Deep congruences between same-weight eigenforms

Anna Medvedovsky

(partially joint with Samuele Anni and Alexandru Ghitza)

```
https://math.bu.edu/people/medved/
```

SAGA: Symposium on Arithmetic Geometry and its Applications
CIRM, Luminy
February 7, 2023

1. Modular forms of level 1 and level p

Fix a prime $p \geq 5$.
(Optional: tame level N prime to p.)

$$
\begin{aligned}
& S_{k}(1):=\text { weight- } k \text { cuspforms for } \mathrm{SL}_{2}(\mathbb{Z}) \quad\left(\text { or } \Gamma_{0}(N)\right) \\
& S_{k}(p):=\text { weight- } k \text { cuspforms for } \Gamma_{0}(p) \quad\left(\text { or } \Gamma_{0}(N p)\right)
\end{aligned}
$$

- Finite dimensional spaces. Dimension formulas, linear in k :

$$
\operatorname{dim} S_{k}(p) \sim(p+1) \operatorname{dim} S_{k}(1) \sim(p+1) \frac{k}{12}
$$

- Action of Hecke operators T_{n}. Focus here: T_{ℓ} for $\ell \neq p$ prime. Semisimple, commuting. Therefore basis of eigenforms.
- Hecke eigenvalues are (algebraic) integers. Can be reduced modulo a prime (above) p.
- Two copies of $f \in S_{k}(1)$ inside $S_{k}(p)$: both f and $f(p z)$. (Same Hecke eigensystem at $\ell \neq p$.)
- These two copies of $S_{k}(1)$ span the p-old forms in $S_{k}(p)$. Eigenforms in $S_{k}(p)$ not from $S_{k}(1)$ span the p-new forms.

2. Atkin-Lehner involution

The Atkin-Lehner operator W_{p} is an involution splitting $S_{k}(p)$:

$$
S_{k}(p)=S_{k}(p)^{+} \oplus S_{k}(p)^{-}
$$

where W_{p} acts as +1 on $S_{k}(p)^{+}$and as -1 on $S_{k}(p)^{-}$.
Write $d_{k}:=\operatorname{dim} S_{k}(p)$, and similarly with decorations, so that

$$
d_{k}=d_{k}^{+}+d_{k}^{-}
$$

Since d_{k} is known, for dimension split suffices to study

$$
\Delta_{k}:=d_{k}^{+}-d_{k}^{-}
$$

- Every p-new eigenform f has a unique Atkin-Lehner $\operatorname{sign} \varepsilon_{f}$.
- "Half" the p-old forms are in $S_{k}(p)^{+}$, half in $S_{k}(p)^{-}$, so that

$$
\Delta_{k}=d_{k}^{\text {new },+}-d_{k}^{\text {new },-}
$$

Note: $\Delta_{k}=\operatorname{Tr}\left(W_{p} \mid S_{k}(p)\right)$.

3. Data!

$p=5$

k	d_{k}^{+}	d_{k}^{-}
2	0	0
4	1	0
6	0	1
8	2	1
10	1	2
12	3	2
14	2	3
16	4	3
18	3	4
20	5	4
22	4	5
24	6	5
26	5	6

$$
\Delta_{k}= \pm 1
$$

$$
p=23
$$

$$
p=101
$$

k	d_{k}^{+}	d_{k}^{-}
2	0	2
4	4	1
6	3	6
8	8	5
10	7	10
12	12	9
14	11	14
16	16	13
18	15	18
20	20	17
22	19	22
24	24	21
26	23	26

$\Delta_{k}= \pm 3$

	d_{k}^{+}	d_{k}^{-}
2	1	7
4	16	9
6	17	24
8	33	26
10	34	41
12	50	43
14	51	58
16	67	60
18	68	75
20	84	77
22	85	92
24	101	94
26	102	109

$\Delta_{k}= \pm 7$

4. $\left|\Delta_{k}\right|$ is basically a class number!

Theorem (Fricke, Yamauchi, Helfgott, Wakatsuki, Martin...)

$$
\Delta_{k}=(-1)^{k / 2} \frac{\# \mathrm{FP}}{2} \quad \text { for } k \geq 2^{*}
$$

*adjustment: add 1 if $k=2$ for the E_{2} eigensystem

- Here \#FP is the number of fixed points of the geometric Atkin-Lehner involution on the modular curve $X_{0}(p)$.
- Moduli interpretation for $X_{0}(p)$ relates \#FP to isomorphism classes of elliptic curves with CM by $\sqrt{-p}$.
- So eg. $\# \mathrm{FP}=h(\mathbb{Q}(\sqrt{-p}))$ if $p \equiv 1 \bmod 4$.

