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1. Modular forms of level 1 and level p
Fix a prime p > 5. (Optional: tame level N prime to p.)

Sk(1) := weight-k cuspforms for SLp(Z)  (or ['o(N))
Sk(p) := weight-k cuspforms for ['o(p)  (or M'o(Np))

» Finite dimensional spaces. Dimension formulas, linear in k:

. . k
dim Si(p) ~ (p+1)dim Sk(1) ~ (p+ )12
» Action of Hecke operators T,. Focus here: Ty for £ # p prime.

Semisimple, commuting. Therefore basis of eigenforms.

» Hecke eigenvalues are (algebraic) integers.
Can be reduced modulo a prime (above) p.

» Two copies of f € 5x(1) inside Si(p): both f and f(pz).
(Same Hecke eigensystem at ¢ # p.)

» These two copies of Sk(1) span the p-old forms in Sk(p).
Eigenforms in Si(p) not from Sk(1) span the p-new forms.



2. Atkin-Lehner involution

The Atkin-Lehner operator W, is an involution splitting Si(p):
Sk(p) = Sk(p)™ @ Sk(p)~,
where W, acts as +1 on Sx(p)* and as —1 on Sk(p)~.
Write di := dim S(p), and similarly with decorations, so that
de = df +d, .
Since di is known, for dimension split suffices to study
Ay :=df —d.
» Every p-new eigenform f has a unique Atkin-Lehner sign er.
» “Half’ the p-old forms are in Sk(p)™, half in Si(p)~, so that
Ak _ dnew,+ _ dnew,—
=d, _

k
Note: Ay = Tr (W,|Sk(p)).
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p=23
k|| df | de
2 0 2
4 4 1
6 3 6
8 8 5
100 7 | 10
12 || 12 9
14 || 11 | 14
16 || 16 | 13
18 || 15 | 18
20| 20 | 17
22 || 19 | 22
24 || 24 | 21
26 || 23 | 26

Ay =43

p =101
k|| dF | dp
217
4| 16 | 9
6 || 17 | 24
8 | 33| 26
10 || 34 | 41
12 || 50 | 43
14 || 51 | 58
16 | 67 | 60
18 || 68 | 75
20 | 84 | 77
22| 85 | 92
24 | 101 | 94
26 || 102 | 109

Ay = £7



4. | Ayl is basically a class number!

Theorem (Fricke, Yamauchi, Helfgott, Wakatsuki, Martin...)

FP
Ay = (_1)k/2#7 for k > 2*
*adjustment: add 1 if k = 2 for the E, eigensystem

» Here #FP is the number of fixed points of the geometric
Atkin-Lehner involution on the modular curve Xp(p).

» Moduli interpretation for Xo(p) relates #FP to isomorphism
classes of elliptic curves with CM by /—p.

> Soeg. #FP = h(@(\/—p)) if p=1 mod 4.
Example: If p =5 then h(Q(\/=p)) =2 and Ay = +£1.
If p =101 then h(Q(/=p)) = 14 and Ay = +7.

Corollary
Ak+2 = —Ak for k > 2%



1. Congruences mod p



6. Refine for mod-p congruences

Eigenform f ~»  mod-p Hecke eigensystem 7 with 7(¢) = 2 in F,.

> Galois representation p, : Gg — GLo(FFp), ss & odd,
unramified at ¢ { pN, with 7(¢) = Tr p-(Froby).

» For fixed p (and N), are only finitely many 7, even as k — oc!

Sk(p)r := span of eigenforms with mod-p Hecke eigensystem 7.

» Atkin-Lehner involution W, commutes with the Ty, so again
Sk(p)r = Sk(p)7 @ Sk(p): .

with corresponding dimensions
dyr=d +d .

(Bergdall-Pollack): Like dy, the dj . grow linearly with k.

To understand dkiT dimension split, study | Ay, == d;rT —d |




7. Adding a twist

Most Sk(p)r = 0: eigensystem 7 can only appear in weight k if
det p; = w1, where w is the mod-p cyclotomic character.

