Counting modular forms with a Galois representation mod *p* and the Atkin-Lehner eigenvalue at *p* fixed simultaneously

Samuele Anni Novenas Jornadas de Teoría de Números 2022

Universidad de la Rioja

Introduction

Modular forms

Let *n* be a positive integer, the congruence subgroup $\Gamma_0(n)$ is a subgroup of $SL_2(\mathbb{Z})$ given by

$$\Gamma_0(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : n \mid c \right\}.$$

Given a pair of positive integers n (level) and k (weight), a **modular** form f for $\Gamma_0(n)$ is an holomorphic function on the complex upper half-plane \mathbb{H} satisfying

$$f(\gamma z) = f\left(rac{az+b}{cz+d}
ight) = (cz+d)^k f(z) \quad \forall \gamma \in \Gamma_0(n), z \in \mathbb{H}$$

and a growth condition for the coefficients of its power series expansion

$$f(z) = \sum_{0}^{\infty} a_m q^m$$
, where $q = e^{2\pi i z}$.

There are families of operators acting on the space of modular forms. In particular, the **Hecke operators** T_p for every prime p. These operators describe the interplay between different group actions on the complex upper half-plane.

We will consider only cuspidal **newforms**: cuspidal modular forms $(a_0 = 0)$, normalized $(a_1 = 1)$, which are eigenforms for the Hecke operators and arise from level *n*.

We will denote by $S_k(n, \mathbb{C})$ the space of cuspforms and by $S_k(n, \mathbb{C})^{new}$ the subspace of newforms.

Hecke eigenvalue field

Definition

Let f be a newform, $f = \sum a_m q^m$. Then $\mathbb{Q}_f = \mathbb{Q}(\{a_m\})$ is a number field, called the Hecke eigenvalue field of f. The set $\{a_m\}$ is a Hecke eigenvalue system.

Hecke eigenvalue field

Definition

Let f be a newform, $f = \sum a_m q^m$. Then $\mathbb{Q}_f = \mathbb{Q}(\{a_m\})$ is a number field, called the Hecke eigenvalue field of f. The set $\{a_m\}$ is a Hecke eigenvalue system.

Example: $S_2(77, \mathbb{C})^{new}$

$$\begin{split} f_0(q) &= q - 3q^3 - 2q^4 - q^5 - q^7 + 6q^9 - q^{11} + 6q^{12} - 4q^{13} + 3q^{15} + \dots \\ f_1(q) &= q + q^3 - 2q^4 + 3q^5 + q^7 - 2q^9 - q^{11} - 2q^{12} - 4q^{13} + 3q^{15} + \dots \\ f_2(q) &= q + q^2 + 2q^3 - q^4 - 2q^5 + 2q^6 - q^7 - 3q^8 + q^9 - 2q^{10} + q^{11} + \dots \\ f_{3,4}(q) &= q + \alpha q^2 + (-\alpha + 1) q^3 + 3q^4 - 2q^5 + (\alpha - 5) q^6 + q^7 + \dots \\ \text{where } \alpha \text{ satisfies } x^2 - 5 = 0. \end{split}$$

The Hecke eigenvalue fields are \mathbb{Q} for f_0, f_1, f_2 and $\mathbb{Q}(\sqrt{5})$ for $f_{3,4}$.

Definition

The Hecke algebra $\mathbb{T}(n, k)$ is the \mathbb{Z} -subalgebra of $\text{End}_{\mathbb{C}}(S_k(n, \mathbb{C}))$ generated by Hecke operators T_p for every prime p.

Newforms can be seen as ring homomorphisms $f : \mathbb{T}(n, k) \to \overline{\mathbb{Q}}$.

