Counting modular forms with fixed mod- p

Galois representation and
 Atkin-Lehner-at- p eigenvalue

Anna Medvedovsky
(Joint with Samuele Anni and Alexandru Ghitza)
https://math.bu.edu/people/medved/
Boston University
$$
2023 \text { JMM }
$$

AMS Special Session on Women in Automorphic Forms I
January 6, 2023

1. Modular forms of level p

Fix a prime $p \geq 5$. (Can also add tame level N, omitted here.)

$$
\begin{aligned}
S_{k}(p) & :=\text { space of cusp forms of weight } k \text { and level } \Gamma_{0}(p) \\
d_{k} & :=\operatorname{dim} S_{k}(p)
\end{aligned}
$$

Dimension formulas means d_{k} is well known.
In particular, d_{k} grows linearly in k :

$$
d_{k} \sim \frac{(p+1) k}{12} \text { as } k \rightarrow \infty
$$

2. Atkin-Lehner operator W_{p} splits $S_{k}(p)$

The Atkin-Lehner operator W_{p} is an involution that acts on S_{k}. So

$$
S_{k}(p)=S_{k}(p)^{+} \oplus S_{k}(p)^{-}
$$

where W_{p} acts as +1 on $S_{k}(p)^{+}$and as -1 on $S_{k}(p)^{-}$.

- What is the split in dimension?

Let $d_{k}^{ \pm}:=\operatorname{dim} S_{k}(p)^{ \pm}$. Since d_{k} is known, study

$$
\Delta_{k}:=d_{k}^{+}-d_{k}^{-}
$$

Note: $\Delta_{k}=\operatorname{Tr}\left(W_{p} \mid S_{k}(p)\right)$.

3. Data!

$p=5$

k	d_{k}^{+}	d_{k}^{-}
2	0	0
4	1	0
6	0	1
8	2	1
10	1	2
12	3	2
14	2	3
16	4	3
18	3	4
20	5	4
22	4	5
24	6	5
26	5	6

$$
\Delta_{k}= \pm 1
$$

$$
p=23
$$

$$
p=101
$$

k	d_{k}^{+}	d_{k}^{-}
2	0	2
4	4	1
6	3	6
8	8	5
10	7	10
12	12	9
14	11	14
16	16	13
18	15	18
20	20	17
22	19	22
24	24	21
26	23	26

$\Delta_{k}= \pm 3$

	d_{k}^{+}	d_{k}^{-}
2	1	7
4	16	9
6	17	24
8	33	26
10	34	41
12	50	43
14	51	58
16	67	60
18	68	75
20	84	77
22	85	92
24	101	94
26	102	109

$\Delta_{k}= \pm 7$

4. $\left|\Delta_{k}\right|$ is basically a class number!

Theorem (Fricke, Yamauchi, Helfgott, Wakatsuki, Martin...)

$$
\Delta_{k}=(-1)^{k / 2} \frac{\# \mathrm{FP}}{2}
$$

- Here \#FP is the number of fixed points of the geometric Atkin-Lehner involution on the modular curve $X_{0}(p)$.
- The moduli interpretation for $X_{0}(p)$ relates this number to elliptic curves with CM by $\sqrt{-p}$.
- So $\# \mathrm{FP}= \begin{cases}h(\mathbb{Q}(\sqrt{-p})) & \text { if } p \equiv 1 \bmod 4, \\ h(\mathbb{Q}(\sqrt{-p}))+h(\mathbb{Z}[\sqrt{-p}]) & \text { if } p \equiv 3 \bmod 4 .\end{cases}$

Example: For $p=5, h(\mathbb{Q}(\sqrt{-p}))=2$ and $\Delta_{k}= \pm 1$.

$$
\text { For } p=101, h(\mathbb{Q}(\sqrt{-p}))=14 \text { and } \Delta_{k}= \pm 7
$$

Corollary

$$
\Delta_{k+2}=-\Delta_{k} \quad \text { for } k \geq 2^{*}
$$

5. Refine for congruences between modular forms

(Work with \mathbb{Q}_{p} or $\overline{\mathbb{Q}}_{p}$ coefficients here.)
Spaces $S_{k}(p)$ have action of Hecke operators. Here suffices to consider T_{ℓ} for $\ell \neq p$. Can find basis of eigenforms for T_{ℓ}.
Eigenvalues of T_{ℓ} are algebraic integers, so consider them $\bmod p$. Systems of mod- p Hecke eigenvalues τ correspond to Galois representations $\rho_{\tau}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$, with $\tau(\ell)=\operatorname{Tr} \rho_{\tau}\left(\right.$ Frob $\left._{\ell}\right)$. Set
$S_{k}(p)_{\tau}:=$ span of eigenforms with mod- p Hecke eigensystem τ.
The Atkin-Lehner involution W_{p} commutes with the T_{ℓ}, so again

$$
S_{k}(p)_{\tau}=S_{k}(p)_{\tau}^{+} \oplus S_{k}(p)_{\tau}^{-}
$$

with corresponding dimensions

$$
d_{k, \tau}=d_{k, \tau}^{+}+d_{k, \tau}^{-} .
$$

Again $d_{k, \tau}$ grows linearly with k (Jochnowitz, Bergdall-Pollack); set

$$
\Delta_{k, \tau}:=d_{k, \tau}^{+}-d_{k, \tau}^{-} .
$$

6. Twisting!

The Hecke eigensystem τ can only appear in weight k if $\operatorname{det} \rho_{\tau}=\omega^{k-1}$, where ω is the mod- p cyclotomic character.

