DENSITY OF SOME GENERIC MOD-3 FORMS OF LEVEL ONE

(1) The setup: Let M = F₃[Δ] be the space of modular forms of level one, and K = ⟨Δⁿ : (n, 3) = 1⟩_{F₃} ⊂ M be the kernel of U₃. Let G = Gal(E/Q), where E is the maximal pro-3 extension of Q(µ₃) unramified outside 3 be the Galois group of interest. Then G = G¹ ⋊ {1, c}, where G¹ = Gal (E/Q(µ₃)) is a free rank-2 pro-3 group, and c is a complex conjugation. Fix an element g ∈ G¹ so that g fixes neither ζ₉ nor ³√3, and let h = cgc. Then G¹ = ⟨g, h⟩ as a pro-3 group. Let G² = G - G¹. Let A be the completed shallow Hecke algebra acting on K (or on M), a complete local noe-therian ring with maximal ideal m. Let t : G → A be the universal pseudocharacter lifting t = 1 + ω, where ω is the mod-3 cyclotomic character. Then A = F₃[x, y], where x = t(cg) and y = t(g) - 2.

For $i = 1 + 3\mathbb{Z}$, let $A^i = \mathbb{F}_3[x^2, y]$; for $i = 2 + 3\mathbb{Z}$, let $A^i = xA^1$, so that $A = A^1 \oplus A^2$. Then A^1 is a local ring in its own right, with maximal ideal \mathfrak{m}_1 . Similarly, for $i \in (\mathbb{Z}/3\mathbb{Z})^{\times}$, define $K^i := \langle \Delta^n : n \equiv i \mod 3 \rangle_{\mathbb{F}_3}$, so that $K = K^1 \oplus K^2$. Then A is a $(\mathbb{Z}/3\mathbb{Z})^{\times}$ -graded ring $(A^i A^i \subset A^{ij})$, K is a graded A-module $(A^i K^j \in K^{ij})$ and t is a graded pseudocharacter $(t(G^i) \subset A^i)$.

(2) The representations: The pseudocharacter t is the trace of two representations $r_{\pm} : G \to \operatorname{GL}_2(A)$, isomorphic over Frac A but not over A. (In fact, they are twist-isomorphic over A: $r_+ = \omega \otimes r_-$.) We give explicit matrices for r_{\pm} . Set $\beta_{\pm} := \pm \sqrt{1 + x^2} \in (A^1)^{\times}$; note that $-1 + \beta \in \mathfrak{m}$ but $1 + \beta$ is a unit.

$$g \mapsto \begin{pmatrix} 1-x-y & -1-\beta+y \\ -1+\beta+y & 1+x-y \end{pmatrix}, \quad h \mapsto \begin{pmatrix} 1-x-y & 1+\beta-y \\ 1-\beta-y & 1+x-y \end{pmatrix}, \quad c \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Let $I_{ab} = (y + y^2 - x^2) = (\beta_+ - 1 + y)$ be the ideal of reducibility. Note that this is a graded ideal. Then r_+ is upper triangular modulo I_{ab} and r_- is lower triangular modulo I_{ab} . Since cis diagonal with distinct eigenvalues, r_{\pm} is reducible modulo an ideal I if and only if $I_{ab} \subset I$.

(3) A GMA well-adapted to c: From now on, we work with the image of $r := r_+$. Since r is not injective, so replace G by r(G), G^1 by $r(G^1)$, g by r(g), h by r(h), c by r(c), t by tr r, and set $d = \det r$. Set $\beta = \beta_+$.

Let R be the GMA generated in $\operatorname{GL}_2(A)$ by G as an A-module by G. Then $R = \begin{pmatrix} A & A \\ I_{ab} & A \end{pmatrix}$, so that $\operatorname{rad} R = \begin{pmatrix} \mathfrak{m} & A \\ I_{ab} & \mathfrak{m} \end{pmatrix}$.