Theorem (Deligne, Serre, Shimura)

Let *n* and *k* be positive integers. Let \mathbb{F} be a finite field of characteristic ℓ , with $\ell \nmid n$, and $f : \mathbb{T}(n, k) \twoheadrightarrow \mathbb{F}$ a surjective ring homomorphism. Then there is a (unique) continuous semi-simple representation:

$$\bar{\rho}_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}),$$

unramified outside $n\ell$, such that for all p not dividing $n\ell$ we have:

 $\operatorname{Tr}(\bar{\rho}_f(\operatorname{Frob}_p)) = f(T_p) \text{ and } \operatorname{det}(\bar{\rho}_f(\operatorname{Frob}_p)) = f(\langle p \rangle)p^{k-1} \text{ in } \mathbb{F}.$

Computing $\bar{\rho}_f$ is "difficult", but theoretically it can be done in polynomial time in $n, k, \#\mathbb{F}$:

Edixhoven, Couveignes, de Jong, Merkl, Bruin, Bosman ($\#\mathbb{F} \leq 32$):

Example: for n = 1, k = 22 and $\ell = 23$, the number field corresponding to $\mathbb{P}\bar{\rho}_f$ (Galois group isomorphic to $\mathrm{PGL}_2(\mathbb{F}_{23})$) is given by:

$$\begin{split} x^{24} &- 2x^{23} + 115x^{22} + 23x^{21} + 1909x^{20} + 22218x^{19} + 9223x^{18} + 121141x^{17} \\ &+ 1837654x^{16} - 800032x^{15} + 9856374x^{14} + 52362168x^{13} - 32040725x^{12} \\ &+ 279370098x^{11} + 1464085056x^{10} + 1129229689x^9 + 3299556862x^8 \\ &+ 14586202192x^7 + 29414918270x^6 + 45332850431x^5 - 6437110763x^4 \\ &- 111429920358x^3 - 12449542097x^2 + 93960798341x - 31890957224 \end{split}$$

Mascot, Zeng, Tian ($\#\mathbb{F} \leq 53$).

Fix $p \ge 5$ a prime, N a level prime to p, and let $k \ge 2$ be a weight.

Let $S_k := S_k(\Gamma_0(Np), \overline{\mathbb{Q}}_p)$ be the space of *p*-new (i.e., not coming from level *N*) cuspidal modular forms of level *Np* and weight *k* with coefficients in $\overline{\mathbb{Q}}_p$.

The Atkin-Lehner involution

Fix $p \ge 5$ a prime and N a level prime to p, there exist $x, y, z, t \in \mathbb{Z}$ for which the matrix

$$N_p = egin{pmatrix} px & y \ Npz & pt \end{pmatrix}$$

has determinant p.

The matrix W_p normalizes the group $\Gamma_0(Np)$, and for any weight k it induces a linear operator w_p on the space of cusp forms S_k that commutes with the Hecke operators T_q for all $q \nmid n$ and acts as its own inverse.

The linear operator w_p does not depend on the choice of x, y, z, tand is called the **Atkin-Lehner involution** of S_k .

Any cusp form f in S_k which is an eigenform for all T_q with $q \nmid N$ is also an eigenform for w_p , with eigenvalue ± 1 .

The matrix W_p induces an automorphism of the modular curve $X_0(Np)$ that is also denoted w_p .

The Atkin-Lehner involution w_p acts on S_k and splits it into a direct sum of plus/minus eigenspaces:

$$S_k = S_k^+ \oplus S_k^-.$$

Since we have dimension formulas for $s_k := \dim S_k$, in order to understand the dimensions $s_k^{\pm} = \dim S_k^{\pm}$ of the Atkin-Lehner eigenspaces, it suffices to understand the difference

$$d_k := s_k^+ - s_k^-.$$

 $s_k^{\pm} = \dim S_k(p)^{\pm}$

<i>p</i> = 5				p = 1	1	p = 59				p = 101		
k	s_k^+	s_k^-	k	$ s_k^+ $	s_k^-	k	s_k^+	s_k^-		k	$ s_k^+ $	s_k^-
2	0	0	2	0	1	2	0	5		2	1	7
4	1	0	4	2	0	4	10	4	4	4	16	9
6	0	1	6	1	3	6	9	15	(6	17	24
8	2	1	8	4	2	8	20	14	8	8	33	26
10	1	2	10	3	5	10	19	25	1	.0	34	41
12	3	2	12	6	4	12	30	24	1	.2	50	43
14	2	3	14	5	7	14	29	35	1	.4	51	58
16	4	3	16	8	6	16	40	34	1	.6	67	60
18	3	4	18	7	9	18	39	45	1	.8	68	75
20	5	4	20	10	8	20	50	44	2	0	84	77
22	4	5	22	9	11	22	49	55	2	2	85	92
24	6	5	24	12	10	24	60	54	2	4	101	94
26	5	6	26	11	13	26	59	65	2	6	102	109
28	7	6	28	14	12	28	70	64	2	8	118	111
30	6	7	30	13	15	30	69	75	3	0	119	126
$d_{k}=\pm 1$ of			$d_k = \exists$	-2	d	$k = \pm$	6		0	$d_k = \pm$	7	