In other words, τ determines k modulo $p-1$.
But we can move between weights by the θ operator: τ becomes $\tau[1]$ with $\tau[1](\ell)=\ell \tau(\ell)$. On the Galois side, this is twisting by ω.
If τ can appear in weight k, then
$\tau[1] \longleftrightarrow \rho_{\tau} \otimes \omega \quad$ can appear in weight $k+2$
$\tau[2] \longleftrightarrow \rho_{\tau} \otimes \omega^{2}$ can appear in weight $k+4$
$\tau\left[\frac{p-1}{2}\right] \longleftrightarrow \rho_{\tau} \otimes(\dot{\bar{p}})$ can appear in weight $k+(p-1)$, or in weight k
$\tau[p-1] \longleftrightarrow \rho_{\tau}$
can appear in weight $k+2(p-1)$, or in weight k

7. More data!

$p=5, N=23$ Dimension splits $\left(d_{k, \tau}^{+}, d_{k, \tau}^{-}\right)$in weight k for τ.

$k \backslash \tau$	σ	$\sigma[1]$	$\sigma[2]$	$\sigma[3]$
2	$(3,2)$	-	$(0,0)$	-
4	-	$(2,3)$	-	$(0,0)$
6	$(5,5)$	-	$(3,2)$	-
8	-	$(5,5)$	-	$(2,3)$
10	$(8,7)$	-	$(5,5)$	-
12	-	$(7,8)$	-	$(5,5)$
14	$(10,10)$	-	$(8,7)$	-
16	-	$(10,10)$	-	$(7,8)$
18	$(13,12)$	-	$(10,10)$	-
20	-	$(12,13)$	-	$(10,10)$
22	$(15,15)$	-	$(13,12)$	-
24	-	$(15,15)$	-	$(12,13)$

8. First main result

Theorem (Anni-Ghitza-M.) (Recall $p \geq 5$; tame level N ok)

$$
\Delta_{k+2, \tau[1]}=-\Delta_{k, \tau} \quad \text { for } k \geq 2^{*}
$$

Theorem follows from an up-to-semisimplification isomorphism between two mod- p Hecke modules.

Which mod- p Hecke modules?

Space $S_{k-p+1}\left(N p, \mathbb{F}_{p}\right)$ embeds into $S_{k}\left(N p, \mathbb{F}_{p}\right)$ in a Hecke equivariant way by multiplication by Hasse invariant E_{p-1}.

Corresponding graded module is $W_{k}(N p)$.

- (Jochnowitz, Serre, Robert) $W_{k+p+1}(N) \simeq W_{k}(N)[1]$
- (Bergdall-Pollack, AGM) $W_{k+2}(N p)^{\mathrm{ss}} \simeq W_{k}(N p)[1]^{\text {ss }}$

9. Second main result

We construct a refinement of $W_{k}(N p)$: given two signs ε, η, define

$$
W_{k}(N p)^{\varepsilon, \eta}:=S_{k}\left(N p, \mathbb{F}_{p}\right)^{\varepsilon} / S_{k-p+1}\left(N p, \mathbb{F}_{p}\right)^{\eta}
$$

Theorem (Anni-Ghitza-M.)

For any $k \geq(p+1)^{*}$ and any signs ε, η in $\{ \pm 1\}$, we have

$$
W_{k+2}^{\varepsilon, \eta}(N p)^{\mathrm{ss}} \simeq W_{k}^{-\varepsilon,-\eta}(N p)[1]^{\mathrm{ss}}
$$

Technical details

Define $S_{k}\left(N p, \mathbb{F}_{p}\right)^{ \pm}:=\left(S_{k}\left(N p, \mathbb{Z}_{p}\right) \cap S_{k}\left(N p, \mathbb{Q}_{p}\right)^{ \pm}\right) \otimes \mathbb{F}_{p}$. Then $S_{k-p+1}\left(N p, \mathbb{F}_{p}\right)^{\eta}$ embeds into $S_{k}\left(N p, \mathbb{F}_{p}\right)^{\varepsilon}$ by multiplication by the Atkin-Lehner "stabilization" $E_{p-1}^{\varepsilon / \eta}$ of E_{p-1}, where

$$
E_{p-1}^{ \pm}:=E_{p-1} \pm p^{(p-1) / 2} E_{p-1}(p z)
$$

10. Method of proof: algebra lemma + trace formula

To establish isomorphism of semisimplified mod- p Hecke modules, we develop new technique: deeper congruences with trace formula.

