DENSITY OF SOME GENERIC MOD-3 FORMS OF LEVEL ONE

(1) The setup: Let M = F3[A] be the space of modular forms of level one, and K = (A" : (n,3) = 1)p, C M
be the kernel of Us. Let G = Gal(E/Q), where E is the maximal pro-3 extension of Q(us3) un-
ramified outside 3 be the Galois group of interest. Then G = G'x{1,c}, where G' = Gal (E/Q(u3))
is a free rank-2 pro-3 group, and c is a complex conjugation. Fix an element g € G' so that g
fixes neither ¢y nor /3, and let h = cgc. Then G* = (g, h) as a pro-3 group. Let G? = G — G,
Let A be the completed shallow Hecke algebra acting on K (or on M), a complete local noe-
therian ring with maximal ideal m. Let ¢t : G — A be the universal pseudocharacter lifting
t = 1+ w, where w is the mod-3 cyclotomic character. Then A = F3[z,y], where x = t(cg) and
y=tlg) —2.

For i = 1+ 3Z, let A® = F3[a?,y]; for i = 2+ 3Z, let A* = xA', so that A = A' ® A2. Then
Al is a local ring in its own right, with maximal ideal m;. Similarly, for i € (Z/37Z)* ,define
K := (A" : n = i mod3)p,, so that K = K! ® K2 Then A is a (Z/3Z)*-graded ring
(A'A* ¢ AY), K is a graded A-module (A'K7 € K%) and t is a graded pseudocharacter
(t(G?) C AY).

(2) The representations: The pseudocharacter ¢ is the trace of two representations ry : G — GLy(A),
isomorphic over Frac A but not over A. (In fact, they are twist-isomorphic over A: r; = w®r_.)

We give explicit matrices for r4. Set f1 := £v/1 + 22 € (A")*; note that —1+3 € m but 1+

1S a unit.

l—z—y —1-— l—z—y 1+8- 1 0
g— e bty , h— vy I+f-y , crH .
—1+p+y 1+z—y 1-8—-y l14+z—y 0 -1

Let I, = (y +y? — 2%) = (B4 — 1 + %) be the ideal of reducibility. Note that this is a graded

ideal. Then 7, is upper triangular modulo I,; and r_ is lower triangular modulo I,. Since ¢

is diagonal with distinct eigenvalues, r4 is reducible modulo an ideal [ if and only if I, C I.
(3) A GMA well-adapted to ¢: From now on, we work with the image of r := r,. Since r is

not injective, so replace G by r(G), G* by r(G1), g by r(g), h by r(h), ¢ by r(c), t by trr, and

set d =detr. Set g = 4.

Let R be the GMA generated in GLy(A) by G as an A-module by G. Then R = (/* 4), so
that rad R = ( " A).

Iab m
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c(v) d(v)
a € A and i € {1,2}, define two sections p; : A — A® by the relationship a = p;(a) + xpa(a).

Finally, for O € {a, b, ¢,d}, write O; for p; o .
(4) Determining I': In the notation of [?], define ' = GNSR! C R*. It is clear that here I' = G,
topologically generated by g and h.

Define four maps a,b,c,d : R — A via v = (am (") ) (In fact, ¢ lands in I,p.) Further, for

(5) The diagonal and the antidiagional of I': To understand I', we first work with a subgroup.
(We do this essentially because the symmetry 5 — —f, which is visible on the off-diagonal,
does not extend to all of A, so we work with a subring of polynomials in 3 and y.)

Let I' C T be the (image of the) free group generated by g and h.

Lemma 1. Let v = (212?22 Siizi’é) be in T, with O; = 0;(y). Then,
(a) ay =dy and as = —ds
(b) b1(B) = c1(=B) and ba(B) = —c2(—p)

(¢) a1, as, and bice are even with respect to [5.

Here we view O; € F3[8,y] as polynomials in 8 as appropriate.

Note that the statement aa = —ds from Lemma a) is true simply because tr(I') C Al..
Before proving the rest of Lemmal[l] we reformulate. We will eventually prove a slightly stronger
version using this language.

Let A = Fs[z,y] C A, and let Al = AnAl = Fs[z2,y], and A2 = AN A? = zA'. Then A
is a quadratic extension of A obtained by adjoining a square root of z2; let 7 : A — A be the
Galois conjugation map sending x — —z. Note that 7 extends to a map A — A.

Let O' be the quadratic extension of A obtained by adjoining 3, a root of X2 — (1 +2). A
choice of B+ determines an embedding of B! <+ A'. Let ¢ : O' — O! be the nontrivial Galois
element, with o(3) = —3; unlike 7, the involution o does not extend to an involution on A!.

