
AN ILLUSTRATED GUIDE TO PERVERSE SHEAVES

GEORDIE WILLIAMSON

1. Introduction

When one reads the papers of Goresky and MacPherson where inter-
section cohomology and perverse sheaves were first introduced one feels
that they lived in a world of rich geometric and topological intuition.
On the other hand, most modern accounts of perverse sheaves are dry
and formal. They are a powerful black box sitting inside a mysterious
derived category.

The aim of these notes (written by an innocent bystander) is to
try to recapture some of the geometric intuition underlying perverse
sheaves. The emphasis will be on pictures and examples rather than
theorems. Of course it is very important to have some grasp of the
formal underpinnings of perverse sheaves, and these will be developed
to some extent along the way. We hope that these notes provide a
counter-balance to the more formal treatments of perverse sheaves in
the literature.

Lovely references to stay motivated:
Kleiman, The development of intersection homology theory.
de Cataldo, Migliorini, The decomposition theorem, perverse sheaves

and the topology of algebraic maps.
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2. What do algebraic varieties look like?

Perverse sheaves provide a powerful tool for understanding the topol-
ogy of algebraic varieties. They really come into their own when trying
to understand the topology of algebraic maps between varieties. Hence
some interest in the topology of algebraic varieties (viewed as manifolds
with singularities) is necessary to appreciate perverse sheaves.

One of the problems with studying the topology of complex algebraic
varieties is that the dimension grows very quickly, and so it is hard
to draw good pictures. We will be exclusively interested in complex
points, but sometimes having some understanding of real points can be
helpful. Often finding the right picture to draw is half the problem!

Quote from Manin here?
As a first example we can consider the equation y2 = x(x−a)(x− b)

in C2. Taking the projective closure (given by the homogenous equation
y2z = x(x− az)(x− bz) in P2) gives the following elliptic curves:

R-picture C-picture

a, b, c distinct: smooth

0 6= a = b: node

0 = a = b: cusp

Of course each curve degenerates into the one below it, and this is
quite easily imagined topologically.

The fact that manifolds look “locally the same everywhere” is ex-
pressed succinctly in the statement that the self-diffeomorphism or
self-homeomorphism group of a connected manifold acts transitively.

Of course this will fail for singular algebraic varieties in general. For
example any self-homeomorphism of the nodal elliptic curve above has
to fix the unique singular point.
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Given a singular space one would like to cut it up into finitely many
pieces, such that each piece is “equi-singular”. “Equi-singular” is prob-
ably best interpreted as saying that the self-homeomorphisms act tran-
sitively on each piece.

A stratification of an algebraic variety X is a decomposition of X
into finitely many disjoint pieces (or strata)

X =
⊔
λ∈Λ

Xλ

such that

(1) each Xλ is connected, locally closed (in the Zariski topology)
and smooth;

(2) the closure of any stratum is a union of strata.

For example, a stratification of an irreducible curve X is given by an
open (Zariski) dense subset X0 ⊂ Xreg together with the finitely many
points x1, . . . , xm making up the complement of C in X.

A more explicit version of equi-singularity along the strata requires
that each stratum Xλ satisfies“local normal triviality”: for each x ∈ Xλ

there exists an open neighbourhoods U of x in X, a pointed space V
and an isomorphism

(Xλ ∩ U)× V ∼−→ U

which is the identity on Xλ ∩ U .

Remark 2.1. To make proper sense of“local normal triviality”we should
introduce Thom’s notion of a topologically stratified space. The rougher
version above will be enough for our needs.

Example 2.2. Being a stratification does not guarantee equisingularity
along the strata, as the famous example of the Whitney umbrella shows.
This is the singular surface X given by x2 = zy2 inside C3. A real
picture looks like this:

(To convince oneself that this is the correct picture it is useful to con-
sider the slices z = constant. In the above picture, x and y should be
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swapped.) The singular locus Xsing is the line x = y = 0. Hence one
possible stratification of X is

X = Xreg ∪Xsing.

However it is an exercise to see that X looks different at the point
x = y = z = 0 to any other points x = y = 0, z 6= 0 in the singular
locus. (That this is the case is at least intuitively plausible from the
above picture.) Hence a “better” stratification is given by

X = Xreg t (Xsing \ {0}) t {0}.

To understand the Whitney umbrella topologically it is useful to con-
sider its normalization (u, v) 7→ (uv, v, u2).

Whitney discovered his famous Whitney condition which guarantees
equisingularity along the strata: suppose that Xµ ⊂ Xλ and suppose
given a sequence of points ai ∈ Xλ and bi ∈ Xµ both converging to the
same point c ∈ Xµ. Then the limit of the secant lines connecting ai
and bi is contained in the limits of the tangent planes at ai, provided
both limits exist.

Exercise 2.3. Suppose that X is the Whitney umbrella (as above) and
that Xλ = Xreg and Xµ = Xsing. Show that the Whitney conditions
fail for y = (0, 0, 0) and hold if 0 6= y ∈ Xsing.

A stratification satisfying Whitney’s condition is called a Whitney
stratification.

Theorem 2.4. Any complex algebraic variety admits a Whitney strati-
fication. In particular, the self-homeomorphism group of X acts transi-
tively on each stratum, and each stratum satisfies local normal triviality.
Moreover, any stratification can be refined to a Whitney stratification.

Example 2.5. In a Whitney stratification the normal direction is topo-
logically locally constant. However it need not be locally constant al-
gebraically (or holomorphically). It is easy to construct complicated
examples of this, however simple examples also exist. Consider the
space

X = {x, y, λ ∈ C | xy(x− y)(x− λy) = 0}
which we view as a family of varieties over C parametrised by λ. The
fibres over λ 6= 0, 1 consists of 4 distinct lines through the origin in
C2. Hence if we let X ′ denote the family over C \ {0, 1} obtained via
pull-back then we obtain a Whitney stratification

X ′ := X ′reg t {x = y = 0}.
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However, the normal direction to the strata consists of four lines in
C2, and hence we see the moduli space of 4 points on P1 entering the
picture.

3. What do morphisms of algebraic varieties look like?

It will be important in what follows to have a good supply of exam-
ples of morphisms of algebraic varieties. We will almost always assume
that our morphisms are proper (and usually even projective). Here we
discuss some examples:

Morphisms between curves: Let X and Y be smooth connected
curves, and f : X → Y a morphism. [picture here] Then unless f
is constant (boring), f is a finite map and will be étale over some open
subset U ⊂ Y . Fixing u ∈ U the map f is uniquely determined by a
transitive action of π1(U) on the finite set f−1(u). (Note that π1(U, u)
is almost always a free group.)