Lemma (AGM; refines Brauer-Nesbitt for $\mathbb{Z}_{p}[T]$)

Let M, N be rank-d free $\mathbb{Z}_{p^{-}}$-modules with linear action of T. Then

$$
\bar{M}^{\text {ss }} \simeq \bar{N}^{\text {ss }} \Longleftrightarrow \operatorname{Tr}\left(T^{n} \mid M\right) \equiv \operatorname{Tr}\left(T^{n} \mid N\right) \quad \bmod p^{1+v_{p}(n)}
$$ for every $1 \leq n \leq d$. Here p can be any prime!

Here $\bar{M}^{\text {ss }}$ is the semisimplification of $\mathbb{F}_{p}[T]$-module $M \otimes \mathbb{F}_{p}$.
Example (of Goldilocks titration)
Set $M:=\mathbb{Z}_{p}^{\oplus p}$ with T acting by $\alpha \in \mathbb{Z}_{p}$, so $\operatorname{Tr}\left(T^{n} \mid M\right)=p \alpha^{n}$.

- Knowing $p \alpha^{n}$ in \mathbb{Z}_{p} identifies α in \mathbb{Z}_{p} - too much!
- Knowing $p \alpha^{n}=0$ in \mathbb{F}_{p} tells us nothing - too little!
- But $p \alpha^{p} \bmod p^{2}$ identifies α^{p} (and so α) mod p - just right!

11. Remarks about main theorem

Recall main theorem.
Theorem (AGM)

$$
\Delta_{k+2, \tau[1]}=-\Delta_{k, \tau} \quad \text { for } k \geq 2^{*}
$$

Remarks

- As a corollary, uneven splits always come from weight 2.
- Quite generally, uneven splits come from p-new forms (p-old forms always come in \pm Atkin-Lehner pairs).
- No τ can appear p-newly in weight 2 with both \pm signs. (In weight k a p-new form has $a_{p}= \pm p^{\frac{k-2}{2}}$, with the sign determined by the Atkin-Lehner eigenvalue. Therefore in weight 2 we can see the sign $\bmod p$ from $a_{p}= \pm 1$.)
- Thus $\Delta_{k, \tau}=0$ unless $\tau\left[\frac{2-k}{2}\right]$ appears p-newly in weight 2 .

12. Even more data!

$p=5, N=23$ Up to twist, there are 7 Galois orbits of eigensystems that appear.

$k \backslash \tau$	$e \quad e[2]$	σ	$\sigma[2]$	$t \quad t[2]$	$s \quad s[2]$	$\begin{aligned} & f, f[2] \\ & g, g[2] \\ & h, h[2] \end{aligned}$
2	$(0,0)(0,0)$	$(3,2)$	$(0,0)$	$(2,0)(0,0)$	$(0,1)(0,0)$	$(0,0)$
4	$(2,1)(0,0)$	$(2,3)$	$(0,0)$	$(0,2)(0,0)$	$(1,0)(0,0)$	$(1,1)$
6	$(1,2)(1,1)$	$(3,2)$	$(5,5)$	$(2,0)(2,2)$	$(0,1)(1,1)$	$(1,1)$
8	$(2,1)(3,3)$	$(2,3)$	$(5,5)$	$(0,2)(2,2)$	$(1,0)(1,1)$	$(2,2)$
10	$(2,3)(3,3)$	$(8,7)$	$(5,5)$	$(4,2)(2,2)$	$(1,2)(1,1)$	$(2,2)$
12	$(5,4)(3,3)$	$(7,8)$	$(5,5)$	$(2,4)(2,2)$	$(2,1)(1,1)$	$(3,3)$
14	$(4,5)(4,4)$	$(8,7)$	$(10,10)$	$(4,2)(4,4)$	$(1,2)(2,2)$	$(3,3)$
16	$(5,4)(6,6)$	$(7,8)$	$(10,10)$	$(2,4)(4,4)$	$(2,1)(2,2)$	$(4,4)$
18	$(5,6)(6,6)$	$(13,12)$	$(10,10)$	$(6,4)(4,4)$	$(2,3)(2,2)$	$(4,4)$
20	$(8,7)(6,6)$	$(12,13)$	$(10,10)$	$(4,6)(4,4)$	$(3,2)(2,2)$	$(5,5)$

- e is the Eisenstein eigensystem in weight 2: $e(\ell)=1+\ell$
- s is a $\mathbb{F}_{5^{4}}$-Galois orbit of 4 eigensystems; h is an $\mathbb{F}_{5^{3}}$-orbit of 3 eigensystems
- σ has Serre weight 2 (peu ramifié); t and s have Serre weight 6 (très ramifié); f, g, h have Serre weight 4

