BASIC DIFFERENTIAL GEOMETRY:
GLOBAL RIEMANNIAN GEOMETRY

WERNER BALLMANN

INTRODUCTION

For a Riemannian manifold M, we are interested in relations between the ge-
ometry and the topology of M. Now the local topology of M is the same as
that of Euclidean space R™, m = dim M. Therefore the topological properties
we consider are of a global nature. For that reason, we always need global as-
sumptions on the geometry as well. The most important one is completeness,
discussed in the Theorem of Hopf-Rinow below. This theorem is at the basis of
global Riemannian Geometry.

I discuss two rather elementary geometric and topological results which involve
the Hopf-Rinow Theorem, the Theorems of Bonnet-Myers and Hadamard-Cartan,
respectively.
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1. THE THEOREM OF HoPF-RINOW

The length of curves gives a natural way of defining the distance of points in
M,

(1.1) d(p,q) == inf{L(c) | c € QB2 (M)},

where QP*(M) denotes the space of piecewise smooth curves ¢ : [0,1] — M with
c(0) = p and ¢(q) = 1. Note that we allow the value d(p, q) = oc.
EXERCISE 1.1. The distance d(p,q) = oo if and only if p and ¢ lie in different
components of M.

For any curve ¢ € Qb5(M), the curve ¢=' € QFS(M), ¢='(t) = ¢(1 — t), has the
same length as ¢ and hence d(q,p) = d(p, q).

For any three points p,q,r and curves ¢ € Qb3(M), ¢ € Qb’(M), the curve
cx €€ Qy (M),

(ex8)(®) = {f(2t) 0<t<1/2,
f2t—1) 1/2<t<1,

has length L(c) + L(¢) and hence d satisfies the triangle inequality.

Since a point curve has length 0, we have d(p,p) = 0 for all p € M. For d to be
a true distance, we also need the converse: d(p,¢) = 0 implies p = ¢. In addition
we want that d induces the given topology on M. This and more is contained in
the lemma below.

Note first that for any p € M and any v € T,M in the domain of definition of
exp,, the curve

(1.2) cy(t) = exp,(tv), 0<t <1,

is a smooth curve from p to ¢ = exp, (v) of length ||v||. In particular, d(p, q) < [[v||.

For r > 0 let B,(0,) := {v € T,M | ||v|]| < r} and, if B,(0,) is in the domain of
definition of exp,, set B,(p) := exp,(B,(0,)) . The notation suggests that B, (p)
is the ball of radius r» about p with respect to d. So far this is not proved, so far
we only know that all points ¢ in B,(p) satisty d(p,q) < r. We will show below
that B,(p) is indeed the ball of radius r about p whenever M is complete with
respect to the metric d.

Let (p,) be a sequence in M converging to p. Since exp, : B.(0,) — B.(p) is a
diffeomorphism for ¢ > 0 sufficiently small, there is a sequence v, — 0 in B.(0,)
with exp,(v,) = p, for all n sufficiently large. Hence d(p,p,) — 0. If (g,) is a
second convergent sequence in M and ¢ = lim¢,, then by the triangle inequality

|d(pns gn) — d(p, q)| < d(pn,p) + d(gn,q) =0,
and hence d is continuous on M x M.
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LEMMA 1.2. Let p € M and € > 0 such that exp,, : B.(0,) — B.(p) is a diffeo-
morphism. Then

1) for any v € B.(0p), d(p,exp,(v)) = [[v||, and the curve exp,(tv), 0 <t <1,
is up to (weakly monotone) reparameterization the unique minimal connection
between p and exp,(v).

2) for any q & B.(p) we have d(p,q) > ¢. For any § € (0,¢) there is av € B:(0,)
with ||v|| = ¢ such that

d(p, q) = d(p, exp,(v)) + d(exp(v), q) = 6 + d(exp(v), q).

Proof. Consider the continuous function r : B.(p) — R defined by r(exp(v)) =
||v]|. Recall that r is smooth on B.(p)\{p}, and that in ¢ = exp,(v)

gradr(q) = (expy)w (v/|[]]),

the radial field of norm 1 about p. Let ¢ : [a,b] — B.(p) be piecewise smooth
with ¢(a) = p. We show that L(c) > r(c(b)). To that end, we can assume that

a =max{t € [a,b] | ¢(t) =p} and b= min{t € [a,b] | r(c(t)) = r(c(b))}.

Then since || gradr|| =1,

L(c) Z/ I (£)]| dt Z/ (' (2), grad r(c(t))) dt = r(c(b) — r(c(a)) = r(c(b)).

