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1. Modular forms of level 1 and level p

Fix a prime p ≥ 5. (Optional: tame level N prime to p.)

Sk(1) := weight-k cuspforms for SL2(Z) (or Γ0(N))

Sk(p) := weight-k cuspforms for Γ0(p) (or Γ0(Np))

▶ Finite dimensional spaces. Dimension formulas, linear in k :

dimSk(p) ∼ (p + 1) dimSk(1) ∼ (p + 1)
k

12
.

▶ Action of Hecke operators Tn. Focus here: Tℓ for ℓ ̸= p prime.
Semisimple, commuting. Therefore basis of eigenforms.

▶ Hecke eigenvalues are (algebraic) integers.
Can be reduced modulo a prime (above) p.

▶ Two copies of f ∈ Sk(1) inside Sk(p): both f and f (pz).
(Same Hecke eigensystem at ℓ ̸= p.)

▶ These two copies of Sk(1) span the p-old forms in Sk(p).
Eigenforms in Sk(p) not from Sk(1) span the p-new forms.



2. Atkin-Lehner involution

The Atkin-Lehner operator Wp is an involution splitting Sk(p):

Sk(p) = Sk(p)
+ ⊕ Sk(p)

−,

where Wp acts as +1 on Sk(p)
+ and as −1 on Sk(p)

−.

Write dk := dimSk(p), and similarly with decorations, so that

dk = d+
k + d−

k .

Since dk is known, for dimension split suffices to study

∆k := d+
k − d−

k .

▶ Every p-new eigenform f has a unique Atkin-Lehner sign εf .

▶ “Half” the p-old forms are in Sk(p)
+, half in Sk(p)

−, so that

∆k = dnew,+
k − dnew,−

k .

Note: ∆k = Tr
(
Wp|Sk(p)

)
.



3. Data!

p = 5

k d+
k d−

k

2 0 0
4 1 0
6 0 1
8 2 1
10 1 2
12 3 2
14 2 3
16 4 3
18 3 4
20 5 4
22 4 5
24 6 5
26 5 6

∆k = ±1

p = 23

k d+
k d−

k

2 0 2
4 4 1
6 3 6
8 8 5
10 7 10
12 12 9
14 11 14
16 16 13
18 15 18
20 20 17
22 19 22
24 24 21
26 23 26

∆k = ±3

p = 101

k d+
k d−

k

2 1 7
4 16 9
6 17 24
8 33 26
10 34 41
12 50 43
14 51 58
16 67 60
18 68 75
20 84 77
22 85 92
24 101 94
26 102 109

∆k = ±7



4. |∆k | is basically a class number!

Theorem (Fricke, Yamauchi, Helfgott, Wakatsuki, Martin...)

∆k = (−1)k/2#FP

2
for k ≥ 2∗

∗adjustment: add 1 if k = 2 for the E2 eigensystem

▶ Here #FP is the number of fixed points of the geometric
Atkin-Lehner involution on the modular curve X0(p).

▶ Moduli interpretation for X0(p) relates #FP to isomorphism
classes of elliptic curves with CM by

√
−p.

▶ So eg. #FP = h
(
Q(
√
−p)

)
if p ≡ 1 mod 4.

Example: If p = 5 then h
(
Q(
√
−p)

)
= 2 and ∆k = ±1.

If p = 101 then h
(
Q(
√
−p)

)
= 14 and ∆k = ±7.

Corollary

∆k+2 = −∆k for k ≥ 2∗



1. Congruences mod p



6. Refine for mod-p congruences

Eigenform f ⇝ mod-p Hecke eigensystem τ with τ(ℓ) = aℓ in Fp.

↔ Galois representation ρτ : GQ → GL2(Fp), ss & odd,

unramified at ℓ ∤ pN, with τ(ℓ) = Tr ρτ (Frobℓ).

▶ For fixed p (and N), are only finitely many τ , even as k →∞!

Sk(p)τ := span of eigenforms with mod-p Hecke eigensystem τ .

▶ Atkin-Lehner involution Wp commutes with the Tℓ, so again

Sk(p)τ = Sk(p)
+
τ ⊕ Sk(p)

−
τ ,

with corresponding dimensions

dk,τ = d+
k,τ + d−

k,τ .

(Bergdall–Pollack): Like dk , the dk,τ grow linearly with k.

To understand d±
k,τ dimension split, study ∆k,τ := d+

k,τ − d−
k,τ .



7. Adding a twist

Most Sk(p)τ = 0: eigensystem τ can only appear in weight k if
det ρτ = ωk−1, where ω is the mod-p cyclotomic character.

In other words, τ determines k modulo p − 1.

But mod p move between weights by θ operator (q d
dq on forms):

τ
θ7→ τ [1] with τ [1](ℓ) = ℓτ(ℓ). On Galois side, θ is twisting by ω.

