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Introduction



Modular forms

Let n be a positive integer, the congruence subgroup Γ0(n) is a
subgroup of SL2(Z) given by

Γ0(n) =

{(
a b

c d

)
∈ SL2(Z) : n | c

}
.

Given a pair of positive integers n (level) and k (weight), a modular
form f for Γ0(n) is an holomorphic function on the complex upper
half-plane H satisfying

f (γz) = f

(
az + b

cz + d

)
= (cz + d)k f (z) ∀γ ∈ Γ0(n), z ∈ H

and a growth condition for the coefficients of its power series
expansion

f (z) =
∞∑
0

amq
m, where q = e2πiz .
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Newforms

There are families of operators acting on the space of modular forms.
In particular, the Hecke operators Tp for every prime p. These
operators describe the interplay between different group actions on
the complex upper half-plane.

We will consider only cuspidal newforms: cuspidal modular forms
(a0 = 0), normalized (a1 = 1), which are eigenforms for the Hecke
operators and arise from level n.

We will denote by Sk(n,C) the space of cuspforms and by
Sk(n,C)new the subspace of newforms.
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Hecke eigenvalue field

Definition

Let f be a newform, f =
∑

amq
m. Then Q f = Q ({am}) is a

number field, called the Hecke eigenvalue field of f .
The set {am} is a Hecke eigenvalue system.

Example: S2(77,C)new

f0(q) = q−3q3−2q4−q5−q7+6q9−q11+6q12−4q13+3q15+. . .

f1(q) = q+q3−2q4+3q5+q7−2q9−q11−2q12−4q13+3q15+. . .

f2(q) = q+q2+2q3−q4−2q5+2q6−q7−3q8+q9−2q10+q11+. . .

f3,4(q) = q+αq2 +(−α + 1) q3 +3q4−2q5 +(α− 5) q6 +q7 + . . .

where α satisfies x2 − 5 = 0.
The Hecke eigenvalue fields are Q for f0, f1, f2 and Q (

√
5) for f3,4.
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Hecke algebra

Definition

The Hecke algebra T(n, k) is the Z-subalgebra of EndC(Sk(n,C))

generated by Hecke operators Tp for every prime p.

Newforms can be seen as ring homomorphisms f : T(n, k)→ Q .
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Residual modular Galois representations

Theorem (Deligne, Serre, Shimura)
Let n and k be positive integers. Let F be a finite field of
characteristic `, with ` - n, and f : T(n, k) � F a surjective ring
homomorphism. Then there is a (unique) continuous semi-simple
representation:

ρ̄f : Gal(Q /Q )→ GL2(F),

unramified outside n`, such that for all p not dividing n` we have:

Tr(ρ̄f (Frobp)) = f (Tp) and det(ρ̄f (Frobp)) = f (〈p〉)pk−1 in F.
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Computing ρ̄f is “difficult”, but theoretically it can be done in
polynomial time in n, k ,#F:

Edixhoven, Couveignes, de Jong, Merkl, Bruin, Bosman (#F ≤ 32):

Example: for n = 1, k = 22 and ` = 23, the number field
corresponding to Pρ̄f (Galois group isomorphic to PGL2(F23)) is
given by:

x24 − 2x23 + 115x22 + 23x21 + 1909x20 + 22218x19 + 9223x18 + 121141x17

+ 1837654x16 − 800032x15 + 9856374x14 + 52362168x13 − 32040725x12

+ 279370098x11 + 1464085056x10 + 1129229689x9 + 3299556862x8

+ 14586202192x7 + 29414918270x6 + 45332850431x5 − 6437110763x4

− 111429920358x3 − 12449542097x2 + 93960798341x − 31890957224

Mascot, Zeng, Tian (#F ≤ 53).
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p-new forms

Fix p ≥ 5 a prime, N a level prime to p, and let k ≥ 2 be a weight.