Define four maps $a, b, c, d : R \to A$ via $\gamma = \begin{pmatrix} a(\gamma) & b(\gamma) \\ c(\gamma) & d(\gamma) \end{pmatrix}$. (In fact, c lands in I_{ab} .) Further, for $a \in A$ and $i \in \{1, 2\}$, define two sections $p_i : A \to A^1$ by the relationship $a = p_1(a) + xp_2(a)$. Finally, for $\Box \in \{a, b, c, d\}$, write \Box_i for $p_i \circ \Box$.

- (4) **Determining** Γ : In the notation of [?], define $\Gamma = G \cap SR^1 \subset R^{\times}$. It is clear that here $\Gamma = G^1$, topologically generated by g and h.
- (5) The diagonal and the antidiagional of Γ: To understand Γ, we first work with a subgroup. (We do this essentially because the symmetry β → -β, which is visible on the off-diagonal, does not extend to all of A¹, so we work with a subring of polynomials in β and y.)

Let $\Gamma \subset \Gamma$ be the (image of the) free group generated by g and h.

Lemma 1. Let $\gamma = \begin{pmatrix} a_1+xa_2 & b_1+xb_2 \\ c_1+xc_2 & d_1+xd_2 \end{pmatrix}$ be in $\widetilde{\Gamma}$, with $\Box_i = \Box_i(\gamma)$. Then, (a) $a_1 = d_1$ and $a_2 = -d_2$

(b) $b_1(\beta) = c_1(-\beta)$ and $b_2(\beta) = -c_2(-\beta)$

(c) a_1 , a_2 , and b_1c_2 are even with respect to β .

Here we view $\Box_i \in \mathbb{F}_3[\beta, y]$ as polynomials in β as appropriate.

Note that the statement $a_2 = -d_2$ from Lemma 1(a) is true simply because $tr(\Gamma) \subset A^1$.. Before proving the rest of Lemma 1, we reformulate. We will eventually prove a slightly stronger version using this language.

Let $\widetilde{A} = \mathbb{F}_3[x, y] \subset A$, and let $\widetilde{A}^1 = \widetilde{A} \cap A^1 = \mathbb{F}_3[x^2, y]$, and $\widetilde{A}^2 = \widetilde{A} \cap A^2 = x\widetilde{A}^1$. Then \widetilde{A} is a quadratic extension of \widetilde{A} obtained by adjoining a square root of x^2 ; let $\tau : \widetilde{A} \to \widetilde{A}$ be the Galois conjugation map sending $x \to -x$. Note that τ extends to a map $A \to A$.

Let \mathcal{O}^1 be the quadratic extension of \widetilde{A}^1 obtained by adjoining β , a root of $X^2 - (1+x^2)$. A choice of β_{\pm} determines an embedding of $B^1 \hookrightarrow A^1$. Let $\sigma : \mathcal{O}^1 \to \mathcal{O}^1$ be the nontrivial Galois element, with $\sigma(\beta) = -\beta$; unlike τ , the involution σ does *not* extend to an involution on A^1 .

Finally, let $\mathcal{O} = \mathbb{F}_3[x, y, \beta]$ be the quadratic extension of \widetilde{A} obtained by adjoining β . (Again, a choice of β_{\pm} determines an embedding $\mathcal{O} \hookrightarrow A$.) Since $\mathcal{O}^1 \cap \widetilde{A} = \widetilde{A}^1$, the ring \mathcal{O} is at the top of a Klein-4 extension of algebras, and σ and τ extend to (commuting) involutions $\mathcal{O} \to \mathcal{O}$ fixing \widetilde{A} and \mathcal{O}^1 , respectively:

Finally, for $b \in \mathcal{O}$, write \bar{b} for $\tau(\sigma(b))$. If $b = b_1 + xb_2$, with $b_1, b_2 \in \mathcal{O}^1$, then $\bar{b} = \sigma(b_1) - x\sigma(b_2)$.