The structure of f at each ramification point y0 ∈ Y \ C is rather
simple. Let B denote an small disc at y0 contained in y0 ∪ C, let
y0 6= y ∈ B be a nearby regular value and ` ∈ π1(Ḃ, y) = Z be a
generator, where Ḃ := B \ {y0} denotes the punctured disc. Then
` acts on f−1(y) and the decomposition into orbits gives the number
of connected components of f−1(Ḃ). Moreover, the closure of each
connected component looks like a “staircase” z 7→ zm:

Here we see again that the data specifying the map f is finite and
rather simple.

Exercise 3.1. In the above setting assume that X and Y are projec-
tive. What is the relationship between the Euler characteristics of X
and Y in terms of the above data?
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Birational maps between surfaces: Here the archetypal example is
the blow-up of a point on a surface. Here is a real picture:
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Other important examples are provided by resolutions of (rational)
surface singularities:

T ∗P1

f
��

{xy = z2} ⊂ C3

X̃

f
��

{x2 + y3 = z5} ⊂ C3

(We have illustrated the minimal resolutions of an A1 and an E8 surface
singularity.)

Keep in mind that although these rational surface singularities are
lovely to think about, there is a whole zoo of surface singularities which
are much more complicated.

Families, possibly with singularities In algebraic geometry one usu-
ally uses “family” to mean some proper surjective map f : X → Y
where Y is “small” (e.g. a curve), and the fibres of f are to be thought
of as varying members of the family parametrised by Y . Often one
imposes something like flatness to ensure that the fibres don’t jump
around too much.

In homotopy theory one gets used to the idea that “every map is a
fibration”. In the algebraic world almost all maps will have singularities.
This means that most families will have some singular fibres.
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In the algebraic world a smooth map is what topologists would call
a submersion. In particular, the fibres of any smooth family are diffeo-
morphic (although their complex structures will usually be different).

A basic example of a family is the Weierstraß family of elliptic curves:

y2 = x(x − 1)(x − λ) fibering over λ ∈ C. Here one sees typical
behaviour. If U ⊂ C denotes the open subset λ 6= 0, 1 then f is
smooth over U , all generic fibres are diffeomorphic. The family aquires
singularities at λ = 0, 1 where one sees degeneration to a nodal elliptic
curve.

The following exercise is highly recommended. It will be helpful
throughout this course.

Exercise 3.2. Let `0 (resp. `1) denote a small loop based at λ = 1/2
and encircling 0 (resp. 1) in an anti-clockwise direction. Let E =
f−1(1/2), a smooth elliptic curve. Argue that each of these loops leads
to diffeomorphisms d0, d1 : E → E (which are well-defined up to homo-
topy). Describe how these diffeomorphisms act on the first homology
of E.

Now that we have seen several examples, one can probably appreciate
the following stratification result:

Theorem 3.3. Suppose that f : X → Y is a proper map of algebraic
varieties. Then there exists a Whitney stratification Y =

⊔
Yλ such

that over each Yλ, f is a C∞ fibration in (possibly singular) varieties.

4. More detail on the family of elliptic curves

Consider the family X given by the family y2 = (x−a)(x− b)(x− c)
of projective elliptic curves over

U := {(a, b, c) ∈ C3}
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We denote by f : X → U the projection. Given a point (a, b, c) ∈ U we
denote by Ea,b,c := f−1(a, b, c) the fibre. We denote by Ureg the subset

Ureg := {(a, b, c) | a, b, c distinct}.

Then f is a family of smooth projective elliptic curves over Ureg.
Suppose that (a, b, c) ∈ Ureg and (for the purposes of imagination)

that a, b are close, and c far away. Then the equation of Ea,b,c allows
us to view Ea,b,c as a ramified degree 2 cover of P1, ramified at a, b, c
and ∞:

Let `1 and `2 denote closed line segments joining a with b, and b with
c as in the picture, and let c1 and c2 be their inverse images on Ea,b,c.
As is clear from the fact that f is a degree 2 cover, we get two copies
of S1 in Ea,b,c.

Exercise 4.1. Show that, after fixing orientations on c1 and c2 they
give a basis for H1(Ea,b,c). (Hint: One way to see this is to notice that
the complement of c1 and c2 in Ea,b,c is a 2:1 cover of P1 \ (`1 ∪ `2)
ramified at only ∞.)
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Now one can picture how the cycles `1 and `2 move as we move the
points a, b, c ∈ Ureg.

For example, if we choose path φ exchanging a and b in an anti-
clockwise direction then the fibres Ea,b,c and Eb,a,c are canonically iden-
tified (they are given by the same equation). Then the induced map
φ∗ on cycles is:

`1 7→ `1, `2 7→ `′2 ∼ `1 + `2.

Exercise 4.2. Check that φ∗ has the following description inH1(Ea,b,c) =
H1(Eb,a,c):

c1 7→ c1 c2 7→ c2 + c1.

In fact, we are witnessing a classical Dehn twist:
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5. Constructible sheaves and local systems

We fix a commutative, Noetherian ring of finite global dimension k
throughout. Throughout we will use k as our “coefficients” (of coho-
mology, sheaves etc.) Typical examples to keep in mind are k = Q, Z,
C or Fp.

Let Shk(X) denote the abelian category of sheaves of k-modules on
X. It is useful to think about an object of Shk(X) as being a family
of k-modules over X.

Given a map f : X → Y we have functors

Shk(X)

f∗

##
Shk(Y )

f∗

cc

with f ∗ left adjoint to f∗. If F ∈ Shk(X) we write Fx for the stalk of
F at x ∈ X. Given a subspace Z ⊂ X we write FZ for the restriction
of F to Z (in other words FZ = i∗ZF where iZ : Z ↪→ X denotes the
inclusion).

Given a k-module V , we can equip V with the discrete topology and
consider the sheaf

V X(U) = {continuous functions U → V }.

We call V the constant sheaf with values in V . Because X is locally
connected all stalks of V X are equal to V .

Definition 5.1. A sheaf F ∈ Shk(X) is a local system if it is locally
constant and finitely generated (i.e. every x ∈ X has a neighbourhood
U such that FU ∼= V U for some finitely generated k-module V ). We
denote the category of local systems of X by Lock(X).

Remark 5.2. If one is used to vector bundles, one needs to be careful
with intuition. Local systems are very different beasts to vector bun-
dles. Let U be a subset over which a vector bundle is trivial. Then its
automorphisms are GLn(OU) where, n is the rank of the vector bundle.
By contrast, if a local system is trivial over a connected set U then its
automorphisms are GLn(k), a much smaller group. One should think
of a local system as a vector bundle with a distinguished notion of flat
section, and indeed this can be made precise in certain situations.

Exercise 5.3. i) Show that Loc(X, k) is an abelian subcategory
of ShXk. (Compare with vector bundles!)
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ii) Show that if X is contractible and if L is a local system on
X then L is canonically isomorphic to the constant sheaf with
values in Lx for any x ∈ X.

Theorem 5.4. If X is connected and x ∈ X is a base point then one
has an equivalence

Lock(X)
∼−→ Rep(π1(X, x), k).

where Rep(π1(X, x), k) denotes the abelian category of representations
of π1(X, x) on finitely generated k-modules.

