Densities of a mod- p modular form

Anna Medvedovsky

```
https://math.bu.edu/people/medved/
```

Boston University
2023 JMM / AMS Special Session on
Arithmetic geometry informed by computation I
January 4, 2023

1. Modular forms of level one modulo 3

$$
M:=M\left(1, \mathbb{F}_{3}\right):=\sum_{k} M_{k}\left(1, \mathbb{F}_{3}\right) \subseteq \mathbb{F}_{3} \llbracket q \rrbracket
$$

$=$ space of mod- 3 modular forms of level 1 and any even weight $k \geq 0$

$$
=\mathbb{F}_{3}[\Delta],
$$

where

$$
\Delta=q+q^{4}+2 q^{7}+2 q^{13}+q^{16}+2 q^{19}+\cdots \in \mathbb{F}_{3} \llbracket q \rrbracket
$$

is the image of $\quad q \prod_{n}\left(1-q^{n}\right)^{24} \in S_{12}(1, \mathbb{Z})$.
Note: only Δ and $1=\bar{E}_{4}$ are true eigenforms here

But every form in M is a generalized eigenform.

2. Density of a mod- p modular form

Definition (Bellaïche)

The density $\delta(f)$ of a mod- p modular form $f=\sum_{n} a_{n}(f) q^{n}$ in $M\left(N, \mathbb{F}_{p}\right)$ is the density of the set of primes ℓ with $a_{\ell}(f) \neq 0$.

Refinement (back to $p=3$)
For $i \in \mathbb{F}_{3}$, let $\delta_{i}(f)$ be the density of primes ℓ with $a_{\ell}(f)=i$.

Definition

The density vector of f in M is $\underline{\boldsymbol{\delta}}(f):=\left(\delta_{0}(f), \delta_{1}(f), \delta_{2}(f)\right)$.

Example

We have $a_{\ell}(\Delta)=1+\ell$, so $a_{\ell}(\Delta)= \begin{cases}2 & \text { if } \ell \equiv 1(\bmod 3), \\ 0 & \text { if } \ell \equiv 2(\bmod 3) \text {. }\end{cases}$
Therefore $\delta(\Delta)=\frac{1}{2}$ and $\underline{\delta}(\Delta)=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.

3. Density of eigenforms is not difficult!

More generally, if f is an eigenform mod p, its density is "easy":

- Galois representation $\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$, finite image, unramified at most primes ℓ with $\operatorname{tr} \rho_{f}\left(\operatorname{Frob}_{\ell}\right)=a_{\ell}(f)$.
- Chebotarev density implies $\delta(f)$ is proportion of matrices in $\operatorname{im} \rho_{f}$ with nonzero trace.

What about other forms, powers of Δ ? For example, here's Δ^{3} :

$$
\Delta^{3}=\left(\sum_{n \geq 1} \bar{\tau}(n) q^{n}\right)^{3}=\sum_{n \geq 1} \bar{\tau}(n) q^{3 n}
$$

so $a_{\ell}\left(\Delta^{3}\right)=0$ for $\ell \neq 3$ prime.
More generally, $\delta\left(\Delta^{n}\right)=0$ whenever $3 \mid n$. So...

4. Density data for Δ^{n} with $3 \nmid n \quad(\ell<30$ million $)$

n	$\underline{\delta}\left(\Delta^{n}\right)$			n	$\underline{\delta}\left(\Delta^{n}\right)$		
1	(1/2,	0 ,	1/2)	22	(0.66633	0.164	0.16893)
2	(0.66658,	0.16667 ,	$0.16674)$	23	(0.66657	0.16694	0.16650)
4	(0.66674,	0.33326,	0)	25	(0.6668	0.166	0.16652)
5	(0.66664,	0.16672,	0.16663)	26	(0.66665	0.166	$0.16674)$
7	(0.66675,	0.22215 ,	0.11110)	28	(0.66639	0.16469	0.16892)
8	(0.66625,	0.16684 ,	0.16691)	29	(0.66665	0.16656	0.16679)
10	(0.77791,	0.11104 ,	0.11105)	31	(0.6679	0.166	0.16581)
11	(0.66628,	0.16692,	0.16680)	32	(0.6664	0.166	0.16662)
13	(0.66651,	0.18526,	0.14824)	34	(0.66689	0.16635	0.16676)
14	(0.66647,	0.16668,	0.16685)	35	(0.6669	0.16637	$0.16666)$
16	(0.66636,	0.16885 ,	0.16479)	37	(0.66656	0.16436	0.16908)
17	(0.66654,	0.16682,	$0.16664)$	38	(0.66674	0.16689	0.16636)
19	(0.66643,	0.16491,	0.16866)	40	(0.6664	0.1666	$0.16695)$
20	(0.66693,	0.16633,	$0.16674)$	41	(0.66615	0.16697	0.16688)

