)$	$(3,3)$	$(2,3)$	$(5,5)$	$(0,2)$	$(2,2)$	$(1,0)$	$(1,1)$	$(2,2)$	$(42,40)$
10	$(2,3)$	$(3,3)$	$(8,7)$	$(5,5)$	$(4,2)$	$(2,2)$	$(1,2)$	$(1,1)$	$(2,2)$	$(52,54)$
12	$(5,4)$	$(3,3)$	$(7,8)$	$(5,5)$	$(2,4)$	$(2,2)$	$(2,1)$	$(1,1)$	$(3,3)$	$(66,64)$
14	$(4,5)$	$(4,4)$	$(8,7)$	$(10,10)$	$(4,2)$	$(4,4)$	$(1,2)$	$(2,2)$	$(3,3)$	$(76,78)$
16	$(5,4)$	$(6,6)$	$(7,8)$	$(10,10)$	$(2,4)$	$(4,4)$	$(2,1)$	$(2,2)$	$(4,4)$	$(90,88)$
18	$(5,6)$	$(6,6)$	$(13,12)$	$(10,10)$	$(6,4)$	$(4,4)$	$(2,3)$	$(2,2)$	$(4,4)$	$(100,102)$
20	$(8,7)$	$(6,6)$	$(12,13)$	$(10,10)$	$(4,6)$	$(4,4)$	$(3,2)$	$(2,2)$	$(5,5)$	$(114,112)$

Bergdall and Pollack use Ash-Stevens, a fundamentally characteristic p technique for filtering cohomology of modular symbols, to derive their dimension formulas. But Ash-Stevens has nothing to say about Atkin-Lehner, in part because the Atkin-Lehner operator requires inverting p.

On the other hand, the classical complex methods - trace formulae, Gauss-Bonnet, Riemann-Hurwitz - do not know anything about $\bar{\rho}$.

Idea

Combining the trace formula (Zagier - Cohen - Osterlé - Cohen Strömberg and Skoruppa - Zagier - Popa) with an algebra theorem, a refinement of Brauer-Nesbitt.

An algebra theorem, and the method of proof for the main theorem

The basic question

Let M be a finite free \mathbb{Z}_{p}-module with an action of a linear operator T.

Question

How much information does one need to know about the traces of $\mathbb{Z}_{p}[T]$ acting on M in order to know the structure of $M \otimes \mathbb{F}_{p}$ as an $\mathbb{F}_{p}[T]$-module, at least up to semisimplification?

Knowing $\operatorname{Tr}\left(T^{n} \mid M\right)$ for enough n as an element of \mathbb{Z}_{p} is plenty:

Theorem (Brauer-Nesbitt)

Let k be a field and V a $k[T]$-module that is finite-dimensional as a k-vector space. If k has characteristic zero or if char $k>\operatorname{dim}_{k} V$, then V is determined up to semisimplification by $\operatorname{Tr}\left(T^{n} \mid V\right)$ for all n with $1 \leq n \leq \operatorname{dim}_{k} V$.

But this very precise characteristic-zero information is much more than we need: we merely want to understand M modulo p.

On the other hand, knowing all the $\operatorname{Tr}\left(T^{n} \mid M\right)$ modulo p is not enough to determine $M \otimes \mathbb{F}_{p}$.

Example

If M has rank p and T acts on M as multiplication by a scalar α in \mathbb{Z}_{p} then $\operatorname{Tr}\left(T^{n} \mid M\right)=p \alpha^{n}$ for all $n \geq 0$. Thus $\operatorname{Tr}\left(T^{n} \mid M\right) \equiv 0$ $\bmod p$ for all n, and we cannot recover $\alpha \bmod p$ from this trace data.

Since knowing $\operatorname{Tr}\left(T^{n} \mid M\right)$ in \mathbb{Z}_{p} is too much and knowing $\operatorname{Tr}\left(T^{n} \mid M\right)$ modulo p is not enough, one can ask for some kind of in-between criterion depending on $\operatorname{Tr}\left(T^{n} \mid M\right)$ modulo powers of p.

