BASIC DIFFERENTIAL GEOMETRY: GLOBAL RIEMANNIAN GEOMETRY

WERNER BALLMANN

Introduction

For a Riemannian manifold M, we are interested in relations between the geometry and the topology of M. Now the local topology of M is the same as that of Euclidean space \mathbb{R}^m , $m = \dim M$. Therefore the topological properties we consider are of a global nature. For that reason, we always need global assumptions on the geometry as well. The most important one is completeness, discussed in the Theorem of Hopf-Rinow below. This theorem is at the basis of global Riemannian Geometry.

I discuss two rather elementary geometric and topological results which involve the Hopf-Rinow Theorem, the Theorems of Bonnet-Myers and Hadamard-Cartan, respectively.

CONTENTS

Introduction		1
1.	The Theorem of Hopf-Rinow	2
2.	The Theorem of Bonnet-Myers	5
3.	The Theorem of Hadamard-Cartan	7
Acknowledgments		8
References		8

Last update: 2003-05-25.

1. The Theorem of Hopf-Rinow

The length of curves gives a natural way of defining the distance of points in M,

(1.1)
$$d(p,q) := \inf\{L(c) \mid c \in \Omega_{pq}^{ps}(M)\},\$$

where $\Omega_{pq}^{ps}(M)$ denotes the space of piecewise smooth curves $c:[0,1]\to M$ with c(0)=p and c(q)=1. Note that we allow the value $d(p,q)=\infty$.

EXERCISE 1.1. The distance $d(p,q) = \infty$ if and only if p and q lie in different components of M.

For any curve $c \in \Omega_{pq}^{ps}(M)$, the curve $c^{-1} \in \Omega_{qp}^{ps}(M)$, $c^{-1}(t) = c(1-t)$, has the same length as c and hence d(q,p) = d(p,q).

For any three points p, q, r and curves $c \in \Omega_{pq}^{ps}(M)$, $\tilde{c} \in \Omega_{qr}^{ps}(M)$, the curve $c * \tilde{c} \in \Omega_{pr}(M)$,

$$(c * \tilde{c})(t) := \begin{cases} c(2t) & 0 \le t \le 1/2, \\ \tilde{c}(2t-1) & 1/2 \le t \le 1, \end{cases}$$

has length $L(c) + L(\tilde{c})$ and hence d satisfies the triangle inequality.

Since a point curve has length 0, we have d(p,p) = 0 for all $p \in M$. For d to be a true distance, we also need the converse: d(p,q) = 0 implies p = q. In addition we want that d induces the given topology on M. This and more is contained in the lemma below.

Note first that for any $p \in M$ and any $v \in T_pM$ in the domain of definition of \exp_p , the curve

$$(1.2) c_v(t) = \exp_p(tv), \quad 0 \le t \le 1,$$

is a smooth curve from p to $q = \exp_p(v)$ of length ||v||. In particular, $d(p,q) \leq ||v||$. For r > 0 let $B_r(0_p) := \{v \in T_pM \mid ||v|| < r\}$ and, if $B_r(0_p)$ is in the domain of definition of \exp_p , set $B_r(p) := \exp_p(B_r(0_p))$. The notation suggests that $B_r(p)$ is the ball of radius r about p with respect to d. So far this is not proved, so far we only know that all points q in $B_r(p)$ satisfy $d(p,q) \leq r$. We will show below that $B_r(p)$ is indeed the ball of radius r about p whenever M is complete with respect to the metric d.

Let (p_n) be a sequence in M converging to p. Since $\exp_p : B_{\varepsilon}(0_p) \to B_{\varepsilon}(p)$ is a diffeomorphism for $\varepsilon > 0$ sufficiently small, there is a sequence $v_n \to 0$ in $B_{\varepsilon}(0_p)$ with $\exp_p(v_n) = p_n$ for all n sufficiently large. Hence $d(p, p_n) \to 0$. If (q_n) is a second convergent sequence in M and $q = \lim q_n$, then by the triangle inequality

$$|d(p_n, q_n) - d(p, q)| \le d(p_n, p) + d(q_n, q) \to 0,$$

and hence d is continuous on $M \times M$.

