Counting modular forms with fixed mod-*p* Galois representation and Atkin-Lehner-at-*p* eigenvalue

Anna Medvedovsky

(Joint with Samuele Anni and Alexandru Ghitza)

https://math.bu.edu/people/medved/

Boston University

2023 JMM

AMS Special Session on Women in Automorphic Forms I January 6, 2023 Fix a prime $p \ge 5$. (Can also add tame level *N*, omitted here.)

 $S_k(p) :=$ space of cusp forms of weight k and level $\Gamma_0(p)$ $d_k := \dim S_k(p)$

Dimension formulas means d_k is well known.

In particular, d_k grows linearly in k:

$$d_k \sim rac{(p+1)k}{12}$$
 as $k o \infty.$

The Atkin-Lehner operator W_p is an involution that acts on S_k . So

$$S_k(p) = S_k(p)^+ \oplus S_k(p)^-,$$

where W_p acts as +1 on $S_k(p)^+$ and as -1 on $S_k(p)^-$.

▶ What is the split in dimension?

Let $d_k^{\pm} := \dim S_k(p)^{\pm}$. Since d_k is known, study

$$\Delta_k := d_k^+ - d_k^-.$$

Note: $\Delta_k = \operatorname{Tr}(W_p|S_k(p)).$

3. Data!

p = 5

$$p = 23$$
 $p = 101$
 k
 d_k^+
 d_k^-

 2
 0
 2
 1
 7

 4
 4
 1
 4
 16
 9

 6
 3
 6
 6
 17
 24

 8
 8
 5
 8
 33
 26

 10
 7
 10
 10
 34
 41

 12
 12
 9
 12
 50
 43

 14
 11
 14
 14
 51
 58

 16
 16
 13
 16
 67
 60

 18
 15
 18
 18
 68
 75

 20
 20
 17
 20
 84
 77

 22
 19
 22
 22
 85
 92

 24
 24
 21
 24
 101
 94

 26
 23
 26
 26
 102
 109

 $\Delta_k = \pm 1$

 $\Delta_k = \pm 3$

 $\Delta_k = \pm 7$

4. $|\Delta_k|$ is basically a class number!

Theorem (Fricke,	Yamauchi,	Helfgott,	Wakatsuki,	Martin)	
$\Delta_k = (-1)^{k/2}$	$\frac{\#\mathrm{FP}}{2}$	(co	orrection if k	= 2*: add	1)

- ► Here #FP is the number of fixed points of the geometric Atkin-Lehner involution on the modular curve X₀(p).
- ► The moduli interpretation for X₀(p) relates this number to elliptic curves with CM by √-p.

► So
$$\#$$
FP =
$$\begin{cases} h(\mathbb{Q}(\sqrt{-p})) & \text{if } p \equiv 1 \mod 4, \\ h(\mathbb{Q}(\sqrt{-p})) + h(\mathbb{Z}[\sqrt{-p}]) & \text{if } p \equiv 3 \mod 4. \end{cases}$$

Example: For
$$p = 5$$
, $h(\mathbb{Q}(\sqrt{-p})) = 2$ and $\Delta_k = \pm 1$.
For $p = 101$, $h(\mathbb{Q}(\sqrt{-p})) = 14$ and $\Delta_k = \pm 7$.

Corollary

$$\Delta_{k+2} = -\Delta_k$$
 for $k \ge 2^*$

5. Refine for congruences between modular forms

(Work with \mathbb{Q}_p or $\overline{\mathbb{Q}}_p$ coefficients here.)

Spaces $S_k(p)$ have action of Hecke operators. Here suffices to consider T_ℓ for $\ell \neq p$. Can find basis of eigenforms for T_ℓ .

Eigenvalues of \mathcal{T}_{ℓ} are algebraic integers, so consider them mod p. Systems of mod-p Hecke eigenvalues τ correspond to Galois representations $\rho_{\tau} : \mathcal{G}_{\mathbb{Q}} \to \operatorname{GL}_2(\bar{\mathbb{F}}_p)$, with $\tau(\ell) = \operatorname{Tr} \rho_{\tau}(\operatorname{Frob}_{\ell})$. Set

 $S_k(p)_{\tau} :=$ span of eigenforms with mod-p Hecke eigensystem τ .