Example: If $p=5$ then $h(\mathbb{Q}(\sqrt{-p}))=2$ and $\Delta_{k}= \pm 1$.

$$
\text { If } p=101 \text { then } h(\mathbb{Q}(\sqrt{-p}))=14 \text { and } \Delta_{k}= \pm 7
$$

Corollary

$$
\Delta_{k+2}=-\Delta_{k} \quad \text { for } k \geq 2^{*}
$$

1. Congruences mod p

6. Refine for mod- p congruences

Eigenform $f \rightsquigarrow \quad \bmod -p$ Hecke eigensystem τ with $\tau(\ell)=\bar{a}_{\ell}$ in $\overline{\mathbb{F}}_{p}$.
\leftrightarrow Galois representation $\rho_{\tau}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$, ss \& odd, unramified at $\ell \nmid p N$, with $\tau(\ell)=\operatorname{Tr} \rho_{\tau}\left(\right.$ Frob $\left._{\ell}\right)$.

- For fixed $p($ and $N)$, are only finitely many τ, even as $k \rightarrow \infty$!
$S_{k}(p)_{\tau}:=$ span of eigenforms with mod- p Hecke eigensystem τ.
- Atkin-Lehner involution W_{p} commutes with the T_{ℓ}, so again

$$
S_{k}(p)_{\tau}=S_{k}(p)_{\tau}^{+} \oplus S_{k}(p)_{\tau}^{-}
$$

with corresponding dimensions

$$
d_{k, \tau}=d_{k, \tau}^{+}+d_{k, \tau}^{-} .
$$

(Bergdall-Pollack): Like d_{k}, the $d_{k, \tau}$ grow linearly with k.
To understand $d_{k, \tau}^{ \pm}$dimension split, study $\Delta_{k, \tau}:=d_{k, \tau}^{+}-d_{k, \tau}^{-}$.

7. Adding a twist

Most $S_{k}(p)_{\tau}=0$: eigensystem τ can only appear in weight k if $\operatorname{det} \rho_{\tau}=\omega^{k-1}$, where ω is the mod- p cyclotomic character.

In other words, τ determines k modulo $p-1$.
But mod p move between weights by θ operator ($q \frac{d}{d q}$ on forms):
$\tau \stackrel{\theta}{\mapsto} \tau[1]$ with $\tau[1](\ell)=\ell \tau(\ell)$. On Galois side, θ is twisting by ω.
If τ can appear in weight k, then

$$
\begin{aligned}
& \tau[1] \longleftrightarrow \rho_{\tau} \otimes \omega \quad \text { can appear in weight } k+2 \\
& \tau[2] \longleftrightarrow \rho_{\tau} \otimes \omega^{2} \quad \text { can appear in weight } k+4
\end{aligned}
$$

$\tau\left[\frac{p-1}{2}\right] \longleftrightarrow \rho_{\tau} \otimes(\dot{\bar{p}})$ can appear in weight $k+(p-1)$, or in weight k
$\tau[p-1] \longleftrightarrow \rho_{\tau}$
can appear in weight $k+2(p-1)$, or in weight k

8. Dimension split data

$p=5, N=23$ Dimension splits $\left(d_{k, \tau}^{+}, d_{k, \tau}^{-}\right)$for a twist family

$k \backslash \tau$	σ	$\sigma[1]$	$\sigma[2]$	$\sigma[3]$
2	$(3,2)$	-	$(0,0)$	-
4	-	$(2,3)$	-	$(0,0)$
6	$(5,5)$	-	$(3,2)$	-
8	-	$(5,5)$	-	$(2,3)$
10	$(8,7)$	-	$(5,5)$	-
12	-	$(7,8)$	-	$(5,5)$
14	$(10,10)$	-	$(8,7)$	-
16	-	$(10,10)$	-	$(7,8)$
18	$(13,12)$	-	$(10,10)$	-
20	-	$(12,13)$	-	$(10,10)$
22	$(15,15)$	-	$(13,12)$	-
24	-	$(15,15)$	-	$(12,13)$

$\sigma \leftrightarrow f \in S_{2}(23)$ with $f \equiv q+2 q^{2}+2 q^{4}+4 q^{5}+q^{7}+\cdots \bmod 5$.