Remark 5.5. One can avoid connectedness assumptions and a choice of
basepoint as follows: One has an equivalence

Loc(X, k)
∼−→ Fun(π1(X), k −modZ

f ).

where Fun(π1(X), k −modZ
f ) denotes the abelian category of functors

from the fundamental groupoid π1(X) to finitely generated k-modules.

Useful exercise to get used to the definitions:

Exercise 5.6. Prove either one of the above formulations of this the-
orem.

5.1. Constructible sheaves. In this section we meet constructible
sheaves. The canonical example of a constructible sheaf is the following.
Fix i ∈ Z. Suppose that f : X → Y is a morphism of algebraic varieties
and consider the sheaf on Y associated to the presheaf:

U 7→ H i(f−1(U), k)

Exercise 5.7. Find examples to show that this presheaf satisfies nei-
ther of the sheaf axioms in general. (Hint: Think about a non-algebraic
example (e.g. the Hopf fibration) first.)

We will denote this sheaf Rif∗kXY (the notation will become clear
below).

A theorem (the proper base theorem discussed below) ensures that
if f is proper then the stalks of Rif∗kX at y ∈ Y is isomorphic to
H i(f−1(y), k).

We now consider the canonical example of a local system. Let X̃
f→

X be a smooth and proper morphism between smooth varieties. By
Ehresmann’s fibration lemma, f is a fibration of smooth manifolds.
That is, for every point y ∈ Y there is a neighbourhood U of y and
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diffeomorphisms:

f−1(y)× U //

%%JJJJJJJJJJ
f−1(U)

{{xxxxxxxxx

U

It follows that the sheaf associated to the presheaf

U 7→ H i(f−1(U))

is a local system on X. In fact, this is the local system is Rif∗kX̃ .

Exercise 5.8. If f is smooth (or more generally if f is topologically
a locally trivial C∞-fibration of algebraic varieties) then Rif∗kXY is a
local system.

5.1.1. Constructible sheaves.

Definition 5.9. F ∈ kX −mod is constructible if there exists a strati-
fication

⊔
λ∈Λ Xλ such that FXλ is a local system for all λ ∈ Λ.

Remark 5.10. In some sense one can think of constructible sheaf as
a “local system with singularities”, however this title is probably best
reserved for intersection cohomology complexes (next time). The name
probably comes from the fact that local systems can be “constructed”
out of local systems using finitely many operations (what we mean by
this will also become clearer later on).

Example 5.11. (1) Consider the map f : C → C : z 7→ zm. We
want to understand the stalks of f∗kC. Consider a small disc
D. There are two cases:
(a) 0 ∈ D: so f−1(D) is connected and f∗kC(D) = k;
(b) 0 /∈ D, so f−1(D) consists of m small discs spread around

the origin:

In particular, f ∗(D) ∼= D1 t · · · tDm and f∗kC(D) is nat-
urally the k-valued continuous functions

D1 t · · · tDm → k.
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One can deduce that f∗kC has the following structure: (f∗kC)|C∗
is a local system determined by the action of the mon-
odromy on the mth roots of 1 (an m-cycle); (f∗kC)0 = k if
D ⊃ D′ are two discs with 0 ∈ D and 0 /∈ D′ then

k = f∗kC(D)→ f∗kC(D′) = k⊕m

is the inclusion of the invariants under the monodromy.
(The monodromy is represented by the blue arrows in the
picture above.)

(2) As we have already seen, any non-constant map f : C → C ′ be-
tween smooth curves is locally a disjoint union of the previous
example. If U ⊂ Y denotes the locus over which f is étale then
(f∗kC)U is given by local system determined by the functions on
f−1(u) (with its natural π1(U, u)-action). The stalks at the sin-
gular points are given by the invariants under the monodromy.

(3) More generally, a constructible sheaf on a smooth curve C is
determined by the following data:
(a) an open dense subset U of C with a local system L on it.
(b) For each of the finitely many points xi in the complement

of U a k-module Mi.
(c) Maps Mi → Lφix′i where, for each i, x′i denotes a point

close to xi, and φi denotes a generator for the monodromy
around xi (which acts on Lφix′i):
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6. Constructible derived category

A basic philosophy is the following:

complexes good, cohomology bad.

In more detail, the philosophy says that it is more sensible to study a
complex (perhaps up to quasi-isomorphism) rather than its cohomology
groups.

Example 6.1. Recall the“universal coefficient theorem”from algebraic
topology. It says that if one knows that cohomology of a space with
coefficients in Z then one may deduce its cohomology with coefficients
in any ring via a funny looking formula

H i(X,R) = (H i(X,Z)⊗Z R)⊕ Tor1(H i+1(X,Z), R).

In this setting the above philosophy tells us that we should instead
be interested in C, the complex computing the homology over Z. Now
Z is heriditary (every submodule of a projective module is projective)
and it follows that we have an isomorphism in the derived category

C
∼−→
⊕

H i(X,Z)[−i].

then the above strange formula follows by considering C ⊗LZ R.

6.1. The constructible derived category. Below we will see that
we want to understand Poincaré duality. On a point Poincaré duality
will reduce to duality for k-modules. Even here one sees that one nees to
impose some finiteness conditions. (I.e. the natural arrow V → (V ∗)∗

is only an isomorphism when restricted to finite dimensional V .) The
notion of “constructible derived category” is precisely such a set of
finiteness conditions for sheaves on a space.

Let Db(ShXk) denote the derived category of the abelian category
of sheaves of k-vector spaces on X. We use the following (standard)
notation:

i) [1] denotes the shift funtor on Db(ShX),
ii) Hi(F) denotes the ith cohomology sheaf of F (a functor),
iii) Homn(F ,G) = Hom(F ,G[n]).

We say that F ∈ Db(ShX) is constructible (resp. Λ-constructible) if
its cohomology sheaves are. The crucial definition is as follows:

Db
c(X) =

{
full subcategory of Db(ShX)
of constructible complexes

}
.

If we fix a stratification Λ of X we set

Db
Λ(X) =

{
full subcategory of Db(ShX)
of Λ-constructible complexes

}
.
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6.2. Verdier duality. The starting point is Poincaré duality. If k is
a field and X is smooth of dimension n then we have

H i(X, k)∗ = Hn−i
! (X, k).

(Throughout the course we will use H∗! to denote compactly supported
cohomology. Why will become clearer later.)

Note that most (if not all) proofs of Poincaré duality are local: one
deduces the statement from the fact that it is true on a covering.

Verdier duality is a local theory of Poincaré duality which is valid
for any constructible sheaf (or complex). As we will explain in the
exercises below, a search for generalisations of Poincaré duality leads
directly to the existence of a right adjoint f ! to f! for any morphism
f : X → Y and hence to a contravariant functor

D : Db
c(X; k)→ Db

c(X, k)

such that

(1) D2 ∼= id (D is a “Duality”);
(2) Df!

