Deep congruences between same-weight eigenforms

Anna Medvedovsky

(partially joint with Samuele Anni and Alexandru Ghitza)

https://math.bu.edu/people/medved/

SAGA: Symposium on Arithmetic Geometry and its Applications
CIRM, Luminy
February 7, 2023

1. Modular forms of level 1 and level p

Fix a prime $p \ge 5$. (Optional: tame level N prime to p.)

$$S_k(1) := \text{weight-}k \text{ cuspforms for } \operatorname{SL}_2(\mathbb{Z}) \quad (\text{or } \Gamma_0(N))$$

 $S_k(p) := \text{weight-}k \text{ cuspforms for } \Gamma_0(p) \quad (\text{or } \Gamma_0(Np))$

ightharpoonup Finite dimensional spaces. Dimension formulas, linear in k:

$$\dim S_k(p) \sim (p+1) \dim S_k(1) \sim (p+1) rac{k}{12}.$$

- Action of Hecke operators T_n . Focus here: T_ℓ for $\ell \neq p$ prime. Semisimple, commuting. Therefore basis of *eigenforms*.
- ▶ Hecke eigenvalues are (algebraic) integers.
 Can be reduced modulo a prime (above) p.
- Two copies of $f \in S_k(1)$ inside $S_k(p)$: both f and f(pz). (Same Hecke eigensystem at $\ell \neq p$.)
- ▶ These two copies of $S_k(1)$ span the p-**old** forms in $S_k(p)$. Eigenforms in $S_k(p)$ not from $S_k(1)$ span the p-**new** forms.

2. Atkin-Lehner involution

The Atkin-Lehner operator W_p is an involution splitting $S_k(p)$:

$$S_k(p) = S_k(p)^+ \oplus S_k(p)^-,$$

where W_p acts as +1 on $S_k(p)^+$ and as -1 on $S_k(p)^-$.

Write $d_k := \dim S_k(p)$, and similarly with decorations, so that

$$d_k = d_k^+ + d_k^-.$$

Since d_k is known, for dimension split suffices to study

$$\Delta_k := d_k^+ - d_k^-.$$

- ▶ Every p-new eigenform f has a unique Atkin-Lehner sign ε_f .
- ▶ "Half" the *p*-old forms are in $S_k(p)^+$, half in $S_k(p)^-$, so that

$$\Delta_k = d_k^{\text{new},+} - d_k^{\text{new},-}.$$

Note: $\Delta_k = \operatorname{Tr}(W_p|S_k(p))$.

3. Data!

$$p = 5$$

$$p = 23$$

$$p = 101$$

k	d_k^+	d_k^-	
2	d_k^+	0	
2 4 6	1	0	
	0	1	
8	2	1	
10	1	2	
12	3	2	
14	2 4 3	3	
16	4	3	
18	3	3 3 4 4	
20	5	4	
22	4	5	
24	6	5	
26	5	6	

k	d_k^+	d_k^-				
2	0	2				
4	4	1				
6	3	6				
8	8	5				
10	7	10				
12	12	9				
14	11	14				
16	16	13				
18	15	18				
20	20	17				
22	19	22				
24	24	21				
26	23	26				
'		'				

$$\Delta_k = \pm 1$$

$$\Delta_k = \pm 3$$

$$\Delta_k = \pm 7$$

4. $|\Delta_k|$ is basically a class number!

Theorem (Fricke, Yamauchi, Helfgott, Wakatsuki, Martin...)

$$\Delta_k = (-1)^{k/2} \frac{\#\mathsf{FP}}{2}$$
 for $k \geq 2^*$
* adjustment: add 1 if $k = 2$ for the E_2 eigensystem

- ▶ Here #FP is the number of fixed points of the geometric Atkin-Lehner involution on the modular curve $X_0(p)$.
- ▶ Moduli interpretation for $X_0(p)$ relates #FP to isomorphism classes of elliptic curves with CM by $\sqrt{-p}$.
- ▶ So eg. $\#FP = h(\mathbb{Q}(\sqrt{-p}))$ if $p \equiv 1 \mod 4$.