Theorem (Anni, Ghitza, Medvedovsky + Gessel)

Let M and N be two finite free \mathbb{Z}_{p}-modules of the same rank d, each with an action of an operator T. Then $\bar{M}^{\text {ss }} \cong \bar{N}^{\text {ss }}$ as $\mathbb{F}_{p}[T]$-modules if and only if for every n with $1 \leq n \leq d$ we have

$$
\operatorname{Tr}\left(T^{n} \mid M\right) \equiv \operatorname{Tr}\left(T^{n} \mid N\right) \quad \bmod p n
$$

Here \bar{M} and \bar{N} are the $\mathbb{F}_{p}[T]$-modules $M \otimes \mathbb{F}_{p}$ and $N \otimes \mathbb{F}_{p}$, respectively, and $\bar{M}^{\text {ss }}$ and $\bar{N}^{\text {ss }}$ refers to their semisimplification.

Remarks

Remarks

- Since every prime except p is invertible, congruence modulo $p n$ is the same as congruence modulo $p^{1+v_{p}(n)}$, where $v_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{\geq 0}$ is the normalized p-adic valuation.

Remarks

- Since every prime except p is invertible, congruence modulo $p n$ is the same as congruence modulo $p^{1+v_{p}(n)}$, where $v_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{\geq 0}$ is the normalized p-adic valuation.
- This completely resolves our example with $T=\alpha$ acting on $M=\mathbb{Z}_{p}^{\oplus p}$: knowing $\operatorname{Tr}\left(T^{p} \mid M\right)=p \alpha^{p}$ modulo p^{2} is knowing α^{p} modulo p, which in turn determines α modulo p uniquely. Yet this is not enough to pin down α in \mathbb{Z}_{p}.

Remarks

- Since every prime except p is invertible, congruence modulo $p n$ is the same as congruence modulo $p^{1+v_{p}(n)}$, where $v_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{\geq 0}$ is the normalized p-adic valuation.
- This completely resolves our example with $T=\alpha$ acting on $M=\mathbb{Z}_{p}^{\oplus p}$: knowing $\operatorname{Tr}\left(T^{p} \mid M\right)=p \alpha^{p}$ modulo p^{2} is knowing α^{p} modulo p, which in turn determines α modulo p uniquely. Yet this is not enough to pin down α in \mathbb{Z}_{p}.
- The "only if" direction is trivial when all the eigenvalues of M, N are in \mathbb{Z}_{p}. Thus the heart is the " if " direction.

Remarks

- Since every prime except p is invertible, congruence modulo $p n$ is the same as congruence modulo $p^{1+v_{p}(n)}$, where $v_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{\geq 0}$ is the normalized p-adic valuation.
- This completely resolves our example with $T=\alpha$ acting on $M=\mathbb{Z}_{p}^{\oplus p}$: knowing $\operatorname{Tr}\left(T^{p} \mid M\right)=p \alpha^{p}$ modulo p^{2} is knowing α^{p} modulo p, which in turn determines α modulo p uniquely. Yet this is not enough to pin down α in \mathbb{Z}_{p}.
- The "only if" direction is trivial when all the eigenvalues of M, N are in \mathbb{Z}_{p}. Thus the heart is the " if " direction.
- The result generalizes to p-adic fields that are not too ramified.

The result is a combinatorial statement about deep congruences between power-sum symmetric functions implying simple congruences between corresponding elementary symmetric functions.

Let A be a torsion-free $\mathbb{Z}_{(p)}$-algebra and assume that A is a domain.

Theorem (Anni, Ghitza, Medvedovsky)

Let P, Q be monic polynomials in $A[X]$. Then

$$
\bar{P} \equiv \bar{Q} \quad \text { in } A / \mathfrak{a}[X]
$$

if and only if

$$
\mathfrak{p}_{n}(P) \equiv \mathfrak{p}_{n}(Q) \quad \bmod n \mathfrak{a}
$$

for all $1 \leq n \leq \max \{\operatorname{deg} P, \operatorname{deg} Q\}$.

In particular here we do not require P and Q to be of the same degree; nor do we require \mathfrak{a} to be prime (nor indeed A to be a domain).

The proof uses combinatorial theory of symmetric functions, specifically, formulas that express elementary symmetric functions in terms of power-sum functions and vice versa.