 $d_k = \pm 7$

12

Classical result that d_k is constant in absolute value and alternates in sign, modulo a correction for the "missing" E_2 in weight 2: Let

$$d_k^* := egin{cases} d_k - 1 & ext{if } k = 2; \ d_k, & ext{if } k \geq 4 ext{ even} \end{cases}$$

Theorem (Fricke, Yamauchi, Momose, Ogg, Wakatsuki, Helfgott, Martin et al.)

We have

$$d_k^* = (-1)^{\frac{k}{2}} \frac{\#FP}{2},$$

where #FP is the number of fixed points of the Atkin-Lehner involution w_p on $X_0(Np)$.

Theorem (Fricke, Yamauchi, Momose, Ogg, Wakatsuki, Helfgott, Martin et al.)

We have

$$d_k^* = (-1)^{\frac{k}{2}} \frac{\#FP}{2},$$

where #FP is the number of fixed points of the Atkin-Lehner involution w_p on $X_0(Np)$.

The fixed points of w_p on $X_0(Np)$ correspond to elliptic curves with level structure and CM by $\sqrt{-p}$, in fact the d_k are closely related to class numbers.

Theorem (Fricke, Yamauchi, Momose, Ogg, Wakatsuki, Helfgott, Martin et al.)

We have

$$d_k^* = (-1)^{\frac{k}{2}} \frac{\#FP}{2},$$

where #FP is the number of fixed points of the Atkin-Lehner involution w_p on $X_0(Np)$.

The fixed points of w_p on $X_0(Np)$ correspond to elliptic curves with level structure and CM by $\sqrt{-p}$, in fact the d_k are closely related to class numbers.

$$\#\mathsf{FP} = c_p \cdot h(\sqrt{-p}) \cdot \prod_{q \mid N, \text{ prime}} \left(1 + \left(rac{-4p}{q}
ight)
ight).$$

A refinement - Main theorem

Our aim - joint work with A. Ghitza (University of Melbourne) and A. Medvedovsky (Boston University)

Systems of mod-*p* prime-to-*Np* Hecke eigenvalues correspond to continuous semisimple Galois representations $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\overline{\mathbb{F}_p})$ which are odd and unramified outside *Np*.

Systems of mod-*p* prime-to-*Np* Hecke eigenvalues correspond to continuous semisimple Galois representations $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\overline{\mathbb{F}_p})$ which are odd and unramified outside *Np*.

We can decompose

$$S_k = \bigoplus_{\overline{
ho}} S_{k,\overline{
ho}},$$

where $S_{k,\bar{\rho}}$ is the span of eigenforms with mod-p eigensystems corresponding to $\bar{\rho}$.

Since w_p commutes with prime-to-Np Hecke operators, $S_{k,\bar{p}}$ also splits into Atkin-Lehner eigenspaces:

$$S_{k,\bar{\rho}}=S^+_{k,\bar{\rho}}\oplus S^-_{k,\bar{\rho}},$$

once again let $s_{k,\bar{\rho}}^{\pm}$ denote dim $S_{k,\bar{\rho}}^{\pm}$.

The behavior of dimensions $s_{k,\bar{\rho}} := \dim S_{k,\bar{\rho}}$ have been studied by Jochnowitz (N = 1) and Bergdall-Pollack, so once again we focus on the dimension difference $d_{k,\bar{\rho}} := s^+_{k,\bar{\rho}} - s^-_{k,\bar{\rho}}$.

As before, k=2 and $\bar{
ho}$ forces us to make an adjustment, so let

$$d^*_{k,ar{
ho}} := egin{cases} d_{k,ar{
ho}} - 1, & ext{if } k = 2 ext{ and } ar{
ho} = 1 \oplus \omega \ d_{k,ar{
ho}}, & ext{otherwise}, \end{cases}$$

where ω is the mod *p* cyclotomic character.

