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1. Modular forms of level one modulo 3

M = M(1,F3) := Zk M (1,F3) C F3[q]

= space of mod-3 modular forms of level 1 and any even weight kK > 0

= F3[A],

where
A=q+q*+2¢"+2¢" + ¢ +2¢" + - € F3[q]
is the image of qI1,(1—qg")* € S12(1,7Z).

Note: only A and 1 = E4 are true eigenforms here
(both with Tj-eigenvalue 1+ ¢ for £ # 3 prime).

But every form in M is a generalized eigenform.



2. Density of a mod-p modular form

Definition (Bellaiche)

The density 6(f) of a mod-p modular form f =" an(f)q" in
M(N,F,) is the density of the set of primes ¢ with a,(f) # 0.

Refinement (back to p = 3)
For i € F3, let §;(f) be the density of primes ¢ with a,(f) = i.

Definition
The density vector of f in M is 8(f) := (0o(f), 01(f), 02(f)).

2 if£=1 (mod 3),
0 if =2 (mod 3).

Therefore 5(A) = 1 and §(A) = (3, 0, 1).

We have ay(A) =1+74, so ay(A) =



3. Density of eigenforms is not difficult!

More generally, if f is an eigenform mod p, its density is “easy”:

» Galois representation pr : Gal(Q/Q) — GLa(Fp), finite
image, unramified at most primes ¢ with tr ps(Frob,) = a,(f).

» Chebotarev density implies

d(f) is proportion of matrices in im ps with nonzero trace.

What about other forms, powers of A? For example, here's A3:
3

n>1 n>1

so ag(A3) = 0 for £ # 3 prime.
More generally, §(A") = 0 whenever 3 | n. So...



4. Density data for A" with 31 n

(¢ < 30 million)

n (AN n (A")

1| (1/2, 0, 1/2) 22 | (0.66633, 0.16474, 0.16893)
2 | (0.66658, 0.16667, 0.16674) 23 | (0.66657, 0.16694, 0.16650)
4 | (0.66674, 0.33326, 0) 25 (0.66681, 0.16667, 0.16652)
5 | (0.66664, 0.16672, 0.16663) 26 | (0.66665, 0.16661, 0.16674)
7 | (0.66675, 0.22215, 0.11110) 28 | (0.66639, 0.16469, 0.16892)
8 | (0.66625, 0.16684, 0.16691) 29 | (0.66665, 0.16656, 0.16679)
10 | (0.77791, 0.11104, 0.11105) 31 | (0.66799, 0.16620, 0.16581)
11 | (0.66628, 0.16692, 0.16680) 32 | (0.66648, 0.16689, 0.16662)
13 | (0.66651, 0.18526, 0.14824) 34 | (0.66689, 0.16635, 0.16676)
14 | (0.66647, 0.16668, 0.16685) 35 | (0.66697, 0.16637, 0.16666)
16 | (0.66636, 0.16885, 0.16479) 37 | (0.66656, 0.16436, 0.16908)
17 | (0.66654, 0.16682, 0.16664) 38 | (0.66674, 0.16689, 0.16636)
19 | (0.66643, 0.16491, 0.16866) 40 | (0.66644, 0.16661, 0.16695)
20 | (0.66693, 0.16633, 0.16674) 41 | (0.66615, 0.16697, 0.16688)



5. Density vector guesses for A" with 31 n

n a(An)

1] @2 0 1/2)
2 | (2/3, 1/6,  1/6)
4 | (23,  1/3 0)
5 | (2/3, 1/6,  1/6)
7 1(2/3,  2/9, 1/9)
8 | (2/3, 1/6, 1/6)
10| (7/9, 1/9,  1/9)
11| (2/3,  1/6,  1/6)
13 | (2/3, ? 5/27, 7 4/27)
14| (2/3, 1/6,  1/6)
16 | (2/3, 1/6,  1/6)
17| (2/3,  1/6,  1/6)
19| (2/3,  1/6,  1/6)
20 | (2/3, 1/6,  1/6)

n a(An)

22 | (2/3, 1/6, 1/6)
23 | (2/3, 1/6, 1/6)
25 | (2/3, 1/6, 1/6)
26 | (2/3, 1/6, 1/6)
28 | (2/3, 1/6, 1/6)
29 | (2/3, 1/6, 1/6)
31 | (2/3, 1/6, 1/6)
32 | (2/3, 1/6, 1/6)
34 | (2/3, 1/6, 1/6)
35 | (2/3, 1/6, 1/6)
37 | (2/3, 1/6, 1/6)
38 | (2/3, 1/6, 1/6)
40 | (2/3, 1/6, 1/6)
41 | (2/3, 1/6, 1/6)

Further: 6(A") < (2/3, 1/6, 1/6) for 13 < n < 5000 with 31 n.



6. The pseudorepresentation on the Hecke algebra

Let A be the closed F3-subalgebra of Endp,(M) generated by the
action on M of the Hecke operators T, for 31 m prime.

» A is complete noetherian local ring in continuous duality with
K :=F3(A" : 31 n) = ker(Us|M) via standard perfect pairing

Ax K — T3 (T,f)— ai(Tr).
Theorem (M., 2015)
Map F3[x,y] - A with x — T, and y — 1+ T7 is isomorphism.