Whenever we view $\mathcal{O} \subset A$, it is understood that we have chosen $\beta_+ \equiv 1 \mod \mathfrak{m}$ for β . Since g and h are in $\subset \mathrm{SL}_2(\mathcal{O}) \subset \mathrm{SL}_2(A)$, it is clear that $\widetilde{\Gamma} \subset \mathrm{SL}_2(\mathcal{O})$ as well. For $\gamma \in \widetilde{\Gamma}$, the maps $\Box_i(\gamma)$ land in \mathcal{O}^1 .

Lemma 2.

Any $\gamma \in \widetilde{\Gamma} \subset \operatorname{SL}_2(\mathcal{O})$ has the form $\begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix}$.

Proof. The assertion is true by inspection for $\gamma = 1, g, g^{-1}, h, h^{-1}$. Moreover, the set of matrices satisfying this property is (much like the set of unitary matrices) stable under multiplication.

Lemma 2 implies Lemma 1(b), as well as the implication Lemma 1(c) \implies Lemma 1(a). (Indeed, Lemma 2 implies that $a_1 = \sigma(d_1)$; knowing that a_1 is σ -invariant would imply $a_1 = d_1$.) It therefore remains to prove Lemma 1(c), which we restate in a slightly stronger form below.

- **Lemma 3** (Strengthening of Lemma 1(c)). (a) If γ is in $\widetilde{\Gamma}$, then $a(\gamma)$ is σ -invariant. (Equivalently, $a_1(\gamma)$ and $a_2(\gamma)$ are both σ -invariant.)
- (b) If γ and γ' are in $\widetilde{\Gamma}$, then $b(\gamma) \overline{b(\gamma')}$ and $b(\gamma) \sigma(b(\gamma'))$ are both σ -invariant. (Equivalently, $b_i(\gamma)\sigma(b_j(\gamma'))$ is σ -invariant for $i, j \in \{1, 2\}$.)

For example, $a_1(g) = a_1(h) = 1 - y$, $a_2(g) = a_2(h) = -1$, $b_1(g) = -b_1(h) = -1 + y - \beta$, $b_2(g) = b_2(h) = 0$. Note that $a_1(g)$, $a_2(g)$, $b_1(g)\sigma(b_1(h)) = -y + x^2 - y^2$, and $b_1(g)\sigma(b_2(h)) = 0$ are all in \widetilde{A}^1 .

Proof of equivalence claims in Lemma 3. We write a, a' instead of $a(\gamma), a(\gamma')$, etc. Since

$$\sigma(a) = \sigma(a_1 + xa_2) = \sigma(a_1) + x\sigma(a_2),$$

the equivalence claim in part (a) is clear. For part (b), we have

$$b\overline{b'} = (b_1 + xb_2)(\sigma(b_1) - x \sigma(b'_2)) = (b_1 \sigma(b_1) - x^2 b_2 \sigma(b'_2)) + x(b_2 \sigma(b'_1) - b_1 \sigma(b'_2)),$$

$$b \sigma(b') = (b_1 + xb_2)(\sigma(b_1) + x \sigma(b'_2)) = (b_1 \sigma(b'_1) + x^2 b_2 \sigma(b'_2)) + x(b_2 \sigma(b'_1) + b_1 \sigma(b'_2))$$

and the claimed equivalence follows.

It also bears mentioning that the σ -invariance of a_2 in Lemma 3(a) follows from Lemma 2 and the fact that $tr(\gamma)$ is in A^1 .

Proof of Lemma 3. For $\gamma = \begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix}$ and $\gamma' = \begin{pmatrix} a' & b' \\ \overline{b'} & \overline{a'} \end{pmatrix}$ in $\widetilde{\Gamma}$, let $D(\gamma)$ be the statement that a_1 and a_2 are both σ -invariant, and let $P(\gamma, \gamma')$ be the statement that $b_i \sigma(b'_j) \sigma$ -invariant for $i, j \in \{1, 2\}$.^(*) In this language, Lemma 1(c) is simply $D(\gamma)$ and $P(\gamma, \gamma)$ for all $\gamma \in \widetilde{\Gamma}$.