Example: If
$$p=5$$
 then $h(\mathbb{Q}(\sqrt{-p}))=2$ and $\Delta_k=\pm 1$.
 If $p=101$ then $h(\mathbb{Q}(\sqrt{-p}))=14$ and $\Delta_k=\pm 7$.

Corollary

$$\Delta_{k+2} = -\Delta_k \qquad \qquad \text{for } k \ge 2^*$$

1. Congruences mod p

6. Refine for mod-p congruences

Eigenform $f \rightsquigarrow \operatorname{mod-} p$ Hecke eigensystem τ with $\tau(\ell) = \bar{a}_{\ell}$ in $\bar{\mathbb{F}}_p$.

- \leftrightarrow Galois representation $\rho_{\tau}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\bar{\mathbb{F}}_p)$, ss & odd, unramified at $\ell \nmid pN$, with $\tau(\ell) = \mathrm{Tr} \, \rho_{\tau}(\mathrm{Frob}_{\ell})$.
- ▶ For fixed p (and N), are only finitely many τ , even as $k \to \infty$!

 $S_k(p)_{\tau} := \text{ span of eigenforms with mod-}p \text{ Hecke eigensystem } \tau.$

Atkin-Lehner involution W_p commutes with the T_ℓ , so again $S_k(p)_{\tau} = S_k(p)_{\tau}^+ \oplus S_k(p)_{\tau}^-,$

with corresponding dimensions

$$d_{k,\tau} = d_{k,\tau}^+ + d_{k,\tau}^-.$$

(Bergdall–Pollack): Like d_k , the $d_{k,\tau}$ grow linearly with k.

To understand $d_{k, au}^\pm$ dimension split, study $\left|\Delta_{k, au}:=d_{k, au}^+-d_{k, au}^ight|.$

7. Adding a twist

Most $S_k(p)_{\tau}=0$: eigensystem τ can only appear in weight k if $\det \rho_{\tau}=\omega^{k-1}$, where ω is the mod-p cyclotomic character.

In other words, τ determines k modulo p-1.

But mod p move between weights by θ operator $(q \frac{d}{dq})$ on forms:

$$\tau \stackrel{\theta}{\mapsto} \tau[1]$$
 with $\tau[1](\ell) = \ell \tau(\ell)$. On Galois side, θ is twisting by ω .

If τ can appear in weight k, then

$$\tau[1] \longleftrightarrow \rho_{\tau} \otimes \omega$$
 can appear in weight $k+2$

$$\tau[2]\longleftrightarrow
ho_{ au}\otimes\omega^2$$
 can appear in weight $k+4$

. . .

. . .

$$au[rac{p-1}{2}]\longleftrightarrow
ho_ au\otimes\left(rac{\cdot}{p}
ight)$$
 can appear in weight $k+(p-1)$, or in weight k

$$\tau[p-1] \longleftrightarrow \rho_{\tau}$$

can appear in weight k + 2(p - 1), or in weight k

8. Dimension split data

$$p = 5, N = 23$$

Dimension splits $(d_{k, au}^+,\ d_{k, au}^-)$ for a twist family

$k \setminus \tau$	σ	$\sigma[1]$	σ [2]	σ [3]
2	(3,2)	_	(0,0)	_
4	_	(2,3)	_	(0,0)
6	(5,5)	_	(3,2)	
8	_	(5,5)	_	(2,3)
10	(8,7)	_	(5,5)	_
12	_	(7,8)	_	(5,5)
14	(10, 10)	_	(8,7)	_
16		(10, 10)	_	(7,8)
18	(13, 12)		(10, 10)	_
20	_	(12, 13)	_	(10, 10)
22	(15, 15)	_	(13, 12)	_
24	_	(15, 15)		(12, 13)

 $\sigma \leftrightarrow f \in S_2(23)$ with $f \equiv q + 2q^2 + 2q^4 + 4q^5 + q^7 + \cdots \mod 5$.