9. First main result

Theorem (Anni-Ghitza-M.) (Recall $p \geq 5$; tame level N ok)

$$
\begin{array}{lc}
\Delta_{k+2, \tau[1]}=-\Delta_{k, \tau} & \text { for } k \geq 2^{*} \\
& \text { *adjustment if } k=2 \text { for the } E_{2} \text { eigensystem }
\end{array}
$$

Method of proof is entirely new. More about the proof presently!

Remarks

- Tracing back, uneven splits always come from weight 2
- Uneven splits caused by p-new forms (p-old forms in \pm pairs).
- No τ can appear p-newly in weight 2 with both \pm signs. (In weight 2, the mod- p Galois representation sees ε_{f}.)
- So AGM theorem resolves class number $\left|\Delta_{k}\right|$ into sum of \pm multiplicities of p-new forms in weight 2 .
- $\Delta_{k, \tau} \neq 0 \Longleftrightarrow \tau\left[\frac{2-k}{2}\right]$ appears p-newly in weight 2.

2. Deeper congruences

10. Deeper congruences and Conti-Gräf observations

Deep congruences between forms in different weights known Guaranteed by Coleman families (p-adic families of eigenforms)

- Forms in weight k congruent $\bmod p^{m}$ to forms in weight $\sim k+(p-1) p^{m-1}$
No known systematic deep same-weight congruences... Except: very recent computations of Andrea Conti and Peter Gräf:
- Suggest LOTS of deep congruences in the same weight, between p-new forms with opposite Atkin-Lehner signs
- Depth controlled by L-invariant: local-at-p data of p-new form
- In weight k expect congruence $\bmod p^{m}$ for $m \sim \frac{k(p-1)}{2(p+1)}$
Example $\quad v\left(\mathcal{L}_{f}\right)$ for $f \in S_{k}(5)^{\text {new }}$

$k=54:-2,-3,-3,-5,-5,-8,-8,-10,-10,-11,-11$,
$-12,-12,-14,-14,-18,-18$

Conti-Gräf observe congruences as deep as mod 5^{19} here!

11. Progress towards establishing deep congruences

Focus on deep congruences between plus/minus spaces.
Fix $p \geq 5$ prime, tame level N prime to p, depth $m \geq 1$.

Expected Theorem (M.)

For any prime $\ell \nmid 6 p N$,

$$
\frac{\operatorname{char}\left(T_{\ell} \mid S_{k}(N p)^{+}\right)}{E^{+}} \equiv \frac{\operatorname{char}\left(T_{\ell} \mid S_{k}(N p)^{-}\right)}{E^{-}} \bmod p^{m}
$$

Here the error is $E^{ \pm}=\operatorname{char}\left(T_{\ell} \left\lvert\, S_{w}(N p)^{ \pm \varepsilon}\left[\frac{k-w}{2}\right]\right.\right)$, where

- w is the minimal weight* congruent to k modulo $2 p^{m-1}$, and
- $\varepsilon=(-1)^{(k-w) / 2}$.
- Attempt to catch shallower Conti-Gräf congruence uniformly
- $E^{ \pm}$"ought" to divide numerator (shadow of $\theta^{p^{m-1}} \bmod p^{m}$?)
- Can replace $S_{k}(N p)^{ \pm}$with $S_{k}(N p)^{p \text {-new }, \pm}$

12. Illustrating example: $p=5, N=1, \ell=2, m=3$

Example ($k=54$, so $w=4$)

k, ε	$\overline{\operatorname{char}}\left(T_{2} \mid S_{k}(5)^{\text {new }, \varepsilon}\right)$ in $(\mathbb{Z} / 125 \mathbb{Z})[x]$
$54,+$	$x^{8}+10 x^{7}+19 x^{6}+80 x^{5}+101 x^{4}+5 x^{3}+24 x^{2}+60 x+66$
$54,-$	$x^{9}+113 x^{8}+49 x^{7}+37 x^{6}+91 x^{5}+33 x^{4}+39 x^{3}+32 x^{2}+121 x+48$
$4,+$	$x+4$, so $E^{-}=x+4 \cdot 2^{25}=x+103$
$4,-$	$1=E^{+}$
Then $\frac{\overline{\operatorname{char}}\left(T_{2} \mid S_{54}(5)^{\text {new },+}\right)}{1}=\frac{\overline{\operatorname{char}}\left(T_{2} \mid S_{54}(5)^{\text {new, }-}\right)}{x+103}$, as predicted.	