Claim 1: $P(\gamma, \gamma') \iff P(\gamma', \gamma)$: Apply σ to $b_i \sigma(b'_j)$. Or see footnote on page 3.

 $^(*)P(\gamma,\gamma')$ is the statement that the ratios b:b' and $b:\tau(b')$ are σ -invariant in $\mathbb{P}^1(\operatorname{Frac} \mathcal{O})$. (And if b=b'=0 then $P(\gamma,\gamma')$ is vacuously true.) This formulation makes it clear that P is symmetric and transitive.

Claim 2: $D(\gamma) \iff P(\gamma, \gamma)$: Consider the trace and the determinant, both in A^1 . Indeed,

$$0 = p_2(\det \gamma) = (a_2\sigma(a_1) - a_1\sigma(a_2)) + (b_2\sigma(b_1) - b_1\sigma(b_2)).$$

The first big parentheses evaluates to zero iff $a_1\sigma(a_2)$ is σ -invariant, but since we know that a_2 is σ -invariant from trace considerations, it is equivalent to σ -invariance of a_1 . The second big parentheses evaluates to zero iff $P(\gamma, \gamma)$. This claim is not strictly necessary for the proof.

Claim 3: If $D(\gamma)$, $D(\gamma')$, and $P(\gamma, \gamma')$ are true, then $D(\gamma\gamma')$ is true. True by computation:

$$a_1(\gamma\gamma') = a_1a'_1 + x^2a_2a'_2 + b_1\sigma(b'_1) - x^2b_2\sigma(b'_2),$$

$$a_2(\gamma\gamma') = a_1a'_2 + a_2a'_1 - b_1\sigma(b'_2) + b_2\sigma(b'_1),$$

Claim 4: If $D(\gamma)$, $D(\gamma')$, $P(\gamma, \gamma'')$, and $P(\gamma', \gamma'')$ are true, then $P(\gamma\gamma', \gamma'')$ is true. We compute

$$b_1(\gamma\gamma') = a_1b'_1 - x^2a_2b'_2 + b_1a'_1 - x^2b_2a'_2,$$

$$b_2(\gamma\gamma') = a_1b'_2 + a_2b'_1 - b_1a'_2 + b_2a'_1,$$

and inspect the σ -invariance of $b_i(\gamma \gamma') \sigma(b_i'')$.

Claim 5: $D(\gamma)$ and $P(1,\gamma)$ are true for $\gamma = 1, g, g^{-1}, h, h^{-1}$. True by inspection.

Claim 6: $P(\gamma, \gamma')$ is true for $\gamma, \gamma' \in \{g, g^{-1}, h, h^{-1}\}$. The b_2 -components are all zero, so this amounts to checking $b_1(\gamma)\sigma(b_1(\gamma'))$ for $\gamma \neq \gamma'$.

Finally, we prove Lemma 3 by induction on the max length of γ, γ' as words in the generator alphabet $S = \{g, g^{-1}, h, h^{-1}\}$. The base cases of length ≤ 1 is Claims 5 and 6 above. Now, suppose both $D(\gamma)$ and $P(\gamma, \gamma')$ are true for all γ, γ' of word-length $\leq n$. Since $n \geq 1$, certainly we already know that $P(s, \gamma)$ is true for all generators s. Claim 3 now implies that $D(s\gamma)$ is true, so that $D(\gamma)$ is established for all γ of word-length $\leq n + 1$. Now Claim 4 implies that $P(s\gamma, \gamma')$ is true, so that $P(\gamma, \gamma')$ is true whenever γ has length $\leq n + 1$ and γ' has length $\leq n$. Swapping the roles of $s\gamma$ and γ' , we can conclude that $P(s\gamma, s'\gamma')$ is true for $s' \in S$ as well. This completes the inductive step.

Lemma 3 completes the proof of Lemma 1.