Finally, let O = F5[z,y, 8] be the quadratic extension of A obtained by adjoining . (Again,
a choice of B4 determines an embedding O < A.) Since O N A = A!, the ring O is at the
top of a Klein-4 extension of algebras, and o and 7 extend to (commuting) involutions O — O

fixing A and O, respectively:

0= Fg,ﬁl) /Ba ]
O F?) 67 J}y]
m %
322, 9]

Finally, for b € O, write b for 7(c(b)). If b = by + xby, with by, by € O, then b = o (b1) — 0 (b2).
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Whenever we view O C A, it is understood that we have chosen 5y = 1 modm for . Since
g and h are in C SLy(O) C SLy(A), it is clear that I' C SLy(0) as well. For vy € I', the maps
0;(v) land in O!.

Lemma 2.
Any v € T C SLy(O) has the form (% g)

Proof. The assertion is true by inspection for v = 1, g, ¢!, h, h~!. Moreover, the set of matrices
satisfying this property is (much like the set of unitary matrices) stable under multiplication. [

Lemma [2] implies Lemma [[{b), as well as the implication Lemma [T{c) = Lemma [Tja).
(Indeed, Lemmaimplies that a; = o(dy); knowing that a; is o-invariant would imply a1 = dj.)

It therefore remains to prove Lemma c)7 which we restate in a slightly stronger form below.

Lemma 3 (Strengthening of Lemma [I[c)). (a) If vy is in T, then a(vy) is o-invariant. (Equiv-
alently, a1(y) and as(vy) are both o-invariant.)

(b) If v and v are in T, then b(y)b(v") and b(y) o(b(y')) are both o-invariant. (Equivalently,
bi(v)o(bj (")) is o-invariant fori,j € {1,2}.)

For example, a1(g) = a1(h) = 1—y, az2(g) = az2(h) = —1, b1(g9) = —bi1(h) = -1 +y — S,
ba(g) = ba(h) = 0. Note that a1(g), a2(g), b1(g)e(bi(h)) = —y +2* —y?, and bi(g)o(bz(h)) =0

are all in Al

Proof of equivalence claims in Lemma[3 We write a,a’ instead of a(v),a(v’), etc. Since
o(a) =o(ar + zaz) = o(ay) + zo(as),
the equivalence claim in part (a) is clear. For part (b), we have
b = (by + xby) (0(br) — w0 (by)) = (bro(br) — 2> by (b)) + x(ba o (b)) — by o(Bh)),
bo(b') = (b1 +abs)(a(b1) + z (b)) = (b1 o (b)) + 2> ba o (bh)) + 2 (b2 7 (b)) + b1 o(b})),

and the claimed equivalence follows.

It also bears mentioning that the o-invariance of as in Lemma a) follows from Lemma

and the fact that tr(y) is in A O
Proof of Lemmal[3 For v = (% 2) and v = (%,, f_;,/) in T, let D(v) be the statement that aq

and ap are both o-invariant, and let P(v,7’) be the statement that b; o(b}) o-invariant for
i,j €{1, 2} In this language, Lemma c) is simply D(v) and P(v,~) for all v € T.
Claim 1: P(v,7') <= P(v',7): Apply o to b; o(b). Or see footnote on page

(*)P(v,') is the statement that the ratios b : b’ and b : 7(b') are o-invariant in P!(FracO). (And if b=1 =0

then P(v,~') is vacuously true.) This formulation makes it clear that P is symmetric and transitive.
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Claim 2: D(v) <= P(v,~): Consider the trace and the determinant, both in A!. Indeed,
0 = pa(dety) = (az0(ar) — aro(az)) + (bao(by) — bio(ba)).

The first big parentheses evaluates to zero iff ajo(as) is o-invariant, but since we know that ay
is o-invariant from trace considerations, it is equivalent to o-invariance of a;. The second big
parentheses evaluates to zero iff P(v,7). This claim is not strictly necessary for the proof.

Claim 3: If D(v), D(y'), and P(v,~’) are true, then D(vy+') is true. True by computation:

a1 () = aray + 2%asaly + byo (b)) — x2bya(by),
azs (') = araly, + agal — byo(by) + bao (b)),

Claim 4: If D(y), D(v"), P(v,v"), and P(v',%") are true, then P(yy',~") is true. We

compute
bi(vY) = arb) — 22agbly + bray — x2byal,

ba(vY') = aiby + asb; — brah + bad},

and inspect the o-invariance of b;(vy’) o (b7).