Note that equality holds iff ¢/(t) = «(t)gradr(c(t)) for all ¢ € (a,b), where
a = «at) > 0. Hence 1) and the first assertion in 2).

Now let 0 € (0,¢) and ¢ € M\B.(p). Let ¢, : [0,1] — M be a sequence
of piecewise smooth curves from p to ¢ with L(c,) — d(p,q). Since exp, is a
diffeomorphism on B, (0,) and M is Hausdorff, there are ¢,, € (0,1) and v,, € T,M
with ||v,|| = & such that ¢,(t,) = exp,(v,). Since the sphere of radius ¢ in 7, M
is compact, we can assume that the sequence (v,) converges to a vector v € .M
of norm 4. Since d and exp, are continuous and

d(p, q) < d(p,exp,(vn)) + d(exp,(va), q) < L(cy) — d(p, q),

we conclude that
d(p, q) = d(p, exp,(v)) + d(exp,(v),q) = 6 + d(exp,(v), q). O

Note that Lemma 1.2 justifies the notation B, (p) for exp,(B:(0,)) — B.(p) is
the ball of radius € about p with respect to the metric d.
COROLLARY 1.3. The Riemannian distance d is a metric on M and d induces
the given topology on M.

Proof. By Assertion 1) of Lemma 1.2, d(p,q) = 0 implies p = ¢q. Hence d is a
metric. Since d is continuous, the balls B, (p), r > 0, are open in M. Vice versa,
if U is open and p is a point in U, then exp;l(U) contains an open neighborhood
of 0, in T,M. Therefore there is an ¢ > 0 with B.(0,) C exp;'(U). Then
B.(p) C U. O
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LEMMA 1.4 (Main Argument). Let p,q € M and set v := d(p,q). Suppose that
the closed ball B,(0,) is contained in the domain of definition of exp,. Then there
is a unit vector v € T,M with exp,(rv) = q. In particular, exp,(tv), 0 <t <7,
15 a minimal curve from p to q.

Proof. By Lemma 1.2, there are a unit vector v and a number § > 0 such that
r=d(p,q) = d(exp,(6v) + d(exp,(6v), ¢) = ¢ + d(exp,(dv),q) .
The idea is that this particular v shows in the right direction: we show that
exp,(rv) = ¢. To that end, we let A C [0,7] be the subset of ¢ with
r = d(p, exp,(tv)) + d(exp,(tv),q) =t + d(exp,(tv),q) .
Suppose to € A and let ¢ € (0,%p). Then by the triangle inequality

d(p,q) < t+d(exp,(tv),q)
<t (to —t) + d(exp,(tov), q)
= to + d(exp,(tov), q) = d(p, q).

Hence ¢t € A and therefore A is a closed interval, A = [0, ¢y] for some ¢, < r. By
the choice of v we have ¢ty > § > 0. It remains to show that ¢, = r.

To arrive at a contradiction we assume t, < r and set py = exp,(tyv). By
Lemma 1.2, there are a unit vector vy at pg and a number dy > 0 such that

d(po, q) = d(p, exp,, (dovo)) = do + d(exp,, (dov0), q) -
We conclude that for p; = exp,, (dovo),

d(p, q) = to + d(po, q) = d(p, po) + d(po, p1) + d(p1,q) = d(p, q) -
Hence the unit speed curve ¢ : [0, %y + do] — M defined by

(1) = 4 OPu(t0), 0 <t <t
exp,, ((t —to)vo), to <t < to+ do,

is a minimal connection from p to p;. It follows that ¢ is a geodesic and hence
that

c(t) = exp,(tv), 0<t<to+dp.
We conclude that ¢y + dp € A, a contradiction. O

THEOREM OF HOPF-RINOW 1.5. Let M be a connected Riemannian manifold.
Then the following four assertions are equivalent:

1) (M,d) is a complete metric space.

2) M is geodesically complete; that is, the real line R is the mazimal domain of
definition of geodesics in M.

8) There is a p € M such that exp,, is defined on all of T, M.

4) Bounded (with respect to d) subsets of M are relatively compact.

Any of these four assertions implies that for any two points p,q € M, there is a
minimal geodesic from p to q.
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Proof. The implications 2) = 3) and 4) = 1) are trivial. As for 3) = 4),
suppose that A C M is bounded with respect to d. That is, there are a point
q € M and a number r > 0 with A C B,(q). Since M is connected, d(p,q) < oo.
By the triangle inequality, A C Bg(p) with R = r 4+ d(p,q). But then A is
contained in the compact set exp,(Br(0,)) by the previous main argument.