A generalization to virtual modules

Corollary

Let $M_{1}, M_{2}, N_{1}, N_{2}$ be free \mathbb{Z}_{p}-modules of finite rank, each with an action of an operator T. Suppose we have fixed T-equivariant embeddings $\iota_{1}: \bar{N}_{1} \hookrightarrow \bar{M}_{1}$ and $\iota_{2}: \bar{N}_{2} \hookrightarrow \bar{M}_{2}$ and consider the quotients $W_{1}:=\bar{M}_{1} / \iota_{1}\left(\bar{N}_{1}\right)$ and $W_{2}:=\bar{M}_{2} / \iota_{2}\left(\bar{N}_{2}\right)$. Then

$$
W_{1}^{\mathrm{ss}} \cong W_{2}^{\mathrm{ss}}
$$

as $\mathbb{F}_{p}[T]$-modules if and only if for every $n \geq 0$ we have
$v_{p}\left(\operatorname{Tr}\left(T^{n} \mid M_{1}\right)-\operatorname{Tr}\left(T^{n} \mid N_{1}\right)-\operatorname{Tr}\left(T^{n} \mid M_{2}\right)+\operatorname{Tr}\left(T^{n} \mid N_{2}\right)\right) \geq 1+v_{p}(n)$.

The essential point is that we do not assume that there are embeddings $N_{i} \hookrightarrow M_{i}$ over \mathbb{Z}_{p}, but only after base change to \mathbb{F}_{p}.

Back to the main theorem

For N prime to p and $k \geq 2$, write $M_{k}\left(N p, \mathbb{Z}_{p}\right)$ for the space of classical modular forms of weight k and level $N p$, viewed via the q-expansion map as a subspace of a finite free \mathbb{Z}_{p}-module. Let $M_{k}\left(N p, \mathbb{F}_{p}\right)$ denote the image of $M_{k}\left(N p, \mathbb{Z}_{p}\right)$ in $\mathbb{F}_{p} \llbracket q \rrbracket$.

For $k \geq 4$, multiplication by the level- p and weight-2 Eisenstein form $E_{2, p}$, normalized to be in $1+p \mathbb{Z}_{p} \llbracket q \rrbracket$, induces an embedding

$$
M_{k-2}\left(N p, \mathbb{F}_{p}\right) \hookrightarrow M_{k}\left(N p, \mathbb{F}_{p}\right) ;
$$

let

$$
W_{k}(N p):=M_{k}\left(N p, \mathbb{F}_{p}\right) / M_{k-2}\left(N p, \mathbb{F}_{p}\right)
$$

denote the quotient.

The tame case - level N

Let $p \geq 5$, there is a Hecke-equivariant embedding

$$
M_{k-p+1}\left(N, \mathbb{F}_{p}\right) \hookrightarrow M_{k}\left(N, \mathbb{F}_{p}\right)
$$

induced by by multiplication by the form E_{p-1}, the Hasse invariant.
The quotient module $W_{k}(N)$ has been carefully studied. If $k \geq p+1$ we have:

- $W_{k}(N) \cong W_{k+p^{2}-1}(N)$, Serre 1987
- $W_{k}(N)[1] \cong W_{k+p+1}(N)$, Robert 1980 for $N=1$, Jochnowitz
- $W_{k}(N) \cong W_{p k}(N)$, Serre 1996

Let $W_{k}^{0}(N):=S_{k}\left(N, \mathbb{F}_{p}\right) / E_{p-1} S_{k-p+1}\left(N, \mathbb{F}_{p}\right)$, for $k \geq p+3$, we have

$$
W_{k}(N) \cong W_{k}^{0}(N)
$$

The wild case - level $N p$

None of the previous statements hold in level $N p$, but we have observed (and proved) some patterns:

- $W_{k+p^{2}-p}(N p) \cong W_{k}(N p)$, the same for $W_{k}^{0}(N p)$;
- $W_{k}(N p)[1]^{s s} \cong W_{k+2}(N p)^{s s}$;
- $W_{k}(N p)\left[\frac{p-1}{2}\right]^{s s} \cong W_{k}(N p)^{s s}$.

The proofs do not follow the previous techniques, all use the trace formula.

We use the trace formula to establish the required congruences.

