
DENSITY OF SOME GENERIC MOD-3 FORMS OF LEVEL ONE

(1) The setup: LetM = F3[∆] be the space of modular forms of level one, andK = ⟨∆n : (n, 3) = 1⟩F3 ⊂ M

be the kernel of U3. Let G = Gal(E/Q), where E is the maximal pro-3 extension of Q(µ3) un-

ramified outside 3 be the Galois group of interest. ThenG = G1⋊{1, c}, whereG1 = Gal
(
E/Q(µ3)

)
is a free rank-2 pro-3 group, and c is a complex conjugation. Fix an element g ∈ G1 so that g

fixes neither ζ9 nor 3
√
3, and let h = cgc. Then G1 = ⟨g, h⟩ as a pro-3 group. Let G2 = G−G1.

Let A be the completed shallow Hecke algebra acting on K (or on M), a complete local noe-

therian ring with maximal ideal m. Let t : G → A be the universal pseudocharacter lifting

t̄ = 1+ω, where ω is the mod-3 cyclotomic character. Then A = F3Jx, yK, where x = t(cg) and

y = t(g)− 2.

For i = 1+ 3Z, let Ai = F3Jx2, yK; for i = 2+ 3Z, let Ai = xA1, so that A = A1 ⊕A2. Then

A1 is a local ring in its own right, with maximal ideal m1. Similarly, for i ∈ (Z/3Z)×,define
Ki := ⟨∆n : n ≡ i mod3⟩F3 , so that K = K1 ⊕ K2. Then A is a (Z/3Z)×-graded ring

(AiAi ⊂ Aij), K is a graded A-module (AiKj ∈ Kij) and t is a graded pseudocharacter

(t(Gi) ⊂ Ai).

(2) The representations: The pseudocharacter t is the trace of two representations r± : G → GL2(A),

isomorphic over FracA but not over A. (In fact, they are twist-isomorphic over A: r+ = ω⊗r−.)

We give explicit matrices for r±. Set β± := ±
√
1 + x2 ∈ (A1)×; note that −1+β ∈ m but 1+β

is a unit.

g 7→

(
1− x− y −1− β + y

−1 + β + y 1 + x− y

)
, h 7→

(
1− x− y 1 + β − y

1− β − y 1 + x− y

)
, c 7→

(
1 0

0 −1

)
.

Let Iab = (y + y2 − x2) = (β+ − 1 + y) be the ideal of reducibility. Note that this is a graded

ideal. Then r+ is upper triangular modulo Iab and r− is lower triangular modulo Iab. Since c

is diagonal with distinct eigenvalues, r± is reducible modulo an ideal I if and only if Iab ⊂ I.

(3) A GMA well-adapted to c: From now on, we work with the image of r := r+. Since r is

not injective, so replace G by r(G), G1 by r(G1), g by r(g), h by r(h), c by r(c), t by tr r, and

set d = det r. Set β = β+.

Let R be the GMA generated in GL2(A) by G as an A-module by G. Then R =
(

A A
Iab A

)
, so

that radR =
(

m A
Iab m

)
.
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Define four maps a, b, c, d : R → A via γ =
(

a(γ) b(γ)
c(γ) d(γ)

)
. (In fact, c lands in Iab.) Further, for

a ∈ A and i ∈ {1, 2}, define two sections pi : A → A1 by the relationship a = p1(a) + xp2(a).

Finally, for □ ∈ {a, b, c, d}, write □i for pi ◦□.

(4) Determining Γ: In the notation of [?], define Γ = G∩SR1 ⊂ R×. It is clear that here Γ = G1,

topologically generated by g and h.

(5) The diagonal and the antidiagional of Γ̃: To understand Γ, we first work with a subgroup.

(We do this essentially because the symmetry β → −β, which is visible on the off-diagonal,

does not extend to all of A1, so we work with a subring of polynomials in β and y.)

Let Γ̃ ⊂ Γ be the (image of the) free group generated by g and h.

Lemma 1. Let γ =
(
a1+xa2 b1+xb2
c1+xc2 d1+xd2

)
be in Γ̃, with □i = □i(γ). Then,

(a) a1 = d1 and a2 = −d2

(b) b1(β) = c1(−β) and b2(β) = −c2(−β)

(c) a1, a2, and b1c2 are even with respect to β.

Here we view □i ∈ F3[β, y] as polynomials in β as appropriate.