5. Density vector guesses for Δ^{n} with $3 \nmid n$

n	$\underline{\delta}\left(\Delta^{n}\right)$			n	$\underline{\delta}\left(\Delta^{n}\right)$
1	(1/2,	0,	1/2)	22	(2/3, 1/6, 1/6)
2	(2/3,	$1 / 6$,	1/6)	23	(2/3, 1/6, 1/6)
4	(2/3,	$1 / 3$,	0)	25	(2/3, 1/6, 1/6)
5	(2/3,	1/6,	1/6)	26	(2/3, 1/6, 1/6)
7	(2/3,	2/9,	1/9)	28	(2/3, 1/6, 1/6)
8	(2/3,	1/6,	1/6)	29	(2/3, 1/6, 1/6)
10	(7/9,	1/9,	1/9)	31	(2/3, 1/6, 1/6)
11	(2/3,	1/6,	1/6)	32	(2/3, 1/6, 1/6)
13	(2/3,	? 5/27,	? 4/27)	34	(2/3, 1/6, 1/6)
14	(2/3,	1/6,	1/6)	35	(2/3, 1/6, 1/6)
16	(2/3,	$1 / 6$,	1/6)	37	(2/3, 1/6, 1/6)
17	(2/3,	1/6,	1/6)	38	(2/3, 1/6, 1/6)
19	(2/3,	1/6,	1/6)	40	(2/3, 1/6, 1/6)
20	(2/3,	1/6,	1/6)	41	(2/3, 1/6, 1/6)

Further: $\underline{\delta}\left(\Delta^{n}\right) \stackrel{?}{\stackrel{?}{2}}(2 / 3,1 / 6,1 / 6)$ for $13<n<5000$ with $3 \nmid n$.

6. The pseudorepresentation on the Hecke algebra

Let A be the closed \mathbb{F}_{3}-subalgebra of $\operatorname{End}_{\mathbb{F}_{3}}(M)$ generated by the action on M of the Hecke operators T_{m} for $3 \nmid m$ prime.

- A is complete noetherian local ring in continuous duality with $K:=\mathbb{F}_{3}\left\langle\Delta^{n}: 3 \nmid n\right\rangle=\operatorname{ker}\left(U_{3} \mid M\right)$ via standard perfect pairing

$$
A \times K \rightarrow \mathbb{F}_{3} \quad(T, f) \mapsto a_{1}(T f)
$$

Theorem (M., 2015)

Map $\mathbb{F}_{3} \llbracket x, y \rrbracket \rightarrow A$ with $x \mapsto T_{2}$ and $y \mapsto 1+T_{7}$ is isomorphism.

- A carries a dim-2 pseudorepresentation of $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
t: G_{\mathbb{Q}} \rightarrow A
$$

unramified at primes $\ell \neq 3$ and satisfying $t\left(\operatorname{Frob}_{\ell}\right)=T_{\ell}$.

7. Bellaïche's formalism: Galois pseudorep. + Chebotarev

- For f in K the pseudorep. factors through finite L_{f} / \mathbb{Q} :

$$
t_{f}: G_{f}:=\operatorname{Gal}\left(L_{f} / \mathbb{Q}\right) \rightarrow A_{f}:=A / \operatorname{ann}(f),
$$

still with $t_{f}\left(\right.$ Frob $\left._{\ell}\right)=T_{\ell}$ for primes $\ell \neq 3$.