LEMMA 1.2. Let $p \in M$ and $\varepsilon > 0$ such that $\exp_p : B_{\varepsilon}(0_p) \to B_{\varepsilon}(p)$ is a diffeomorphism. Then

- 1) for any $v \in B_{\varepsilon}(0_p)$, $d(p, \exp_p(v)) = ||v||$, and the curve $\exp_p(tv)$, $0 \le t \le 1$, is up to (weakly monotone) reparameterization the unique minimal connection between p and $\exp_p(v)$.
- 2) for any $q \notin B_{\varepsilon}(p)$ we have $d(p,q) > \varepsilon$. For any $\delta \in (0,\varepsilon)$ there is a $v \in B_{\varepsilon}(0_p)$ with $||v|| = \delta$ such that

$$d(p,q) = d(p,\exp_p(v)) + d(\exp(v),q) = \delta + d(\exp(v),q).$$

Proof. Consider the continuous function $r: B_{\varepsilon}(p) \to \mathbb{R}$ defined by $r(\exp(v)) = ||v||$. Recall that r is smooth on $B_{\varepsilon}(p) \setminus \{p\}$, and that in $q = \exp_p(v)$

$$\operatorname{grad} r(q) = (\exp_p)_{*v}(v/||v||),$$

the radial field of norm 1 about p. Let $c : [a, b] \to B_{\varepsilon}(p)$ be piecewise smooth with c(a) = p. We show that $L(c) \ge r(c(b))$. To that end, we can assume that

$$a = \max\{t \in [a, b] \mid c(t) = p\}$$
 and $b = \min\{t \in [a, b] \mid r(c(t)) = r(c(b))\}.$

Then since $\|\operatorname{grad} r\| = 1$,

$$L(c) \ge \int_a^b ||c'(t)|| dt \ge \int_a^b \langle c'(t), \operatorname{grad} r(c(t)) \rangle dt = r(c(b) - r(c(a))) = r(c(b)).$$

Note that equality holds iff $c'(t) = \alpha(t) \operatorname{grad} r(c(t))$ for all $t \in (a, b)$, where $\alpha = \alpha(t) \geq 0$. Hence 1) and the first assertion in 2).

Now let $\delta \in (0,\varepsilon)$ and $q \in M \backslash B_{\varepsilon}(p)$. Let $c_n : [0,1] \to M$ be a sequence of piecewise smooth curves from p to q with $L(c_n) \to d(p,q)$. Since \exp_p is a diffeomorphism on $B_{\varepsilon}(0_p)$ and M is Hausdorff, there are $t_n \in (0,1)$ and $v_n \in T_pM$ with $||v_n|| = \delta$ such that $c_n(t_n) = \exp_p(v_n)$. Since the sphere of radius δ in T_pM is compact, we can assume that the sequence (v_n) converges to a vector $v \in T_pM$ of norm δ . Since d and \exp_p are continuous and

$$d(p,q) \le d(p,\exp_p(v_n)) + d(\exp_p(v_n),q) \le L(c_n) \to d(p,q),$$

we conclude that

$$d(p,q) = d(p, \exp_p(v)) + d(\exp_p(v), q) = \delta + d(\exp_p(v), q).$$

Note that Lemma 1.2 justifies the notation $B_{\varepsilon}(p)$ for $\exp_p(B_{\varepsilon}(0_p)) - B_{\varepsilon}(p)$ is the ball of radius ε about p with respect to the metric d.

COROLLARY 1.3. The Riemannian distance d is a metric on M and d induces the given topology on M.

Proof. By Assertion 1) of Lemma 1.2, d(p,q) = 0 implies p = q. Hence d is a metric. Since d is continuous, the balls $B_r(p)$, r > 0, are open in M. Vice versa, if U is open and p is a point in U, then $\exp_p^{-1}(U)$ contains an open neighborhood of 0_p in T_pM . Therefore there is an $\varepsilon > 0$ with $B_{\varepsilon}(0_p) \subset \exp_p^{-1}(U)$. Then $B_{\varepsilon}(p) \subset U$.