Note that the statement a2 = −d2 from Lemma 1(a) is true simply because tr(Γ) ⊂ A1..

Before proving the rest of Lemma 1, we reformulate. We will eventually prove a slightly stronger

version using this language.

Let Ã = F3[x, y] ⊂ A, and let Ã1 = Ã ∩ A1 = F3[x
2, y], and Ã2 = Ã ∩ A2 = xÃ1. Then Ã

is a quadratic extension of Ã obtained by adjoining a square root of x2; let τ : Ã → Ã be the

Galois conjugation map sending x → −x. Note that τ extends to a map A → A.

Let O1 be the quadratic extension of Ã1 obtained by adjoining β, a root of X2− (1+x2). A

choice of β± determines an embedding of B1 ↪→ A1. Let σ : O1 → O1 be the nontrivial Galois

element, with σ(β) = −β; unlike τ , the involution σ does not extend to an involution on A1.

Finally, let O = F3[x, y, β] be the quadratic extension of Ã obtained by adjoining β. (Again,

a choice of β± determines an embedding O ↪→ A.) Since O1 ∩ Ã = Ã1, the ring O is at the

top of a Klein-4 extension of algebras, and σ and τ extend to (commuting) involutions O → O
fixing Ã and O1, respectively:

O = F3[x, β, y]

O1 = F3[β, y]

τ : x 7→−x
β 7→β

Ã = F3[x, y]

σ: x 7→x
β 7→−β

Ã1 = F3[x
2, y]

σ:β 7→−β τ :x 7→−x

Finally, for b ∈ O, write b̄ for τ(σ(b)). If b = b1+xb2, with b1, b2 ∈ O1, then b̄ = σ(b1)−xσ(b2).
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Whenever we view O ⊂ A, it is understood that we have chosen β+ ≡ 1 modm for β. Since

g and h are in ⊂ SL2(O) ⊂ SL2(A), it is clear that Γ̃ ⊂ SL2(O) as well. For γ ∈ Γ̃, the maps

□i(γ) land in O1.

Lemma 2.

Any γ ∈ Γ̃ ⊂ SL2(O) has the form
(
a b
b̄ ā

)
.

Proof. The assertion is true by inspection for γ = 1, g, g−1, h, h−1. Moreover, the set of matrices

satisfying this property is (much like the set of unitary matrices) stable under multiplication. □

Lemma 2 implies Lemma 1(b), as well as the implication Lemma 1(c) =⇒ Lemma 1(a).

(Indeed, Lemma 2 implies that a1 = σ(d1); knowing that a1 is σ-invariant would imply a1 = d1.)

It therefore remains to prove Lemma 1(c), which we restate in a slightly stronger form below.

Lemma 3 (Strengthening of Lemma 1(c)). (a) If γ is in Γ̃, then a(γ) is σ-invariant. (Equiv-

alently, a1(γ) and a2(γ) are both σ-invariant.)

(b) If γ and γ′ are in Γ̃, then b(γ) b(γ′) and b(γ)σ(b(γ′)) are both σ-invariant. (Equivalently,

bi(γ)σ(bj(γ
′)) is σ-invariant for i, j ∈ {1, 2}.)

For example, a1(g) = a1(h) = 1 − y, a2(g) = a2(h) = −1, b1(g) = −b1(h) = −1 + y − β,

b2(g) = b2(h) = 0. Note that a1(g), a2(g), b1(g)σ(b1(h)) = −y+x2− y2, and b1(g)σ(b2(h)) = 0

are all in Ã1.

Proof of equivalence claims in Lemma 3. We write a, a′ instead of a(γ), a(γ′), etc. Since

σ(a) = σ(a1 + xa2) = σ(a1) + xσ(a2),

the equivalence claim in part (a) is clear. For part (b), we have

bb′ = (b1 + xb2)
(
σ(b1)− xσ(b′2)

)
=
(
b1 σ(b1)− x2 b2 σ(b

′
2)
)
+ x
(
b2 σ(b

′
1)− b1 σ(b

′
2)
)
,

b σ(b′) = (b1 + xb2)
(
σ(b1) + xσ(b′2)

)
=
(
b1 σ(b

′
1) + x2 b2 σ(b

′
2)
)
+ x
(
b2 σ(b

′
1) + b1 σ(b

′
2)
)
,

and the claimed equivalence follows.

