DENSITY OF SOME GENERIC MOD-3 FORMS OF LEVEL ONE

(1) The setup: Let $M=\mathbb{F}_{3}[\Delta]$ be the space of modular forms of level one, and $K=\left\langle\Delta^{n}:(n, 3)=1\right\rangle_{\mathbb{F}_{3}} \subset M$ be the kernel of U_{3}. Let $G=\operatorname{Gal}(E / \mathbb{Q})$, where E is the maximal pro-3 extension of $\mathbb{Q}\left(\mu_{3}\right)$ unramified outside 3 be the Galois group of interest. Then $G=G^{1} \rtimes\{1, c\}$, where $G^{1}=\operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{3}\right)\right)$ is a free rank-2 pro-3 group, and c is a complex conjugation. Fix an element $g \in G^{1}$ so that g fixes neither ζ_{9} nor $\sqrt[3]{3}$, and let $h=c g c$. Then $G^{1}=\langle g, h\rangle$ as a pro-3 group. Let $G^{2}=G-G^{1}$. Let A be the completed shallow Hecke algebra acting on K (or on M), a complete local noetherian ring with maximal ideal \mathfrak{m}. Let $t: G \rightarrow A$ be the universal pseudocharacter lifting $\bar{t}=1+\omega$, where ω is the mod- 3 cyclotomic character. Then $A=\mathbb{F}_{3} \llbracket x, y \rrbracket$, where $x=t(c g)$ and $y=t(g)-2$.

For $i=1+3 \mathbb{Z}$, let $A^{i}=\mathbb{F}_{3} \llbracket x^{2}, y \rrbracket$; for $i=2+3 \mathbb{Z}$, let $A^{i}=x A^{1}$, so that $A=A^{1} \oplus A^{2}$. Then A^{1} is a local ring in its own right, with maximal ideal \mathfrak{m}_{1}. Similarly, for $i \in(\mathbb{Z} / 3 \mathbb{Z})^{\times}$, define $K^{i}:=\left\langle\Delta^{n}: n \equiv i \bmod 3\right\rangle_{\mathbb{F}_{3}}$, so that $K=K^{1} \oplus K^{2}$. Then A is a $(\mathbb{Z} / 3 \mathbb{Z})^{\times}$-graded ring $\left(A^{i} A^{i} \subset A^{i j}\right), K$ is a graded A-module $\left(A^{i} K^{j} \in K^{i j}\right)$ and t is a graded pseudocharacter $\left(t\left(G^{i}\right) \subset A^{i}\right)$.
(2) The representations: The pseudocharacter t is the trace of two representations $r_{ \pm}: G \rightarrow \mathrm{GL}_{2}(A)$, isomorphic over Frac A but not over A. (In fact, they are twist-isomorphic over $A: r_{+}=\omega \otimes r_{-}$.) We give explicit matrices for $r_{ \pm}$. Set $\beta_{ \pm}:= \pm \sqrt{1+x^{2}} \in\left(A^{1}\right)^{\times}$; note that $-1+\beta \in \mathfrak{m}$ but $1+\beta$ is a unit.

$$
g \mapsto\left(\begin{array}{cc}
1-x-y & -1-\beta+y \\
-1+\beta+y & 1+x-y
\end{array}\right), \quad h \mapsto\left(\begin{array}{cc}
1-x-y & 1+\beta-y \\
1-\beta-y & 1+x-y
\end{array}\right), \quad c \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Let $I_{a b}=\left(y+y^{2}-x^{2}\right)=\left(\beta_{+}-1+y\right)$ be the ideal of reducibility. Note that this is a graded ideal. Then r_{+}is upper triangular modulo $I_{a b}$ and r_{-}is lower triangular modulo $I_{a b}$. Since c is diagonal with distinct eigenvalues, $r_{ \pm}$is reducible modulo an ideal I if and only if $I_{a b} \subset I$.
(3) A GMA well-adapted to c : From now on, we work with the image of $r:=r_{+}$. Since r is not injective, so replace G by $r(G), G^{1}$ by $r\left(G^{1}\right), g$ by $r(g), h$ by $r(h), c$ by $r(c), t$ by $\operatorname{tr} r$, and set $d=\operatorname{det} r$. Set $\beta=\beta_{+}$.