The trace formula

Fix a natural number N and a prime number ℓ, then for all $n \geq 0$ and all even $k \geq 4$ we have

$$
\operatorname{Tr}\left(T_{\ell^{n}} \mid S_{k}(N)\right)=t_{n, k}=A_{1}\left(\ell^{n}, k\right)-A_{2}\left(\ell^{n}, k\right)-A_{3}\left(\ell^{n}, k\right)
$$

A_{1} is the parabolic term, A_{2} is the elliptic term, and A_{3} the hyperbolic term.

Let us introduce the following notation to present the linear combination of traces appearing in the following : for any pair of integers n and k, and any weight k as above let

$$
\delta_{n, k}^{m}:=\ell^{m(k+p-2)} t_{n, k+p-1}-\ell^{m(k-1)} t_{n, k} .
$$

Let p be a prime, $p>2$. Let $k \geq 2, h \geq 2$ be integers, $a \in \mathbb{Z} /(p-1) \mathbb{Z}$ such that $k+2 a \equiv h \bmod p-1$.

Fix a level M that may or may not be divisible by p.
Set for $n \geq 0$

$$
B(n, k, h, a)=\ell^{n a} \delta_{n, k}^{0}-\delta_{n, h}^{0}
$$

and for $n \geq 2$

$$
C(n-2, k, h, a)=\ell^{n a} \delta_{n-2, k}^{1}-\delta_{n-2, h}^{1} .
$$

Theorem (Anni, Ghitza, Medvedovsky)

Suppose that for all but finitely many primes ℓ we have

1. for $n=0$:

$$
B(0, k, h, a)=0 ;
$$

2. for $n=1$:

$$
B(1, k, h, a) \equiv 0 \quad(\bmod p) ;
$$

3. for all $n \geq 2$:

$$
B(n, k, h, a) \equiv C(n-2, k, h, a) \quad\left(\bmod p^{1+v_{p}(n)}\right)
$$

Then

$$
W_{k+p-1}(M)[a]^{\mathrm{ss}}=W_{h+p-1}(M)^{\mathrm{ss}}
$$

Using the previous corollary, we deduce statements about dimensions.

Generalisations with $\bar{\rho}$ fixed and/or fixed Atkin-Lehner.

Let $M_{k}\left(N p, \mathbb{Z}_{p}\right)$ be the lattice of forms in $M_{k}\left(N p, \mathbb{Q}_{p}\right)$ with integral q-expansions at infinity, and let

$$
M_{k}\left(N p, \mathbb{Z}_{p}\right)^{ \pm}:=M_{k}\left(N p, \mathbb{Z}_{p}\right) \cap M_{k}\left(N p, \mathbb{Q}_{p}\right)^{ \pm}
$$

Then $M_{k}\left(N p, \mathbb{Z}_{p}\right)^{ \pm}$are integral lattices inside the Atkin-Lehner eigenspaces, and may be reduced modulo p : let

$$
M_{k}\left(N p, \mathbb{F}_{p}\right)^{ \pm}:=M_{k}\left(N p, \mathbb{Z}_{p}\right)^{ \pm} \otimes \mathbb{F}_{p}
$$

Let

$$
E_{p-1}^{ \pm}(z):=E_{p-1}(z) \pm p^{(p-1) / 2} E_{p-1}(p z)
$$

one can check that $E_{p-1}^{ \pm}$is a form of level p with w_{p} eigenvalue ± 1 and mod- p-expansion congruent to 1 . Therefore for any signs $\epsilon, \eta \in\{ \pm 1\}$ multiplication by $E_{p-1}^{\epsilon / \eta}$ gives embeddings

$$
M_{k-p+1}\left(N p, \mathbb{F}_{p}\right)^{\eta} \hookrightarrow M_{k}\left(N p, \mathbb{F}_{p}\right)^{\epsilon}
$$

Let $W_{k}^{\epsilon, \eta}(N p)$ be the quotient, a Hecke module

Theorem (Anni, Ghitza, Medvedovsky)
For any signs ϵ, η and any $k \geq 2$ we have

$$
W_{k+2}^{-\epsilon,-\eta}(N p)^{\mathrm{ss}} \cong W_{k}^{\epsilon, \eta}(N p)[1]^{\mathrm{ss}} .
$$