It also bears mentioning that the σ-invariance of a2 in Lemma 3(a) follows from Lemma 2

and the fact that tr(γ) is in A1. □

Proof of Lemma 3. For γ =
(
a b
b̄ ā

)
and γ′ =

(
a′ b′

b̄′ ā′

)
in Γ̃, let D(γ) be the statement that a1

and a2 are both σ-invariant, and let P (γ, γ′) be the statement that bi σ(b
′
j) σ-invariant for

i, j ∈ {1, 2}.(∗) In this language, Lemma 1(c) is simply D(γ) and P (γ, γ) for all γ ∈ Γ̃.

Claim 1: P (γ, γ′) ⇐⇒ P (γ′, γ): Apply σ to bi σ(b
′
j). Or see footnote on page 3.

(∗)P (γ, γ′) is the statement that the ratios b : b′ and b : τ(b′) are σ-invariant in P1(FracO). (And if b = b′ = 0

then P (γ, γ′) is vacuously true.) This formulation makes it clear that P is symmetric and transitive.
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Claim 2: D(γ) ⇐⇒ P (γ, γ): Consider the trace and the determinant, both in A1. Indeed,

0 = p2(det γ) =
(
a2σ(a1)− a1σ(a2)

)
+
(
b2σ(b1)− b1σ(b2)

)
.

The first big parentheses evaluates to zero iff a1σ(a2) is σ-invariant, but since we know that a2

is σ-invariant from trace considerations, it is equivalent to σ-invariance of a1. The second big

parentheses evaluates to zero iff P (γ, γ). This claim is not strictly necessary for the proof.

Claim 3: If D(γ), D(γ′), and P (γ, γ′) are true, then D(γγ′) is true. True by computation:

a1(γγ
′) = a1a

′
1 + x2a2a

′
2 + b1σ(b

′
1)− x2b2σ(b

′
2),

a2(γγ
′) = a1a

′
2 + a2a

′
1 − b1σ(b

′
2) + b2σ(b

′
1),

Claim 4: If D(γ), D(γ′), P (γ, γ′′), and P (γ′, γ′′) are true, then P (γγ′, γ′′) is true. We

compute

b1(γγ
′) = a1b

′
1 − x2a2b

′
2 + b1a

′
1 − x2b2a

′
2,

b2(γγ
′) = a1b

′
2 + a2b

′
1 − b1a

′
2 + b2a

′
1,

and inspect the σ-invariance of bi(γγ
′)σ(b′′j ).

Claim 5: D(γ) and P (1, γ) are true for γ = 1, g, g−1, h, h−1. True by inspection.

Claim 6: P (γ, γ′) is true for γ, γ′ ∈ {g, g−1, h, h−1}. The b2-components are all zero, so

this amounts to checking b1(γ)σ(b1(γ
′)) for γ ̸= γ′.

Finally, we prove Lemma 3 by induction on the max length of γ, γ′ as words in the generator

alphabet S = {g, g−1, h, h−1}. The base cases of length ≤ 1 is Claims 5 and 6 above. Now,

suppose both D(γ) and P (γ, γ′) are true for all γ, γ′ of word-length ≤ n. Since n ≥ 1, certainly

we already know that P (s, γ) is true for all generators s. Claim 3 now implies that D(sγ) is

true, so that D(γ) is established for all γ of word-length ≤ n + 1. Now Claim 4 implies that

P (sγ, γ′) is true, so that P (γ, γ′) is true whenever γ has length ≤ n+1 and γ′ has length ≤ n.

Swapping the roles of sγ and γ′, we can conclude that P (sγ, s′γ′) is true for s′ ∈ S as well.

This completes the inductive step. □

Lemma 3 completes the proof of Lemma 1.

(6) The diagonal of Γ: By Lemma 1(a) and continuity, we conclude that a1(γ) = d1(γ) and

a2(γ) = −a2(γ) for any γ ∈ Γ.

(7) The Pink-Lie algebra of Γ: Since we are using a representation well-adapted to c, the Pink-

Lie algebra L = L(Γ) = FΘ(Γ) ⊂ (radR)0 is decomposable (Corollary 6.2.2 of [?]). Therefore

L = I1
(
1 0
0 −1

)
⊕∇ in the notation of [?, 4.9.1].
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Proposition 4. (a) F tr(Γ) = A1

(b) P = P (Γ) = tr(L · L) = m1 (maximal ideal of A1)

(c) I1 = A2 = xA1 (so not an ideal of A)

(d) ∇ is the closure inside A× Iab of the set

∇̃ :=
{(

(β + 1− y)(b1 + xb2), (−β + 1− y)(b1 − xb2)
)
: b1, b2 ∈ Ã1

}
.(†)

Proof. (a) By [?, Proposition 5.3.3] we know that F tr(G) = A. On the other hand, since t is

graded, we have tr(Γ) ⊂ A1. Since A1 is already a closed F-vector space, we must have

F tr(Γ) = A1.