> A carries a dim-2 pseudorepresentation of Gg := Gal(Q/Q)
t: G@ — A
unramified at primes ¢ # 3 and satisfying t(Frob,) = T.



7. Bellaiche's formalism: Galois pseudorep. + Chebotarev

» For f in K the pseudorep. factors through finite Lf/Q:
tr: Gr .= Gal(Lf/Q) — Ar := A/ann(f),
still with t¢(Froby) = T, for primes ¢ # 3.
» a,(f) = a1(T,f) = a1(tr(Frob,)f) determined by Froby in Gr.
» Hence set P;i(f) = {¢ prime : ay(f) = i} is frobenian and its
density d;(f) is rational with denominator dividing [Lf : Q).

We have xA? = A and yA? =0, so Ar = F3[x]/(x?).

Can show: Lf = Q(ug) so that Gf ~ (Z/9Z)* ~TF5 x F3; and
tr = (1 4+ ax) + w(1 — ax),

with w : Gf — F3 mod-3 cyclotomic and « : Gf — F3 additive.

Upshot: 8(A%) = (2/3, 1/6, 1/6).




8. Abelian forms

A form f in K is abelian or dihedral if L/Q is as a field extension.

Theorem (M.) (Recall x =T, y =1+ T7, A=TF3[x,y])

Form f is abelian <= f is annihilated by ideal of A generated by
W — Pﬁ(X2) +2= W — X2 _X10 —|—X12 + O(X14),
where 3 = log37/logs 4 and Ps(Z + Z71 —2) = ZP + Z7P.

Hence there are very few abelian forms! Space of abelian forms has
basis {ab,}n>0 with x - ab, = ab,_; and y" - ab, = 0:

abg = A, ab; = A2, aby = —A%,
abg = —A5, aby = A0, abg = All + A%+ AS.

(Conjecture: A" is abelian only if n=1,2,4,5,10.)



9. Density of abelian forms

Let k be the number of digits of n base 3, with z the number of Os
and u the number of 1s. Let v = v3(n) be the 3-valuation of n.

Theorem (M.)

ou 37

53k if last nonzero digit of n base 3 is 1,
5(abn) - u z zZ—V

2(32.—23) if last nonzero digit of n base 3 is 2.
Moreover, 01(ab,) = d2(ab,) unless u =0, in which case

silab) = 2250 by = T2

Theorem proves §(A*), §(A%), 8(A0) are as expected.

Note: lé(ab,,) may tend to zero! ‘ Say, for n=1[2 --- 2]3 = 3k — 1.

k times




10. Dihedral forms: similar story

» All dihedral forms are Q(u3)-dihedral.

» Dihedral forms are precisely the ones annihilated by x = T».

» Not too many dihedral forms: basis for space {dih,},>0 with

y - dih, = dihp_1.
Examples: dihg = A, dih; = 2A10 + A7,
dihy = A% + A +2A10 4 A3,
Dihedral forms all contained in K* := F3(A" : n = 1 mod 3).
Theorem (M.): A" in K is dihedral only for n = 1.
Theorem (M.): formula for §(dih,) depending on n base 3.

’ Density of a dihedral form may get arbitrarily close to 0. ‘




11. Generic forms

In contrast, we expect &(f) to be uniformly bounded away from 0
if f is not in the span of abelian and dihedral forms.

Theorem (M.)

_ : - - _(2 1 1
For n =2 mod 3, if A" is not abelian, then 6(f) = (5, &, ¢)-
(More generally, true for any f in K? := F3(A" : n =2 mod 3).)

The space K = K! @ K2 has a (Z/3Z)*-grading: for f € K’ we
have a,(f) =0 unless n =i mod 3. If 3{ n, then A" is in K".

In other words, the theorem is a true equidistribution statement!



12. Data again!

n a(An)

1] @2 0 1/2)
2 | (2/3, 1/6,  1/6)
4 | (23,  1/3, 0)
5 | (2/3, 1/6,  1/6)
7 (/3  2/9  1/9)
8 | (2/3, 1/6, 1/6)
10| (7/9, 1/9,  1/9)
11| (2/3,  1/6,  1/6)
13 | (2/3, 7 5/27, 7 4/27)
14| (2/3,  1/6,  1/6)
16 | (2/3, 1/6,  1/6)
17| (2/3,  1/6,  1/6)
19| (2/3, 1/6,  1/6)
20 | (2/3, 1/6,  1/6)

n a(An)

22 | (2/3, 1/6, 1/6)
23 | (2/3, 1/6, 1/6)
25 | (2/3, 1/6, 1/6)
26 | (2/3, 1/6, 1/6)
28 | (2/3, 1/6, 1/6)
29 | (2/3, 1/6, 1/6)
31| (2/3, 1/6, 1/6)
32 | (2/3, 1/6, 1/6)
34 | (2/3, 1/6, 1/6)
35 | (2/3, 1/6, 1/6)
37 | (2/3, 1/6, 1/6)
38 | (2/3, 1/6, 1/6)
40 | (2/3, 1/6, 1/6)
41 | (2/3, 1/6, 1/6)

Blue/red are conjectural from computations; black are proved.