∼= f∗D and Df ! ∼= f ∗D;
(3) if X is smooth, then DkX = kX [2n];
(4) we have D := RHom(−, ωX) where ωX := (X → pt)!kpt is the

“dualising sheaf”.

In particular, on a point D is just the functor RHom(−, k). Note
that these properties immediately imply Poincaré duality:

H i(X)∗ = H−iD(f∗kX) = H−i(f!DkX) = H−i(f!kX [2n]) = H2n−i
! (X).

Exercise 6.2. (1) Let f : Z ↪→ X be the inclusion of a locally
closed subset and F ∈ kX − mod. For any open set V choose
an open set U in X such that X ∩ Z = V and set

F!
Z(V ) := {s ∈ F(U) | supp s ⊂ V }.

Show that F!
Z(V ) is independent of the choice of U and defines

a sheaf on Z. This sheaf F!
Z is called the sections of F with

support in Z.
(2) Show that the assignment F 7→ F!

Z extends to a functor kX −
mod→ kZ−mod and that the resulting functor is right adjoint
to f!.

(3) Deduce that (with f as above) f ! is the derived functor of F 7→
F!
Z . Show that f ∗ = f ! if f is the inclusion of an open subset.

(4) Give an example of a map f : X → Y between algebraic va-
rieties such that f! : Shk(X) → Shk(Y ) does not have a right
adjoint. (Hence the passage to the derived category in the def-
inition of f ! is essential.)
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(5) Suppose that we have a contravariant duality D : Db
c(X; k) →

Db
c(X, k) and functorial isomorphisms

H∗(X,F)→ H∗! (X,DF)∗

(more precisely, one would like a functorial isomorphism of com-
plexes in the derived category) for all sheaves F and spaces
varieties X. Show that DF is isomorphic to the functor

DF := RHom(F, (X → pt)!kpt).

(In part this motivates the search for a right adjoint to f!.)
Hint: Fix X, then swapping F and DF the canonical isomor-

phism H∗(X,DF) = H∗! (X,F)∗ leads to (for all U ⊂ X open)

DF(U) = RHom(pU !FU , k) = RHom(FU , p
!
Ukpt) =

= RHom(FU , i
!
Up

!
Xkpt) = RHom(F, p!

Xkpt)(U)

where pU , pX denote the projections to a point, iU : U ↪→ X
denotes the inclusion and we have used that i!U = i∗U because
iU is an open inclusion.

6.3. Six functor formalism. The constructible derived category has
a remarkable array of structures, which are neatly organised by Grothendieck’s
six-functor formalism. We will give a quick review here, but getting
used to what all of this means takes a while.

From now on we abuse notation:

f∗ = Rf∗, f! := Rf!, f ∗ = Rf ∗ (exact), Hom = RHom(−,−).

For example, if f : X → pt is the projection then f∗ = RΓ(X,−) and
f! = RΓc(X,−).

With this notation, given any morphism f : X → Y we have func-
tors:

Db
c(X)

f∗,f!

##
Db
c(Y )

f∗,f !

bb

The key properties are:

• Adjunctions: (f ∗, f∗), (f!, f
!), (−⊗F ,Hom(F ,−).

• We have morphisms of functors f! → f∗. The map f! → f∗ is
an isomorphism if f is proper. We have j! = j∗ for j an open
inclusion.
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• Open-closed distinguished triangles: Given a decomposion X =
U t Z into U open and Z closed we denote the inclusions by

Z
i
↪→ X

j
←↩ Z.

Then we have functorial distinguished triangles

i!i
! → id→ j∗j

∗ [1]→

j!j
! → id→ i∗i

∗ [1]→

• Duality: Set ωX = p!kpt where p : X → pt denotes the projec-
tion. We define

D = Dx = RHom(−, ωX).

Then D2 ∼= id and DY f!
∼= f∗DX . If X is smooth and L is a

local system on X then

DL ∼= L∨[2dX ].

• Relations with classical cohomology: We have

Hn(X) = Hn(f∗kX) H !
n(X) = Hn(f∗ωX)

Hn
! (X) = Hn(f!kX) Hn(X) = H−n(f!ωX)

• Proper base change theorem: Suppose that we have a pull-back
diagram

X ′
f ′ //

g′

��

X

g

��
Y ′

f // Y

then we have an isomorphism of functors:

f ∗ ◦ g!
∼= (g′)! ◦ (f 1)!.

This has the following very useful consequence: Suppose g :
X → Y is proper then g! = g∗ and take Y ′ = {y} for some
y ∈ Y ). Then our diagrams becomes

F
f ′ //

g′

��

X

g

��
{y} f // Y

where F is the fibre of g at F and we have

(g∗F)y = H∗(F,F|F ).
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(In particular, g∗F is a sheaf which gathers together the infor-
mation of the cohomology of all the fibres of g with values in
the restriction of F.)
• Behaviour under smooth maps: If f : X → Y is smooth of

relative dimension d then one has an isomorphism

f !k = k[2d].

Also, if we have a commutative diagram as above with g smooth
then we have an isomorphism f ∗g∗ ∼= (g′)∗(f

′)∗.
• The grand octahedron: Suppose that we have a filtration

Z ⊂ Y ⊂ X

of X by closed subsets. Given any complex of sheaves on X we
have an octahedron:

FZ [−1] (FY )V ! FU ![1]

FY [−1] FU∪V ! FY FU∪V ![1]

FU ! FX FZ

(Notation: for A closed, FA := iA∗i
∗
AF, for B open FB! :=

(jB!)j
!
BF where iA, jB denote the inclusions.)

It is a nice exercise to deduce “all” the long exact sequences of
cohomology. For example, if we have an open closed decomposition
X = U t Z with i : Z ↪→ X and j : U ↪→ X we have

i!i
!ωX → ωX → j∗j

∗ωX →
which we can rewrite (using i∗ = i! and j! = j∗) as

i∗ωZ → ωX → j∗ωU →
and hence we have a long exact sequence of homology with closed
supports

. . .→ H !
i+1(U)→ H !

i(Z)→ H !
i(X)→ H !

i(U)→ H !
i−1(Z)→ . . .

Riddle: describe the restriction map geometrically!
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7. Truncation structures and glueing

7.1. Unicity of triangles. We don’t recall the definition of a triangu-
lated category here. We do recall a basic and extremely useful lemma:

Proposition 7.1. Consider two distinguished triangles X → Y →
Z

[1]→ and X ′ → Y ′ → Z ′
[1]→ and a map g : Y → Y ′. Consider the

following diagram

X
u //

f
���
�
� Y

v //

g
��

Z
[1]
//

h
���
�
�

X ′
u′ // Y ′

v′ // Z ′
[1]
//

The following are equivalent:

(1) there exists f making the first square commute;
(2) there exists h making the second square commute;
(3) there exists a morphism (f, g, h) of triangles (X, Y, Z)→ (X ′, Y ′, Z ′);
(4) v′gu = 0

Moreover, if any of these conditions are satisfied and Hom−1(X,Z ′) = 0
then f and h are unique.