- (6) The diagonal of Γ : By Lemma 1(a) and continuity, we conclude that $a_1(\gamma) = d_1(\gamma)$ and $a_2(\gamma) = -a_2(\gamma)$ for any $\gamma \in \Gamma$.
- (7) The Pink-Lie algebra of Γ : Since we are using a representation well-adapted to c, the Pink-Lie algebra $L = L(\Gamma) = \overline{\mathbb{F}\Theta(\Gamma)} \subset (rad R)^0$ is decomposable (Corollary 6.2.2 of [?]). Therefore $L = I_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \oplus \nabla$ in the notation of [?, 4.9.1].

Proposition 4. (a) $\overline{\mathbb{F} \operatorname{tr}(\Gamma)} = A^1$

- (b) $P = P(\Gamma) = \operatorname{tr}(L \cdot L) = \mathfrak{m}_1$ (maximal ideal of A^1)
- (c) $I_1 = A^2 = xA^1$ (so not an ideal of A)
- (d) ∇ is the closure inside $A \times I_{ab}$ of the set

$$\widetilde{\nabla} := \left\{ \left((\beta + 1 - y)(b_1 + xb_2), (-\beta + 1 - y)(b_1 - xb_2) \right) : b_1, b_2 \in \widetilde{A}^1 \right\}.^{(\dagger)}$$

- *Proof.* (a) By [?, Proposition 5.3.3] we know that $\overline{\mathbb{F}\operatorname{tr}(G)} = A$. On the other hand, since t is graded, we have $\operatorname{tr}(\Gamma) \subset A^1$. Since A^1 is already a closed \mathbb{F} -vector space, we must have $\overline{\mathbb{F}\operatorname{tr}(\Gamma)} = A^1$.
- (b) On one hand, 2 tr Θ(g)² = y + y² ∈ P and 2 tr Θ(gh)² = x² + x⁴ ∈ P. These pseudoringgenerate (pseudogenerate?) m₁ = (x², y)A¹, so that m₁ ⊂ P. On the other hand, for every γ ∈ Γ, we have tr γ ∈ A¹ (because t is graded) and tr γ ≡ 2 mod m (because t mod m is 1 + ω). Therefore tr γ - 2 ∈ m₁. Since P is the pseudogenerated by tr γ - 2 and m₁ is already a closed pseudoring, P = m₁.
- (c) First, I claim that a(Θ(Γ)) ⊂ A². For γ = (^a_c ^b_d) ∈ Γ, we know that a₁ = d₁ and a₂ = -d₂: see item (6) above. Therefore a(Θ(γ)) = xa₂ ∈ A².
 Conversely, we want to show that A² ⊂ I₁. Certainly a(Θ(g)) = -x is in I₁. Now we can use the fact that P = m₁ as in [?, Lemma 9.1.3]. Or we can use part (a) above: per [?, Lemma 4.4.3] we know that L is stable by multiplication by tr(Γ). Therefore, A¹I₁ ⊂ I₁, and therefore we must have A² = xA¹ ⊂ I₁. (Note that I³₁ = x³A¹ ⊂ I₁, as expected.)
- (d) First, we show that for γ = (^a/_c ^b/_d) ∈ Γ, we have (b, c) ∈ ∇. The ideals (±β + 1 − y) ⊂ O are both prime (it is only in A that β + 1 − y is a unit), so that it is clear that b and c are inside the principal ideals (β + 1 − y)O and (−β + 1 − y)O, respectively, because this is true for the generators g and h of Γ. So it is a priori clear that b = (β + 1 − y)b' for some b' ∈ O¹. I claim that b' ∈ Ã. Indeed, for any t, s ∈ O¹ with s nonzero, the product tσ(s) is σ-invariant if and only if t/s is in Frac Ã¹ (here we extend the Galois action on the appropriate fraction fields). Now use Lemma 3(b) with t = p_i(b') and s = b₁(g) = β+1−y. The assertion about c then follows from Lemma 1(b).