Theorem (Anni, Ghitza, Medvedovsky)

For $k \geq 2$ and any $\Gamma_0(Np)$ -modular $\overline{\rho}$ we have

$$d^*_{k+2,ar{
ho}[1]} = -d^*_{k,ar{
ho}}.$$

Here $\bar{\rho}[1]$ is a Tate twist: on the Galois side it corresponds to tensoring $\bar{\rho}$ by the mod-p cyclotomic character ω ; on the Hecke side by having T_{ℓ} act by ℓT_{ℓ} .

From this result and related formulations we recover both the classical alternation statement $d_{k+2}^* = -d_k^*$ and the Bergdall-Pollack dimension formulas, but with very different techniques.

Example:
$$p = 5$$
, $N = 23$

k	(s_k^+, s_k^-)
2	(5,6)
4	(18, 16)
6	(28, 30)
8	(42, 40)
10	(52, 54)
12	(66, 64)
14	(76, 78)
16	(90, 88)
18	(100, 102)
20	(114, 112)

$$d_k = \pm 2$$

In weight k for $\bar{\rho}$ the entry is $(s_{k,\tau}^+, s_{k,\tau}^-)$ for $\tau = \bar{\rho}[\frac{k-2}{2}]$.

Two twists of $\bar{\rho}$ can appear in any given weight: $\bar{\rho}$ and its quadratic twist $\bar{\rho}' = \bar{\rho}[2] = \bar{\rho} \otimes \omega^2$.

- e is the Eisenstein thread: $e = 1 \oplus \omega$ in weight 2;
- p is a peu ramifié form, appearing in weight 2;
- *t* is a très ramifié form, here appearing in weight 2;
- s is an 𝔽₅₄-Galois orbit of 4 très ramifié forms appearing in weight 2;
- f, g, h are locally reducible, globally irreducible forms; h is an \mathbb{F}_{5^3} -orbit of 3 forms.

$k \setminus \bar{\rho}$	е	e'	р	<i>p</i> ′	t	t'	$s \times 4$	s' imes 4	$\begin{array}{c} f, f'; g, g'; \\ h, h' \times 3 \end{array}$	Total
2	(0,0)	(0,0)	(3,2)	(0,0)	(2,0)	(0,0)	(0, 1)	(0,0)	(0,0)	(5,6)
4	(2,1)	(0,0)	(2,3)	(0,0)	(0,2)	(0,0)	(1, 0)	(0,0)	(1, 1)	(18, 16)
6	(1,2)	(1, 1)	(3,2)	(5, 5)	(2,0)	(2,2)	(0, 1)	(1, 1)	(1, 1)	(28, 30)
8	(2,1)	(3,3)	(2,3)	(5,5)	(0,2)	(2,2)	(1, 0)	(1, 1)	(2,2)	(42, 40)
10	(2,3)	(3,3)	(8,7)	(5, 5)	(4,2)	(2,2)	(1,2)	(1, 1)	(2,2)	(52, 54)
12	(5,4)	(3,3)	(7,8)	(5, 5)	(2,4)	(2,2)	(2, 1)	(1, 1)	(3,3)	(66,64)
14	(4,5)	(4,4)	(8,7)	(10, 10)	(4,2)	(4,4)	(1,2)	(2,2)	(3,3)	(76, 78)
16	(5,4)	(6, 6)	(7,8)	(10, 10)	(2,4)	(4,4)	(2, 1)	(2,2)	(4,4)	(90,88)
18	(5,6)	(6, 6)	(13, 12)	(10,10)	(6,4)	(4,4)	(2,3)	(2,2)	(4,4)	(100, 102)
20	(8,7)	(6, 6)	(12, 13)	(10, 10)	(4,6)	(4,4)	(3, 2)	(2, 2)	(5,5)	(114, 112)

Bergdall and Pollack use Ash-Stevens, a fundamentally characteristic p technique for filtering cohomology of modular symbols, to derive their dimension formulas. But Ash-Stevens has nothing to say about Atkin-Lehner, in part because the Atkin-Lehner operator requires inverting p.