Proof. (1) ⇔ (4): Apply Hom(X,−) to the second triangle, one gets
unicity if Hom−1(X,Z ′) = 0.

(2)⇔ (4): Apply Hom(−, Z ′) to the second triangle, one gets unicity
if Hom−1(X,Z ′) = 0.

(1), (2), (4) ⇒ (3): Use that if f exists then there exists an h giving
a morphism of triangles.

(1), (2), (4) ⇐ (3): Easy. �

7.2. t-structures. Let A be an abelian category. It is a basic fact
about derived categories that the functor

A → D(A)

which sends M to the complex . . . → 0 → M → 0 → . . . with A in
degree zero is fully-faithful. Short exact sequences in A are the same
thing as distinguished triangles

M1 →M2 →M3
[1]→

with each Mi in the image of A. Moreover, we gain significant insight
into D(A) via the cohomology functors D → H i(D) ∈ A.

We can abstract this as follows: let us call an abelian subcategory
M⊂ D(A) admissible abelian if

(1) M is full;
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(2) Homm(A,B) = 0 for m < 0 (“no negative exts”);
(3) short exact sequences inM are the same thing as distinguished

triangles in D(A) in which all terms lie in M.

(am I missing something about extension closed here?)

Remark 7.2. The phenomenon of derived equivalence makes it clear
that a given derived category might have unexpected admissible abelian
subcategories. For us the classic example is given by the Riemann-
Hilbert correspondence: an equivalence (“derived solutions”) of derived
categories

Db
r,h(DX −mod)

∼−→ Db
c(X).

where the left hand side denotes the derived categories of D-modules
on X with regular holonomic cohomology. This equivalence does not
preserve the natural hearts on both sides, and hence there is an unex-
pected admissible abelian category

A trunction structure (or t-structure for short) is a pair D≤0 and
D≥0 of full subcategories such that

(1) if we set D≤i := D≤0[−i] and D≥i := D≥0[−i] then

Hom(D≤0, D≥1) = 0.

(2) D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0,
(3) any X lies in a distinguished triangle

A→ X → B
[1]→

with A ∈ D≤0 and B ∈ D≥1.

Remarks:

(1) By Proposition 7.1 the assignments X → A (resp. X → B) is
a functor. We denote this functor by τ≤0 (resp. τ>0). It is easy
to see that τ≤0 (resp. τ>0) is right (resp. left) adjoint to the
inclusion of D≤0 (resp. D>0).

(2) We similarly have functors τ≤a (resp. τ≥b) which are right (resp.
left) adjoint to the inclusions of D≤a (resp. D≥b). For any a, b
we have canonical isomorphisms τ≤aτ≥b = τ≤bτ≥a.

(3) We have

D>0 = (D≤0)⊥ and D≤0 = ⊥(D>0).

Hence there is some redundancy in the definition of a t-structure.
(4) There are silly examples of t-structures for example D≤0 = 0 or

D≥0 = complexes supported on a closed subset.
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In both these examples D≤0∩D≥0 is zero. We call a t-structure
non-degenerate if the intersection of all D≤n is zero, and the
same is true for D≥n.

Theorem 7.3. Given a t-structure (D≤0, D≥0) on D the heart

M := D≤0 ∩D≥0

is an admissible abelian category of D. Moreover the functor

D →M : X 7→ τ≤0τ≥0(X)

is a cohomological functor. (From now on we set Hm(X) := τ≤0τ≥0(X[m]).

Given the above theorem it is natural to ask whether there is some
relations between the derived category of M and D. In general the
answer is somewhat complicated. However one always has a functor
(“realization”)

real : Db(M)→ Db

where Db denotes the union of D[a,b] := D≥a ∩D≤b for all a, b.
The situation when real is an equivalence is particularly desirable.

In this case, as Beilinson says: “the niche D where M dwells, may be
recovered from M”.

7.3. Glueing t-structures. We now return to geometrical setting and
address the following question: suppose I have have “decomposed” a
triangulated category into two pieces. Can I “glue” t-structures on
each part to get a t-structure on the whole?

More formally suppose that I have triangulated categories DZ , D,DU

and functors

DZ
i∗→ D

j∗→ DU

such that

(1) i∗ has left and right adjoints i∗ and i!, j∗ has left and right
adjoints j! and j∗ (it is convenient to set i! := i∗ and j! := j∗ so
that the adjoint pairs are always of the form (k∗, k∗) and (k!, k

!)
for k ∈ {i, j}).

(2) We have j∗i∗ = 0 (and hence by adjunction i∗j! = 0 = i!j∗).
Hence

Hom(j!A, i∗B) = 0 = Hom(i∗A, j∗B).

(3) For any X ∈ D we have distinguished triangles

j!j
!X → X → i∗i

∗X
[1]→

i!i
!X → X → j∗j

∗X
[1]→
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where all maps except the connecting homomorphism adjunc-
tion maps. Note that these triangles are unique by the previous
point.

(4) i∗ = i!, j! and j∗ are fully-faithful (in other words the adjunc-
tion morphisms i∗i∗ → id → i!i! and j∗j∗ → id → j!j! are
isomorphisms).

This set-up is what has come to be known as a recollement (or gluing)
situation.

It is useful because of the following: suppose that I have t-structures
(D≤0

U , D≥0
U ) and (D≤0

Z , D≥0
Z ) on DU and DZ .

Theorem 7.4. The full subcategories

D≤0 := {X ∈ D | i∗X ∈ D≤0
Z and j∗X ∈ D≤0

U }
D≥0 := {X ∈ D | i!X ∈ D≥0

Z and j!X ∈ D≥0
U }

define a t-structure on D.

It is a beautiful exercise in the glueing formalism to write down a
proof of this theorem.

7.4. First experiments with glueing. Let X = P1C with the strat-
ification Λ = {pt} t C. Let D := Db

Λ(X) and DZ = Db(pt), DU :=
Db

const(C) (full subcategory of sheaves with locally constant (=constant
in this case) cohomology sheaves).

Inside DZ and DU we have the admissible abelian categories Loc(pt)
and Loc(C). We want to answer the following:

Fix d ≥ 0: What do we get if we glue the t-structures corresponding
to Loc(pt) and Loc(C)[d]?

We know the answer for d = 0. We get constructible sheaves, which
in this case is the abelian category of finite-dimensional representations
of the quiver

V0 → V1

(For arbitrary constructible sheaves we saw that we get V0 → V µ
1

(µ =monodromy) however, here µ = 1 because C is contractible.)
We will see below that if d = 1 we get perverse sheaves, which turns

out to be equivalent to the abelian category of vector spaces and maps

V0 V1

e

f

such ef = 0.
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If d = 2 we get the dual of the d = 0 case: representations of the
quiver

V0 ← V1

In all other cases d > 2 or d < 0 the category is semi-simple, with
two simple objects.

