Densities of a mod-p modular form

Anna Medvedovsky

https://math.bu.edu/people/medved/

Boston University

2023 JMM / AMS Special Session on Arithmetic geometry informed by computation I January 4, 2023

$$M:=M(1,\mathbb{F}_3):=\sum_k M_k(1,\mathbb{F}_3)\subseteq \mathbb{F}_3\llbracket q
rbracket$$

= space of mod-3 modular forms of level 1 and any even weight $k \ge 0$

 $=\mathbb{F}_{3}[\Delta],$

where

$$\Delta = q + q^4 + 2q^7 + 2q^{13} + q^{16} + 2q^{19} + \dots \in \mathbb{F}_3[\![q]\!]$$
 is the image of $q \prod_n (1 - q^n)^{24} \in S_{12}(1, \mathbb{Z}).$

Note: only Δ and $1 = \overline{E}_4$ are true eigenforms here (both with T_{ℓ} -eigenvalue $1 + \ell$ for $\ell \neq 3$ prime).

But every form in M is a *generalized* eigenform.

2. Density of a mod-p modular form

Definition (Bellaïche)

The **density** $\delta(f)$ of a mod-p modular form $f = \sum_n a_n(f)q^n$ in $M(N, \mathbb{F}_p)$ is the density of the set of primes ℓ with $a_\ell(f) \neq 0$.

Refinement (back to p = 3)

For $i \in \mathbb{F}_3$, let $\delta_i(f)$ be the density of primes ℓ with $a_\ell(f) = i$.

Definition

The density vector of f in M is $\underline{\delta}(f) := (\delta_0(f), \ \delta_1(f), \ \delta_2(f)).$

Example

We have
$$a_{\ell}(\Delta) = 1 + \ell$$
, so $a_{\ell}(\Delta) = \begin{cases} 2 & \text{if } \ell \equiv 1 \pmod{3}, \\ 0 & \text{if } \ell \equiv 2 \pmod{3}. \end{cases}$
Therefore $\delta(\Delta) = \frac{1}{2}$ and $\underline{\delta}(\Delta) = (\frac{1}{2}, 0, \frac{1}{2}).$

More generally, if f is an *eigenform* mod p, its density is "easy":

- Galois representation ρ_f : Gal(Q̄/Q) → GL₂(F̄_ρ), finite image, unramified at most primes ℓ with tr ρ_f(Frob_ℓ) = a_ℓ(f).
- Chebotarev density implies
 δ(f) is proportion of matrices in im ρ_f with nonzero trace.

What about other forms, powers of Δ ? For example, here's Δ^3 :

$$\Delta^3 = \left(\sum_{n\geq 1} \bar{\tau}(n)q^n\right)^3 = \sum_{n\geq 1} \bar{\tau}(n)q^{3n}$$

so $a_{\ell}(\Delta^3) = 0$ for $\ell \neq 3$ prime. More generally, $\delta(\Delta^n) = 0$ whenever $3 \mid n$. So...

4. Density data for Δ^n with $3 \nmid n$ ($\ell < 30$ million)

n		$\underline{\delta}(\Delta^n)$		п		$\underline{\delta}(\Delta^n)$	
1	(1/2,	0,	1/2)	22	(0.66633,	0.16474,	0.16893)
2	(0.66658,	0.16667,	0.16674)	23	(0.66657,	0.16694,	0.16650)
4	(0.66674,	0.33326,	0)	25	(0.66681,	0.16667,	0.16652)
5	(0.66664,	0.16672,	0.16663)	26	(0.66665,	0.16661,	0.16674)
7	(0.66675,	0.22215,	0.11110)	28	(0.66639,	0.16469,	0.16892)
8	(0.66625,	0.16684,	0.16691)	29	(0.66665,	0.16656,	0.16679)
10	(0.77791,	0.11104,	0.11105)	31	(0.66799,	0.16620,	0.16581)
11	(0.66628,	0.16692,	0.16680)	32	(0.66648,	0.16689,	0.16662)
13	(0.66651,	0.18526,	0.14824)	34	(0.66689,	0.16635,	0.16676)
14	(0.66647,	0.16668,	0.16685)	35	(0.66697,	0.16637,	0.16666)
16	(0.66636,	0.16885,	0.16479)	37	(0.66656,	0.16436,	0.16908)
17	(0.66654,	0.16682,	0.16664)	38	(0.66674,	0.16689,	0.16636)
19	(0.66643,	0.16491,	0.16866)	40	(0.66644,	0.16661,	0.16695)
20	(0.66693,	0.16633,	0.16674)	41	(0.66615,	0.16697,	0.16688)