- $a_{\ell}(f)=a_{1}\left(T_{\ell} f\right)=a_{1}\left(t_{f}\left(\right.\right.$ Frob $\left.\left._{\ell}\right) f\right)$ determined by Frob ${ }_{\ell}$ in G_{f}.
- Hence set $\mathcal{P}_{i}(f)=\left\{\ell\right.$ prime : $\left.a_{\ell}(f)=i\right\}$ is frobenian and its density $\delta_{i}(f)$ is rational with denominator dividing $\left[L_{f}: \mathbb{Q}\right]$.
Example $\left(f=\Delta^{2}\right) \quad\left(\right.$ Recall $\left.x=T_{2}, y=1+T_{7}, A=\mathbb{F}_{3} \llbracket x, y \rrbracket\right)$
We have $x \Delta^{2}=\Delta$ and $y \Delta^{2}=0$, so $A_{f}=\mathbb{F}_{3}[x] /\left(x^{2}\right)$.
Can show: $L_{f}=\mathbb{Q}\left(\mu_{9}\right)$ so that $G_{f} \simeq(\mathbb{Z} / 9 \mathbb{Z})^{\times} \simeq \mathbb{F}_{3}^{\times} \times \mathbb{F}_{3}$; and

$$
t_{f}=(1+\alpha x)+\omega(1-\alpha x)
$$

with $\omega: G_{f} \rightarrow \mathbb{F}_{3}^{\times}$mod-3 cyclotomic and $\alpha: G_{f} \rightarrow \mathbb{F}_{3}$ additive. Upshot:

$$
\underline{\delta}\left(\Delta^{2}\right)=(2 / 3,1 / 6,1 / 6)
$$

8. Abelian forms

A form f in K is abelian or dihedral if L_{f} / \mathbb{Q} is as a field extension.

Theorem (M.)

 $\left(\right.$ Recall $\left.x=T_{2}, y=1+T_{7}, A=\mathbb{F}_{3} \llbracket x, y \rrbracket\right)$Form f is abelian $\Longleftrightarrow f$ is annihilated by ideal of A generated by

$$
y-P_{\beta}\left(x^{2}\right)+2=y-x^{2}-x^{10}+x^{12}+O\left(x^{14}\right)
$$

where $\beta=\log _{3} 7 / \log _{3} 4$ and $P_{\beta}\left(Z+Z^{-1}-2\right)=Z^{\beta}+Z^{-\beta}$.
Hence there are very few abelian forms! Space of abelian forms has basis $\left\{\mathrm{ab}_{n}\right\}_{n \geq 0}$ with $x \cdot \mathrm{ab}_{n}=\mathrm{ab}_{n-1}$ and $y^{n} \cdot \mathrm{ab}_{n}=0$:

$$
\begin{array}{ll}
\mathrm{ab}_{0}=\Delta, & a b_{1}=\Delta^{2},
\end{array} \quad a b_{2}=-\Delta^{4}, ~ 子 \Delta^{5}, \quad a b_{4}=\Delta^{10}, \quad a b_{5}=\Delta^{11}+\Delta^{8}+\Delta^{5} . ~ l a b_{3}=-\Delta^{5},
$$

(Conjecture: Δ^{n} is abelian only if $n=1,2,4,5,10$.)

9. Density of abelian forms

Let k be the number of digits of n base 3 , with z the number of 0 s and u the number of 1 s . Let $v=v_{3}(n)$ be the 3 -valuation of n.

Theorem (M.)

$\delta\left(\mathrm{ab}_{n}\right)= \begin{cases}\frac{2^{u} 3^{z}}{2 \cdot 3^{k}} & \text { if last nonzero digit of } n \text { base } 3 \text { is } 1, \\ \frac{2^{u}\left(3^{z}+3^{z-v}\right)}{2 \cdot 3^{k}} & \text { if last nonzero digit of } n \text { base } 3 \text { is } 2 .\end{cases}$
Moreover, $\delta_{1}\left(\mathrm{ab}_{n}\right)=\delta_{2}\left(\mathrm{ab}_{n}\right)$ unless $u=0$, in which case

$$
\delta_{1}\left(\mathrm{ab}_{n}\right)=\frac{2 \cdot 3^{z-v}}{2 \cdot 3^{k}}, \quad \delta_{2}\left(\mathrm{ab}_{n}\right)=\frac{3^{z}-3^{z-v}}{2 \cdot 3^{k}} .
$$

Theorem proves $\underline{\delta}\left(\Delta^{4}\right), \underline{\delta}\left(\Delta^{5}\right), \underline{\delta}\left(\Delta^{10}\right)$ are as expected.
Note: $\delta\left(\mathrm{ab}_{n}\right)$ may tend to zero! Say, for $n=[\underbrace{2 \cdots 2}_{k \text { times }}]_{3}=3^{k}-1$.