Let R be the GMA generated in $\mathrm{GL}_{2}(A)$ by G as an A-module by G. Then $R=\left(\begin{array}{cc}A & A \\ I_{a b} & A\end{array}\right)$, so that $\operatorname{rad} R=\left(\begin{array}{cc}\mathfrak{m} & A \\ I_{a b} & \mathfrak{m}\end{array}\right)$.

Define four maps $a, b, c, d: R \rightarrow A$ via $\gamma=\left(\begin{array}{cc}a(\gamma) & b(\gamma) \\ c(\gamma) & d(\gamma)\end{array}\right)$. (In fact, c lands in $I_{a b}$.) Further, for $a \in A$ and $i \in\{1,2\}$, define two sections $p_{i}: A \rightarrow A^{1}$ by the relationship $a=p_{1}(a)+x p_{2}(a)$. Finally, for $\square \in\{a, b, c, d\}$, write \square_{i} for $p_{i} \circ \square$.
(4) Determining Γ : In the notation of [?], define $\Gamma=G \cap S R^{1} \subset R^{\times}$. It is clear that here $\Gamma=G^{1}$, topologically generated by g and h.
(5) The diagonal and the antidiagional of $\widetilde{\Gamma}$: To understand Γ, we first work with a subgroup. (We do this essentially because the symmetry $\beta \rightarrow-\beta$, which is visible on the off-diagonal, does not extend to all of A^{1}, so we work with a subring of polynomials in β and y.)

Let $\widetilde{\Gamma} \subset \Gamma$ be the (image of the) free group generated by g and h.
Lemma 1. Let $\gamma=\left(\begin{array}{ll}a_{1}+x a_{2} & b_{1}+x b_{2} \\ c_{1}+x c_{2} & d_{1}+x d_{2}\end{array}\right)$ be in $\widetilde{\Gamma}$, with $\square_{i}=\square_{i}(\gamma)$. Then,
(a) $a_{1}=d_{1}$ and $a_{2}=-d_{2}$
(b) $b_{1}(\beta)=c_{1}(-\beta)$ and $b_{2}(\beta)=-c_{2}(-\beta)$
(c) a_{1}, a_{2}, and $b_{1} c_{2}$ are even with respect to β.

Here we view $\square_{i} \in \mathbb{F}_{3}[\beta, y]$ as polynomials in β as appropriate.
Note that the statement $a_{2}=-d_{2}$ from Lemma 1 (a) is true simply because $\operatorname{tr}(\Gamma) \subset A^{1}$.. Before proving the rest of Lemma1, we reformulate. We will eventually prove a slightly stronger version using this language.

Let $\widetilde{A}=\mathbb{F}_{3}[x, y] \subset A$, and let $\widetilde{A}^{1}=\widetilde{A} \cap A^{1}=\mathbb{F}_{3}\left[x^{2}, y\right]$, and $\widetilde{A}^{2}=\widetilde{A} \cap A^{2}=x \widetilde{A}^{1}$. Then \widetilde{A} is a quadratic extension of \widetilde{A} obtained by adjoining a square root of x^{2}; let $\tau: \widetilde{A} \rightarrow \widetilde{A}$ be the Galois conjugation map sending $x \rightarrow-x$. Note that τ extends to a map $A \rightarrow A$.

Let \mathcal{O}^{1} be the quadratic extension of \widetilde{A}^{1} obtained by adjoining β, a root of $X^{2}-\left(1+x^{2}\right)$. A choice of $\beta_{ \pm}$determines an embedding of $B^{1} \hookrightarrow A^{1}$. Let $\sigma: \mathcal{O}^{1} \rightarrow \mathcal{O}^{1}$ be the nontrivial Galois element, with $\sigma(\beta)=-\beta$; unlike τ, the involution σ does not extend to an involution on A^{1}.