Let Sk := Sk(Γ0(Np),Q p) be the space of p-new (i.e., not coming
from level N) cuspidal modular forms of level Np and weight k with
coefficients in Q p.
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The Atkin-Lehner involution



The Atkin-Lehner involution

Fix p ≥ 5 a prime and N a level prime to p, there exist x , y , z , t ∈ Z
for which the matrix

Wp =

(
px y

Npz pt

)

has determinant p.

The matrix Wp normalizes the group Γ0(Np), and for any weight k
it induces a linear operator wp on the space of cusp forms Sk that
commutes with the Hecke operators Tq for all q - n and acts as its
own inverse.
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The Atkin-Lehner involution

The linear operator wp does not depend on the choice of x , y , z , t
and is called the Atkin-Lehner involution of Sk .

Any cusp form f in Sk which is an eigenform for all Tq with q - N is
also an eigenform for wp, with eigenvalue ±1.

The matrix Wp induces an automorphism of the modular curve
X0(Np) that is also denoted wp.

10



The Atkin-Lehner involution wp acts on Sk and splits it into a direct
sum of plus/minus eigenspaces:

Sk = S+
k ⊕ S−k .

Since we have dimension formulas for sk := dimSk , in order to
understand the dimensions s±k = dimS±k of the Atkin-Lehner
eigenspaces, it suffices to understand the difference

dk := s+
k − s−k .
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s±k = dim Sk(p)
±

p = 5

k s+
k s−k

2 0 0
4 1 0
6 0 1
8 2 1
10 1 2
12 3 2
14 2 3
16 4 3
18 3 4
20 5 4
22 4 5
24 6 5
26 5 6
28 7 6
30 6 7

dk = ±1

p = 11

k s+
k s−k

2 0 1
4 2 0
6 1 3
8 4 2
10 3 5
12 6 4
14 5 7
16 8 6
18 7 9
20 10 8
22 9 11
24 12 10
26 11 13
28 14 12
30 13 15

dk = ±2

p = 59

k s+
k s−k

2 0 5
4 10 4
6 9 15
8 20 14
10 19 25
12 30 24
14 29 35
16 40 34
18 39 45
20 50 44
22 49 55
24 60 54
26 59 65
28 70 64
30 69 75

dk = ±6

p = 101

k s+
k s−k

2 1 7
4 16 9
6 17 24
8 33 26
10 34 41
12 50 43
14 51 58
16 67 60
18 68 75
20 84 77
22 85 92
24 101 94
26 102 109
28 118 111
30 119 126

dk = ±7 12



Classical result that dk is constant in absolute value and alternates
in sign, modulo a correction for the “missing” E2 in weight 2: Let

d∗k :=

dk − 1 if k = 2;

dk , if k ≥ 4 even.
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Theorem (Fricke, Yamauchi, Momose, Ogg, Wakatsuki,
Helfgott, Martin et al.)
We have

d∗k = (−1)
k
2

#FP
2

,

where #FP is the number of fixed points of the Atkin-Lehner
involution wp on X0(Np).

The fixed points of wp on X0(Np) correspond to elliptic curves with
level structure and CM by

√
−p, in fact the dk are closely related to

class numbers.

#FP = cp · h(
√
−p) ·

∏
q|N, prime

(
1 +

(
−4p
q

))
.
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A refinement - Main theorem



Our aim - joint work with A. Ghitza (University of Melbourne)
and A. Medvedovsky (Boston University)

Systems of mod-p prime-to-Np Hecke eigenvalues correspond to
continuous semisimple Galois representations Gal(Q /Q )→ GL2(Fp)

which are odd and unramified outside Np.

We can decompose
Sk =

⊕
ρ̄

Sk,ρ̄,

where Sk,ρ̄ is the span of eigenforms with mod-p eigensystems
corresponding to ρ̄.
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Since wp commutes with prime-to-Np Hecke operators, Sk,ρ̄ also
splits into Atkin-Lehner eigenspaces:

Sk,ρ̄ = S+
k,ρ̄ ⊕ S−k,ρ̄,

once again let s±k,ρ̄ denote dim S±k,ρ̄.
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The behavior of dimensions sk,ρ̄ := dimSk,ρ̄ have been studied by
Jochnowitz (N = 1) and Bergdall-Pollack, so once again we focus on
the dimension difference dk,ρ̄ := s+

k,ρ̄ − s−k,ρ̄.