5. Density vector guesses for Δ^n with $3 \nmid n$

n		$\underline{\delta}(\Delta^n)$		n	${\underline{\delta}}(\Delta^n)$
1	(1/2,	0,	1/2)	 22	(2/3, 1/6, 1/6)
2	(2/3,	1/6,	1/6)	23	(2/3, 1/6, 1/6)
4	(2/3,	1/3,	0)	25	(2/3, 1/6, 1/6)
5	(2/3,	1/6,	1/6)	26	(2/3, 1/6, 1/6)
7	(2/3,	2/9,	1/9)	28	(2/3, 1/6, 1/6)
8	(2/3,	1/6,	1/6)	29	(2/3, 1/6, 1/6)
10	(7/9,	1/9,	1/9)	31	(2/3, 1/6, 1/6)
11	(2/3,	1/6,	1/6)	32	(2/3, 1/6, 1/6)
13	(2/3,	? 5/27,	? 4/27)	34	(2/3, 1/6, 1/6)
14	(2/3,	1/6,	1/6)	35	(2/3, 1/6, 1/6)
16	(2/3,	1/6,	1/6)	37	(2/3, 1/6, 1/6)
17	(2/3,	1/6,	1/6)	38	(2/3, 1/6, 1/6)
19	(2/3,	1/6,	1/6)	40	(2/3, 1/6, 1/6)
20	(2/3,	1/6,	1/6)	41	(2/3, 1/6, 1/6)
		2			

Further: $\underline{\delta}(\Delta^n) \stackrel{!}{=} (2/3, 1/6, 1/6)$ for 13 < n < 5000 with $3 \nmid n$.

Let A be the closed \mathbb{F}_3 -subalgebra of $\operatorname{End}_{\mathbb{F}_3}(M)$ generated by the action on M of the Hecke operators T_m for $3 \nmid m$ prime.

• A is complete noetherian local ring in continuous duality with $K := \mathbb{F}_3 \langle \Delta^n : 3 \nmid n \rangle = \ker(U_3 | M)$ via standard perfect pairing

$$A \times K \to \mathbb{F}_3$$
 $(T, f) \mapsto a_1(Tf).$

Theorem (M., 2015)

 $\textit{Map } \mathbb{F}_3[\![x,y]\!] \twoheadrightarrow \textit{A with } x \mapsto \textit{T}_2 \textit{ and } y \mapsto 1 + \textit{T}_7 \textit{ is isomorphism}.$

 A carries a dim-2 pseudorepresentation of G_Q := Gal(Q
/Q) t : G_Q → A unramified at primes ℓ ≠ 3 and satisfying t(Frob_ℓ) = T_ℓ.

7. Bellaïche's formalism: Galois pseudorep. + Chebotarev

► For *f* in *K* the pseudorep. factors through finite L_f/\mathbb{Q} :

$$t_f: G_f := \operatorname{Gal}(L_f/\mathbb{Q}) \to A_f := A/\operatorname{ann}(f),$$

still with $t_f(\operatorname{Frob}_{\ell}) = T_{\ell}$ for primes $\ell \neq 3$.

- ► $a_{\ell}(f) = a_1(T_{\ell}f) = a_1(t_f(\operatorname{Frob}_{\ell})f)$ determined by $\operatorname{Frob}_{\ell}$ in G_f .
- Hence set P_i(f) = {ℓ prime : a_ℓ(f) = i} is frobenian and its density δ_i(f) is rational with denominator dividing [L_f : ℚ].

Example $(f = \Delta^2)$ (Recall $x = T_2$, $y = 1 + T_7$, $A = \mathbb{F}_3[\![x, y]\!]$)

We have $x\Delta^2 = \Delta$ and $y\Delta^2 = 0$, so $A_f = \mathbb{F}_3[x]/(x^2)$.

Can show:
$$L_f = \mathbb{Q}(\mu_9)$$
 so that $G_f \simeq (\mathbb{Z}/9\mathbb{Z})^{\times} \simeq \mathbb{F}_3^{\times} \times \mathbb{F}_3$; and
 $t_f = (1 + \alpha x) + \omega(1 - \alpha x),$

with $\omega : G_f \twoheadrightarrow \mathbb{F}_3^{\times} \mod 3$ cyclotomic and $\alpha : G_f \twoheadrightarrow \mathbb{F}_3$ additive. Upshot: $\underline{\delta}(\Delta^2) = (2/3, 1/6, 1/6).$ A form f in K is abelian or dihedral if L_f/\mathbb{Q} is as a field extension.

Theorem (M.) (Recall $x = T_2$, $y = 1 + T_7$, $A = \mathbb{F}_3[x, y]$)

Form f is abelian \iff f is annihilated by ideal of A generated by $y - P_{\beta}(x^2) + 2 = y - x^2 - x^{10} + x^{12} + O(x^{14}),$ where $\beta = \log_3 7 / \log_3 4$ and $P_{\beta}(Z + Z^{-1} - 2) = Z^{\beta} + Z^{-\beta}.$

Hence there are very few abelian forms! Space of abelian forms has basis $\{ab_n\}_{n\geq 0}$ with $x \cdot ab_n = ab_{n-1}$ and $y^n \cdot ab_n = 0$:

$$\begin{array}{ll} \mathrm{ab}_0=\Delta, & \mathrm{ab}_1=\Delta^2, & \mathrm{ab}_2=-\Delta^4,\\ \mathrm{ab}_3=-\Delta^5, & \mathrm{ab}_4=\Delta^{10}, & \mathrm{ab}_5=\Delta^{11}+\Delta^8+\Delta^5. \end{array}$$

(Conjecture: Δ^n is abelian only if n = 1, 2, 4, 5, 10.)