The Atkin-Lehner involution W_p commutes with the T_ℓ , so again

$$S_k(p)_{\tau} = S_k(p)_{\tau}^+ \oplus S_k(p)_{\tau}^-.$$

with corresponding dimensions

$$d_{k,\tau}=d^+_{k,\tau}+d^-_{k,\tau}.$$

Again $d_{k,\tau}$ grows linearly with k (Jochnowitz, Bergdall-Pollack); set

$$\Delta_{k,\tau} := d_{k,\tau}^+ - d_{k,\tau}^-.$$

6. Twisting!

The Hecke eigensystem τ can only appear in weight k if det $\rho_{\tau} = \omega^{k-1}$, where ω is the mod-p cyclotomic character.

In other words, τ determines k modulo p-1.

But we can move between weights by the θ operator: τ becomes $\tau[1]$ with $\tau[1](\ell) = \ell \tau(\ell)$. On the Galois side, this is twisting by ω . If τ can appear in weight k, then

$$\begin{split} \tau[1] &\longleftrightarrow \rho_{\tau} \otimes \omega \quad \text{can appear in weight } k+2 \\ \tau[2] &\longleftrightarrow \rho_{\tau} \otimes \omega^2 \quad \text{can appear in weight } k+4 \\ & \cdots \\ \tau[\frac{p-1}{2}] &\longleftrightarrow \rho_{\tau} \otimes \left(\frac{\cdot}{p}\right) \quad \text{can appear in weight } k+(p-1), \text{ or in weight } k \\ & \cdots \\ \tau[p-1] &\longleftrightarrow \rho_{\tau} \qquad \text{can appear in weight } k+2(p-1), \text{ or in weight } k \end{split}$$

7. More data!

p = 5, N = 23 Dimension splits $(d_{k,\tau}^+, d_{k,\tau}^-)$ in weight k for τ .

$k \setminus \tau$	σ	σ [1]	σ [2]	σ [3]
2	(3,2)		(0,0)	
4	—	(2,3)	_	(0,0)
6	(5,5)		(3,2)	
8	—	(5,5)		(2,3)
10	(8,7)		(5,5)	
12	—	(7,8)		(5,5)
14	(10, 10)	_	(8,7)	
16	—	(10, 10)		(7,8)
18	(13, 12)		(10, 10)	
20	—	(12, 13)		(10, 10)
22	(15, 15)		(13, 12)	
24	_	(15, 15)		(12, 13)

8. First main result

Theorem (Anni–Ghitza–M.)(Recall
$$p \ge 5$$
; tame level N ok) $\Delta_{k+2,\tau[1]} = -\Delta_{k,\tau}$ for $k \ge 2^*$

Theorem follows from an up-to-semisimplification isomorphism between two mod-p Hecke modules.

Which mod-p Hecke modules?

Space $S_{k-p+1}(Np, \mathbb{F}_p)$ embeds into $S_k(Np, \mathbb{F}_p)$ in a Hecke equivariant way by multiplication by Hasse invariant E_{p-1} .

Corresponding graded module is $W_k(Np)$.

- ► (Jochnowitz, Serre, Robert) $W_{k+p+1}(N) \simeq W_k(N)[1]$
- (Bergdall–Pollack, AGM) $W_{k+2}(Np)^{ss} \simeq W_k(Np)[1]^{ss}$

9. Second main result

We construct a refinement of $W_k(Np)$: given two signs ε, η , define $W_k(Np)^{\varepsilon,\eta} := S_k(Np, \mathbb{F}_p)^{\varepsilon}/S_{k-p+1}(Np, \mathbb{F}_p)^{\eta}.$

Theorem (Anni–Ghitza–M.)

For any
$$k \geq (p+1)^*$$
 and any signs ε, η in $\{\pm 1\}$, we have
 $W_{k+2}^{\varepsilon,\eta}(Np)^{ss} \simeq W_k^{-\varepsilon,-\eta}(Np)[1]^{ss}.$

Technical details

Define $S_k(Np, \mathbb{F}_p)^{\pm} := (S_k(Np, \mathbb{Z}_p) \cap S_k(Np, \mathbb{Q}_p)^{\pm}) \otimes \mathbb{F}_p$. Then $S_{k-p+1}(Np, \mathbb{F}_p)^{\eta}$ embeds into $S_k(Np, \mathbb{F}_p)^{\varepsilon}$ by multiplication by the Atkin-Lehner "stabilization" $E_{p-1}^{\varepsilon/\eta}$ of E_{p-1} , where

$$E_{p-1}^{\pm} := E_{p-1} \pm p^{(p-1)/2} E_{p-1}(pz).$$

10. Method of proof: algebra lemma + trace formula

To establish isomorphism of semisimplified mod-p Hecke modules, we develop new technique: deeper congruences with trace formula.