9. First main result

Theorem (Anni–Ghitza–M.) (Recall $p \ge 5$; tame level N ok)

$$\Delta_{k+2, au[1]} = -\Delta_{k, au}$$
 for $k \geq 2^*$ *adjustment if $k=2$ for the E_2 eigensystem

Method of proof is entirely new. More about the proof presently!

Remarks

- ► Tracing back, uneven splits always come from weight 2
- ▶ Uneven splits caused by p-new forms (p-old forms in \pm pairs).
- No τ can appear p-newly in weight 2 with both \pm signs. (In weight 2, the mod-p Galois representation sees ε_f .)
- ▶ So AGM theorem resolves class number $|\Delta_k|$ into sum of \pm multiplicities of *p*-new forms in weight 2.
- $lackbox \Delta_{k, au}
 eq 0 \iff au[rac{2-k}{2}] ext{ appears } p ext{-newly in weight 2}.$

2. Deeper congruences

10. Deeper congruences and Conti-Gräf observations

Deep congruences between forms in different weights known

Guaranteed by Coleman families (p-adic families of eigenforms)

Forms in weight k congruent mod p^m to forms in weight $\sim k + (p-1)p^{m-1}$

No known systematic deep same-weight congruences...

Except: very recent computations of Andrea Conti and Peter Gräf:

- ► Suggest LOTS of deep congruences in the same weight, between *p*-new forms with opposite Atkin-Lehner signs
- ▶ Depth controlled by *L-invariant*: local-at-*p* data of *p*-new form
- ▶ In weight k expect congruence mod p^m for $m \sim \frac{k(p-1)}{2(p+1)}$

Example

$$v(\mathcal{L}_f)$$
 for $f \in S_k(5)^{\mathsf{new}}$

$$k = 54: -2, -3, -3, -5, -5, -8, -8, -10, -10, -11, -11, -12, -12, -14, -14, -18, -18$$

Conti-Gräf observe congruences as deep as mod 5¹⁹ here!

11. Progress towards establishing deep congruences

Focus on deep congruences between plus/minus spaces.

Fix $p \geq 5$ prime, tame level N prime to p, depth $m \geq 1$.

Expected Theorem (M.)

For any prime $\ell \nmid 6pN$,

$$\frac{\operatorname{char}\left(T_{\ell}\mid S_{k}(Np)^{+}\right)}{E^{+}}\equiv\frac{\operatorname{char}\left(T_{\ell}\mid S_{k}(Np)^{-}\right)}{E^{-}}\mod p^{m}.$$

Here the error is $E^{\pm}=\operatorname{char}\left(T_{\ell}\mid S_{w}(\mathit{Np})^{\pm\varepsilon}\left[\frac{k-w}{2}\right]\right)$, where

- ightharpoonup w is the minimal weight* congruent to k modulo $2p^{m-1}$, and
- ► Attempt to catch shallower Conti–Gräf congruence uniformly
- \blacktriangleright E^{\pm} "ought" to divide numerator (shadow of $\theta^{p^{m-1}}$ mod p^m ?)
- ► Can replace $S_k(Np)^{\pm}$ with $S_k(Np)^{p\text{-new},\pm}$

12. Illustrating example: p = 5, N = 1, $\ell = 2$, m = 3

Example (k = 54, so w = 4)

$$\frac{k,\varepsilon}{\mathsf{char}\big(T_2\mid S_k(5)^{\mathsf{new},\varepsilon}\big) \text{ in } (\mathbb{Z}/125\mathbb{Z})[x]}{54,+\quad x^8+10x^7+19x^6+80x^5+101x^4+5x^3+24x^2+60x+66}\\ 54,-\quad x^9+113x^8+49x^7+37x^6+91x^5+33x^4+39x^3+32x^2+121x+48}\\ 4,+\quad x+4, \text{ so } E^-=x+4\cdot 2^{25}=x+103\\ 4,-\quad 1=E^+\\ \mathsf{Then } \ \frac{\overline{\mathsf{char}\big(T_2\mid S_{54}(5)^{\mathsf{new},+}\big)}}{1}=\frac{\overline{\mathsf{char}\big(T_2\mid S_{54}(5)^{\mathsf{new},-}\big)}}{x+103}, \text{ as predicted}.$$

Recall the list of L-invariant valuations for $S_{54}(5)^{\text{new}}$:

$$-2, -3, -3, -5, -5, -8, -8, \cdots, -14, -14, -18, -18.$$

Conti–Gräf get congruence mod 5^4 except f with $v(\mathcal{L}_f) = -2$.