To see reverse containment, we can use the fact that L is A^1 -invariant as in part (c) above. In particular, let $B_i = b_i(\nabla)$ for $i = 1, 2^{(\ddagger)}$ Then B_i is a sub- A^1 -module of A^1 , hence an ideal of A^1 . Since $\beta + 1 - y = b_1(h) = b_2(gh) \in (A^1)^{\times}$, we know that $B_i = A^1$. This completes the proof of the claim.

 $^{^{(\}dagger)}$ Is this closure just $A \times I_{ab}$?

^(‡)Note that this terminology differs from the terminology of [?], where $B_1 = b(\nabla)$.

(8) The essential submodule A_{ess} : By Proposition 8.4.1 of [?], we have $A_{ess} = I_2$, where $I_2 \subset I_1$ is a closed subgroup defined by $I_2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = [\nabla, \nabla]$. Let $\pi_{ab} = \beta - 1 + y$ be a graded generator of I_{ab} .

Proposition 5. $I_2 = x \pi_{ab} A^1 \subset A^2$.

Proof. If $n = \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}$ and $n' = \begin{pmatrix} 0 & b' \\ c' & 0 \end{pmatrix}$ are both in ∇ , then

$$\begin{aligned} a([n,n']) &= bc' - cb' = (b_1 + xb_2) \big(\sigma(b_1') - x\sigma(b_2') \big) - \big(\sigma(b_1) - x\sigma(b_2) \big) (b_1' + xb_2') \\ &= b_1 \sigma(b_1') - x^2 b_2 \sigma(b_2') - \sigma(b_1) b_1' + x^2 \sigma(b_2) b_2' \\ &+ x \Big(-b_1 \sigma(b_2') + b_2 \sigma(b_1') - \sigma(b_1) b_2' + \sigma(b_2) b_1' \Big) \\ &= x \Big(b_1 \sigma(b_2') - b_2 \sigma(b_1') \big). \end{aligned}$$

(Here we have used Lemma 3 repeatedly.) By considering the description of $\tilde{\nabla}$ in item 7d above, it is clear that these span $x \pi_{ab} (-\beta - 1 + y) \tilde{A}^1$. Passing to the topological closure gives the claim.

(9) The "special" subspace \mathcal{F}_{spe} : By definition, \mathcal{F}_{spe} is the orthogonal complement on A_{ess} under the pairing $A \times K \to \mathbb{F}_3$ given by $\langle T, f \rangle = a_1(Tf)$. The grading on K and on A splits the pairing into two sub-pairings $A^i \times K^i \to \mathbb{F}_3$, with $(A^1)^{\perp} = K^2$ and $(A^2)^{\perp} = K^1$. Since $A_{ess} \subset A^2$, we know that $\mathcal{F}_{spe} \supset K^1$. I claim that the forms in K^2 that are in \mathcal{F}_{spe} are exactly the *abelian* ones, using Joël's older definition. See Proposition 7 below.

A few very general preliminaries. Let $I \subset A$ be an ideal. Call a form $f \in K$ is an *I*-form if f is in K[I] (i.e., f is annihilated by I).

Lemma 6. $K[I] = I^{\perp}$

Here I^{\perp} is the orthogonal complement of I with respect to the standard pairing.

Proof. Standard. Certainly $K[I] \subset I^{\perp}$, so suppose $f \notin K[I]$. Then there exists an $i \in I$ with $if \neq 0$, so there exists n prime to 3 with $0 \neq a_n(if) = a_1(T_nif)$. But $T_ni \in I$, so $f \notin I^{\perp}$. Works for \mathcal{F} in level N. More generally, if $I \subset A$ is a subset, then K[I] = K[(closed ideal generated by I)] whereas $I^{\perp} = ($ closed \mathbb{F} -vector space generated by $I)^{\perp}$.