Finally, let $\mathcal{O}=\mathbb{F}_{3}[x, y, \beta]$ be the quadratic extension of \widetilde{A} obtained by adjoining β. (Again, a choice of $\beta_{ \pm}$determines an embedding $\mathcal{O} \hookrightarrow A$.) Since $\mathcal{O}^{1} \cap \widetilde{A}=\widetilde{A}^{1}$, the ring \mathcal{O} is at the top of a Klein-4 extension of algebras, and σ and τ extend to (commuting) involutions $\mathcal{O} \rightarrow \mathcal{O}$ fixing \widetilde{A} and \mathcal{O}^{1}, respectively:

Finally, for $b \in \mathcal{O}$, write \bar{b} for $\tau(\sigma(b))$. If $b=b_{1}+x b_{2}$, with $b_{1}, b_{2} \in \mathcal{O}^{1}$, then $\bar{b}=\sigma\left(b_{1}\right)-x \sigma\left(b_{2}\right)$.

Whenever we view $\mathcal{O} \subset A$, it is understood that we have chosen $\beta_{+} \equiv 1 \bmod \mathfrak{m}$ for β. Since g and h are in $\subset \mathrm{SL}_{2}(\mathcal{O}) \subset \mathrm{SL}_{2}(A)$, it is clear that $\widetilde{\Gamma} \subset \mathrm{SL}_{2}(\mathcal{O})$ as well. For $\gamma \in \widetilde{\Gamma}$, the maps $\square_{i}(\gamma)$ land in \mathcal{O}^{1}.

Lemma 2.

Any $\gamma \in \widetilde{\Gamma} \subset \mathrm{SL}_{2}(\mathcal{O})$ has the form $\left(\frac{a}{b} \frac{b}{a}\right)$.
Proof. The assertion is true by inspection for $\gamma=1, g, g^{-1}, h, h^{-1}$. Moreover, the set of matrices satisfying this property is (much like the set of unitary matrices) stable under multiplication.

Lemma 2 implies Lemma 1(b), as well as the implication Lemma 1(c) \Longrightarrow Lemma 1(a). (Indeed, Lemma 2 implies that $a_{1}=\sigma\left(d_{1}\right)$; knowing that a_{1} is σ-invariant would imply $a_{1}=d_{1}$.) It therefore remains to prove Lemma 1 (c), which we restate in a slightly stronger form below.

Lemma 3 (Strengthening of Lemma 1(c)). (a) If γ is in $\widetilde{\Gamma}$, then $a(\gamma)$ is σ-invariant. (Equivalently, $a_{1}(\gamma)$ and $a_{2}(\gamma)$ are both σ-invariant.)
(b) If γ and γ^{\prime} are in $\widetilde{\Gamma}$, then $b(\gamma) \overline{b\left(\gamma^{\prime}\right)}$ and $b(\gamma) \sigma\left(b\left(\gamma^{\prime}\right)\right)$ are both σ-invariant. (Equivalently, $b_{i}(\gamma) \sigma\left(b_{j}\left(\gamma^{\prime}\right)\right)$ is σ-invariant for $\left.i, j \in\{1,2\}.\right)$

For example, $a_{1}(g)=a_{1}(h)=1-y, a_{2}(g)=a_{2}(h)=-1, b_{1}(g)=-b_{1}(h)=-1+y-\beta$, $b_{2}(g)=b_{2}(h)=0$. Note that $a_{1}(g), a_{2}(g), b_{1}(g) \sigma\left(b_{1}(h)\right)=-y+x^{2}-y^{2}$, and $b_{1}(g) \sigma\left(b_{2}(h)\right)=0$ are all in \widetilde{A}^{1}.

Proof of equivalence claims in Lemma 3. We write a, a^{\prime} instead of $a(\gamma), a\left(\gamma^{\prime}\right)$, etc. Since

$$
\sigma(a)=\sigma\left(a_{1}+x a_{2}\right)=\sigma\left(a_{1}\right)+x \sigma\left(a_{2}\right)
$$

the equivalence claim in part (a) is clear. For part (b), we have

$$
\begin{gathered}
b \overline{b^{\prime}}=\left(b_{1}+x b_{2}\right)\left(\sigma\left(b_{1}\right)-x \sigma\left(b_{2}^{\prime}\right)\right)=\left(b_{1} \sigma\left(b_{1}\right)-x^{2} b_{2} \sigma\left(b_{2}^{\prime}\right)\right)+x\left(b_{2} \sigma\left(b_{1}^{\prime}\right)-b_{1} \sigma\left(b_{2}^{\prime}\right)\right), \\
b \sigma\left(b^{\prime}\right)=\left(b_{1}+x b_{2}\right)\left(\sigma\left(b_{1}\right)+x \sigma\left(b_{2}^{\prime}\right)\right)=\left(b_{1} \sigma\left(b_{1}^{\prime}\right)+x^{2} b_{2} \sigma\left(b_{2}^{\prime}\right)\right)+x\left(b_{2} \sigma\left(b_{1}^{\prime}\right)+b_{1} \sigma\left(b_{2}^{\prime}\right)\right),
\end{gathered}
$$