As before, k = 2 and ρ̄ forces us to make an adjustment, so let

d∗k,ρ̄ :=

dk,ρ̄ − 1, if k = 2 and ρ̄ = 1⊕ ω

dk,ρ̄, otherwise,

where ω is the mod p cyclotomic character.
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Theorem (Anni, Ghitza, Medvedovsky)

For k ≥ 2 and any Γ0(Np)-modular ρ̄ we have

d∗k+2,ρ̄[1] = −d∗k,ρ̄.

Here ρ̄[1] is a Tate twist: on the Galois side it corresponds to
tensoring ρ̄ by the mod-p cyclotomic character ω; on the Hecke side
by having T` act by `T`.
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From this result and related formulations we recover both the
classical alternation statement d∗k+2 = −d∗k and the Bergdall-Pollack
dimension formulas, but with very different techniques.
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Example: p = 5, N = 23

k (s+
k , s

−
k )

2 (5, 6)

4 (18, 16)

6 (28, 30)

8 (42, 40)

10 (52, 54)

12 (66, 64)

14 (76, 78)

16 (90, 88)

18 (100, 102)

20 (114, 112)

dk = ±2
20



Example: p = 5, N = 23

In weight k for ρ̄ the entry is
(
s+
k,τ , s

−
k,τ

)
for τ = ρ̄[k−2

2 ].

Two twists of ρ̄ can appear in any given weight: ρ̄ and its quadratic
twist ρ̄′ = ρ̄[2] = ρ̄⊗ ω2.

• e is the Eisenstein thread: e = 1⊕ ω in weight 2;

• p is a peu ramifié form, appearing in weight 2;

• t is a très ramifié form, here appearing in weight 2;

• s is an F54-Galois orbit of 4 très ramifié forms appearing in
weight 2;

• f , g , h are locally reducible, globally irreducible forms; h is an
F53-orbit of 3 forms.
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Example: p = 5, N = 23

k
∖
ρ̄ e e ′ p p′ t t ′ s × 4 s ′ × 4

f , f ′; g , g ′;
h, h′ × 3 Total

2 (0, 0) (0, 0) (3, 2) (0, 0) (2, 0) (0, 0) (0, 1) (0, 0) (0, 0) (5, 6)

4 (2, 1) (0, 0) (2, 3) (0, 0) (0, 2) (0, 0) (1, 0) (0, 0) (1, 1) (18, 16)

6 (1, 2) (1, 1) (3, 2) (5, 5) (2, 0) (2, 2) (0, 1) (1, 1) (1, 1) (28, 30)

8 (2, 1) (3, 3) (2, 3) (5, 5) (0, 2) (2, 2) (1, 0) (1, 1) (2, 2) (42, 40)

10 (2, 3) (3, 3) (8, 7) (5, 5) (4, 2) (2, 2) (1, 2) (1, 1) (2, 2) (52, 54)

12 (5, 4) (3, 3) (7, 8) (5, 5) (2, 4) (2, 2) (2, 1) (1, 1) (3, 3) (66, 64)

14 (4, 5) (4, 4) (8, 7) (10, 10) (4, 2) (4, 4) (1, 2) (2, 2) (3, 3) (76, 78)

16 (5, 4) (6, 6) (7, 8) (10, 10) (2, 4) (4, 4) (2, 1) (2, 2) (4, 4) (90, 88)

18 (5, 6) (6, 6) (13, 12) (10, 10) (6, 4) (4, 4) (2, 3) (2, 2) (4, 4) (100, 102)

20 (8, 7) (6, 6) (12, 13) (10, 10) (4, 6) (4, 4) (3, 2) (2, 2) (5, 5) (114, 112)
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Bergdall and Pollack use Ash-Stevens, a fundamentally characteristic
p technique for filtering cohomology of modular symbols, to derive
their dimension formulas. But Ash-Stevens has nothing to say about
Atkin-Lehner, in part because the Atkin-Lehner operator requires
inverting p.