Recall the list of L-invariant valuations for $S_{54}(5)^{\text {new }}$:

$$
-2,-3,-3,-5,-5,-8,-8, \cdots,-14,-14,-18,-18
$$

Conti-Gräf get congruence mod 5^{4} except f with $v\left(\mathcal{L}_{f}\right)=-2$. This $f \bmod 5^{3}$ is $q+22 q^{2}+11 q^{3}+117 q^{4}+\cdots$, so that

$$
x-a_{2}(f) \equiv x-22=x+103 \bmod 5^{3}
$$

Mod 5^{3} congruence from ExpTheorem excludes precisely this form!

13. $\operatorname{Mod} p$ vs. $\bmod p^{m}$

Case $m=1$
Expected Theorem equivalent to AGM theorem. Indeed,
$\Delta_{k, \tau}=-\Delta_{k-2, \tau[-1]}=\cdots=(-1)^{(k-2) / 2} \Delta_{2, \tau\left[\frac{2-k}{2}\right]}=\varepsilon \Delta_{2, \tau\left[\frac{2-k}{2}\right]}$,
so $\frac{\operatorname{char}\left(T_{\ell} \mid S_{k}(N p)^{+}\right)}{\operatorname{char}\left(T_{\ell} \left\lvert\, S_{2}(N p)^{\varepsilon}\left[\frac{k-2}{2}\right]\right.\right)} \equiv \frac{\operatorname{char}\left(T_{\ell} \mid S_{k}(N p)^{-}\right)}{\operatorname{char}\left(T_{\ell} \left\lvert\, S_{2}(N p)^{-\varepsilon}\left[\frac{k-2}{2}\right]\right.\right)} \bmod p$.
Because \mathbb{F}_{p} is a field, we get congruences between eigenforms.

Case $m>1$

No unique factorization in $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)[x]$ so Expected Theorem does not prove congruences between eigenforms, only suggests them.

Example

The splittings in $(\mathbb{Z} / 9 \mathbb{Z})[x]$ of $f(x)=x^{3}+3 x^{2}+3 x+1$ are $(x-a)(x-b)(x-c)$ where $a, b, c \equiv 2 \bmod 3$ are either all the same or all different. But also! over $R=\mathbb{Z}[\sqrt{3}] /(\sqrt{3})^{3} \supset \mathbb{Z} / 9 \mathbb{Z}$, $f(x)=(x-2+\sqrt{3})^{3}=(x-2-\sqrt{3})(x-5-\sqrt{3})(x-8-\sqrt{3})$.

3. Proof sketch

(Skip to algebra lemma)

14. Proof sketch. Setup: the W_{k}-modules

Case $m=1$
Space $S_{k-(p-1)}\left(*, \mathbb{F}_{p}\right)$ embeds into $S_{k}\left(*, \mathbb{F}_{p}\right)$ Hecke equivariantly by multiplication by Hasse invariant $E_{p-1} \equiv 1 \bmod p$.
Corresponding graded module is $W_{k}(*)$.

- (Jochnowitz, Serre, Robert) $W_{k+p+1}(N) \simeq W_{k}(N)$ [1]

Finiteness of number of mod- p Hecke eigensystems follows!

- (AGM) $W_{k+2}(N p)^{\text {ss }} \simeq W_{k}(N p)[1]^{\text {ss }}$

Case $m>1$
$S_{k-(p-1) p^{m-1}}\left(*, \mathbb{Z} / p^{m} \mathbb{Z}\right)$ embeds into $S_{k}\left(*, \mathbb{Z} / p^{m} \mathbb{Z}\right)$ by scaling by $E_{p-1}^{p^{m-1}} \equiv E_{(p-1) p^{m-1}} \equiv 1$. Graded module: $W_{k, m}(*)$.

- (M., Expected Theorem)
$\operatorname{char}\left(T_{\ell} \mid W_{k+2(p+1) p^{m-1}, m}(N)\right) \equiv \operatorname{char}\left(T_{\ell} \mid W_{k, m}(N)\left[2 p^{m-1}\right]\right) \bmod p^{m}$
Finiteness of number of $\bmod -p^{m}$ eigensystems still unknown!