On the other hand, the classical complex methods - trace formulae, Gauss-Bonnet, Riemann-Hurwitz - do not know anything about $\bar{\rho}$.

Combining the **trace formula** (Zagier - Cohen - Osterlé - Cohen - Strömberg and Skoruppa - Zagier - Popa) with an **algebra theorem**, a refinement of Brauer-Nesbitt.

An algebra theorem, and the method of proof for the main theorem

Let M be a finite free \mathbb{Z}_p -module with an action of a linear operator T.

Question

How much information does one need to know about the traces of $\mathbb{Z}_p[T]$ acting on M in order to know the structure of $M \otimes \mathbb{F}_p$ as an $\mathbb{F}_p[T]$ -module, at least up to semisimplification?

Knowing $Tr(T^n|M)$ for enough *n* as an element of \mathbb{Z}_p is plenty:

Theorem (Brauer-Nesbitt)

Let k be a field and V a k[T]-module that is finite-dimensional as a k-vector space. If k has characteristic zero or if char $k > \dim_k V$, then V is determined up to semisimplification by $Tr(T^n|V)$ for all n with $1 \le n \le \dim_k V$.

But this very precise characteristic-zero information is much more than we need: we merely want to understand M modulo p.

On the other hand, knowing all the $Tr(T^n|M)$ modulo p is not enough to determine $M \otimes \mathbb{F}_p$.

Example

If *M* has rank *p* and *T* acts on *M* as multiplication by a scalar α in \mathbb{Z}_p then $\text{Tr}(T^n|M) = p\alpha^n$ for all $n \ge 0$. Thus $\text{Tr}(T^n|M) \equiv 0$ mod *p* for all *n*, and we cannot recover $\alpha \mod p$ from this trace data. Since knowing $\operatorname{Tr}(T^n|M)$ in \mathbb{Z}_p is too much and knowing $\operatorname{Tr}(T^n|M)$ modulo p is not enough, one can ask for some kind of in-between criterion depending on $\operatorname{Tr}(T^n|M)$ modulo *powers* of p.

Theorem (Anni, Ghitza, Medvedovsky + Gessel)

Let M and N be two finite free \mathbb{Z}_p -modules of the same rank d, each with an action of an operator T. Then $\overline{M}^{ss} \cong \overline{N}^{ss}$ as $\mathbb{F}_p[T]$ -modules if and only if for every n with $1 \le n \le d$ we have

 $\operatorname{Tr}(T^n|M) \equiv \operatorname{Tr}(T^n|N) \mod pn.$

Here \overline{M} and \overline{N} are the $\mathbb{F}_p[T]$ -modules $M \otimes \mathbb{F}_p$ and $N \otimes \mathbb{F}_p$, respectively, and \overline{M}^{ss} and \overline{N}^{ss} refers to their semisimplification.

Since every prime except p is invertible, congruence modulo pn is the same as congruence modulo p^{1+vp(n)}, where v_p: Z_p → Z_{≥0} is the normalized p-adic valuation.

- Since every prime except p is invertible, congruence modulo pn is the same as congruence modulo p^{1+vp(n)}, where v_p : Z_p → Z_{≥0} is the normalized p-adic valuation.
- This completely resolves our example with $T = \alpha$ acting on $M = \mathbb{Z}_p^{\oplus p}$: knowing $\text{Tr}(T^p|M) = p\alpha^p \mod p^2$ is knowing $\alpha^p \mod p$, which in turn determines $\alpha \mod p$ uniquely. Yet this is not enough to pin down α in \mathbb{Z}_p .

- Since every prime except p is invertible, congruence modulo pn is the same as congruence modulo p^{1+vp(n)}, where v_p: Z_p → Z_{≥0} is the normalized p-adic valuation.
- This completely resolves our example with $T = \alpha$ acting on $M = \mathbb{Z}_p^{\oplus p}$: knowing $\text{Tr}(T^p|M) = p\alpha^p \mod p^2$ is knowing $\alpha^p \mod p$, which in turn determines $\alpha \mod p$ uniquely. Yet this is not enough to pin down α in \mathbb{Z}_p .
- The "only if" direction is trivial when all the eigenvalues of M, N are in Z_p. Thus the heart is the "if" direction.