LEMMA 1.4 (Main Argument). Let $p, q \in M$ and set r := d(p,q). Suppose that the closed ball $\overline{B}_r(0_p)$ is contained in the domain of definition of \exp_p . Then there is a unit vector $v \in T_vM$ with $\exp_p(rv) = q$. In particular, $\exp_p(tv)$, $0 \le t \le r$, is a minimal curve from p to q.

Proof. By Lemma 1.2, there are a unit vector v and a number $\delta > 0$ such that

$$r = d(p,q) = d(\exp_p(\delta v) + d(\exp_p(\delta v), q) = \delta + d(\exp_p(\delta v), q)$$
.

The idea is that this particular v shows in the right direction: we show that $\exp_p(rv) = q$. To that end, we let $A \subset [0, r]$ be the subset of t with

$$r = d(p, \exp_p(tv)) + d(\exp_p(tv), q) = t + d(\exp_p(tv), q).$$

Suppose $t_0 \in A$ and let $t \in (0, t_0)$. Then by the triangle inequality

$$d(p,q) \le t + d(\exp_p(tv), q)$$

$$\le t + (t_0 - t) + d(\exp_p(t_0v), q)$$

$$= t_0 + d(\exp_p(t_0v), q) = d(p, q).$$

Hence $t \in A$ and therefore A is a closed interval, $A = [0, t_0]$ for some $t_0 \le r$. By the choice of v we have $t_0 \ge \delta > 0$. It remains to show that $t_0 = r$.

To arrive at a contradiction we assume $t_0 < r$ and set $p_0 = \exp_r(t_0 v)$. By Lemma 1.2, there are a unit vector v_0 at p_0 and a number $\delta_0 > 0$ such that

$$d(p_0, q) = d(p, \exp_{p_0}(\delta_0 v_0)) = \delta_0 + d(\exp_{p_0}(\delta_0 v_0), q).$$

We conclude that for $p_1 = \exp_{p_0}(\delta_0 v_0)$,

$$d(p,q) = t_0 + d(p_0,q) = d(p,p_0) + d(p_0,p_1) + d(p_1,q) \ge d(p,q)$$
.

Hence the unit speed curve $c:[0,t_0+\delta_0]\to M$ defined by

$$c(t) = \begin{cases} \exp_p(tv), & 0 \le t \le t_0, \\ \exp_{p_0}((t-t_0)v_0), & t_0 \le t \le t_0 + \delta_0, \end{cases}$$

is a minimal connection from p to p_1 . It follows that c is a geodesic and hence that

$$c(t) = \exp_p(tv), \quad 0 \le t \le t_0 + \delta_0.$$

We conclude that $t_0 + \delta_0 \in A$, a contradiction.

THEOREM OF HOPF-RINOW 1.5. Let M be a connected Riemannian manifold. Then the following four assertions are equivalent:

- 1) (M,d) is a complete metric space.
- 2) M is geodesically complete; that is, the real line \mathbb{R} is the maximal domain of definition of geodesics in M.
- 3) There is a $p \in M$ such that \exp_p is defined on all of T_pM .
- 4) Bounded (with respect to d) subsets of M are relatively compact.

Any of these four assertions implies that for any two points $p, q \in M$, there is a minimal geodesic from p to q.

Proof. The implications $2) \Longrightarrow 3$) and $4) \Longrightarrow 1$) are trivial. As for $3) \Longrightarrow 4$), suppose that $A \subset M$ is bounded with respect to d. That is, there are a point $q \in M$ and a number r > 0 with $A \subset B_r(q)$. Since M is connected, $d(p,q) < \infty$. By the triangle inequality, $A \subset B_R(p)$ with R = r + d(p,q). But then A is contained in the compact set $\exp_p(\overline{B}_R(0_p))$ by the previous main argument.

We now prove 1) \Longrightarrow 2). Suppose that the maximal interval I of definition of a unit speed geodesic c has an upper bound $t_0 < \infty$. Let (t_n) be an increasing sequence in I converging to t_0 . Then

$$d(c(t_n), c(t_m)) \le |t_n - t_m|.$$

Hence $(c(t_n))$ is a Cauchy sequence. Since M is complete, there is a (unique) limit point p. Now there is an $\varepsilon > 0$ such that $B_{\varepsilon}(0_q)$ is in the domain of definition of \exp_q for all $q \in B_{\varepsilon}(p)$. But then

$$\exp_{c(t_n)}((t-t_n)\cdot c'(t_n)), \quad |t-t_n|<\varepsilon,$$

is an honest geodesic extension of c as soon as $t_0 - t_n < \varepsilon$, a contradiction. In a similar way we conclude that I has no lower bound. Hence the maximal interval of definition of a unit speed geodesic is the real line. Hence 2).