10. Dihedral forms: similar story

- All dihedral forms are $\mathbb{Q}\left(\mu_{3}\right)$-dihedral.
- Dihedral forms are precisely the ones annihilated by $x=T_{2}$.
- Not too many dihedral forms: basis for space $\left\{\operatorname{dih}_{n}\right\}_{n \geq 0}$ with $y \cdot \operatorname{dih}_{n}=\operatorname{dih}_{n-1}$.
- Examples: $\operatorname{dih}_{0}=\Delta, \operatorname{dih}_{1}=2 \Delta^{10}+\Delta^{7}$,

$$
\operatorname{dih}_{2}=\Delta^{28}+\Delta^{19}+2 \Delta^{16}+\Delta^{13}
$$

- Dihedral forms all contained in $K^{1}:=\mathbb{F}_{3}\left\langle\Delta^{n}: n \equiv 1 \bmod 3\right\rangle$.
- Theorem (M.): Δ^{n} in K is dihedral only for $n=1$.
- Theorem (M.): formula for $\underline{\delta}\left(\operatorname{dih}_{n}\right)$ depending on n base 3 .
- Density of a dihedral form may get arbitrarily close to 0 .

11. Generic forms

In contrast, we expect $\delta(f)$ to be uniformly bounded away from 0 if f is not in the span of abelian and dihedral forms.

Theorem (M.)

For $n \equiv 2 \bmod 3$, if Δ^{n} is not abelian, then $\underline{\delta}(f)=\left(\frac{2}{3}, \frac{1}{6}, \frac{1}{6}\right)$. (More generally, true for any f in $K^{2}:=\mathbb{F}_{3}\left\langle\Delta^{n}: n \equiv 2 \bmod 3\right\rangle$.)

The space $K=K^{1} \oplus K^{2}$ has a $(\mathbb{Z} / 3 \mathbb{Z})^{\times}$-grading: for $f \in K^{i}$ we have $a_{n}(f)=0$ unless $n \equiv i \bmod 3$. If $3 \nmid n$, then Δ^{n} is in K^{n}.

In other words, the theorem is a true equidistribution statement!

12. Data again!

n	$\underline{\delta}\left(\Delta^{n}\right)$			n	$\underline{\delta}\left(\Delta^{n}\right)$
1	(1/2,	0	1/2)	22	(2/3, 1/6, 1/6)
2	(2/3,	1/6	1/6)	23	(2/3, 1/6, 1/6)
4	(2/3,	$1 / 3$	0)	25	(2/3, 1/6, 1/6)
5	(2/3,	1/6	1/6)	26	(2/3, 1/6, 1/6)
7	(2/3,	2/9	1/9)	28	(2/3, 1/6, 1/6)
8	(2/3,	1/6	1/6)	29	(2/3, 1/6, 1/6)
10	(7/9,	1/9	1/9)	31	(2/3, 1/6, 1/6)
11	(2/3,	1/6	1/6)	32	(2/3, 1/6, 1/6)
13	(2/3,	? 5/27	? 4/27)	34	(2/3, 1/6, 1/6)
14	(2/3,	1/6	1/6)	35	(2/3, 1/6, 1/6)
16	(2/3,	1/6	1/6)	37	(2/3, 1/6, 1/6)
17	(2/3,	1/6	1/6)	38	(2/3, 1/6, 1/6)
19	(2/3,	$1 / 6$	1/6)	40	(2/3, 1/6, 1/6)
20	(2/3,	1/6	1/6)	41	(2/3, 1/6, 1/6)

Blue/red are conjectural from computations; black are proved.