- Since every prime except p is invertible, congruence modulo pn is the same as congruence modulo p^{1+vp(n)}, where v_p : Z_p → Z_{≥0} is the normalized p-adic valuation.
- This completely resolves our example with $T = \alpha$ acting on $M = \mathbb{Z}_p^{\oplus p}$: knowing $\text{Tr}(T^p|M) = p\alpha^p \mod p^2$ is knowing $\alpha^p \mod p$, which in turn determines $\alpha \mod p$ uniquely. Yet this is not enough to pin down α in \mathbb{Z}_p .
- The "only if" direction is trivial when all the eigenvalues of *M*, *N* are in Z_p. Thus the heart is the "if" direction.
- The result generalizes to *p*-adic fields that are not too ramified.

The result is a combinatorial statement about deep congruences between power-sum symmetric functions implying simple congruences between corresponding elementary symmetric functions.

Let A be a torsion-free $\mathbb{Z}_{(p)}$ -algebra and assume that A is a domain.

Theorem (Anni, Ghitza, Medvedovsky)

Let P, Q be monic polynomials in A[X]. Then

$$\bar{P} \equiv \bar{Q} \quad \text{in } A/\mathfrak{a}[X]$$

if and only if

 $\mathfrak{p}_n(P) \equiv \mathfrak{p}_n(Q) \mod n\mathfrak{a}$

for all $1 \le n \le \max\{\deg P, \deg Q\}$.

In particular here we do not require P and Q to be of the same degree; nor do we require a to be prime (nor indeed A to be a domain).

The proof uses combinatorial theory of symmetric functions, specifically, formulas that express elementary symmetric functions in terms of power-sum functions and vice versa.

A generalization to virtual modules

Corollary

Let M_1, M_2, N_1, N_2 be free \mathbb{Z}_p -modules of finite rank, each with an action of an operator T. Suppose we have fixed T-equivariant embeddings $\iota_1 : \bar{N_1} \hookrightarrow \bar{M_1}$ and $\iota_2 : \bar{N_2} \hookrightarrow \bar{M_2}$ and consider the quotients $W_1 := \bar{M_1}/\iota_1(\bar{N_1})$ and $W_2 := \bar{M_2}/\iota_2(\bar{N_2})$. Then

 $W_1^{\mathrm{ss}} \cong W_2^{\mathrm{ss}}$

as $\mathbb{F}_{p}[T]$ -modules if and only if for every $n \ge 0$ we have $v_{p}(\operatorname{Tr}(T^{n}|M_{1}) - \operatorname{Tr}(T^{n}|N_{1}) - \operatorname{Tr}(T^{n}|M_{2}) + \operatorname{Tr}(T^{n}|N_{2})) \ge 1 + v_{p}(n).$

The essential point is that we do not assume that there are embeddings $N_i \hookrightarrow M_i$ over \mathbb{Z}_p , but only after base change to \mathbb{F}_p . For N prime to p and $k \ge 2$, write $M_k(Np, \mathbb{Z}_p)$ for the space of classical modular forms of weight k and level Np, viewed via the q-expansion map as a subspace of a finite free \mathbb{Z}_p -module. Let $M_k(Np, \mathbb{F}_p)$ denote the image of $M_k(Np, \mathbb{Z}_p)$ in $\mathbb{F}_p[\![q]\!]$.

For $k \ge 4$, multiplication by the level-p and weight-2 Eisenstein form $E_{2,p}$, normalized to be in $1 + p\mathbb{Z}_p[\![q]\!]$, induces an embedding

$$M_{k-2}(Np,\mathbb{F}_p) \hookrightarrow M_k(Np,\mathbb{F}_p);$$

let

$$W_k(Np) := M_k(Np, \mathbb{F}_p)/M_{k-2}(Np, \mathbb{F}_p)$$

denote the quotient.