In other words, 7 determines k modulo p — 1.
But mod p move between weights by 6 operator (qdiq on forms):
i 7[1] with 7[1](€) = ¢7(¢). On Galois side, 6 is twisting by w.
If 7 can appear in weight k, then

T[1] +— pr ® w  can appear in weight k + 2

7[2] +— pr @ w? can appear in weight k + 4

T[25] «— pr ®(;) can appear in weight k + (p — 1), or in weight k

T[p-1] <— pr can appear in weight k + 2(p — 1), or in weight k



8. Dimension split data

’p =5N= 23‘ Dimension splits (dka7 d,;T) for a twist family

’ k\T H o ‘ o[1] ‘ o[2] ‘ ol3] ‘
2 || 32 | — | (0,o) | —
4 — (2,3) — (0,0)
6 (5,5) — (3,2) —
8 — G35 | — | @3
10 (8,7) — (5,5) —
2 — [ @8 | — | (55
4 | (10,100 | — | &7 | —
16 — [{@0,10)| — (7.8)
18 | (13,12) | — | (10,10)]| —
20 || — | @213) | — |(10,10)
2 [[(15,15) | — |@312)] —
24 | — [(1515) | — | (12,13)

o feS5(23) with f =q+2¢2 +29* +4¢° +q" +---

mod 5.



9. First main result

Theorem (Anni—Ghitza—M.) (Recall p > 5, tame level N ok)

Apyorn) = —Drir for k > 2*

*adjustment if k = 2 for the E, eigensystem

Method of proof is entirely new. More about the proof presently!
Remarks
» Tracing back, uneven splits always come from weight 2

» Uneven splits caused by p-new forms (p-old forms in + pairs).

» No 7 can appear p-newly in weight 2 with both =+ signs.
(In weight 2, the mod-p Galois representation sees &f.)

» So AGM theorem resolves class number |A| into
sum of £ multiplicities of p-new forms in weight 2.

> Ay, #0 <= T[%] appears p-newly in weight 2.




2. Deeper congruences



10. Deeper congruences and Conti—Graf observations

Deep congruences between forms in different weights known

Guaranteed by Coleman families (p-adic families of eigenforms)
» Forms in weight k congruent mod p™ to
forms in weight ~ k 4+ (p — 1)p™~!
No known systematic deep same-weight congruences...
Except: very recent computations of Andrea Conti and Peter Graf:
» Suggest LOTS of deep congruences in the same weight,
between p-new forms with opposite Atkin-Lehner signs

» Depth controlled by L-invariant: local-at-p data of p-new form

» In weight k expect congruence mod p™ for m ~ gggj;

k=54:-2 -3, -3, -5 -5 -8, —8, —10, —10, —11, —11,
—12, —12, —14, —14, —18, —18

Conti—Graf observe congruences as deep as mod 5% here!



11. Progress towards establishing deep congruences

Focus on deep congruences between plus/minus spaces.

Fix p > 5 prime, tame level N prime to p, depth m > 1.
Expected Theorem (M.)
For any prime £ 1 6pN,
char (Ty | Sk(Np)™) _ char (Te | Sk(Np)™)
E+ N E-
Here the error is E* = char (T, | Sw(Np)* [£5%]), where

m—1

mod p".

» w is the minimal weight™ congruent to k modulo 2p , and

» Attempt to catch shallower Conti—Graf congruence uniformly

v

E* “ought” to divide numerator (shadow of 0P mod p™?)
Can replace Si(Np)™ with S(Np)P-new:+

v



12. lllustrating example: p=5 N=1, /(=2 m=3

ke char (T, | Sk(5)"":<) in (Z/125Z)[x]

54,4+ | x8 +10x7 + 19x% + 80x> + 101x* + 5x3 + 24x2 + 60x + 66
54, — | x° 4+ 113x% + 49x” + 37x° + 91x° + 33x* + 39x® + 32x® + 121x + 48
4 4+ | x+4,50 E- =x+4-25=x+103
4, — | 1=Et
char(T, | Ssa(5)"% ")  char(T, | Ssa(5)"" ™)
1 x + 103

Then

, as predicted.

Recall the list of L-invariant valuations for Ss4(5)"":

—2, -3, -3, -5, -5 —8, —8,---,—14, —14, —18, —18.
Conti-Graf get congruence mod 5% except f with v(Lf) = —2.
This f mod 5% is g + 22¢° + 11¢% + 117¢* + - - -, so that

x —ap(f)=x—22=x+103 mod 5%
Mod 53 congruence from ExpTheorem excludes precisely this form!