If τ can appear in weight k, then

τ [1]←→ ρτ ⊗ ω can appear in weight k + 2

τ [2]←→ ρτ ⊗ ω2 can appear in weight k + 4

· · ·
τ [ p−1

2
]←→ ρτ ⊗

(
·
p

)
can appear in weight k + (p − 1), or in weight k

· · ·
τ [p−1]←→ ρτ can appear in weight k + 2(p − 1), or in weight k



8. Dimension split data

p = 5,N = 23 Dimension splits (d+
k,τ , d−

k,τ ) for a twist family

k
∖
τ σ σ[1] σ[2] σ[3]

2 (3, 2) — (0, 0) —

4 — (2, 3) — (0, 0)

6 (5, 5) — (3, 2) —

8 — (5, 5) — (2, 3)

10 (8, 7) — (5, 5) —

12 — (7, 8) — (5, 5)

14 (10, 10) — (8, 7) —

16 — (10, 10) — (7, 8)

18 (13, 12) — (10, 10) —

20 — (12, 13) — (10, 10)

22 (15, 15) — (13, 12) —

24 — (15, 15) — (12, 13)

σ ↔ f ∈ S2(23) with f ≡ q + 2q2 + 2q4 + 4q5 + q7 + · · · mod 5.



9. First main result

Theorem (Anni–Ghitza–M.) (Recall p ≥ 5; tame level N ok)

∆k+2,τ [1] = −∆k,τ for k ≥ 2∗

∗adjustment if k = 2 for the E2 eigensystem

Method of proof is entirely new. More about the proof presently!

Remarks

▶ Tracing back, uneven splits always come from weight 2

▶ Uneven splits caused by p-new forms (p-old forms in ± pairs).

▶ No τ can appear p-newly in weight 2 with both ± signs.
(In weight 2, the mod-p Galois representation sees εf .)

▶ So AGM theorem resolves class number |∆k | into
sum of ± multiplicities of p-new forms in weight 2.

▶ ∆k,τ ̸= 0 ⇐⇒ τ [2−k
2 ] appears p-newly in weight 2.



2. Deeper congruences



10. Deeper congruences and Conti–Gräf observations

Deep congruences between forms in different weights known

Guaranteed by Coleman families (p-adic families of eigenforms)

▶ Forms in weight k congruent mod pm to
forms in weight ∼ k + (p − 1)pm−1

No known systematic deep same-weight congruences...
Except: very recent computations of Andrea Conti and Peter Gräf:

▶ Suggest LOTS of deep congruences in the same weight,
between p-new forms with opposite Atkin-Lehner signs

▶ Depth controlled by L-invariant: local-at-p data of p-new form

▶ In weight k expect congruence mod pm for m ∼ k(p−1)
2(p+1)

Example v(Lf ) for f ∈ Sk(5)
new

k = 54 : −2, −3, −3, −5, −5, −8, −8, −10, −10, −11, −11,
− 12, −12, −14, −14, −18, −18

Conti–Gräf observe congruences as deep as mod 519 here!



11. Progress towards establishing deep congruences

Focus on deep congruences between plus/minus spaces.

Fix p ≥ 5 prime, tame level N prime to p, depth m ≥ 1.

Expected Theorem (M.)

For any prime ℓ ∤ 6pN,

char
(
Tℓ | Sk(Np)+

)
E+

≡
char

(
Tℓ | Sk(Np)−

)
E− mod pm.

Here the error is E± = char
(
Tℓ | Sw (Np)±ε [k−w

2 ]
)
, where

▶ w is the minimal weight ∗ congruent to k modulo 2pm−1 , and

▶ ε = (−1)(k−w)/2.

▶ Attempt to catch shallower Conti–Gräf congruence uniformly

▶ E± “ought” to divide numerator (shadow of θp
m−1

mod pm?)

▶ Can replace Sk(Np)
± with Sk(Np)

p-new,±



12. Illustrating example: p = 5, N = 1, ℓ = 2, m = 3

Example (k = 54, so w = 4)

k, ε char
(
T2 | Sk(5)new,ε

)
in (Z/125Z)[x ]

54,+ x8 + 10x7 + 19x6 + 80x5 + 101x4 + 5x3 + 24x2 + 60x + 66

54,− x9 + 113x8 + 49x7 + 37x6 + 91x5 + 33x4 + 39x3 + 32x2 + 121x + 48

4,+ x + 4, so E− = x + 4 · 225 = x + 103

4,− 1 = E+

Then
char

(
T2 | S54(5)new,+

)
1

=
char

(
T2 | S54(5)new,−

)
x + 103

, as predicted.

Recall the list of L-invariant valuations for S54(5)
new:

−2, −3, −3, −5, −5, −8, −8, · · · ,−14, −14, −18, −18.
Conti–Gräf get congruence mod 54 except f with v(Lf ) = −2.
This f mod 53 is q + 22q2 + 11q3 + 117q4 + · · · , so that

x − a2(f ) ≡ x − 22 = x + 103 mod 53.

Mod 53 congruence from ExpTheorem excludes precisely this form!