Lemma (AGM; refines Brauer–Nesbitt for $\mathbb{Z}_p[T]$)

Let M, N be rank-d free \mathbb{Z}_p -modules with linear action of T. Then

 $\overline{M}^{\mathrm{ss}} \simeq \overline{N}^{\mathrm{ss}} \iff \operatorname{Tr}(T^n \mid M) \equiv \operatorname{Tr}(T^n \mid N) \mod p^{1+v_p(n)}$

for every $1 \le n \le d$. Here p can be any prime!

Here \overline{M}^{ss} is the semisimplification of $\mathbb{F}_p[T]$ -module $M \otimes \mathbb{F}_p$.

Example (of Goldilocks titration)

Set $M := \mathbb{Z}_p^{\oplus p}$ with T acting by $\alpha \in \mathbb{Z}_p$, so $\operatorname{Tr}(T^n | M) = p \alpha^n$.

- Knowing $p\alpha^n$ in \mathbb{Z}_p identifies α in \mathbb{Z}_p too much!
- Knowing $p\alpha^n = 0$ in \mathbb{F}_p tells us nothing too little!
- ▶ But $p\alpha^p \mod p^2$ identifies α^p (and so α) mod p just right!

11. Remarks about main theorem

Recall main theorem.

Theorem (AGM)

$$\Delta_{k+2, au[1]} = -\Delta_{k, au}$$
 for $k \geq 2^*$

Remarks

- ► As a corollary, uneven splits always come from weight 2.
- Quite generally, uneven splits come from *p*-new forms (*p*-old forms always come in ± Atkin-Lehner pairs).
- No τ can appear p-newly in weight 2 with both ± signs. (In weight k a p-new form has a_p = ±p^{k-2}/₂, with the sign determined by the Atkin-Lehner eigenvalue. Therefore in weight 2 we can see the sign mod p from a_p = ±1.)

• Thus $\Delta_{k,\tau} = 0$ unless $\tau[\frac{2-k}{2}]$ appears *p*-newly in weight 2.

12. Even more data!

| p = 5, N = 23 | Up to twist, there are 7 Galois orbits of eigensystems that appear.

					f, f[2]
$k \setminus \tau$	e e[2]	$\sigma \sigma$ [2]	t t[2]	s s[2]	h, h[2]
2	(0,0)(0,0)	(3,2) (0,0)	(2,0)(0,0)	(0,1)(0,0)	(0,0)
4	(2,1)(0,0)	(2,3) $(0,0)$	(0,2)(0,0)	(1,0)(0,0)	(1,1)
6	(1,2)(1,1)	(3,2) (5,5)	(2,0)(2,2)	(0,1)(1,1)	(1,1)
8	(2,1)(3,3)	(2,3) (5,5)	(0,2)(2,2)	(1,0)(1,1)	(2,2)
10	(2,3)(3,3)	(8,7) (5,5)	(4, 2)(2, 2)	(1,2)(1,1)	(2,2)
12	(5,4)(3,3)	(7,8) (5,5)	(2, 4)(2, 2)	(2,1)(1,1)	(3,3)
14	(4,5)(4,4)	(8,7) (10,10)	(4,2)(4,4)	(1,2)(2,2)	(3,3)
16	(5,4)(6,6)	(7,8) (10,10)	(2, 4)(4, 4)	(2,1)(2,2)	(4,4)
18	(5,6)(6,6)	(13, 12)(10, 10)	(6, 4)(4, 4)	(2,3)(2,2)	(4,4)
20	(8,7)(6,6)	(12, 13)(10, 10)	(4,6)(4,4)	(3,2)(2,2)	(5,5)

• *e* is the Eisenstein eigensystem in weight 2: $e(\ell) = 1 + \ell$

▶ *s* is a \mathbb{F}_{5^4} -Galois orbit of 4 eigensystems; *h* is an \mathbb{F}_{5^3} -orbit of 3 eigensystems

σ has Serre weight 2 (peu ramifié); t and s have Serre weight 6 (très ramifié);
 f, g, h have Serre weight 4