and the claimed equivalence follows.
It also bears mentioning that the σ-invariance of a_{2} in Lemma 3(a) follows from Lemma 2 and the fact that $\operatorname{tr}(\gamma)$ is in A^{1}.
Proof of Lemma 3. For $\gamma=\left(\begin{array}{cc}\frac{a}{b} & b \\ \bar{a}\end{array}\right)$ and $\gamma^{\prime}=\left(\frac{a^{\prime}}{\bar{b}^{\prime}} \quad \bar{a}^{\prime} \bar{a}^{\prime}\right)$ in $\widetilde{\Gamma}$, let $D(\gamma)$ be the statement that a_{1} and a_{2} are both σ-invariant, and let $P\left(\gamma, \gamma^{\prime}\right)$ be the statement that $b_{i} \sigma\left(b_{j}^{\prime}\right) \sigma$-invariant for $i, j \in\{1,2\}{ }^{(*)}$ In this language, Lemma 1 (c) is simply $D(\gamma)$ and $P(\gamma, \gamma)$ for all $\gamma \in \widetilde{\Gamma}$.

Claim 1: $P\left(\gamma, \gamma^{\prime}\right) \Longleftrightarrow P\left(\gamma^{\prime}, \gamma\right)$: Apply σ to $b_{i} \sigma\left(b_{j}^{\prime}\right)$. Or see footnote on page 3

[^0]Claim 2: $D(\gamma) \Longleftrightarrow P(\gamma, \gamma)$: Consider the trace and the determinant, both in A^{1}. Indeed,

$$
0=p_{2}(\operatorname{det} \gamma)=\left(a_{2} \sigma\left(a_{1}\right)-a_{1} \sigma\left(a_{2}\right)\right)+\left(b_{2} \sigma\left(b_{1}\right)-b_{1} \sigma\left(b_{2}\right)\right)
$$

The first big parentheses evaluates to zero iff $a_{1} \sigma\left(a_{2}\right)$ is σ-invariant, but since we know that a_{2} is σ-invariant from trace considerations, it is equivalent to σ-invariance of a_{1}. The second big parentheses evaluates to zero iff $P(\gamma, \gamma)$. This claim is not strictly necessary for the proof.

Claim 3: If $D(\gamma), D\left(\gamma^{\prime}\right)$, and $P\left(\gamma, \gamma^{\prime}\right)$ are true, then $D\left(\gamma \gamma^{\prime}\right)$ is true. True by computation:

$$
\begin{aligned}
& a_{1}\left(\gamma \gamma^{\prime}\right)=a_{1} a_{1}^{\prime}+x^{2} a_{2} a_{2}^{\prime}+b_{1} \sigma\left(b_{1}^{\prime}\right)-x^{2} b_{2} \sigma\left(b_{2}^{\prime}\right) \\
& a_{2}\left(\gamma \gamma^{\prime}\right)=a_{1} a_{2}^{\prime}+a_{2} a_{1}^{\prime}-b_{1} \sigma\left(b_{2}^{\prime}\right)+b_{2} \sigma\left(b_{1}^{\prime}\right)
\end{aligned}
$$

Claim 4: If $D(\gamma), D\left(\gamma^{\prime}\right), P\left(\gamma, \gamma^{\prime \prime}\right)$, and $P\left(\gamma^{\prime}, \gamma^{\prime \prime}\right)$ are true, then $P\left(\gamma \gamma^{\prime}, \gamma^{\prime \prime}\right)$ is true. We compute

$$
\begin{aligned}
& b_{1}\left(\gamma \gamma^{\prime}\right)=a_{1} b_{1}^{\prime}-x^{2} a_{2} b_{2}^{\prime}+b_{1} a_{1}^{\prime}-x^{2} b_{2} a_{2}^{\prime} \\
& b_{2}\left(\gamma \gamma^{\prime}\right)=a_{1} b_{2}^{\prime}+a_{2} b_{1}^{\prime}-b_{1} a_{2}^{\prime}+b_{2} a_{1}^{\prime}
\end{aligned}
$$