On the other hand, the classical complex methods - trace formulae,
Gauss-Bonnet, Riemann-Hurwitz - do not know anything about ρ̄.
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Idea

Combining the trace formula (Zagier - Cohen - Osterlé - Cohen -
Strömberg and Skoruppa - Zagier - Popa) with an algebra
theorem, a refinement of Brauer-Nesbitt.
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An algebra theorem, and the
method of proof for the main
theorem



The basic question

Let M be a finite free Zp-module with an action of a linear
operator T .

Question
How much information does one need to know about the traces of
Zp[T ] acting on M in order to know the structure of M ⊗ Fp as an
Fp[T ]-module, at least up to semisimplification?
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Knowing Tr(T n|M) for enough n as an element of Zp is plenty:

Theorem (Brauer-Nesbitt)

Let k be a field and V a k[T ]-module that is finite-dimensional as
a k-vector space. If k has characteristic zero or if char k > dimk V ,
then V is determined up to semisimplification by Tr(T n|V ) for all
n with 1 ≤ n ≤ dimk V .

But this very precise characteristic-zero information is much more
than we need: we merely want to understand M modulo p.
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On the other hand, knowing all the Tr(T n|M) modulo p is not
enough to determine M ⊗ Fp.

Example

If M has rank p and T acts on M as multiplication by a scalar α
in Zp then Tr(T n|M) = pαn for all n ≥ 0. Thus Tr(T n|M) ≡ 0
mod p for all n, and we cannot recover α mod p from this trace
data.
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Since knowing Tr(T n|M) in Zp is too much and knowing Tr(T n|M)

modulo p is not enough, one can ask for some kind of in-between
criterion depending on Tr(T n|M) modulo powers of p.

28



Theorem (Anni, Ghitza, Medvedovsky + Gessel)
Let M and N be two finite free Zp-modules of the same rank d ,
each with an action of an operator T . Then M̄ss ∼= N̄ss as
Fp[T ]-modules if and only if for every n with 1 ≤ n ≤ d we have

Tr(T n|M) ≡ Tr(T n|N) mod pn.

Here M̄ and N̄ are the Fp[T ]-modules M ⊗ Fp and N ⊗ Fp,
respectively, and M̄ss and N̄ss refers to their semisimplification.
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Remarks

• Since every prime except p is invertible, congruence modulo pn

is the same as congruence modulo p1+vp(n), where
vp : Zp → Z≥0 is the normalized p-adic valuation.

• This completely resolves our example with T = α acting on
M = Z⊕pp : knowing Tr(T p|M) = pαp modulo p2 is knowing
αp modulo p, which in turn determines α modulo p uniquely.
Yet this is not enough to pin down α in Zp.

• The “only if” direction is trivial when all the eigenvalues of
M,N are in Zp. Thus the heart is the “if” direction.

• The result generalizes to p-adic fields that are not too ramified.
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The result is a combinatorial statement about deep congruences
between power-sum symmetric functions implying simple
congruences between corresponding elementary symmetric functions.

Let A be a torsion-free Z(p)-algebra and assume that A is a domain.

Theorem (Anni, Ghitza, Medvedovsky)

Let P,Q be monic polynomials in A[X ]. Then

P̄ ≡ Q̄ in A/a[X ]

if and only if
p n(P) ≡ p n(Q) mod na

for all 1 ≤ n ≤ max{degP, degQ}.
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In particular here we do not require P and Q to be of the same
degree; nor do we require a to be prime (nor indeed A to be a
domain).