15. Proof sketch. Piece 1: Refining W_{k} for Atkin-Lehner

Case $m=1$
We construct a refinement of $W_{k}(N p)$: given two signs ε, η, define

$$
W_{k}^{\varepsilon, \eta}(N p):=S_{k}\left(N p, \mathbb{F}_{p}\right)^{\varepsilon} / S_{k-p+1}\left(N p, \mathbb{F}_{p}\right)^{\eta}
$$

Here $S_{k-p+1}\left(N p, \mathbb{F}_{p}\right)^{\eta}$ embeds into $S_{k}\left(N p, \mathbb{F}_{p}\right)^{\varepsilon}$ by multiplication by the Atkin-Lehner "stabilization" $E_{p-1}^{\varepsilon / \eta}$ of E_{p-1}, where

$$
E_{p-1}^{ \pm}:=E_{p-1} \pm p^{(p-1) / 2} E_{p-1}(p z)
$$

Theorem (Anni-Ghitza-M.)

For any $k \geq(p+1)^{*}$ and any signs ε, η in $\{ \pm 1\}$, we have

$$
W_{k+2}^{\varepsilon, \eta}(N p)^{\mathrm{ss}} \simeq W_{k}^{-\varepsilon,-\eta}(N p)[1]^{\mathrm{ss}} .
$$

Case $m>1$: Similarly, define $W_{k, m}^{\varepsilon, \eta}(N p)$. Expected Theorem relating $W_{k+2 p^{m-1}, m}^{\varepsilon, \eta}(N p)$ and $W_{k, m}^{-\varepsilon,-\eta}(N p)\left[p^{m-1}\right]$.

16. Proof sketch. Piece 2: The algebra lemma

Lemma (Anni-Ghitza-M.)

Here p can be any prime!
Let W, V be rank-d free \mathbb{Z}_{p}-modules with linear action of T. Then $\operatorname{char}(T \mid W) \equiv \operatorname{char}(T \mid V) \quad \bmod p^{m}$
$\Longleftrightarrow \operatorname{Tr}\left(T^{n} \mid W\right) \equiv \operatorname{Tr}\left(T^{n} \mid V\right) \quad \bmod p^{m+v(n)} \quad$ for $1 \leq n \leq d$.
For $m=1$ also $\Longleftrightarrow\left(W \otimes \mathbb{F}_{p}\right)^{\text {ss }} \simeq\left(V \otimes \mathbb{F}_{p}\right)^{\text {ss }}$.

Example (of Goldilocks titration for $m=1$)
Set $V:=\mathbb{Z}_{p}^{\oplus p}$ with T acting by $\alpha \in \mathbb{Z}_{p}$, so $\operatorname{Tr}\left(T^{n} \mid V\right)=p \alpha^{n}$.

- Knowing $p \alpha^{n}$ in \mathbb{Z}_{p} identifies α in \mathbb{Z}_{p} - too much!
- Knowing $p \alpha^{n}=0$ in \mathbb{F}_{p} tells us nothing - too little!
- But $p \alpha^{p} \bmod p^{2}$ identifies α^{p} (and so α) mod $p-$ just right!

17. Proof sketch. Piece 3: The trace formula!

For two Hecke modules V and W want

$$
\operatorname{char}\left(T_{\ell} \mid V\right) \equiv \operatorname{char}\left(T_{\ell} \mid W\right) \quad \bmod p^{m}
$$

- Algebra lemma \rightsquigarrow deeper congruences between $\operatorname{Tr}\left(T_{\ell}^{n} \mid V\right)$ and $\operatorname{Tr}\left(T_{\ell}^{n} \mid W\right)$
- Combinatorics \rightsquigarrow different congruences between $\operatorname{Tr}\left(T_{\ell^{n}} \mid V\right), \operatorname{Tr}\left(T_{\ell^{n}} \mid W\right), \operatorname{Tr}\left(T_{\ell^{n-2}} \mid V\right)$ and $\operatorname{Tr}\left(T_{\ell^{n-2}} \mid W\right)$
- Use trace formula (Yamauchi, Skoruppa-Zagier, Popa) for action of $T_{\ell^{n}}$ and $T_{\ell^{n}} W_{p}$ on $S_{k}(N p)$ to carve out V and W and prove needed congruences.

A bit brutal, but it works!