and inspect the σ-invariance of $b_{i}\left(\gamma \gamma^{\prime}\right) \sigma\left(b_{j}^{\prime \prime}\right)$.
Claim 5: $D(\gamma)$ and $P(1, \gamma)$ are true for $\gamma=1, g, g^{-1}, h, h^{-1}$. True by inspection.
Claim 6: $P\left(\gamma, \gamma^{\prime}\right)$ is true for $\gamma, \gamma^{\prime} \in\left\{g, g^{-1}, h, h^{-1}\right\}$. The b_{2}-components are all zero, so this amounts to checking $b_{1}(\gamma) \sigma\left(b_{1}\left(\gamma^{\prime}\right)\right)$ for $\gamma \neq \gamma^{\prime}$.

Finally, we prove Lemma 3 by induction on the max length of γ, γ^{\prime} as words in the generator alphabet $S=\left\{g, g^{-1}, h, h^{-1}\right\}$. The base cases of length ≤ 1 is Claims 5 and 6 above. Now, suppose both $D(\gamma)$ and $P\left(\gamma, \gamma^{\prime}\right)$ are true for all γ, γ^{\prime} of word-length $\leq n$. Since $n \geq 1$, certainly we already know that $P(s, \gamma)$ is true for all generators s. Claim 3 now implies that $D(s \gamma)$ is true, so that $D(\gamma)$ is established for all γ of word-length $\leq n+1$. Now Claim 4 implies that $P\left(s \gamma, \gamma^{\prime}\right)$ is true, so that $P\left(\gamma, \gamma^{\prime}\right)$ is true whenever γ has length $\leq n+1$ and γ^{\prime} has length $\leq n$. Swapping the roles of $s \gamma$ and γ^{\prime}, we can conclude that $P\left(s \gamma, s^{\prime} \gamma^{\prime}\right)$ is true for $s^{\prime} \in S$ as well. This completes the inductive step.

Lemma 3 completes the proof of Lemma 1.
(6) The diagonal of Γ : By Lemma 1 (a) and continuity, we conclude that $a_{1}(\gamma)=d_{1}(\gamma)$ and $a_{2}(\gamma)=-a_{2}(\gamma)$ for any $\gamma \in \Gamma$.
(7) The Pink-Lie algebra of Γ : Since we are using a representation well-adapted to c, the PinkLie algebra $L=L(\Gamma)=\overline{\mathbb{F} \Theta(\Gamma)} \subset(\operatorname{rad} R)^{0}$ is decomposable (Corollary 6.2.2 of [?]). Therefore $L=I_{1}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \oplus \nabla$ in the notation of $[?, 4.9 .1]$.

Proposition 4. (a) $\overline{\mathbb{F} \operatorname{tr}(\Gamma)}=A^{1}$
(b) $P=P(\Gamma)=\operatorname{tr}(L \cdot L)=\mathfrak{m}_{1}$ (maximal ideal of A^{1})
(c) $I_{1}=A^{2}=x A^{1}$ (so not an ideal of A)
(d) ∇ is the closure inside $A \times I_{a b}$ of the set

$$
\widetilde{\nabla}:=\left\{\left((\beta+1-y)\left(b_{1}+x b_{2}\right),(-\beta+1-y)\left(b_{1}-x b_{2}\right)\right): b_{1}, b_{2} \in \widetilde{A}^{1}\right\}
$$