9. Density of abelian forms

Let k be the number of digits of n base 3, with z the number of 0s and u the number of 1s. Let $v = v_3(n)$ be the 3-valuation of n.

Theorem (M.)

$$\delta(ab_n) = \begin{cases} \frac{2^u \, 3^z}{2 \cdot 3^k} & \text{if last nonzero digit of } n \text{ base 3 is 1,} \\ \frac{2^u \, (3^z + 3^{z-v})}{2 \cdot 3^k} & \text{if last nonzero digit of } n \text{ base 3 is 2.} \end{cases}$$

Moreover, $\delta_1(ab_n) = \delta_2(ab_n)$ unless $u = 0$, in which case
 $\delta_1(ab_n) = \frac{2 \cdot 3^{z-v}}{2 \cdot 3^k}, \qquad \delta_2(ab_n) = \frac{3^z - 3^{z-v}}{2 \cdot 3^k}.$

Theorem proves $\underline{\delta}(\Delta^4)$, $\underline{\delta}(\Delta^5)$, $\underline{\delta}(\Delta^{10})$ are as expected.

Note: $\delta(ab_n)$ may tend to zero! Say, for $n = [2 \cdots 2]_3 = 3^k - 1$.

10. Dihedral forms: similar story

- All dihedral forms are $\mathbb{Q}(\mu_3)$ -dihedral.
- Dihedral forms are precisely the ones annihilated by $x = T_2$.
- ▶ Not too many dihedral forms: basis for space ${\dim_n}_{n\geq 0}$ with $y \cdot \dim_n = \dim_{n-1}$.

• Examples:
$$\operatorname{dih}_0 = \Delta$$
, $\operatorname{dih}_1 = 2\Delta^{10} + \Delta^7$,
 $\operatorname{dih}_2 = \Delta^{28} + \Delta^{19} + 2\Delta^{16} + \Delta^{13}$.

- Dihedral forms all contained in $K^1 := \mathbb{F}_3 \langle \Delta^n : n \equiv 1 \mod 3 \rangle$.
- Theorem (M.): Δ^n in K is dihedral only for n = 1.
- Theorem (M.): formula for $\underline{\delta}(dih_n)$ depending on *n* base 3.

Density of a dihedral form may get arbitrarily close to 0.

In contrast, we expect $\delta(f)$ to be uniformly bounded away from 0 if f is not in the span of abelian and dihedral forms.

Theorem (M.)

For $n \equiv 2 \mod 3$, if Δ^n is not abelian, then $\underline{\delta}(f) = (\frac{2}{3}, \frac{1}{6}, \frac{1}{6})$. (More generally, true for any f in $K^2 := \mathbb{F}_3(\Delta^n : n \equiv 2 \mod 3)$.)

The space $K = K^1 \oplus K^2$ has a $(\mathbb{Z}/3\mathbb{Z})^{\times}$ -grading: for $f \in K^i$ we have $a_n(f) = 0$ unless $n \equiv i \mod 3$. If $3 \nmid n$, then Δ^n is in K^n .

In other words, the theorem is a true equidistribution statement!

12. Data again!

n		$\underline{\delta}(\Delta^n)$		n	${\underline{\delta}}(\Delta^n)$
1	(1/2,	0,	1/2)	 22	(2/3, 1/6, 1/6)
2	(2/3,	1/6,	1/6)	23	(2/3, 1/6, 1/6)
4	(2/3,	1/3,	0)	25	(2/3, 1/6, 1/6)
5	(2/3,	1/6,	1/6)	26	(2/3, 1/6, 1/6)
7	(2/3,	2/9,	1/9)	28	(2/3, 1/6, 1/6)
8	(2/3,	1/6,	1/6)	29	(2/3, 1/6, 1/6)
10	(7/9,	1/9,	1/9)	31	(2/3, 1/6, 1/6)
11	(2/3,	1/6,	1/6)	32	(2/3, 1/6, 1/6)
13	(2/3,	? 5/27,	? 4/27)	34	(2/3, 1/6, 1/6)
14	(2/3,	1/6,	1/6)	35	(2/3, 1/6, 1/6)
16	(2/3,	1/6,	1/6)	37	(2/3, 1/6, 1/6)
17	(2/3,	1/6,	1/6)	38	(2/3, 1/6, 1/6)
19	(2/3,	1/6,	1/6)	40	(2/3, 1/6, 1/6)
20	(2/3,	1/6,	1/6)	41	(2/3, 1/6, 1/6)

Blue/red are conjectural from computations; black are proved.