Claim 5: D(v) and P(1,7) are true for v = 1,¢,¢9~ %, h,h~t. True by inspection.

Claim 6: P(v,v') is true for v,+" € {g,g7',h,h~'}. The bs-components are all zero, so
this amounts to checking by (y)o (b1 (7)) for v # +'.

Finally, we prove Lemma by induction on the max length of v,+" as words in the generator
alphabet S = {g,g7 ', h, h=1}. The base cases of length < 1 is Claims 5 and 6 above. Now,
suppose both D(v) and P(v,~’) are true for all v,~" of word-length < n. Since n > 1, certainly
we already know that P(s,7) is true for all generators s. Claim 3 now implies that D(sy) is
true, so that D(v) is established for all v of word-length < n + 1. Now Claim 4 implies that
P(sv,7') is true, so that P(v,~’) is true whenever 7 has length < n+ 1 and 4’ has length < n.
Swapping the roles of sy and 7/, we can conclude that P(svy,s'y’) is true for s’ € S as well.

This completes the inductive step. O

Lemma 3| completes the proof of Lemma
The diagonal of I': By Lemma [[{a) and continuity, we conclude that a;(y) = di(v) and
az(y) = —ag(y) for any v € T
The Pink-Lie algebra of I': Since we are using a representation well-adapted to ¢, the Pink-
Lie algebra L = L(T') = FO(T') C (rad R)® is decomposable (Corollary 6.2.2 of [?]). Therefore
L=1 (§2°)®V in the notation of [?, 4.9.1].
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Proposition 4. (a) Ftr(T') = A*

(b) P=P(T) =tr(L-L)=my (mazimal ideal of A*)
(c) I = A% = xA' (so not an ideal of A)

(d) V is the closure inside A x Iy of the set

V= {((54— L —y)(by +aby), (—B+ 1 —y)(by — aby)) : by, by € gl}

Proof. (a) By [?, Proposition 5.3.3] we know that Ftr(G) = A. On the other hand, since ¢ is
graded, we have tr(I') C Al. Since A! is already a closed F-vector space, we must have
Ftr(T) = AL

(b) On one hand, 2trO(g)? =y + 3> € P and 2tr©(gh)? = 22 + 2* € P. These pseudoring-
generate (pseudogenerate?) m; = (22, y)A!, so that m; C P. On the other hand, for every
v €T, we have try € A! (because t is graded) and try = 2 modm (because ¢ mod m is
14 w). Therefore try — 2 € my. Since P is the pseudogenerated by try — 2 and m; is
already a closed pseudoring, P = m;.

(c) First, I claim that a(©(I')) C A% Fory = (¢Y) € I', we know that a; = dy and az = —da:
see item @ above. Therefore a(©(7)) = way € A2
Conversely, we want to show that A% C I;. Certainly a(©(g)) = —z is in I;. Now we can
use the fact that P = my as in [?, Lemma 9.1.3]. Or we can use part (a) above: per [?,
Lemma 4.4.3] we know that L is stable by multiplication by tr(I'). Therefore, A'I; C I,
and therefore we must have A% = xA! C I;. (Note that I = 23A! C I, as expected.)

(d) First, we show that for v = (25) € T, we have (b,c) € V. The ideals (£ +1—y) C O
are both prime (it is only in A that 8+ 1 — y is a unit), so that it is clear that b and ¢
are inside the principal ideals (8 4+ 1 — y)O and (—f + 1 — y)O, respectively, because this
is true for the generators g and h of I'. So it is a priori clear that b = (B+1—y)t for
some b’ € O. I claim that b’ € A. Indeed, for any ¢,s € O! with s nonzero, the product
to(s) is o-invariant if and only if ¢/s is in Frac A (here we extend the Galois action on the
appropriate fraction fields). Now use LemmaB|(b) with ¢ = p;(b’) and s = b1 (g) = S+1—y.
The assertion about ¢ then follows from Lemma b).

To see reverse containment, we can use the fact that L is Al-invariant as in part (c) above.
In particular, let B; = b;(V) for i = 1, Then B; is a sub-A'-module of A', hence an
ideal of A!. Since 8+ 1 —y = bi(h) = ba(gh) € (AY)*, we know that B; = A'. This
completes the proof of the claim.