We now prove 1) = 2). Suppose that the maximal interval I of definition of
a unit speed geodesic ¢ has an upper bound #, < co. Let (¢,) be an increasing
sequence in I converging to ty. Then

d(c(ty), c(tm)) < |tw — tm]-

Hence (¢(t,,)) is a Cauchy sequence. Since M is complete, there is a (unique) limit
point p. Now there is an € > 0 such that B.(0,) is in the domain of definition of
exp, for all ¢ € B.(p). But then

ech(tn)((t —ta) - d(ta)), [t—ta| <e,

is an honest geodesic extension of ¢ as soon as ty — t, < £, a contradiction. In a
similar way we conclude that I has no lower bound. Hence the maximal interval
of definition of a unit speed geodesic is the real line. Hence 2). O

In [CV], S. S. Cohn-Vossen proves a version of the Hopf-Rinow Theorem for
locally compact geodesic spaces, see also Chapter I in [NP].
EXERCISE 1.6. Show by example that the last assertion in Theorem 1.5 is not
equivalent to (any of) the first four assertions. (Hint: Start in dimension 1.)

2. THE THEOREM OF BONNET-MYERS

In what follows, let M be a connected Riemannian manifold of dimension m.
LEMMA 2.1. Let k > 0 and suppose that ¢ : [0,1] — M is a unit speed geodesic
such that ric(d(t),d(t)) > (m — 1)k for all t € [0,1]. Then | > 7/\/k implies
that there is a proper smooth variation (cs) of ¢ = ¢y with L(cs) < L(c) for all
s # 0. In particular, ¢ is not a minimal connection of its end points p = ¢(0) and
q=c(l).

Proof. Let (Ey = ¢, Es, ..., Ey) be a parallel ON-frame along c¢. For 2 < i <m
set

Vi(t) :==sin(nt/l) - Ei(t), 0<t<I.
Then V;(0) = 0 and V;(I) = 0. F or the index form of ¢ we obtain

S 10 V) = 3 [ w1 (3 — (RO O) 0, Eio))

2

_ / sin? (et /1) ((m — 1) - = vic(e (1), €(1))) i < 0.

0
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Hence there is an ¢ with 7(V;,V;) < 0. Now there is a proper smooth variation
(¢s) of ¢ with variation field V;. Then L(s) := L(¢s) is smooth in s with L'(0) = 0
and L"(0) = I1(V;,V;) < 0. 0O

THEOREM OF BONNET-MYERS (GEOMETRIC VERSION) 2.2. Let M be a com-
plete and connected Riemannian manifold of dimension m > 2. Suppose that
there is a constant k > 0 such that

ric(v,v) > (m—1) -k - ||v||2

for all tangent vectors v of M. Then the diameter diam(M) of M satisfies
diam(M) < 7/V/k.

A round sphere of radius 7 in Euclidean space has Ricci curvature (m —1)/r? and
(inner) diameter 7r. Hence the diameter estimate in Theorem 2.2 is optimal.
EXERCISE 2.3. Show that the completeness assumption on M cannot be deleted.

Proof of Theorem 2.2. Suppose there are points p,q € M with d(p,q) > 7/\/k.
By the Theorem of Hopf-Rinow there is a minimal geodesic ¢ from p to q. The
length of ¢ is I = d(p,q) > 7/+/k. By the previous lemma this contradicts the
minimality of c. O

LEMMA 2.4. Let M, M be connected Riemannian manifolds and T : M — M be
a Riemannian covering. Then M is complete iff M is complete.

Proof. Suppose M is complete. Let p € M and & be a tangent vector of M at p.
Let ¢ : R — M be the (maximal) geodesic with ¢/(0) = m,(9). Now 7 : M — M
is a covering, and hence there is exactly one lift ¢ : R — M of ¢ with &(0) = p.
Since 7 is a local diffeomorphism, ¢ is smooth and has initial velocity . Since 7 is
a local isometry and ¢ is a geodesic in M, ¢ is a geodesic in M. It follows that A
is complete. The other direction is clear since 7 is a surjective local isometry. [

THEOREM OF BONNET-MYERS (TOPOLOGICAL VERSION) 2.5. Let M be a
complete and connected Riemannian manifold. Suppose that there is a constant
k > 0 such that

ric(v,v) > (m —1) - & - ||v|]?
for all tangent vectors v of M. Then M is compact and the fundamental group
of M 1is finite.