Let $p \ge 5$, there is a Hecke-equivariant embedding

$$M_{k-p+1}(N,\mathbb{F}_p) \hookrightarrow M_k(N,\mathbb{F}_p)$$

induced by by multiplication by the form E_{p-1} , the Hasse invariant. The quotient module $W_k(N)$ has been carefully studied. If $k \ge p+1$ we have:

- $W_k(N) \cong W_{k+p^2-1}(N)$, Serre 1987
- $W_k(N)[1] \cong W_{k+p+1}(N)$, Robert 1980 for N = 1, Jochnowitz
- $W_k(N) \cong W_{pk}(N)$, Serre 1996

Let $W_k^0(N) := S_k(N, \mathbb{F}_p)/E_{p-1}S_{k-p+1}(N, \mathbb{F}_p)$, for $k \ge p+3$, we have

$$W_k(N) \cong W_k^0(N).$$

None of the previous statements hold in level Np, but we have observed (and proved) some patterns:

- $W_{k+p^2-p}(Np) \cong W_k(Np)$, the same for $W_k^0(Np)$;
- $W_k(Np)[1]^{ss} \cong W_{k+2}(Np)^{ss};$
- $W_k(Np)[\frac{p-1}{2}]^{ss} \cong W_k(Np)^{ss}$.

The proofs do not follow the previous techniques, all use the trace formula.

We use the trace formula to establish the required congruences.

Fix a natural number N and a prime number ℓ , then for all $n \ge 0$ and all even $k \ge 4$ we have

$$Tr(T_{\ell^n} | S_k(N)) = t_{n,k} = A_1(\ell^n, k) - A_2(\ell^n, k) - A_3(\ell^n, k).$$

 A_1 is the parabolic term, A_2 is the elliptic term, and A_3 the hyperbolic term.

Let us introduce the following notation to present the linear combination of traces appearing in the following : for any pair of integers n and k, and any weight k as above let

$$\delta_{n,k}^{m} := \ell^{m(k+p-2)} t_{n,k+p-1} - \ell^{m(k-1)} t_{n,k+p-1} - \ell^$$

Let p be a prime, p > 2. Let $k \ge 2$, $h \ge 2$ be integers, $a \in \mathbb{Z}/(p-1)\mathbb{Z}$ such that $k + 2a \equiv h \mod p - 1$.

Fix a level M that may or may not be divisible by p.

Set for $n \ge 0$ $B(n, k, h, a) = \ell^{na} \delta^0_{n,k} - \delta^0_{n,h}$

and for $n \geq 2$

$$C(n-2,k,h,a) = \ell^{na} \delta^{1}_{n-2,k} - \delta^{1}_{n-2,h}$$

Theorem (Anni, Ghitza, Medvedovsky)

Suppose that for all but finitely many primes ℓ we have

1. for n = 0: B(0, k, h, a) = 0;

2. *for* n = 1:

$$B(1,k,h,a) \equiv 0 \pmod{p};$$

3. for all $n \ge 2$:

$$B(n,k,h,a)\equiv C(n-2,k,h,a)\pmod{p^{1+v_p(n)}}.$$

Then

$$W_{k+p-1}(M)[a]^{\mathrm{ss}}=W_{h+p-1}(M)^{\mathrm{ss}}.$$

Using the previous corollary, we deduce statements about dimensions.

Generalisations with $\bar{\rho}$ fixed and/or fixed Atkin-Lehner.

Let $M_k(Np, \mathbb{Z}_p)$ be the lattice of forms in $M_k(Np, \mathbb{Q}_p)$ with integral q-expansions at infinity, and let

$$M_k(Np,\mathbb{Z}_p)^{\pm} := M_k(Np,\mathbb{Z}_p) \cap M_k(Np,\mathbb{Q}_p)^{\pm}.$$

Then $M_k(Np, \mathbb{Z}_p)^{\pm}$ are integral lattices inside the Atkin-Lehner eigenspaces, and may be reduced modulo p: let

$$M_k(Np,\mathbb{F}_p)^{\pm}:=M_k(Np,\mathbb{Z}_p)^{\pm}\otimes\mathbb{F}_p$$

Let

$$E_{p-1}^{\pm}(z) := E_{p-1}(z) \pm p^{(p-1)/2}E_{p-1}(pz)$$

one can check that E_{p-1}^{\pm} is a form of level p with w_p eigenvalue ± 1 and mod-p q-expansion congruent to 1. Therefore for any signs $\epsilon, \eta \in \{\pm 1\}$ multiplication by $E_{p-1}^{\epsilon/\eta}$ gives embeddings

$$M_{k-p+1}(Np,\mathbb{F}_p)^\eta \hookrightarrow M_k(Np,\mathbb{F}_p)^\epsilon.$$