Proof of the main theorem

For cusp forms:

$$
W_{k}(N p)^{0, \epsilon \eta}:=S_{k}\left(N p, \mathbb{F}_{p}\right)^{\epsilon} / S_{k-p+1}\left(N p, \mathbb{F}_{p}\right)^{\eta}
$$

and

$$
W_{k}(N p)^{0, \epsilon \eta}[1]^{\mathrm{ss}}=W_{k+2}(N p)^{0,-\epsilon-\eta, \mathrm{ss}}
$$

SO

$$
\operatorname{dim} W_{k}(N p)^{0, \epsilon \eta}[1]=\operatorname{dim} W_{k+2}(N p)^{0,-\epsilon-\eta}
$$

Denoting by $s_{k}^{\bullet}=\operatorname{dim} S_{k}(N p)^{\bullet}$, we have

$$
s_{k}^{\epsilon}-s_{k-p+1}^{\eta}=s_{k+2}^{-\epsilon}-s_{k+2-(p-1)}^{-\eta} .
$$

Proof of the main theorem

On the other hand

$$
W_{k}(N p)^{0,-\epsilon \eta}[1]^{\mathrm{ss}}=W_{k+2}(N p)^{0, \epsilon-\eta, \mathrm{ss}}
$$

so

$$
s_{k}^{-\epsilon}-s_{k-p+1}^{\eta}=s_{k+2}^{\epsilon}-s_{k+2-(p-1)}^{-\eta}
$$

Combining with $s_{k}^{\epsilon}-s_{k-p+1}^{\eta}=s_{k+2}^{-\epsilon}-s_{k+2-(p-1)}^{-\eta}$ we have

$$
-d_{k}^{*}=d_{k+2}^{*}
$$

Example: $p=5, N=23$

$k \backslash \bar{\rho}$	e	e^{\prime}	p	p^{\prime}	t	t^{\prime}	$s \times 4$	$s^{\prime} \times 4$	$\begin{gathered} f, f^{\prime} ; g, g^{\prime} ; \\ h, h^{\prime} \times 3 \end{gathered}$	Total
2	$(0,0)$	$(0,0)$	$(3,2)$	$(0,0)$	$(2,0)$	$(0,0)$	$(0,1)$	$(0,0)$	$(0,0)$	$(5,6)$
4	$(2,1)$	$(0,0)$	$(2,3)$	$(0,0)$	$(0,2)$	$(0,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(18,16)$
6	$(1,2)$	$(1,1)$	$(3,2)$	$(5,5)$	$(2,0)$	$(2,2)$	$(0,1)$	$(1,1)$	$(1,1)$	$(28,30)$
8	$(2,1)$	$(3,3)$	$(2,3)$	$(5,5)$	$(0,2)$	$(2,2)$	$(1,0)$	$(1,1)$	$(2,2)$	$(42,40)$
10	$(2,3)$	$(3,3)$	$(8,7)$	$(5,5)$	$(4,2)$	$(2,2)$	$(1,2)$	$(1,1)$	$(2,2)$	$(52,54)$
12	$(5,4)$	$(3,3)$	$(7,8)$	$(5,5)$	$(2,4)$	$(2,2)$	$(2,1)$	$(1,1)$	$(3,3)$	$(66,64)$
14	$(4,5)$	$(4,4)$	$(8,7)$	$(10,10)$	$(4,2)$	$(4,4)$	$(1,2)$	$(2,2)$	$(3,3)$	$(76,78)$
16	$(5,4)$	$(6,6)$	$(7,8)$	$(10,10)$	$(2,4)$	$(4,4)$	$(2,1)$	$(2,2)$	$(4,4)$	$(90,88)$
18	$(5,6)$	$(6,6)$	$(13,12)$	$(10,10)$	$(6,4)$	$(4,4)$	$(2,3)$	$(2,2)$	$(4,4)$	$(100,102)$
20	$(8,7)$	$(6,6)$	$(12,13)$	$(10,10)$	$(4,6)$	$(4,4)$	$(3,2)$	$(2,2)$	$(5,5)$	$(114,112)$

\qquad

Counting modular forms with a Galois

 representation mod p and the Atkin-Lehner eigenvalue at p fixed simultaneouslySamuele Anni

Novenas Jornadas de Teoría de Números 2022
Thank you!

Aix \times Marseille
universite
H\& institut de mathématiques de MARSEILLE