This
$$f \mod 5^3$$
 is $q + 22q^2 + 11q^3 + 117q^4 + \cdots$, so that $x - a_2(f) \equiv x - 22 = x + 103 \mod 5^3$.

Mod 5³ congruence from ExpTheorem excludes precisely this form!

13. Mod p vs. mod p^m

Case m=1

Expected Theorem equivalent to AGM theorem. Indeed,

$$\Delta_{k,\tau} = -\Delta_{k-2,\tau[-1]} = \dots = (-1)^{(k-2)/2} \Delta_{2,\tau[\frac{2-k}{2}]} = \varepsilon \Delta_{2,\tau[\frac{2-k}{2}]},$$

so
$$\frac{\operatorname{char}\left(T_{\ell}\mid S_{k}(Np)^{+}\right)}{\operatorname{char}\left(T_{\ell}\mid S_{2}(Np)^{\varepsilon}\left[\frac{k-2}{2}\right]\right)}\equiv \frac{\operatorname{char}\left(T_{\ell}\mid S_{k}(Np)^{-}\right)}{\operatorname{char}\left(T_{\ell}\mid S_{2}(Np)^{-\varepsilon}\left[\frac{k-2}{2}\right]\right)}\ \ \operatorname{mod}\ p.$$

Because \mathbb{F}_p is a field, we get congruences between eigenforms.

Case m > 1

No unique factorization in $(\mathbb{Z}/p^m\mathbb{Z})[x]$ so Expected Theorem does not prove congruences between eigenforms, only suggests them.

Example

The splittings in $(\mathbb{Z}/9\mathbb{Z})[x]$ of $f(x) = x^3 + 3x^2 + 3x + 1$ are (x-a)(x-b)(x-c) where $a,b,c \equiv 2 \mod 3$ are either all the same or all different. But also! over $R = \mathbb{Z}[\sqrt{3}]/(\sqrt{3})^3 \supset \mathbb{Z}/9\mathbb{Z}$, $f(x) = (x-2+\sqrt{3})^3 = (x-2-\sqrt{3})(x-5-\sqrt{3})(x-8-\sqrt{3})$.

3. Proof sketch

(Skip to algebra lemma)

14. Proof sketch. Setup: the W_k -modules

Case m=1

Space $S_{k-(p-1)}(*, \mathbb{F}_p)$ embeds into $S_k(*, \mathbb{F}_p)$ Hecke equivariantly by multiplication by Hasse invariant $E_{p-1} \equiv 1 \mod p$.

Corresponding graded module is $W_k(*)$.

- ▶ (Jochnowitz, Serre, Robert) $W_{k+p+1}(N) \simeq W_k(N)[1]$ Finiteness of number of mod-p Hecke eigensystems follows!
- lacktriangle (AGM) $W_{k+2}(Np)^{\mathrm{ss}} \simeq W_k(Np)[1]^{\mathrm{ss}}$

Case m > 1

 $S_{k-(p-1)p^{m-1}}(*,\mathbb{Z}/p^m\mathbb{Z})$ embeds into $S_k(*,\mathbb{Z}/p^m\mathbb{Z})$ by scaling by $E_{p-1}^{p^{m-1}}\equiv E_{(p-1)p^{m-1}}\equiv 1$. Graded module: $W_{k,m}(*)$.