Let $W_k^{\epsilon,\eta}(Np)$ be the quotient, a Hecke module

Theorem (Anni, Ghitza, Medvedovsky)

For any signs ϵ, η and any $k \ge 2$ we have

$$W_{k+2}^{-\epsilon,-\eta}(Np)^{\mathrm{ss}} \cong W_k^{\epsilon,\eta}(Np)[1]^{\mathrm{ss}}.$$

For cusp forms:

$$\mathcal{N}_k(\mathsf{Np})^{0,\epsilon\eta}:=S_k(\mathsf{Np},\mathbb{F}_p)^\epsilon/S_{k-p+1}(\mathsf{Np},\mathbb{F}_p)^\eta$$

and

$$W_k(Np)^{0,\epsilon\eta}[1]^{\mathrm{ss}} = W_{k+2}(Np)^{0,-\epsilon-\eta,\mathrm{ss}},$$

SO

$$\dim W_k(Np)^{0,\epsilon\eta}[1] = \dim W_{k+2}(Np)^{0,-\epsilon-\eta}$$

Denoting by $s_k^{\bullet} = \dim S_k(Np)^{\bullet}$, we have

$$s_k^{\epsilon} - s_{k-p+1}^{\eta} = s_{k+2}^{-\epsilon} - s_{k+2-(p-1)}^{-\eta}$$

On the other hand

$$W_k(N\rho)^{0,-\epsilon\eta}[1]^{\mathrm{ss}} = W_{k+2}(N\rho)^{0,\epsilon-\eta,\mathrm{ss}}$$

SO

$$s_k^{-\epsilon} - s_{k-p+1}^{\eta} = s_{k+2}^{\epsilon} - s_{k+2-(p-1)}^{-\eta}.$$

Combining with $s_k^{\epsilon} - s_{k-p+1}^{\eta} = s_{k+2}^{-\epsilon} - s_{k+2-(p-1)}^{-\eta}$ we have

$$-d_k^* = d_{k+2}^*$$

$k \setminus \overline{\rho}$	е	e'	р	p'	t	t'	$s \times 4$	s' imes 4	$\begin{array}{c} f, f'; g, g'; \\ h, h' \times 3 \end{array}$	Total
2	(0,0)	(0,0)	(3,2)	(0,0)	(2,0)	(0,0)	(0,1)	(0,0)	(0,0)	(5,6)
4	(2, 1)	(0,0)	(2,3)	(0,0)	(0,2)	(0,0)	(1, 0)	(0,0)	(1, 1)	(18, 16)
6	(1,2)	(1, 1)	(3,2)	(5,5)	(2,0)	(2,2)	(0, 1)	(1, 1)	(1, 1)	(28, 30)
8	(2, 1)	(3,3)	(2,3)	(5,5)	(0,2)	(2,2)	(1, 0)	(1, 1)	(2,2)	(42, 40)
10	(2,3)	(3,3)	(8,7)	(5, 5)	(4,2)	(2,2)	(1,2)	(1, 1)	(2,2)	(52, 54)
12	(5,4)	(3,3)	(7,8)	(5, 5)	(2,4)	(2,2)	(2, 1)	(1, 1)	(3,3)	(66,64)
14	(4,5)	(4,4)	(8,7)	(10, 10)	(4,2)	(4,4)	(1,2)	(2,2)	(3,3)	(76,78)
16	(5,4)	(6, 6)	(7,8)	(10, 10)	(2,4)	(4,4)	(2, 1)	(2,2)	(4,4)	(90,88)
18	(5,6)	(6, 6)	(13, 12)	(10,10)	(6,4)	(4,4)	(2,3)	(2,2)	(4,4)	(100, 102)
20	(8,7)	(6, 6)	(12, 13)	(10, 10)	(4,6)	(4, 4)	(3, 2)	(2,2)	(5,5)	(114, 112)

Counting modular forms with a Galois representation mod p and the Atkin-Lehner eigenvalue at p fixed simultaneously

Samuele Anni Novenas Jornadas de Teoría de Números 2022

Thank you!