Exercise 7.5. The functor real : Db(M) → Db
Λ(X) is an equivalence

if and only if d = 1.

7.5. Perverse sheaves. We are now ready to define perverse sheaves.
First, assume that we have a strafication

X =
⊔
λ∈Λ

Xλ

such that D preserves Db
Λ(X). (For example, Λ might be a Whitney

stratification.) Write iλ : Xλ ↪→ X for the inclusion and for each Xλ

and let dλ denote its dimension. Define
pD≤0

λ := {F ∈ Db
const(Xλ) | Hi(F) = 0 for i > −dλ},

pD≥0
λ := {F ∈ Db

const(Xλ) | Hi(F) = 0 for i < −dλ}
so that

pD≤0
λ ∩

pD≥0
λ = Loc(Xλ)[dλ]

for all λ.

Remark 7.6. The motivation is that Loc(Xλ)[d] is preserved by Verdier
duality if and only if d = dλ.

Now define
pD≤0 := {F ∈ D | i∗λF ∈ D

≤0
λ for all λ ∈ Λ},

pD≥0 := {F ∈ D | i!λF ∈ D
≥0
λ for all λ ∈ Λ}.

Exercise 7.7. Show that this is a t-structure. (Hint: Apply induction
and Theorem 7.4.)

The heart of this t-structure is the categoryMΛ of perverse sheaves
with respect to the stratification Λ. If Λ′ is a refinement of Λ then we
have a fully-faithful inclusion

MΛ ↪→MΛ′ .

We define the category of perverse sheavesMX to be the direct limit
of these categories. That is, a perverse sheaf is F ∈ Db

c(X) such that
it is perverse with respect to some stratification.

Exercise 7.8. (1) pD≤0 and pD≥0 are exchanged by D, and hence
D preserves MX .
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(2) F ∈ D≤0 if and only if

dim suppHi(F) ≤ −i
for all i.

(3) If F is perverse then Hi(F) = 0 for i < − dimX.

This exercise gives a reasonable picture of what the stalks of a per-
verse sheave may look like: (let d = dimCX)

H1(F) 0

H0(F) supported (at most) on points

...
...

...

H−d+1(F) supported (at most) on divisors

H−d(F) supported (at most) everywhere

H−d−1(F) 0
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8. Perverse sheaves on curves

The goal of this section is to get some feeling for what perverse
sheaves are like on curves. Here we already meet nearby and vanishing
cycles, and monodromy continues to play a key role.

An important fact (which we possibly should have already men-
tioned) is that perverse sheaves form a stack of abelian categories. This
means that perverse sheavs“behave like the category of sheaves” in that

(1) if a morphism between perverse sheaves is zero locally, then it
is zero;

(2) a perverse sheaf can be glued together out of perverse sheaves
on a cover.

In particular it suffices to understand perverse sheaves locally. Away
from any singularities, perverse sheaves are simply local systems, and
these we pretend we understand.

Hence we can assume that U is a small disc, 0 ∈ U is a point. Our
goal is to understand the category M0 of perverse sheaves on U with
singularities only at zero.

Given F ∈ M0 the first (and most obvious) thing that we can do is
to restrict it to U \ {0} and obtain a local system. This is the same
thing as a finite dimensional vector space V (stalk at a nearby point
x) together with an invertible transformsion µ : V → V (monodromy).

What is the extra data? The answer is given by the following theo-
rem, which we will discuss from various points of view:

Theorem 8.1. M0 is equivalent to the abelian category consisting of
(V, V0, µ, a, b) where V and V0 are finite dimensional k vector spaces,
µ ∈ GL(V ) is an automorphism, and a and b are maps such that we
have a commutative diagram:

V
µ−idV //

a

  @@@@@@@@ V

V0

b

>>~~~~~~~~

8.1. Construction of the functor: topological. A key idea when
trying to come to grips with a k-linear abelian category A is to under-
stand exact functors from A to some “known” category (for example
Vect, or representations of a group). We already have seen one example
of this: in order to understandM0 our first observation is that we have
a functor

M0 → Loc(U \ {0})[1]

given by restriction.
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On the other hand we don’t know how to “measure” our perverse
sheaf at zero. Of course we could take the stalk at 0, however this
would give us a complex of vector spaces concentrated in degrees −1
and 0. We could also take H0(F0), but this would only be right exact.

It turns out that when studying perverse sheaves we need to a dif-
ferent notion of “stalk”, which is called “vanishing cycles”. To see what
this is let us introduce some more notation: let D denote a closed disc
around the origin with boundary ∂D and fixed x ∈ ∂D. Consider the
inclusion v : D \ {x} → D.

Proposition 8.2. For any F ∈ M0, H∗(D, k!k
!F) is concentrated in

degree zero. In particular the functor

M0 7→ Vectk : F 7→ H0(D, v!v
!F)

is exact.

Remark 8.3. It probably seems strange at first to considerH0(D, k!k
!F).

We give some motivation from Morse theory. (We will see more moti-
vation coming from the classical theory of vanishing cycles later.)

For simplicity assume that our fixed base point x on the circle is 1.
Consider DRe≥γ := {z ∈ D | Rez ≥ γ} a closed subset inside D. Let’s
assume that we are interested in studying the groups

H∗(DRe≥γ,F)

as γ varies from γ positive and less than the radius of D, where

H∗(DRe≥γ,F) = H∗(F1)

to γ negative and greater than the radius of D, where

H∗(DRe≥γ,F) = H∗(D,F).

It is also clear by homotopy invariance that these groups are constant
except at the “singularity” γ = 0, as we cross the (possible) singularity
of F. One can imagine this as some kind of “local Morse theory”.

So what is the difference of these two groups? Suppose γ > 0 and
consider the open closed decomposition:

DRe<γ
ṽ
↪→ D

z← DRe≥γ

Then by the long exact sequence we have

. . .→ H−1(D,FDRe≥γ )→ H0(D, ṽ!ṽ
!F)→ H0(D,F)→ H1(D,FDRe≥γ )→ . . .

and so the group H0(D, ṽ!ṽ
!F) measures the “difference”. Finally, it is

easy to see (again by homoppy invariance) that

H0(D, ṽ!ṽ
!F) = H0(D, v!v

!F).
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Hence the functor in the proposition measures the “change in cohomol-
ogy as we cross a singularity”.

It is a general fact about perverse sheaves that these “local Morse
groups” as in the proposition are concentrated in one degree. In fact
this charaterises perverse sheaves. For a general constructible sheaf
this won’t be true. (We should explain this paragraph a little more at
some point.)

We will prove the proposition after a series of simple lemmas:

Lemma 8.4. Given F ∈M0 restriction gives an isomorphism

H∗(D,F)
∼−→ H∗(F0).