O

(N1s this closure just A X Igp?
(})Note that this terminology differs from the terminology of [?], where By = b(V).
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(8) The essential submodule A.ss: By Proposition 8.4.1 of [?], we have Aqs = I2, where Iy C I
is a closed subgroup defined by I ((1) Pl) = [V,V]. Let map = 5 — 1 + y be a graded generator
of Iab-

Proposition 5. I, = xm,, A C A2.

Proof. If n=(9%) and n’ = (%Y ) are both in V, then

a([n,n']) = bc’ — cb’ = (b1 + aba) (o(b}) — zo(bh)) — (o(b1) — o (ba)) (b + abh)
= byo (b)) — 2bao (bh) — o (by)b) + 220 (ba)b
n x(—bl o (b) + by o (b)) — o (by )by + a(bg)b'l)
- x(bl o(by) — by o (B))).

(Here we have used Lemmarepeatedly.) By considering the description of V in item above,
it is clear that these span z g, (—8 — 1 + y)g1 Passing to the topological closure gives the

claim. O

(9) The “special” subspace Fg,.: By definition, Fsp. is the orthogonal complement on Acss
under the pairing A x K — Fj3 given by (T, f) = a1(Tf). The grading on K and on A splits
the pairing into two sub-pairings A® x K* — F3, with (A!')* = K? and (A%?)* = K!. Since
Aess C A%, we know that Fype D K'. I claim that the forms in K? that are in Fj,. are exactly
the abelian ones, using Joél’s older definition. See Proposition [7] below.

A few very general preliminaries. Let I C A be an ideal. Call a form f € K is an I-form if
fisin K[I] (i.e., f is annihilated by I).

Lemma 6. K[I] = It

Here It is the orthogonal complement of I with respect to the standard pairing.

Proof. Standard. Certainly K[I] C I+, so suppose f ¢ K[I]. Then there exists an i € I with
if # 0, so there exists n prime to 3 with 0 # a,,(if) = a1 (T,if). But Tyi € I, s0 f & I+. Works
for F inlevel N. More generally, if I C A is a subset, then K[I] = K|[(closed ideal generated by I)]

whereas I+ = (closed F-vector space generated by I)*. ]

Call a form f € K is abelian or (respectively) dihedral if as(f) depends only on Frob, in
some abelian or (respectively) dihedral extension of Q. We’ve shown that f € K is abelian if
and only if f is annihilated by I, and f € K is dihedral (more precisely, Q(us3)-dihedral) if and
only if f is annihilated by I := zA. (In particular, I;; D A2, so that all dihedral forms are in
K'.) We know that the density theorem should not hold for abelian and dihedral forms, so we
may define Fype ideal := K1) + K[Iy] = % = (Ip N 1)+ = (Iyplgi)*, since I, and
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14; are distinct principal ideals in a UFD. Now we can directly compare Acss ideal := Tap T A to

Acss = Tap z Al = Tab A2,
Proposition 7. Fy,e = K' @ {f € K2 : f is abelian}

Proof. Formal. We have A.ys = A2 N I,;, so that

AL, = (APN1yp)"t = (AL + 1L = KU+ (K1) & K2[I)]) = K' & K?[I).

€ess

Here we are using the fact that K[I] = K'[I]@® K?[I]if I is a graded ideal (and abusing notation
slightly since I does not act on K*). ]
(10) Density lower bound: By the main theorem of [?], it appears that, for f € K — Fype, we
have 6(f) > pp—:} =1
(11) Density equality refinement: Refining to get §(f) = %: it looks like this amounts, in the
notation of section 8.2 of [?], to proving two things:
(2) pa((yotre)™'(0)NT) = p(T) = §
(b) For every v € T'/T, the set S, :=l¢(h, (¥~ (L2))) C F3 contains 0.
(Incidentally, typo in 8.2.9 and ff., I think; © should be replaced by ¥. Also, in 8.2.3,
“only” should be replaced by “not only”.)
Part (a) is easy: for f € K2 and g € T, we have trg € A! so that (trg)f = 0, so that
lf(trg(I')) = 0.
Part (b) also appears to be easy. Since F = F,, here, and S, is an Fs-affine subspace of
positive dimension of F3, we must have S, = .

(12) Density vector refinement: For f € K and i € F3, define
d(f, 1) := density{¢ prime : a,(f) = i},

and let 6(f) = (6(£,0), 6(f,1), 6(f,2)), a unit vector of nonnegative rational numbers.

It looks like the exact same methods show that, for f € K2, if f is not abelian, then
(=354

Indeed, the density equality refinement above already shows that &(f,0) = % And by the
same argument as in section 8.2, 6(f,1) = d(f,2) = % because for every v, the set S, contains
1 and 2.
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