Proof. Compactness of M follows from the Theorem of Hopf-Rinow and finiteness
of the diameter, see Theorem 2.2.

Let 7 : M — M be the universal covering of M. Endow M with the pull back
g = m*g of the metric g of M. Then 7 is a Riemannian covering and hence, by
the previous lemma, M is complete with respect to g. Since 7 is a local isometry,
local geometric invariants of M and M are the same (in corresponding points).
In particular, we have the same estimate for the Ricci curvature,

ric(#,9) > (m — 1)k - |3
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for all tangent vectors v of M. Now M is complete and connected. Hence
diam(M) < 7 /y/k. By the Hopf-Rinow Theorem we conclude that M is compact.
Therefore the number of sheets of the covering 7 is finite, and hence (M) is
finite. O

3. THE THEOREM OF HADAMARD-CARTAN

LEMMA 3.1. Let M, M be connected Riemannian manifolds and T : M — M be
a local isometry. Suppose that M is complete. Then M is complete and w is a
covering map.

Proof. Fix a point p € M in the image of m. Let v € T,M. Choose a point p in
the preimage of p. Then there is a unique tangent vector ¢ at p with 7. (?) = v.
Let é: R — M be the (maximal) geodesic with initial velocity #. Then ¢ = 7o é
is a geodesic in M since 7 is a local isometry. The initial velocity of ¢ is v since
7,.(0) = v. Hence for every v € T, M the maximal geodesic with initial velocity v
is defined on all of R. Therefore M is complete.

Let ¢ be another point in M. Then by the Theorem of Hopf-Rinow, there is
a geodesic segment ¢ : [0,1] — M from p to ¢. Let w be a tangent vector at p
with 7,() = ¢(0). Let &:[0,1] — M be the geodesic segment in M with initial
velocity w. Then ¢ = 7w o ¢ and hence 7(¢(1)) = ¢(1) = ¢. Hence 7 is surjective.

Choose £ > 0 such that exp,, : B.(0,) — B.(p) is a diffeomorphism. In our last
step of the proof we show that B.(p) is evenly covered by the balls B.(p), where
p runs over the points in the preimage 7='(p). Since 7 is a local isometry, for
any such point p,

(7] B:(p)) o (exp; | B-(05)) = (exp,, | B=(0,)) © (15| B: (05)).

Each of the two maps on the right hand side is a diffeomorphism. It follows
that exp; is injective and has maximal rank on B.(0;). Hence exp;|B.(0;) is a
diffeomorphism, hence also 7|B.(p).

Let p be another point in the preimage of p and ¢ : [0,1] — M be a minimal
unit speed geodesic from p to p. Then ¢ = 7 o ¢ is a unit speed geodesic in M
with ¢(0) = ¢(I) = p. Hence [ > 2¢, and hence B.(p) N B.(p) = 0. Tt follows that
B.(p) is evenly covered by the balls B.(p). O

THEOREM OF HADAMARD-CARTAN 3.2. Let M be a complete and connected
Riemannian manifold. Suppose that the sectional curvature Ky of M is non-
positive. Then for any p € M, the exponential map exp, : T,M — M s the
universal covering.

EXERCISE 3.3. Show that the completeness assumption on M cannot be deleted.

Proof of Theorem 3.2. Let ¢ : R — M be a geodesic and V' be a Jacobi field
along c. Then

(V, V" =2((V", V") = (R(V, ), V) >0,
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hence (V, V') is convex. Therefore V(t) # 0 for all ¢ # 0if V(0) = 0 and V'(0) # 0.
In particular, exp,, : T,M — M is a local diffeomorphism. Since M is complete,
exp, 1s surjective.

Now let g = exp,(g) be the pullback of the metric g on M. Then g is a
Riemannian metric on the manifold 7,M and by definition, exp, : T,M — M is
a local isometry with respect to g and g. For any v € T,M, the image exp(tv)
of the line tv, ¢ € R, through 0, in 7,M is a geodesic in M. Hence this line is
a geodesic in T,M (with respect to §). By the Theorem of Hopf-Rinow, T,M
is a complete Riemannian manifold with respect to g. By Lemma 3.1, exp, is a
covering. Since T),M is simply connected, exp, is the universal covering. 0

COROLLARY 3.4. Let M be a complete and simply connected Riemannian man-
ifold.  Suppose that the sectional curvature Ky of M is nonpositive. Then
exp, : Ty,M — M is a diffeomorphism. O

In [AB], S. Alexander and R. Bishop prove a version of the Hadamard-Cartan
Theorem for convex geodesic spaces, see also Chapter I in [NP].
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