Proof. (a) By [?, Proposition 5.3.3] we know that $\overline{\mathbb{F} \operatorname{tr}(G)}=A$. On the other hand, since t is graded, we have $\operatorname{tr}(\Gamma) \subset A^{1}$. Since A^{1} is already a closed \mathbb{F}-vector space, we must have $\overline{\mathbb{F} \operatorname{tr}(\Gamma)}=A^{1}$.
(b) On one hand, $2 \operatorname{tr} \Theta(g)^{2}=y+y^{2} \in P$ and $2 \operatorname{tr} \Theta(g h)^{2}=x^{2}+x^{4} \in P$. These pseudoringgenerate (pseudogenerate?) $\mathfrak{m}_{1}=\left(x^{2}, y\right) A^{1}$, so that $\mathfrak{m}_{1} \subset P$. On the other hand, for every $\gamma \in \Gamma$, we have $\operatorname{tr} \gamma \in A^{1}$ (because t is graded) and $\operatorname{tr} \gamma \equiv 2 \bmod \mathfrak{m}($ because $t \bmod \mathfrak{m}$ is $1+\omega)$. Therefore $\operatorname{tr} \gamma-2 \in \mathfrak{m}_{1}$. Since P is the pseudogenerated by $\operatorname{tr} \gamma-2$ and \mathfrak{m}_{1} is already a closed pseudoring, $P=\mathfrak{m}_{1}$.
(c) First, I claim that $a(\Theta(\Gamma)) \subset A^{2}$. For $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$, we know that $a_{1}=d_{1}$ and $a_{2}=-d_{2}$: see item (6) above. Therefore $a(\Theta(\gamma))=x a_{2} \in A^{2}$.
Conversely, we want to show that $A^{2} \subset I_{1}$. Certainly $a(\Theta(g))=-x$ is in I_{1}. Now we can use the fact that $P=\mathfrak{m}_{1}$ as in [?, Lemma 9.1.3]. Or we can use part (a) above: per [?, Lemma 4.4.3] we know that L is stable by multiplication by $\operatorname{tr}(\Gamma)$. Therefore, $A^{1} I_{1} \subset I_{1}$, and therefore we must have $A^{2}=x A^{1} \subset I_{1}$. (Note that $I_{1}^{3}=x^{3} A^{1} \subset I_{1}$, as expected.)
(d) First, we show that for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \widetilde{\Gamma}$, we have $(b, c) \in \widetilde{\nabla}$. The ideals $(\pm \beta+1-y) \subset \mathcal{O}$ are both prime (it is only in A that $\beta+1-y$ is a unit), so that it is clear that b and c are inside the principal ideals $(\beta+1-y) \mathcal{O}$ and $(-\beta+1-y) \mathcal{O}$, respectively, because this is true for the generators g and h of $\widetilde{\Gamma}$. So it is a priori clear that $b=(\beta+1-y) b^{\prime}$ for some $b^{\prime} \in \mathcal{O}^{1}$. I claim that $b^{\prime} \in \widetilde{A}$. Indeed, for any $t, s \in \mathcal{O}^{1}$ with s nonzero, the product $t \sigma(s)$ is σ-invariant if and only if t / s is in Frac \widetilde{A}^{1} (here we extend the Galois action on the appropriate fraction fields). Now use Lemma 3(b) with $t=p_{i}\left(b^{\prime}\right)$ and $s=b_{1}(g)=\beta+1-y$. The assertion about c then follows from Lemma 1(b).
To see reverse containment, we can use the fact that L is A^{1}-invariant as in part (c) above. In particular, let $B_{i}=b_{i}(\nabla)$ for $i=1,2^{(\ddagger)}$ Then B_{i} is a sub- A^{1}-module of A^{1}, hence an ideal of A^{1}. Since $\beta+1-y=b_{1}(h)=b_{2}(g h) \in\left(A^{1}\right)^{\times}$, we know that $B_{i}=A^{1}$. This completes the proof of the claim.

[^1](8) The essential submodule $A_{\text {ess }}$: By Proposition 8.4.1 of [?], we have $A_{\text {ess }}=I_{2}$, where $I_{2} \subset I_{1}$ is a closed subgroup defined by $I_{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=[\nabla, \nabla]$. Let $\pi_{a b}=\beta-1+y$ be a graded generator of $I_{a b}$.