Call a form $f \in K$ is *abelian* or (respectively) *dihedral* if $a_{\ell}(f)$ depends only on Frob_{ℓ} in some abelian or (respectively) dihedral extension of \mathbb{Q} . We've shown that $f \in K$ is abelian if and only if f is annihilated by I_{ab} and $f \in K$ is dihedral (more precisely, $\mathbb{Q}(\mu_3)$ -dihedral) if and only if f is annihilated by $I_{di} := xA$. (In particular, $I_{di} \supset A^2$, so that all dihedral forms are in K^1 .) We know that the density theorem should not hold for abelian and dihedral forms, so we may define $\mathcal{F}_{spe,ideal} := \overline{K[I_{ab}] + K[I_{di}]} = \overline{I_{ab}^{\perp} + I_{di}^{\perp}} = (I_{ab} \cap I_{di})^{\perp} = (I_{ab}I_{di})^{\perp}$, since I_{ab} and I_{di} are distinct principal ideals in a UFD. Now we can directly compare $A_{ess,ideal} := \pi_{ab} x A$ to $A_{ess} = \pi_{ab} x A^1 = \pi_{ab} A^2$.

Proposition 7. $\mathcal{F}_{spe} = K^1 \oplus \{f \in K^2 : f \text{ is abelian}\}$

Proof. Formal. We have $A_{ess} = A^2 \cap I_{ab}$, so that

$$A_{ess}^{\perp} = (A^2 \cap I_{ab})^{\perp} = \overline{(A^2)^{\perp} + I_{ab}^{\perp}} = \overline{K^1 + (K^1[I_{ab}] \oplus K^2[I_{ab}])} = K^1 \oplus K^2[I_{ab}].$$

Here we are using the fact that $K[I] = K^1[I] \oplus K^2[I]$ if I is a graded ideal (and abusing notation slightly since I does not act on K^i).

- (10) **Density lower bound:** By the main theorem of [?], it appears that, for $f \in K \mathcal{F}_{spe}$, we have $\delta(f) \geq \frac{p-1}{pn} = \frac{1}{3}$.
- (11) **Density equality refinement:** Refining to get $\delta(f) = \frac{1}{3}$: it looks like this amounts, in the notation of section 8.2 of [?], to proving two things:
 - (a) $\mu_G((l_f \circ \operatorname{tr}_G)^{-1}(0) \cap \Gamma) = \mu_G(\Gamma) = \frac{1}{2}$
 - (b) For every γ ∈ Γ/Γ₂, the set S_γ := l_f(h_γ(Ψ⁻¹(L₂))) ⊂ F₃ contains 0.
 (Incidentally, typo in 8.2.9 and ff., I think; Θ should be replaced by Ψ. Also, in 8.2.3, "only" should be replaced by "not only".)

Part (a) is easy: for $f \in K^2$ and $g \in \Gamma$, we have $\operatorname{tr} g \in A^1$ so that $(\operatorname{tr} g)f = 0$, so that $l_f(\operatorname{tr}_G(\Gamma)) = 0$.

Part (b) also appears to be easy. Since $\mathbb{F} = \mathbb{F}_p$ here, and S_{γ} is an \mathbb{F}_3 -affine subspace of positive dimension of \mathbb{F}_3 , we must have $S_{\gamma} = \mathbb{F}_3$.

(12) **Density vector refinement:** For $f \in K$ and $i \in \mathbb{F}_3$, define

$$\delta(f,i) := \text{density}\{\ell \text{ prime} : a_\ell(f) = i\},\$$

and let $\vec{\delta}(f) = (\delta(f, 0), \ \delta(f, 1), \ \delta(f, 2))$, a unit vector of nonnegative rational numbers.

It looks like the exact same methods show that, for $f \in K^2$, if f is not abelian, then $\vec{\delta}(f) = (\frac{2}{3}, \frac{1}{6}, \frac{1}{6}).$

Indeed, the density equality refinement above already shows that $\delta(f,0) = \frac{2}{3}$. And by the same argument as in section 8.2, $\delta(f,1) = \delta(f,2) = \frac{1}{6}$ because for every γ , the set S_{γ} contains 1 and 2.

References