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1. Modular forms of level p

Fix a prime p ≥ 5. (Can also add tame level N, omitted here.)

Sk(p) := space of cusp forms of weight k and level Γ0(p)

dk := dimSk(p)

Dimension formulas means dk is well known.

In particular, dk grows linearly in k:

dk ∼
(p + 1)k

12
as k →∞.



2. Atkin-Lehner operator Wp splits Sk(p)

The Atkin-Lehner operator Wp is an involution that acts on Sk . So

Sk(p) = Sk(p)
+ ⊕ Sk(p)

−,

where Wp acts as +1 on Sk(p)
+ and as −1 on Sk(p)

−.

▶ What is the split in dimension?

Let d±
k := dimSk(p)

±. Since dk is known, study

∆k := d+
k − d−

k .

Note: ∆k = Tr
(
Wp|Sk(p)

)
.



3. Data!

p = 5

k d+
k d−

k

2 0 0
4 1 0
6 0 1
8 2 1
10 1 2
12 3 2
14 2 3
16 4 3
18 3 4
20 5 4
22 4 5
24 6 5
26 5 6

∆k = ±1

p = 23

k d+
k d−

k

2 0 2
4 4 1
6 3 6
8 8 5
10 7 10
12 12 9
14 11 14
16 16 13
18 15 18
20 20 17
22 19 22
24 24 21
26 23 26

∆k = ±3

p = 101

k d+
k d−

k

2 1 7
4 16 9
6 17 24
8 33 26
10 34 41
12 50 43
14 51 58
16 67 60
18 68 75
20 84 77
22 85 92
24 101 94
26 102 109

∆k = ±7



4. |∆k | is basically a class number!

Theorem (Fricke, Yamauchi, Helfgott, Wakatsuki, Martin...)

∆k = (−1)k/2#FP

2 (correction if k = 2∗: add 1)

▶ Here #FP is the number of fixed points of the geometric
Atkin-Lehner involution on the modular curve X0(p).

▶ The moduli interpretation for X0(p) relates this number to
elliptic curves with CM by

√
−p.

▶ So #FP =

{
h
(
Q(
√
−p)

)
if p ≡ 1 mod 4,

h
(
Q(
√
−p)

)
+ h

(
Z[
√
−p]

)
if p ≡ 3 mod 4.

Example: For p = 5, h
(
Q(
√
−p)

)
= 2 and ∆k = ±1.

For p = 101, h
(
Q(
√
−p)

)
= 14 and ∆k = ±7.

Corollary

∆k+2 = −∆k for k ≥ 2∗



5. Refine for congruences between modular forms

(Work with Qp or Qp coefficients here.)

Spaces Sk(p) have action of Hecke operators. Here suffices to
consider Tℓ for ℓ ̸= p. Can find basis of eigenforms for Tℓ.

Eigenvalues of Tℓ are algebraic integers, so consider them mod p.
Systems of mod-p Hecke eigenvalues τ correspond to Galois
representations ρτ : GQ → GL2(Fp), with τ(ℓ) = Tr ρτ (Frobℓ). Set

Sk(p)τ := span of eigenforms with mod-p Hecke eigensystem τ .

The Atkin-Lehner involution Wp commutes with the Tℓ, so again

Sk(p)τ = Sk(p)
+
τ ⊕ Sk(p)

−
τ .

with corresponding dimensions

dk,τ = d+
k,τ + d−

k,τ .

Again dk,τ grows linearly with k (Jochnowitz, Bergdall-Pollack); set

∆k,τ := d+
k,τ − d−

k,τ .



6. Twisting!

The Hecke eigensystem τ can only appear in weight k if
det ρτ = ωk−1, where ω is the mod-p cyclotomic character.

In other words, τ determines k modulo p − 1.

But we can move between weights by the θ operator: τ becomes
τ [1] with τ [1](ℓ) = ℓτ(ℓ). On the Galois side, this is twisting by ω.

If τ can appear in weight k, then

τ [1]←→ ρτ ⊗ ω can appear in weight k + 2

τ [2]←→ ρτ ⊗ ω2 can appear in weight k + 4

· · ·
τ [ p−1

2
]←→ ρτ ⊗

(
·
p

)
can appear in weight k + (p − 1), or in weight k

· · ·
τ [p−1]←→ ρτ can appear in weight k + 2(p − 1), or in weight k



7. More data!

p = 5,N = 23 Dimension splits (d+
k,τ , d−

k,τ ) in weight k for τ .

k
∖
τ σ σ[1] σ[2] σ[3]

2 (3, 2) — (0, 0) —

4 — (2, 3) — (0, 0)

6 (5, 5) — (3, 2) —

8 — (5, 5) — (2, 3)

10 (8, 7) — (5, 5) —

12 — (7, 8) — (5, 5)

14 (10, 10) — (8, 7) —

16 — (10, 10) — (7, 8)

18 (13, 12) — (10, 10) —

20 — (12, 13) — (10, 10)

22 (15, 15) — (13, 12) —

24 — (15, 15) — (12, 13)



8. First main result

Theorem (Anni–Ghitza–M.) (Recall p ≥ 5; tame level N ok)

∆k+2,τ [1] = −∆k,τ for k ≥ 2∗

Theorem follows from an up-to-semisimplification isomorphism
between two mod-p Hecke modules.