13. Mod p vs. mod p™

Case m=1
Expected Theorem equivalent to AGM theorem. Indeed,
= — — o= (=1)k=2)/2 = B
Ay D211 (-1) Az;[%} EAz,T[%y
char (Ty | Sk(Np)*)  char (T, | Sk(Np)™)

° char (T | 52(Np)5[%]) " char (T | 52(NP)7€[%]) mod p

Because I, is a field, we get ‘congruences between eigenforms ‘

Case m>1
No unique factorization in (Z/p™Z)[x]| so Expected Theorem does
not prove congruences between eigenforms, only suggests them.

The splittings in (Z/9Z)[x] of f(x) = x> +3x? +3x+ 1 are

(x — a)(x — b)(x — ¢) where a, b,c =2 mod 3 are either all the
same or all different. But also! over R = Z[/3]/(v/3)3 > Z/9Z,
f(x) =(x —2+v3)3 = (x —2—+3)(x — 5 —3)(x — 8 —V3).




3. Proof sketch

(Skip to algebra lemma)



14. Proof sketch. Setup: the Wy -modules

Case m=1
Space Sy_(p—1)(*,Fp) embeds into Si(x,F,) Hecke equivariantly
by multiplication by Hasse invariant E,_; =1 mod p.

Corresponding graded module is W ().

» (Jochnowitz, Serre, Robert) Wiy p11(N) ~ Wi (N)[1]
Finiteness of number of mod-p Hecke eigensystems follows!

> (AGM) Wi 2(Np)® ~ Wi (Np)[1]*

Case m>1

Sk—(p—1)pm- 1(* Z/me) embeds into Sy (x,Z/p™Z) by

scaling by E 1 = E(p_1)pm1 = 1. Graded module: Wi m(*).
» (M., Expected Theorem)

char (Te| Wiy a(ps1)pm-1,m(N)) = char (To| Wi m(N)[2p™1]) mod p™

Finiteness of number of mod-p™ eigensystems still unknown!



15. Proof sketch. Piece 1: Refining W) for Atkin-Lehner

Case m=1
We construct a refinement of W (Np): given two signs ¢, 7, define

W, (Np) := Sk(Np,Fp)°/ Sk—pr1(Np, Fp)".
Here Sk_pt+1(Np,Fp)" embeds into S, (Np,[Fp)° by multiplication

by the Atkin-Lehner “stabilization” E;inl of Ep_1, where

Ex ) :=E, 1+ plPI2E, (pz).

Theorem (Anni—Ghitza-M.)

For any k > (p + 1)* and any signs £, in {£1}, we have
Wit (Np)® = Wy = (Np)[1]*
Case m > 1: Similarly, define W' (Np). Expected Theorem

relating Wlf_’:gpm,l’m(Np) and W, ""(Np)[p"'].



16. Proof sketch. Piece 2: The algebra lemma

Lemma (Anni—Ghitza-M.) Here p can be any prime!
Let W, V be rank-d free Z,-modules with linear action of T. Then
char(T | W) =char(T | V) mod p™
— TH(T"|W)=Tr(T"| V) mod p™v(" for1<n<d.
Form=1also <= (W®F,)* ~(VaF,)*.

Set V :=ZgP with T acting by a € Z,, so Tr(T"|V) = pa”.
» Knowing pa” in Z, identifies « in Z, — too much!
» Knowing pa” = 0 in [, tells us nothing — too little!
» But paP mod p? identifies a” (and so a) mod p — just right!




17. Proof sketch. Piece 3: The trace formula!

For two Hecke modules V and W want
char(T;|V) = char(T;|W) mod p".

» Algebra lemma ~~
deeper congruences between Tr(T/|V) and Tr(T]|W)

» Combinatorics ~ different congruences between
Tr(Ten|V), Tr(Ten|W), Tr(Tpn—2|V) and Tr(Tyn—2| W)

» Use trace formula (Yamauchi, Skoruppa-Zagier, Popa) for

action of Ty» and Ty W, on Si(Np) to carve out V and W
and prove needed congruences.

A bit brutal, but it works!