In [CV], S. S. Cohn-Vossen proves a version of the Hopf-Rinow Theorem for locally compact geodesic spaces, see also Chapter I in [NP]. EXERCISE 1.6. Show by example that the last assertion in Theorem 1.5 is not equivalent to (any of) the first four assertions. (Hint: Start in dimension 1.)

2. The Theorem of Bonnet-Myers

In what follows, let M be a connected Riemannian manifold of dimension m. Lemma 2.1. Let $\kappa > 0$ and suppose that $c : [0, l] \to M$ is a unit speed geodesic such that $\text{ric}(c'(t), c'(t)) \ge (m-1)\kappa$ for all $t \in [0, l]$. Then $l > \pi/\sqrt{\kappa}$ implies that there is a proper smooth variation (c_s) of $c = c_0$ with $L(c_s) < L(c)$ for all $s \ne 0$. In particular, c is not a minimal connection of its end points p = c(0) and q = c(l).

Proof. Let $(E_1 = c', E_2, \dots, E_m)$ be a parallel ON-frame along c. For $2 \le i \le m$ set

$$V_i(t) := \sin(\pi t/l) \cdot E_i(t), \quad 0 \le t \le l.$$

Then $V_i(0) = 0$ and $V_i(l) = 0$. F or the index form of c we obtain

$$\sum_{i=2}^{m} I(V_i, V_i) = \sum_{i=2}^{m} \int_0^l \sin^2(\pi t/l) \left(\frac{\pi^2}{l^2} - \langle R(E_i(t), c'(t))c'(t), E_i(t) \rangle \right) dt$$
$$= \int_0^l \sin^2(\pi t/l) \left((m-1) \frac{\pi^2}{l^2} - \text{ric}(c'(t), c'(t)) \right) dt < 0.$$

Hence there is an i with $I(V_i, V_i) < 0$. Now there is a proper smooth variation (c_s) of c with variation field V_i . Then $L(s) := L(c_s)$ is smooth in s with L'(0) = 0 and $L''(0) = I(V_i, V_i) < 0$.

THEOREM OF BONNET-MYERS (GEOMETRIC VERSION) 2.2. Let M be a complete and connected Riemannian manifold of dimension $m \geq 2$. Suppose that there is a constant $\kappa > 0$ such that

$$ric(v, v) \ge (m - 1) \cdot \kappa \cdot ||v||^2$$

for all tangent vectors v of M. Then the diameter diam(M) of M satisfies

$$\operatorname{diam}(M) \leq \pi/\sqrt{\kappa}$$
.

A round sphere of radius r in Euclidean space has Ricci curvature $(m-1)/r^2$ and (inner) diameter πr . Hence the diameter estimate in Theorem 2.2 is optimal. EXERCISE 2.3. Show that the completeness assumption on M cannot be deleted.

Proof of Theorem 2.2. Suppose there are points $p,q \in M$ with $d(p,q) > \pi/\sqrt{\kappa}$. By the Theorem of Hopf-Rinow there is a minimal geodesic c from p to q. The length of c is $l = d(p,q) > \pi/\sqrt{\kappa}$. By the previous lemma this contradicts the minimality of c.

LEMMA 2.4. Let M, \tilde{M} be connected Riemannian manifolds and $\pi: \tilde{M} \to M$ be a Riemannian covering. Then \tilde{M} is complete iff M is complete.