Proposition 5. $I_{2}=x \pi_{a b} A^{1} \subset A^{2}$.
Proof. If $n=\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right)$ and $n^{\prime}=\left(\begin{array}{cc}0 & b^{\prime} \\ c^{\prime} & 0\end{array}\right)$ are both in ∇, then

$$
\begin{aligned}
a\left(\left[n, n^{\prime}\right]\right)=b c^{\prime}-c b^{\prime}= & \left(b_{1}+x b_{2}\right)\left(\sigma\left(b_{1}^{\prime}\right)-x \sigma\left(b_{2}^{\prime}\right)\right)-\left(\sigma\left(b_{1}\right)-x \sigma\left(b_{2}\right)\right)\left(b_{1}^{\prime}+x b_{2}^{\prime}\right) \\
= & b_{1} \sigma\left(b_{1}^{\prime}\right)-x^{2} b_{2} \sigma\left(b_{2}^{\prime}\right)-\sigma\left(b_{1}\right) b_{1}^{\prime}+x^{2} \sigma\left(b_{2}\right) b_{2}^{\prime} \\
& \quad+x\left(-b_{1} \sigma\left(b_{2}^{\prime}\right)+b_{2} \sigma\left(b_{1}^{\prime}\right)-\sigma\left(b_{1}\right) b_{2}^{\prime}+\sigma\left(b_{2}\right) b_{1}^{\prime}\right) \\
= & x\left(b_{1} \sigma\left(b_{2}^{\prime}\right)-b_{2} \sigma\left(b_{1}^{\prime}\right)\right)
\end{aligned}
$$

(Here we have used Lemma 3 repeatedly.) By considering the description of $\widetilde{\nabla}$ in item 7 d above, it is clear that these span $x \pi_{a b}(-\beta-1+y) \widetilde{A}^{1}$. Passing to the topological closure gives the claim.
(9) The "special" subspace $\mathcal{F}_{\text {spe }}$: By definition, $\mathcal{F}_{\text {spe }}$ is the orthogonal complement on $A_{\text {ess }}$ under the pairing $A \times K \rightarrow \mathbb{F}_{3}$ given by $\langle T, f\rangle=a_{1}(T f)$. The grading on K and on A splits the pairing into two sub-pairings $A^{i} \times K^{i} \rightarrow \mathbb{F}_{3}$, with $\left(A^{1}\right)^{\perp}=K^{2}$ and $\left(A^{2}\right)^{\perp}=K^{1}$. Since $A_{\text {ess }} \subset A^{2}$, we know that $\mathcal{F}_{\text {spe }} \supset K^{1}$. I claim that the forms in K^{2} that are in $\mathcal{F}_{\text {spe }}$ are exactly the abelian ones, using Joël's older definition. See Proposition 7 below.

A few very general preliminaries. Let $I \subset A$ be an ideal. Call a form $f \in K$ is an I-form if f is in $K[I]$ (i.e., f is annihilated by I).

Lemma 6. $K[I]=I^{\perp}$
Here I^{\perp} is the orthogonal complement of I with respect to the standard pairing.
Proof. Standard. Certainly $K[I] \subset I^{\perp}$, so suppose $f \notin K[I]$. Then there exists an $i \in I$ with if $\neq 0$, so there exists n prime to 3 with $0 \neq a_{n}(i f)=a_{1}\left(T_{n} i f\right)$. But $T_{n} i \in I$, so $f \notin I^{\perp}$. Works for \mathcal{F} in level N. More generally, if $I \subset A$ is a subset, then $K[I]=K[($ closed ideal generated by $I)]$ whereas $I^{\perp}=(\text { closed } \mathbb{F} \text {-vector space generated by } I)^{\perp}$.

Call a form $f \in K$ is abelian or (respectively) dihedral if $a_{\ell}(f)$ depends only on Frob_{ℓ} in some abelian or (respectively) dihedral extension of \mathbb{Q}. We've shown that $f \in K$ is abelian if and only if f is annihilated by $I_{a b}$ and $f \in K$ is dihedral (more precisely, $\mathbb{Q}\left(\mu_{3}\right)$-dihedral) if and only if f is annihilated by $I_{d i}:=x A$. (In particular, $I_{d i} \supset A^{2}$, so that all dihedral forms are in K^{1}.) We know that the density theorem should not hold for abelian and dihedral forms, so we may define $\mathcal{F}_{\text {spe }, \text { ideal }}:=\overline{K\left[I_{a b}\right]+K\left[I_{d i}\right]}=\overline{I_{a b}^{\perp}+I_{d i}^{\perp}}=\left(I_{a b} \cap I_{d i}\right)^{\perp}=\left(I_{a b} I_{d i}\right)^{\perp}$, since $I_{a b}$ and
$I_{d i}$ are distinct principal ideals in a UFD. Now we can directly compare $A_{\text {ess }, i d e a l}:=\pi_{a b} x A$ to $A_{e s s}=\pi_{a b} x A^{1}=\pi_{a b} A^{2}$.