(b) On one hand, 2 trΘ(g)2 = y + y2 ∈ P and 2 trΘ(gh)2 = x2 + x4 ∈ P . These pseudoring-

generate (pseudogenerate?) m1 = (x2, y)A1, so that m1 ⊂ P . On the other hand, for every

γ ∈ Γ, we have tr γ ∈ A1 (because t is graded) and tr γ ≡ 2 modm (because t mod m is

1 + ω). Therefore tr γ − 2 ∈ m1. Since P is the pseudogenerated by tr γ − 2 and m1 is

already a closed pseudoring, P = m1.

(c) First, I claim that a(Θ(Γ)) ⊂ A2. For γ =
(
a b
c d

)
∈ Γ, we know that a1 = d1 and a2 = −d2:

see item (6) above. Therefore a(Θ(γ)) = xa2 ∈ A2.

Conversely, we want to show that A2 ⊂ I1. Certainly a(Θ(g)) = −x is in I1. Now we can

use the fact that P = m1 as in [?, Lemma 9.1.3]. Or we can use part (a) above: per [?,

Lemma 4.4.3] we know that L is stable by multiplication by tr(Γ). Therefore, A1I1 ⊂ I1,

and therefore we must have A2 = xA1 ⊂ I1. (Note that I31 = x3A1 ⊂ I1, as expected.)

(d) First, we show that for γ =
(
a b
c d

)
∈ Γ̃, we have (b, c) ∈ ∇̃. The ideals (±β + 1 − y) ⊂ O

are both prime (it is only in A that β + 1 − y is a unit), so that it is clear that b and c

are inside the principal ideals (β + 1− y)O and (−β + 1− y)O, respectively, because this

is true for the generators g and h of Γ̃. So it is a priori clear that b = (β + 1 − y)b′ for

some b′ ∈ O1. I claim that b′ ∈ Ã. Indeed, for any t, s ∈ O1 with s nonzero, the product

tσ(s) is σ-invariant if and only if t/s is in Frac Ã1 (here we extend the Galois action on the

appropriate fraction fields). Now use Lemma 3(b) with t = pi(b
′) and s = b1(g) = β+1−y.

The assertion about c then follows from Lemma 1(b).

To see reverse containment, we can use the fact that L is A1-invariant as in part (c) above.

In particular, let Bi = bi(∇) for i = 1, 2(‡) Then Bi is a sub-A1-module of A1, hence an

ideal of A1. Since β + 1 − y = b1(h) = b2(gh) ∈ (A1)×, we know that Bi = A1. This

completes the proof of the claim.

□

(†)Is this closure just A× Iab?
(‡)Note that this terminology differs from the terminology of [?], where B1 = b(∇).
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(8) The essential submodule Aess: By Proposition 8.4.1 of [?], we have Aess = I2, where I2 ⊂ I1

is a closed subgroup defined by I2
(
1 0
0 −1

)
= [∇,∇]. Let πab = β − 1 + y be a graded generator

of Iab.

Proposition 5. I2 = xπab A
1 ⊂ A2.

Proof. If n = ( 0 b
c 0 ) and n′ =

(
0 b′

c′ 0

)
are both in ∇, then

a([n, n′]) = bc′ − cb′ = (b1 + xb2)
(
σ(b′1)− xσ(b′2)

)
−
(
σ(b1)− xσ(b2)

)
(b′1 + xb′2)

= b1σ(b
′
1)− x2b2σ(b

′
2)− σ(b1)b

′
1 + x2σ(b2)b

′
2

+ x
(
−b1 σ(b

′
2) + b2 σ(b

′
1)− σ(b1)b

′
2 + σ(b2)b

′
1

)
= x

(
b1 σ(b

′
2)− b2 σ(b

′
1)
)
.