Proof. Suppose M is complete. Let $\tilde{p} \in \tilde{M}$ and \tilde{v} be a tangent vector of \tilde{M} at \tilde{p} . Let $c: \mathbb{R} \to M$ be the (maximal) geodesic with $c'(0) = \pi_*(\tilde{v})$. Now $\pi: \tilde{M} \to M$ is a covering, and hence there is exactly one lift $\tilde{c}: \mathbb{R} \to \tilde{M}$ of c with $\tilde{c}(0) = \tilde{p}$. Since π is a local diffeomorphism, c is smooth and has initial velocity \tilde{v} . Since π is a local isometry and c is a geodesic in M, \tilde{c} is a geodesic in \tilde{M} . It follows that \tilde{M} is complete. The other direction is clear since π is a surjective local isometry. \square

THEOREM OF BONNET-MYERS (TOPOLOGICAL VERSION) 2.5. Let M be a complete and connected Riemannian manifold. Suppose that there is a constant $\kappa > 0$ such that

$$ric(v, v) \ge (m - 1) \cdot \kappa \cdot ||v||^2$$

for all tangent vectors v of M. Then M is compact and the fundamental group of M is finite.

Proof. Compactness of M follows from the Theorem of Hopf-Rinow and finiteness of the diameter, see Theorem 2.2.

Let $\pi: \tilde{M} \to M$ be the universal covering of M. Endow \tilde{M} with the pull back $\tilde{g} = \pi^* g$ of the metric g of M. Then π is a Riemannian covering and hence, by the previous lemma, \tilde{M} is complete with respect to \tilde{g} . Since π is a local isometry, local geometric invariants of \tilde{M} and M are the same (in corresponding points). In particular, we have the same estimate for the Ricci curvature,

$$\widetilde{\operatorname{ric}}(\tilde{v}, \tilde{v}) \ge (m-1)\kappa \cdot ||\tilde{v}||^2$$

for all tangent vectors \tilde{v} of \tilde{M} . Now \tilde{M} is complete and connected. Hence $\operatorname{diam}(\tilde{M}) \leq \pi/\sqrt{\kappa}$. By the Hopf-Rinow Theorem we conclude that \tilde{M} is compact. Therefore the number of sheets of the covering π is finite, and hence $\pi_1(M)$ is finite.

3. The Theorem of Hadamard-Cartan

LEMMA 3.1. Let M, \tilde{M} be connected Riemannian manifolds and $\pi : \tilde{M} \to M$ be a local isometry. Suppose that \tilde{M} is complete. Then M is complete and π is a covering map.

Proof. Fix a point $p \in M$ in the image of π . Let $v \in T_pM$. Choose a point \tilde{p} in the preimage of p. Then there is a unique tangent vector \tilde{v} at \tilde{p} with $\pi_*(\tilde{v}) = v$. Let $\tilde{c} : \mathbb{R} \to \tilde{M}$ be the (maximal) geodesic with initial velocity \tilde{v} . Then $c = \pi \circ \tilde{c}$ is a geodesic in M since π is a local isometry. The initial velocity of c is v since $\pi_*(\tilde{v}) = v$. Hence for every $v \in T_pM$ the maximal geodesic with initial velocity v is defined on all of \mathbb{R} . Therefore M is complete.

Let q be another point in M. Then by the Theorem of Hopf-Rinow, there is a geodesic segment $c:[0,1]\to M$ from p to q. Let \tilde{w} be a tangent vector at \tilde{p} with $\pi_*(\tilde{w})=c'(0)$. Let $\tilde{c}:[0,1]\to \tilde{M}$ be the geodesic segment in \tilde{M} with initial velocity \tilde{w} . Then $c=\pi\circ\tilde{c}$ and hence $\pi(\tilde{c}(1))=c(1)=q$. Hence π is surjective.

Choose $\varepsilon > 0$ such that $\exp_p : B_{\varepsilon}(0_p) \to B_{\varepsilon}(p)$ is a diffeomorphism. In our last step of the proof we show that $B_{\varepsilon}(p)$ is evenly covered by the balls $B_{\varepsilon}(\tilde{p})$, where \tilde{p} runs over the points in the preimage $\pi^{-1}(p)$. Since π is a local isometry, for any such point \tilde{p} ,

$$(\pi|B_{\varepsilon}(\tilde{p})) \circ (\exp_{\tilde{p}}|B_{\varepsilon}(0_{\tilde{p}})) = (\exp_{p}|B_{\varepsilon}(0_{p})) \circ (\pi_{*\tilde{p}}|B_{\varepsilon}(0_{\tilde{p}})).$$

Each of the two maps on the right hand side is a diffeomorphism. It follows that $\exp_{\tilde{p}}$ is injective and has maximal rank on $B_{\varepsilon}(0_{\tilde{p}})$. Hence $\exp_{\tilde{p}} |B_{\varepsilon}(0_{\tilde{p}})$ is a diffeomorphism, hence also $\pi |B_{\varepsilon}(\tilde{p})$.

