A universal Galois representation attached to modular forms mod 3

Anna Medvedovsky

Max Planck Institute for Mathematics

$$\mathsf{M}:=\mathsf{modular}$$
 forms of level one mod 3 (reductions of q -exp., in $\mathbb{F}_3\llbracket q \rrbracket$) $=\mathbb{F}_3[\Delta]$

A : = Hecke algebra acting on
$$M$$
 (gen. by T_ℓ with $\ell \neq$ 3 prime, completed) = $\mathbb{F}_3 \llbracket T_2, \ 1 + T_7
rbracket$

$$\cong \mathbb{F}_3\llbracket x,y
rbracket$$
 for $egin{cases} x=T_\ell & \ell\equiv 2,5 mod 9 \ y=1+T_{\ell'} & 3 mod noncube mod \ell' \end{cases}$

 $\mathfrak{m} := \text{maximal ideal of } A$

Theorem (M.)

There are exactly two nonisomorphic continuous Galois representations

$$ho_{\pm}: G_{\mathbb{Q}} o Gl_2(A)$$

unramified outside 3 and with $\operatorname{tr} \rho_{\pm}(\operatorname{Frob}_{\ell}) = T_{\ell}$ for $\ell \neq 3$ prime. They are isomorphic over $\operatorname{Frac} A$. With $\rho = \rho_{+}$, we have:

- ▶ **Determinant:** det $\rho = \omega_3$ (mod-3 cyclotomic character)
- ▶ Trace: $t := \operatorname{tr} \rho \equiv 1 + \omega_3$ modulo \mathfrak{m}
- ightharpoonup factors thru max'l pro-3 extension of $\mathbb{Q}(\mu_3)$ unram at $\lambda \nmid 3$:

$$1 o \operatorname{Gal}(E/\mathbb{Q}(\mu_3)) o \operatorname{Gal}(E/\mathbb{Q}) o \operatorname{Gal}(\mathbb{Q}(\mu_3)/\mathbb{Q}) o 1.$$
 $\vdots \hspace{1cm} \vdots \hspace{1$

If $g \in H$ generates both $\operatorname{Gal}\left(\mathbb{Q}(\mu_9)/\mathbb{Q}(\mu_3)\right)$ and $\operatorname{Gal}\left(\mathbb{Q}(\mu_3,\sqrt[3]{3})/\mathbb{Q}(\mu_3)\right)$, then

 $H = \langle g, cgc \rangle$ a free pro-3 group, and $G = H \rtimes \{1, c\}$. Can take $g = \text{Frob}_7$.

Theorem (M., cont'd)

▶ With g as above, let x = t(cg) and y = 1 + t(g), so that $A = \mathbb{F}_3[x, y]$. Let $\alpha_+ := x \pm \sqrt{1 + x^2} \in A$, so $\alpha^{-1} - \alpha = x$.

$$A = \mathbb{F}_3[[x, y]].$$
 Let $\alpha_{\pm} := x \pm \sqrt{1 + x^2} \in A$, so $\alpha^{-1} - \alpha = x$.
$$M_g = \begin{pmatrix} y - 1 & -1 \\ 1 & 0 \end{pmatrix}, M_h = \begin{pmatrix} 0 & \alpha^{-2} \\ -\alpha^2 & y - 1 \end{pmatrix}, M_c = \begin{pmatrix} 0 & \alpha^{-1} \\ \alpha & 0 \end{pmatrix}.$$

Then the map $g\mapsto M_g$, $cgc\mapsto M_h$, and $c\mapsto M_c$ extends to

an explicit realization of
$$\rho_{\pm}$$
.

 ho modulo \mathfrak{m} : indecomposable, and $\overline{\rho}|_{\mathcal{H}} \sim \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$, where

(*) is additive character corresp to Gal (ℚ(μ₃, ³√3)/ℚ(μ₃)). Also ρ ⊗ Frac A is absolutely irreducible.
▶ p ⊂ A is prime of height 1: ρ ⊗ k(p) is abs irred unless p = p₀ = (y + y² - x²) = ideal of reducibility; (ρ ⊗ k(p)|_H

$$\mathfrak{p} = \mathfrak{p}_0 = (y + y - x^-) = \text{Ideal of reducibility}, \ (\mathfrak{p} \otimes \kappa(\mathfrak{p}))_{\mathfrak{p}}$$
 is abs irred unless $\mathfrak{p} = \mathfrak{p}_0$ or $\mathfrak{p} = (x) = \text{ideal of dihedrality}.$

• Universality: $t: G \to A$ is the universal pseudocharacter deforming $\overline{t} = 1 + \omega_3$ to \mathbb{F}_3 -algebras with constant det ω_3 .