Proof. Let ε > 0 be such that B(0, ε) ⊂ D. Then (fairly obviously)

H∗(B(0, ε),F) = H∗(D,F)

which implies the lemma after passing to the limit. �

Lemma 8.5. Given F ∈M0 then restriction gives injections

H−1(D,F) ↪→ H−1(D, j∗j
∗F) ↪→ H−1(D,F−1).

Proof. In the distinguished triangle

i!i
!F → F → j∗j

∗F
[1]→

the first term is concentrated in degrees ≥ 0. Hence taking H−1 we get
an exact sequence

0→ H−1(D,F)→ H−1(D, j∗j
∗F)

and the first injection follows. The second injection follows from the
fact that the map H0(X,L)→ H0(Lx) is injective for any x ∈ X and
local system L on a connected X. �

Proof of Proposition 8.2. Let k : {x} ↪→ D denote the inclusion. Ap-
plying H∗(D,−) to the distinguished triangle

v!v
!F → F → k∗k

∗F
[1]→

we get
m Hm(D, v!v

!F) Hm(D,F) Hm(Fx)
1 0 0 0
0 ? ∗ 0
−1 ? ∗ ∗
−2 0 0 0

By the previous lemma H−1(D,F) → H−1(D,Fx) is injective and the
proposition follows. �
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Now let us apply the grand octahdron with

Z := {x} ⊂ Y = S1 ⊂ D

then we get

Fx[−1] (FS1)V ! FU ![1]

FS1 [−1] FD\{x}! FS1 FD\{x}![1]

FU ! F Fx

(*)

and applying H0(D,−) to the commutative triangle marked (*) gives
us

H−1(Fx) H0
! (D,FS1\{x})

H0(D, v!v
!F)

m

Exercise 8.6. Show that in the horizontal arrow in this diagram can
be identified with V → V with m = µ−1. (Note that this is a question
about local systems on S1.)

This gives the functor in Theorem 8.1. We delay the rest of the proof
of Theorem 8.1 until later.

Exercise 8.7. Show that the images of the functor on the following
objects are as follows:

(1) i∗k{0}:

0 0

k

(2) j!kU [1]:

k k

k

0

1 0
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(3) j∗kU [1]:

k k

k

0

0 1

(4) kD[1]:

k k

0

0

Calculate composition series for j!kU [1] and j∗kU [1], and check they
match the answers obtained in the above category.

8.2. Simple perverse sheaves on curves. We keep the notation of
the previous section. In the exercises we saw that given a local system
L on U the complexes j!L and j∗L are perverse.

Remark 8.8. More generally we will hopefully see at some point that
j!F, j∗F are perverse if F is, as long as j is an affine inclusion.

Lemma 8.9. (1) j!L has no non-zero quotients supported on {0}.
(2) j∗L has no non-zero subobjects supported on {0}.

Proof. By applying D the two statements are equivalent.
Let us prove (1). Any sheaf supported on {0} is of the form i∗G for

some vector space V . By adjuction

Hom(j!F, i∗G) = Hom(F, j!i∗G) = 0

because j! = j∗ and j∗i∗ = 0. The lemma follows. �

The minimal extension functor is

MU →MX : j!∗(F) := Im(j!F → j∗F).

The reason for the name should be clear: by the previous lemma j!∗F

has no subobject or quotient supported on the complement of U . An
immediate consequence of the previous lemma is:

Lemma 8.10. j!∗ takes simple perverse sheaves to simple perverse
sheaves.

The following gives a classification of the simple perverse sheaves on
a curve.

Theorem 8.1. Suppose that X is a smooth curve with stratification
Λ := U t {z1} t · · · t {zm}. Then the simple objects in MX,Λ are up
to isomorphism:
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(1) skyscraper sheaves i{zi}∗k{zi} for 1 ≤ i ≤ m;
(2) the objects j!∗L[1] for L a simple local system on U .

Proof. We first discuss the version of the theorem with a fixed strat-
ification. Let F be a simple perverse sheaf. If FU = 0 then F is a
skyscraper. Otherwise we have an adjunction morphism

j!j
!F → F

which (by the simplicity of F) factors as

j!j
!F → j!∗j

∗F → F.

The morphism j!∗j
∗F → F is non-zero (it is the identity when restricted

to U) and hence is an isomorphism. �

Passing to the limit we have:

Theorem 8.2. The simple perverse sheaves on X are the following:

(1) skyscraper sheaves iz∗k{z} for z ∈ X;
(2) objects j!∗L[1] for all pairs (U,L) where U is a Zariski open

subset and L is a simple local system on U .

(In (2) we identify two pairs (U,L) and (U ′,L′) if the restrictions of L
and L′ to U ∩ U ′ are isomorphic.)

Proof. The only that might require explanation is the last point. How-
ever the previous proof shows that (with notation as in the theorem)

(jU)!∗L
∼−→ (jU∩U ′)!∗j

∗
U∩U ′L

∼−→ (jU ′)!∗L
′. �

9. Stalks and vanishing cycles of simple perverse sheaves

Suppose that we are in the local situation: D,U, {0} etc.
Let L denote a local system on U = D \ {0} given by a vector space

with monodromy µ : V → V . The following calculation was an exercise
a while back:

Lemma 9.1.

Hm((j∗L)0) =


V µ (invariants) if m = −1;

Vµ (coinvariants) if m = 0.

0 otherwise.

Now consider the long distinguished triangle:

j!L[1]→ j∗L[1]→ i∗i
∗j∗L[1]

[1]→
The long exact sequence of perverse cohomology gives

0→ pH−1(i∗i
∗j∗L[1])→ j!L[1]→ j∗L[1]→ pH−1(i∗i

∗j∗L[1])→ 0
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and the above lemma can be restated as:

pH−1(i∗i
∗j∗L[1]) = i∗V

µ pH−1(i∗i
∗j∗L[1]) = i∗Vµ

Considering the long exact sequence of the stalk at 0 of the induced
short exact sequence

0→ j!∗L[1]→ j∗L[1]→ i∗Vµ → 0.

we get:

Lemma 9.2.

Hm((j!∗L)0) =

{
V µ (invariants) if m = −1;

0 otherwise.

Remark 9.3. It follows that j!∗L is the shift of a constructible sheaf in
this case. This feature does not continue beyong the dimension 1 case.

The following follows from Theorem 8.1, however it is a worthwhile
exercise to check it directly.

Lemma 9.4. Under the equivalence of 8.1 j!∗L corresponds to the fol-
lowing diagram:

V V

W

µ− 1

where W = V/V µ = Im(1− µ).