Which mod-p Hecke modules?
Space Sk−p+1(Np,Fp) embeds into Sk(Np,Fp) in a Hecke
equivariant way by multiplication by Hasse invariant Ep−1.

Corresponding graded module is Wk(Np).

▶ (Jochnowitz, Serre, Robert) Wk+p+1(N) ≃Wk(N)[1]

▶ (Bergdall–Pollack, AGM) Wk+2(Np)
ss ≃Wk(Np)[1]

ss



9. Second main result

We construct a refinement of Wk(Np): given two signs ε, η, define

Wk(Np)
ε,η := Sk(Np,Fp)

ε/Sk−p+1(Np,Fp)
η.

Theorem (Anni–Ghitza–M.)

For any k ≥ (p + 1)∗ and any signs ε, η in {±1}, we have

W ε,η
k+2(Np)

ss ≃W−ε,−η
k (Np)[1]ss.

Technical details

Define Sk(Np,Fp)
± :=

(
Sk(Np,Zp) ∩ Sk(Np,Qp)

±)⊗ Fp. Then

Sk−p+1(Np,Fp)
η embeds into Sk(Np,Fp)

ε by multiplication by the

Atkin-Lehner “stabilization” E
ε/η
p−1 of Ep−1, where

E±
p−1 := Ep−1 ± p(p−1)/2Ep−1(pz).



10. Method of proof: algebra lemma + trace formula

To establish isomorphism of semisimplified mod-p Hecke modules,
we develop new technique: deeper congruences with trace formula.

Lemma (AGM; refines Brauer–Nesbitt for Zp[T ])

Let M, N be rank-d free Zp-modules with linear action of T . Then

Mss ≃ Nss ⇐⇒ Tr(T n | M) ≡ Tr(T n | N) mod p1+vp(n)

for every 1 ≤ n ≤ d . Here p can be any prime!

Here Mss is the semisimplification of Fp[T ]-module M ⊗ Fp.

Example (of Goldilocks titration)

Set M := Z⊕p
p with T acting by α ∈ Zp, so Tr(T n|M) = pαn.

▶ Knowing pαn in Zp identifies α in Zp — too much!

▶ Knowing pαn = 0 in Fp tells us nothing — too little!

▶ But pαp mod p2 identifies αp (and so α) mod p — just right!



11. Remarks about main theorem

Recall main theorem.

Theorem (AGM)

∆k+2,τ [1] = −∆k,τ for k ≥ 2∗

Remarks

▶ As a corollary, uneven splits always come from weight 2.

▶ Quite generally, uneven splits come from p-new forms
(p-old forms always come in ± Atkin-Lehner pairs).

▶ No τ can appear p-newly in weight 2 with both ± signs.

(In weight k a p-new form has ap = ±p
k−2
2 , with the sign

determined by the Atkin-Lehner eigenvalue. Therefore in
weight 2 we can see the sign mod p from ap = ±1.)

▶ Thus ∆k,τ = 0 unless τ [2−k
2 ] appears p-newly in weight 2.



12. Even more data!

p = 5, N = 23 Up to twist, there are 7 Galois orbits of eigensystems that appear.

k
∖
τ e e[2] σ σ[2] t t[2] s s[2]

f , f [2]
g , g [2]
h, h[2]

2 (0, 0)(0, 0) (3, 2) (0, 0) (2, 0)(0, 0) (0, 1)(0, 0) (0, 0)
4 (2, 1)(0, 0) (2, 3) (0, 0) (0, 2)(0, 0) (1, 0)(0, 0) (1, 1)
6 (1, 2)(1, 1) (3, 2) (5, 5) (2, 0)(2, 2) (0, 1)(1, 1) (1, 1)
8 (2, 1)(3, 3) (2, 3) (5, 5) (0, 2)(2, 2) (1, 0)(1, 1) (2, 2)
10 (2, 3)(3, 3) (8, 7) (5, 5) (4, 2)(2, 2) (1, 2)(1, 1) (2, 2)
12 (5, 4)(3, 3) (7, 8) (5, 5) (2, 4)(2, 2) (2, 1)(1, 1) (3, 3)
14 (4, 5)(4, 4) (8, 7) (10, 10) (4, 2)(4, 4) (1, 2)(2, 2) (3, 3)
16 (5, 4)(6, 6) (7, 8) (10, 10) (2, 4)(4, 4) (2, 1)(2, 2) (4, 4)
18 (5, 6)(6, 6) (13, 12)(10, 10) (6, 4)(4, 4) (2, 3)(2, 2) (4, 4)
20 (8, 7)(6, 6) (12, 13)(10, 10) (4, 6)(4, 4) (3, 2)(2, 2) (5, 5)

▶ e is the Eisenstein eigensystem in weight 2: e(ℓ) = 1 + ℓ
▶ s is a F54-Galois orbit of 4 eigensystems; h is an F53-orbit of 3 eigensystems
▶ σ has Serre weight 2 (peu ramifié); t and s have Serre weight 6 (très ramifié);

f , g , h have Serre weight 4