(Here we have used Lemma 3 repeatedly.) By considering the description of ∇̃ in item 7d above,

it is clear that these span xπab (−β − 1 + y)Ã1. Passing to the topological closure gives the

claim. □

(9) The “special” subspace Fspe: By definition, Fspe is the orthogonal complement on Aess

under the pairing A ×K → F3 given by ⟨T, f⟩ = a1(Tf). The grading on K and on A splits

the pairing into two sub-pairings Ai × Ki → F3, with (A1)⊥ = K2 and (A2)⊥ = K1. Since

Aess ⊂ A2, we know that Fspe ⊃ K1. I claim that the forms in K2 that are in Fspe are exactly

the abelian ones, using Joël’s older definition. See Proposition 7 below.

A few very general preliminaries. Let I ⊂ A be an ideal. Call a form f ∈ K is an I-form if

f is in K[I] (i.e., f is annihilated by I).

Lemma 6. K[I] = I⊥

Here I⊥ is the orthogonal complement of I with respect to the standard pairing.

Proof. Standard. Certainly K[I] ⊂ I⊥, so suppose f ̸∈ K[I]. Then there exists an i ∈ I with

if ̸= 0, so there exists n prime to 3 with 0 ̸= an(if) = a1(Tnif). But Tni ∈ I, so f ̸∈ I⊥. Works

for F in levelN . More generally, if I ⊂ A is a subset, thenK[I] = K[(closed ideal generated by I)]

whereas I⊥ = (closed F-vector space generated by I)⊥. □

Call a form f ∈ K is abelian or (respectively) dihedral if aℓ(f) depends only on Frobℓ in

some abelian or (respectively) dihedral extension of Q. We’ve shown that f ∈ K is abelian if

and only if f is annihilated by Iab and f ∈ K is dihedral (more precisely, Q(µ3)-dihedral) if and

only if f is annihilated by Idi := xA. (In particular, Idi ⊃ A2, so that all dihedral forms are in

K1.) We know that the density theorem should not hold for abelian and dihedral forms, so we

may define Fspe,ideal := K[Iab] +K[Idi] = I⊥ab + I⊥di = (Iab ∩ Idi)
⊥ = (IabIdi)

⊥, since Iab and
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Idi are distinct principal ideals in a UFD. Now we can directly compare Aess,ideal := πab xA to

Aess = πab xA
1 = πab A

2.

Proposition 7. Fspe = K1 ⊕ {f ∈ K2 : f is abelian}

Proof. Formal. We have Aess = A2 ∩ Iab, so that

A⊥
ess = (A2 ∩ Iab)

⊥ = (A2)⊥ + I⊥ab = K1 +
(
K1[Iab]⊕K2[Iab]

)
= K1 ⊕K2[Iab].

Here we are using the fact that K[I] = K1[I]⊕K2[I] if I is a graded ideal (and abusing notation

slightly since I does not act on Ki). □

(10) Density lower bound: By the main theorem of [?], it appears that, for f ∈ K − Fspe, we

have δ(f) ≥ p−1
pn = 1

3 .

(11) Density equality refinement: Refining to get δ(f) = 1
3 : it looks like this amounts, in the

notation of section 8.2 of [?], to proving two things:

(a) µG

(
(lf ◦ trG)−1(0) ∩ Γ

)
= µG(Γ) =

1
2

(b) For every γ ∈ Γ/Γ2, the set Sγ := lf (hγ(Ψ
−1(L2))) ⊂ F3 contains 0.

(Incidentally, typo in 8.2.9 and ff., I think; Θ should be replaced by Ψ. Also, in 8.2.3,

“only” should be replaced by “not only”.)

Part (a) is easy: for f ∈ K2 and g ∈ Γ, we have tr g ∈ A1 so that (tr g)f = 0, so that

lf (trG(Γ)) = 0.

Part (b) also appears to be easy. Since F = Fp here, and Sγ is an F3-affine subspace of

positive dimension of F3, we must have Sγ = F3.

(12) Density vector refinement: For f ∈ K and i ∈ F3, define

δ(f, i) := density{ℓ prime : aℓ(f) = i},

and let δ⃗(f) = (δ(f, 0), δ(f, 1), δ(f, 2)), a unit vector of nonnegative rational numbers.

It looks like the exact same methods show that, for f ∈ K2, if f is not abelian, then

δ⃗(f) =
(
2
3 ,

1
6 ,

1
6

)
.

Indeed, the density equality refinement above already shows that δ(f, 0) = 2
3 . And by the

same argument as in section 8.2, δ(f, 1) = δ(f, 2) = 1
6 because for every γ, the set Sγ contains

1 and 2.
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