The proof uses combinatorial theory of symmetric functions,
specifically, formulas that express elementary symmetric functions in
terms of power-sum functions and vice versa.
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A generalization to virtual modules

Corollary
Let M1,M2,N1,N2 be free Zp-modules of finite rank, each with an
action of an operator T . Suppose we have fixed T -equivariant
embeddings ι1 : N̄1 ↪→ M̄1 and ι2 : N̄2 ↪→ M̄2 and consider the
quotients W1 := M̄1/ι1(N̄1) and W2 := M̄2/ι2(N̄2). Then

W ss
1
∼= W ss

2

as Fp[T ]-modules if and only if for every n ≥ 0 we have

vp
(

Tr(T n|M1)−Tr(T n|N1)−Tr(T n|M2)+Tr(T n|N2)
)
≥ 1+vp(n).

The essential point is that we do not assume that there are
embeddings Ni ↪→ Mi over Zp, but only after base change to Fp.
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Back to the main theorem

For N prime to p and k ≥ 2, write Mk(Np,Zp) for the space of
classical modular forms of weight k and level Np, viewed via the
q-expansion map as a subspace of a finite free Zp-module.
Let Mk(Np,Fp) denote the image of Mk(Np,Zp) in FpJqK.

For k ≥ 4, multiplication by the level-p and weight-2 Eisenstein form
E2,p, normalized to be in 1 + pZpJqK, induces an embedding

Mk−2(Np,Fp) ↪→ Mk(Np,Fp);

let
Wk(Np) := Mk(Np,Fp)/Mk−2(Np,Fp)

denote the quotient.
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The tame case - level N

Let p ≥ 5, there is a Hecke-equivariant embedding

Mk−p+1(N,Fp) ↪→ Mk(N,Fp)

induced by by multiplication by the form Ep−1, the Hasse invariant.
The quotient module Wk(N) has been carefully studied.
If k ≥ p + 1 we have:

• Wk(N) ∼= Wk+p2−1(N), Serre 1987

• Wk(N)[1] ∼= Wk+p+1(N), Robert 1980 for N = 1, Jochnowitz

• Wk(N) ∼= Wpk(N), Serre 1996

Let W 0
k (N) := Sk(N,Fp)/Ep−1Sk−p+1(N,Fp), for k ≥ p + 3, we

have
Wk(N) ∼= W 0

k (N).
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The wild case - level Np

None of the previous statements hold in level Np, but we have
observed (and proved) some patterns:

• Wk+p2−p(Np) ∼= Wk(Np), the same for W 0
k (Np);

• Wk(Np)[1]ss ∼= Wk+2(Np)ss ;

• Wk(Np)[p−1
2 ]ss ∼= Wk(Np)ss .

The proofs do not follow the previous techniques, all use the trace
formula.

36



We use the trace formula to establish the required congruences.
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The trace formula

Fix a natural number N and a prime number `, then for all n ≥ 0
and all even k ≥ 4 we have

Tr
(
T`n | Sk(N)

)
= tn,k = A1(`n, k)− A2(`n, k)− A3(`n, k).

A1 is the parabolic term, A2 is the elliptic term, and A3 the
hyperbolic term.

38



Let us introduce the following notation to present the linear
combination of traces appearing in the following : for any pair of
integers n and k , and any weight k as above let

δmn,k := `m(k+p−2)tn,k+p−1 − `m(k−1)tn,k .
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Let p be a prime, p > 2. Let k ≥ 2, h ≥ 2 be integers,
a ∈ Z/(p − 1)Z such that k + 2a ≡ h mod p − 1.

Fix a level M that may or may not be divisible by p.

Set for n ≥ 0
B(n, k, h, a) = `naδ0n,k − δ0n,h

and for n ≥ 2

C (n − 2, k , h, a) = `naδ1n−2,k − δ1n−2,h.
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Theorem (Anni, Ghitza, Medvedovsky)
Suppose that for all but finitely many primes ` we have

1. for n = 0:
B(0, k , h, a) = 0;

2. for n = 1:
B(1, k , h, a) ≡ 0 (mod p);

3. for all n ≥ 2:

B(n, k , h, a) ≡ C (n − 2, k, h, a) (mod p1+vp(n)).

Then
Wk+p−1(M)[a]ss = Wh+p−1(M)ss.
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Using the previous corollary, we deduce statements about dimensions.