13. Mod p vs. mod pm

Case m = 1
Expected Theorem equivalent to AGM theorem. Indeed,

∆k,τ = −∆k−2,τ [−1] = · · · = (−1)(k−2)/2∆2,τ [ 2−k
2

] = ε∆2,τ [ 2−k
2

],

so
char

(
Tℓ | Sk(Np)+

)
char

(
Tℓ | S2(Np)ε[k−2

2 ]
) ≡ char

(
Tℓ | Sk(Np)−

)
char

(
Tℓ | S2(Np)−ε[k−2

2 ]
) mod p.

Because Fp is a field, we get congruences between eigenforms .

Case m > 1
No unique factorization in (Z/pmZ)[x ] so Expected Theorem does
not prove congruences between eigenforms, only suggests them.

Example

The splittings in (Z/9Z)[x ] of f (x) = x3 + 3x2 + 3x + 1 are
(x − a)(x − b)(x − c) where a, b, c ≡ 2 mod 3 are either all the
same or all different. But also! over R = Z[

√
3]/(
√
3)3 ⊃ Z/9Z,

f (x) = (x − 2 +
√
3)3 = (x − 2−

√
3)(x − 5−

√
3)(x − 8−

√
3).



3. Proof sketch

(Skip to algebra lemma)



14. Proof sketch. Setup: the Wk-modules

Case m = 1
Space Sk−(p−1)(∗,Fp) embeds into Sk(∗,Fp) Hecke equivariantly
by multiplication by Hasse invariant Ep−1 ≡ 1 mod p.

Corresponding graded module is Wk(∗).
▶ (Jochnowitz, Serre, Robert) Wk+p+1(N) ≃Wk(N)[1]

Finiteness of number of mod-p Hecke eigensystems follows!

▶ (AGM) Wk+2(Np)
ss ≃Wk(Np)[1]

ss

Case m > 1
Sk−(p−1)pm−1(∗,Z/pmZ) embeds into Sk(∗,Z/pmZ) by
scaling by Epm−1

p−1 ≡ E(p−1)pm−1 ≡ 1. Graded module: Wk,m(∗).

▶ (M., Expected Theorem)

char
(
Tℓ|Wk+2(p+1)pm−1,m(N)

)
≡ char

(
Tℓ|Wk,m(N)[2pm−1]

)
mod pm

Finiteness of number of mod-pm eigensystems still unknown!



15. Proof sketch. Piece 1: Refining Wk for Atkin-Lehner

Case m = 1
We construct a refinement of Wk(Np): given two signs ε, η, define

W ε,η
k (Np) := Sk(Np,Fp)

ε/Sk−p+1(Np,Fp)
η.

Here Sk−p+1(Np,Fp)
η embeds into Sk(Np,Fp)

ε by multiplication

by the Atkin-Lehner “stabilization” E
ε/η
p−1 of Ep−1, where

E±
p−1 := Ep−1 ± p(p−1)/2Ep−1(pz).

Theorem (Anni–Ghitza–M.)

For any k ≥ (p + 1)∗ and any signs ε, η in {±1}, we have

W ε,η
k+2(Np)

ss ≃W−ε,−η
k (Np)[1]ss.

Case m > 1: Similarly, define W ε,η
k,m(Np). Expected Theorem

relating W ε,η
k+2pm−1,m

(Np) and W−ε,−η
k,m (Np)[pm−1].



16. Proof sketch. Piece 2: The algebra lemma

Lemma (Anni–Ghitza–M.) Here p can be any prime!

Let W , V be rank-d free Zp-modules with linear action of T . Then

char(T |W ) ≡ char(T | V ) mod pm

⇐⇒ Tr(T n |W ) ≡ Tr(T n | V ) mod pm+v(n) for 1 ≤ n ≤ d.

For m = 1 also ⇐⇒ (W ⊗ Fp)
ss ≃ (V ⊗ Fp)

ss.

Example (of Goldilocks titration for m = 1)

Set V := Z⊕p
p with T acting by α ∈ Zp, so Tr(T n|V ) = pαn.

▶ Knowing pαn in Zp identifies α in Zp — too much!

▶ Knowing pαn = 0 in Fp tells us nothing — too little!

▶ But pαp mod p2 identifies αp (and so α) mod p — just right!



17. Proof sketch. Piece 3: The trace formula!

For two Hecke modules V and W want

char(Tℓ|V ) ≡ char(Tℓ|W ) mod pm.

▶ Algebra lemma ⇝
deeper congruences between Tr(T n

ℓ |V ) and Tr(T n
ℓ |W )

▶ Combinatorics ⇝ different congruences between
Tr(Tℓn |V ), Tr(Tℓn |W ), Tr(Tℓn−2 |V ) and Tr(Tℓn−2 |W )

▶ Use trace formula (Yamauchi, Skoruppa-Zagier, Popa) for
action of Tℓn and TℓnWp on Sk(Np) to carve out V and W
and prove needed congruences.

A bit brutal, but it works!