Proposition 7. $\mathcal{F}_{\text {spe }}=K^{1} \oplus\left\{f \in K^{2}: f\right.$ is abelian $\}$
Proof. Formal. We have $A_{e s s}=A^{2} \cap I_{a b}$, so that

$$
A_{e s s}^{\perp}=\left(A^{2} \cap I_{a b}\right)^{\perp}=\overline{\left(A^{2}\right)^{\perp}+I_{a b}^{\perp}}=\overline{K^{1}+\left(K^{1}\left[I_{a b}\right] \oplus K^{2}\left[I_{a b}\right]\right)}=K^{1} \oplus K^{2}\left[I_{a b}\right]
$$

Here we are using the fact that $K[I]=K^{1}[I] \oplus K^{2}[I]$ if I is a graded ideal (and abusing notation slightly since I does not act on K^{i}).
(10) Density lower bound: By the main theorem of [?], it appears that, for $f \in K-\mathcal{F}_{\text {spe }}$, we have $\delta(f) \geq \frac{p-1}{p n}=\frac{1}{3}$.
(11) Density equality refinement: Refining to get $\delta(f)=\frac{1}{3}$: it looks like this amounts, in the notation of section 8.2 of [?], to proving two things:
(a) $\mu_{G}\left(\left(l_{f} \circ \operatorname{tr}_{G}\right)^{-1}(0) \cap \Gamma\right)=\mu_{G}(\Gamma)=\frac{1}{2}$
(b) For every $\gamma \in \Gamma / \Gamma_{2}$, the set $S_{\gamma}:=l_{f}\left(h_{\gamma}\left(\Psi^{-1}\left(L_{2}\right)\right)\right) \subset \mathbb{F}_{3}$ contains 0 .
(Incidentally, typo in 8.2.9 and ff., I think; Θ should be replaced by Ψ. Also, in 8.2.3, "only" should be replaced by "not only".)
Part (a) is easy: for $f \in K^{2}$ and $g \in \Gamma$, we have $\operatorname{tr} g \in A^{1}$ so that $(\operatorname{tr} g) f=0$, so that $l_{f}\left(\operatorname{tr}_{G}(\Gamma)\right)=0$.

Part (b) also appears to be easy. Since $\mathbb{F}=\mathbb{F}_{p}$ here, and S_{γ} is an \mathbb{F}_{3}-affine subspace of positive dimension of \mathbb{F}_{3}, we must have $S_{\gamma}=\mathbb{F}_{3}$.
(12) Density vector refinement: For $f \in K$ and $i \in \mathbb{F}_{3}$, define

$$
\delta(f, i):=\operatorname{density}\left\{\ell \text { prime }: a_{\ell}(f)=i\right\}
$$

and let $\vec{\delta}(f)=(\delta(f, 0), \delta(f, 1), \delta(f, 2))$, a unit vector of nonnegative rational numbers.
It looks like the exact same methods show that, for $f \in K^{2}$, if f is not abelian, then $\vec{\delta}(f)=\left(\frac{2}{3}, \frac{1}{6}, \frac{1}{6}\right)$.

Indeed, the density equality refinement above already shows that $\delta(f, 0)=\frac{2}{3}$. And by the same argument as in section $8.2, \delta(f, 1)=\delta(f, 2)=\frac{1}{6}$ because for every γ, the set S_{γ} contains 1 and 2.

References

[^0]: ${ }^{(*)} P\left(\gamma, \gamma^{\prime}\right)$ is the statement that the ratios $b: b^{\prime}$ and $b: \tau\left(b^{\prime}\right)$ are σ-invariant in $\mathbb{P}^{1}(\operatorname{Frac} \mathcal{O})$. (And if $b=b^{\prime}=0$ then $P\left(\gamma, \gamma^{\prime}\right)$ is vacuously true.) This formulation makes it clear that P is symmetric and transitive.

[^1]: ${ }^{(\dagger)}$ Is this closure just $A \times I_{a b}$?
 ${ }^{(\ddagger)}$ Note that this terminology differs from the terminology of [?], where $B_{1}=b(\nabla)$.