Generalisations with ρ̄ fixed and/or fixed Atkin-Lehner.
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Let Mk(Np,Zp) be the lattice of forms in Mk(Np,Q p) with integral
q-expansions at infinity, and let

Mk(Np,Zp)± := Mk(Np,Zp) ∩Mk(Np,Q p)±.

Then Mk(Np,Zp)± are integral lattices inside the Atkin-Lehner
eigenspaces, and may be reduced modulo p: let

Mk(Np,Fp)± := Mk(Np,Zp)± ⊗ Fp.
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Let
E±p−1(z) := Ep−1(z)± p(p−1)/2Ep−1(pz)

one can check that E±p−1 is a form of level p with wp eigenvalue ±1
and mod-p q-expansion congruent to 1. Therefore for any signs
ε, η ∈ {±1} multiplication by E

ε/η
p−1 gives embeddings

Mk−p+1(Np,Fp)η ↪→ Mk(Np,Fp)ε.

Let W ε,η
k (Np) be the quotient, a Hecke module
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Theorem (Anni, Ghitza, Medvedovsky)
For any signs ε, η and any k ≥ 2 we have

W−ε,−η
k+2 (Np)ss ∼= W ε,η

k (Np)[1]ss.
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Proof of the main theorem

For cusp forms:

Wk(Np)0,εη := Sk(Np,Fp)ε/Sk−p+1(Np,Fp)η

and
Wk(Np)0,εη[1]ss = Wk+2(Np)0,−ε−η,ss,

so
dimWk(Np)0,εη[1] = dimWk+2(Np)0,−ε−η

Denoting by s•k = dimSk(Np)•, we have

sεk − sηk−p+1 = s−εk+2 − s−ηk+2−(p−1).
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Proof of the main theorem

On the other hand

Wk(Np)0,−εη[1]ss = Wk+2(Np)0,ε−η,ss

so
s−εk − sηk−p+1 = sεk+2 − s−ηk+2−(p−1).

Combining with sεk − sηk−p+1 = s−εk+2 − s−ηk+2−(p−1) we have

−d∗k = d∗k+2.

47



Example: p = 5, N = 23

k
∖
ρ̄ e e ′ p p′ t t ′ s × 4 s ′ × 4

f , f ′; g , g ′;
h, h′ × 3 Total

2 (0, 0) (0, 0) (3, 2) (0, 0) (2, 0) (0, 0) (0, 1) (0, 0) (0, 0) (5, 6)

4 (2, 1) (0, 0) (2, 3) (0, 0) (0, 2) (0, 0) (1, 0) (0, 0) (1, 1) (18, 16)

6 (1, 2) (1, 1) (3, 2) (5, 5) (2, 0) (2, 2) (0, 1) (1, 1) (1, 1) (28, 30)

8 (2, 1) (3, 3) (2, 3) (5, 5) (0, 2) (2, 2) (1, 0) (1, 1) (2, 2) (42, 40)

10 (2, 3) (3, 3) (8, 7) (5, 5) (4, 2) (2, 2) (1, 2) (1, 1) (2, 2) (52, 54)

12 (5, 4) (3, 3) (7, 8) (5, 5) (2, 4) (2, 2) (2, 1) (1, 1) (3, 3) (66, 64)

14 (4, 5) (4, 4) (8, 7) (10, 10) (4, 2) (4, 4) (1, 2) (2, 2) (3, 3) (76, 78)

16 (5, 4) (6, 6) (7, 8) (10, 10) (2, 4) (4, 4) (2, 1) (2, 2) (4, 4) (90, 88)

18 (5, 6) (6, 6) (13, 12) (10, 10) (6, 4) (4, 4) (2, 3) (2, 2) (4, 4) (100, 102)

20 (8, 7) (6, 6) (12, 13) (10, 10) (4, 6) (4, 4) (3, 2) (2, 2) (5, 5) (114, 112)
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Counting modular forms with a Galois
representation mod p and the Atkin-Lehner
eigenvalue at p fixed simultaneously

Samuele Anni
Novenas Jornadas de Teoría de Números 2022

Thank you!
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