Let \hat{p} be another point in the preimage of p and $\tilde{c}:[0,l]\to \tilde{M}$ be a minimal unit speed geodesic from \tilde{p} to \hat{p} . Then $c=\pi\circ\tilde{c}$ is a unit speed geodesic in M with c(0)=c(l)=p. Hence $l\geq 2\varepsilon$, and hence $B_{\varepsilon}(\tilde{p})\cap B_{\varepsilon}(\hat{p})=\emptyset$. It follows that $B_{\varepsilon}(p)$ is evenly covered by the balls $B_{\varepsilon}(\tilde{p})$.

THEOREM OF HADAMARD-CARTAN 3.2. Let M be a complete and connected Riemannian manifold. Suppose that the sectional curvature K_M of M is non-positive. Then for any $p \in M$, the exponential map $\exp_p : T_pM \to M$ is the universal covering.

Exercise 3.3. Show that the completeness assumption on M cannot be deleted.

Proof of Theorem 3.2. Let $c: \mathbb{R} \to M$ be a geodesic and V be a Jacobi field along c. Then

$$\langle V, V \rangle'' = 2(\langle V', V' \rangle - \langle R(V, c')c', V \rangle) \ge 0,$$

hence $\langle V, V \rangle$ is convex. Therefore $V(t) \neq 0$ for all $t \neq 0$ if V(0) = 0 and $V'(0) \neq 0$. In particular, $\exp_p : T_pM \to M$ is a local diffeomorphism. Since M is complete, \exp_p is surjective.

Now let $\tilde{g} = \exp_p^*(g)$ be the pullback of the metric g on M. Then \tilde{g} is a Riemannian metric on the manifold T_pM and by definition, $\exp_p : T_pM \to M$ is a local isometry with respect to \tilde{g} and g. For any $v \in T_pM$, the image $\exp(tv)$ of the line tv, $t \in \mathbb{R}$, through 0_p in T_pM is a geodesic in M. Hence this line is a geodesic in T_pM (with respect to \tilde{g}). By the Theorem of Hopf-Rinow, T_pM is a complete Riemannian manifold with respect to \tilde{g} . By Lemma 3.1, \exp_p is a covering. Since T_pM is simply connected, \exp_p is the universal covering. \square

COROLLARY 3.4. Let M be a complete and simply connected Riemannian manifold. Suppose that the sectional curvature K_M of M is nonpositive. Then $\exp_p: T_pM \to M$ is a diffeomorphism.

In [AB], S. Alexander and R. Bishop prove a version of the Hadamard-Cartan Theorem for convex geodesic spaces, see also Chapter I in [NP].

ACKNOWLEDGMENTS

I would like to thank Alexander Lytchak for proof-reading.

References

- [AB] S.B. Alexander & R.L. Bishop: The Hadamard-Cartan Theorem in Locally Convex Metric Spaces. L'Enseignement math. 36 (1990), 309–320.
- [NP] W. Ballmann: Lectures on Spaces of Nonpositive Curvature. Birkhäuser Verlag, Basel, 1995.
- [SE] W. Ballmann: Basic geometry of submanifolds in Euclidean spaces. Available at: www.math.uni-bonn.de/people/ballmann/notes.html.
- [SRM] W. Ballmann: Semi-Riemannian Metrics.
 Available at: www.math.uni-bonn.de/people/ballmann/notes.html.
- [CV] S. Cohn-Vossen: Existenz kürzester Wege. Doklady SSSR 8 (1935), 339–342.

MATHEMATISCHES INSTITUT, UNIVERSITÄT BONN, BERINGSTRASSE 1, D-53115 BONN,