► (M., Expected Theorem)

$$\mathsf{char}\left(\mathit{T}_{\ell}|\mathit{W}_{k+2(p+1)p^{m-1},m}(\mathit{N})\right) \equiv \mathsf{char}\left(\mathit{T}_{\ell}|\mathit{W}_{k,m}(\mathit{N})[2p^{m-1}]\right) \bmod p^{m}$$

Finiteness of number of $mod-p^m$ eigensystems still unknown!

15. Proof sketch. Piece 1: Refining W_k for Atkin-Lehner

Case m=1

We construct a refinement of $W_k(Np)$: given two signs ε, η , define $W_k^{\varepsilon,\eta}(Np) := S_k(Np, \mathbb{F}_p)^{\varepsilon}/S_{k-p+1}(Np, \mathbb{F}_p)^{\eta}.$

Here $S_{k-p+1}(Np,\mathbb{F}_p)^\eta$ embeds into $S_k(Np,\mathbb{F}_p)^\varepsilon$ by multiplication by the Atkin-Lehner "stabilization" $E_{p-1}^{\varepsilon/\eta}$ of E_{p-1} , where

$$E_{p-1}^{\pm} := E_{p-1} \pm p^{(p-1)/2} E_{p-1}(pz).$$

Theorem (Anni-Ghitza-M.)

For any
$$k \geq (p+1)^*$$
 and any signs ε, η in $\{\pm 1\}$, we have $W_{k+2}^{\varepsilon,\eta}(\mathsf{Np})^\mathrm{ss} \simeq W_k^{-\varepsilon,-\eta}(\mathsf{Np})[1]^\mathrm{ss}$.

Case m>1: Similarly, define $W_{k,m}^{\varepsilon,\eta}(Np)$. Expected Theorem relating $W_{k+2p^{m-1},m}^{\varepsilon,\eta}(Np)$ and $W_{k,m}^{-\varepsilon,-\eta}(Np)[p^{m-1}]$.

16. Proof sketch. Piece 2: The algebra lemma

Lemma (Anni–Ghitza–M.) Here p can be any prime!

Let W, V be rank-d free \mathbb{Z}_p -modules with linear action of T. Then $\operatorname{char}(T\mid W) \equiv \operatorname{char}(T\mid V) \mod p^m \\ \iff \operatorname{Tr}(T^n\mid W) \equiv \operatorname{Tr}(T^n\mid V) \mod p^{m+v(n)} \quad \text{for } 1\leq n\leq d.$ For m=1 also $\iff (W\otimes \mathbb{F}_p)^{\operatorname{ss}} \simeq (V\otimes \mathbb{F}_p)^{\operatorname{ss}}.$

Example (of Goldilocks titration for m = 1)

Set $V := \mathbb{Z}_p^{\oplus p}$ with T acting by $\alpha \in \mathbb{Z}_p$, so $\text{Tr}(T^n|V) = p\alpha^n$.

- ▶ Knowing $p\alpha^n$ in \mathbb{Z}_p identifies α in \mathbb{Z}_p too much!
- ► Knowing $p\alpha^n = 0$ in \mathbb{F}_p tells us nothing too little!
- ▶ But $p\alpha^p \mod p^2$ identifies α^p (and so α) mod p just right!

17. Proof sketch. Piece 3: The trace formula!

For two Hecke modules V and W want

$$\operatorname{char}(T_{\ell}|V) \equiv \operatorname{char}(T_{\ell}|W) \mod p^m.$$

- ▶ Algebra lemma \leadsto deeper congruences between $\text{Tr}(T_{\ell}^n|V)$ and $\text{Tr}(T_{\ell}^n|W)$
- ► Combinatorics \leadsto different congruences between $\operatorname{Tr}(T_{\ell^n}|V)$, $\operatorname{Tr}(T_{\ell^n}|W)$, $\operatorname{Tr}(T_{\ell^{n-2}}|V)$ and $\operatorname{Tr}(T_{\ell^{n-2}}|W)$
- ▶ Use trace formula (Yamauchi, Skoruppa-Zagier, Popa) for action of T_{ℓ^n} and $T_{\ell^n}W_p$ on $S_k(Np)$ to carve out V and W and prove needed congruences.

A bit brutal, but it works!