Proof. We use the notation of the proof of Proposition 8.2. Taking
cohomology of the distinguished triangle

v!v
!F → F → k∗k

∗ →

we get a long exact sequence

m Hm(D, v!v
!F) Hm(D,F) Hm(Fx)

1 0 0 0
0 ? 0 0
−1 0 V µ V
−2 0 0 0

from which the result follows. �
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10. Two examples of perverse sheaves on curves

10.1. Local systems coming from hyperelliptic curves. Let X
be a smooth hyperelliptic curve. By definition this means that there
exists a 2 : 1 covering

f : X → P1C
ramified at 2(g + 1) points z1, . . . , z2n, where g is the genus of X. (We
calculated this value of n in an exercise).

Because f is finite, f∗kX [1] is concentrated in degree −1. It is self-
dual (use f! = f∗ and kX [1] is self-dual by smoothness). In particular
f∗kX [1] is perverse.

Lemma 10.1. f∗kX [1] is a semi-simple perverse sheaf if chark 6= 2.

Proof. As a (shift of a) constructible sheaf f∗kX [1] has the following
description:

(1) at each smooth point z of f , (f∗kX [1]z = H∗(f−1(z); k) is iso-
morphic to two copies of k2 in degree 2.

(2) around each ramification point the monodromy “interchanges
the two roots”, and hence is given by the matrix(

0 1
1 0

)
.

(3) At the singular points zi we have

(f∗kX [1]z = H∗(f−1(z); k) = k[1]

and the specialiation maps 1 7→ (1, 1).

In particular, if chark 6= 2 we can decompose

f∗kX [1] = kP1C ⊕ j!L

where L is a rank 1 local system on U with monodromy −1 around
each of the punctures. In this case j!L = j!∗L = j∗L and the lemma
follows. �

Exercise 10.2. If f : X → Y is any surjective morphism of smooth
curves show that f∗kX [1] = j!∗L[1] where L is the local system v 7→
H0(f−1v, k) on the smooth locus of f . Conclude that f∗kX [1] is semi-
simple if chark > deg f .

10.2. The Weierstraß family. Let E denote the projective family of
elliptic curves given as the closure of

y2 = x(x− 1)(x− λ)
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which we view as a family over C with coordinate λ. Let f : E → C
denote the structure map. Let Eλ denote the fibre over λ (a smooth
elliptic curve if λ ∈ C \ {0, 1}, a nodal elliptic curve if λ ∈ {0, 1}).

Warning: X is not smooth, but almost (k“thinks it is smooth”unless
char k = 2).

Let Hi denote the (ordinary) cohomology sheaves of f∗kX [2].

Lemma 10.3. If char k 6= 2, 3 we have a decomposition

f∗kX [2] ∼= H−2[2]⊕H−1[1]⊕H0.

Proof. This is a consequence of hard Lefschetz along the fibres of f .
This will be explained later. �

NowHi is the sheaf associated to the presheaf U 7→ H i+2(f−1(U), k).
It follows easily that H−2 and H0 are constant sheaves.

Moreover, in the first lecture we calculated the structure of H−1.
Over the smooth locus it is a rank 2 local system L with fibre H1(Eλ, k),
and the monodory around 0 and 1 is given by the matrices

µ0 =

(
1 0
2 1

)
µ1 =

(
1 2
0 1

)
In particular, this is a simple local system in if char k 6= 2.

Now given the explicit calculations in the first lecture it is not difficult
to see that

H1(E0) = H1(Ez0)
µ0 H1(E1) = H1(Ez1)

µ1

where zi denotes a point nearby i for i ∈ {0, 1}. In particular, H−1[1] =
j!∗L. Assuming the above lemma we have proved:

Lemma 10.4. If char k 6= 2, 3, f∗kX is a direct sum of shifts of simple
perverse sheaves.

This example also explains where the terminlogy “vanishing cycles”
came from, in our description of perverse sheaves on a curve. Recall
the exact sequence

0→ H1(E0)→ H1(Ez0)→ W → 0

where W is the“vanishing cycles”. This is dual to the map in homology

0→ W ∗ → H1(Ez0)→ H1(E0)→ 0

and hence W ∗ is spanned by the class which “vanishes as λ→ 0”.
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11. Intermediate extension and intersection complexes

Let X be a statified variety with fixed stratification Λ. Recall that we
defined a t-structure (pD≤0, pD≤0) (the perverse t-structure) by glueing
the t-structures defining LocXλ[dλ] on each stratum.

This t-structure lead to the heart M := pD≤0 ∩ pD≥0 of perverse
sheaves (an abelian category). We also have trunction functors pτ≤0,
pτ≥0 and the perverse cohomology functors

pHi : D →M
The goal of this section is to introduce various functors which preserve
perverse sheaves, and get a description of the simple objects in M.

The following concept is important. Let D1 and D2 be two triangu-
lated categories equipped with t-structures (D≤0

i , D≥0
i ). We say that a

triangulated functor
f : D1 → D2

is left (resp. right) t-exact if f(D≥0
1 ) ⊂ D≥0

2 (resp. if f(D≤0
1 ) ⊂ D≤0

2 ).
We say f is t-exact if it is both left and right t-exact.

Exercise 11.1. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence
in M1 := D≤0

1 ∩D
≥0
2 .

(1) If f is left t-exact then the sequence

0→ 0H(f(M ′))→ 0H(f(M))→ 0H(f(M ′′))

is exact.
(2) Similarly, if f is right t-exact then the sequence

0H(f(M ′))→ 0H(f(M))→ 0H(f(M ′′))→ 0

is exact.

Suppose that we are in a glueing situation. That is that we have a
diagram

DZ

i∗

i∗ = i!

i!
D

j!

j∗ = j!

j∗

DU

satisfying the conditions of Section 7 (i.e. we have: adjoint pairs (i!, i
!),

(i∗, i∗), (j!, j
!), (j∗, j∗); j

∗i∗ = 0; functorial triangles j!j
! → id→ i∗i

∗ [1]→,

i!i
! → id→ j∗j

∗ [1]→; and, i∗ = i!, j∗, j! are fully-faithful).
Fix t-structures on DU and DZ . We explained how one can “glue”

t-structures on DZ and DU to get a t-structure on D. The following
lemma is immediate from the definitions:
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Lemma 11.2. (1) i∗, j! are right t-exact;
(2) i!, j∗ are left t-exact.

Now consider the functors
pi∗ := pH0(i∗?) :M→MZ

pi! := pH0(i!?) :M→MZ

pj∗ := pH0(j∗?) :M→MU

pj! := pH0(j!?) :M→MU

The following is not difficult, given Lemma 11.2:

Lemma 11.3. We have adjunctions: (i!,
pi!), (pi∗, i∗), (pj!, j

!), (j∗, pj∗).

Lemma 11.4. If suppG ⊂ Z and F ∈MU then

Hom(pj!F,G) = 0 = Hom(G, pj∗F).

Proof. We have j!G = j∗G = 0 and the result follows by adjunction. �

Another way of phrasing this is that for F ∈ MU , pj!F has no quo-
tient supported on Z, and pj∗F has no subobject supported on Z. In
particular if we define

j!∗F := Im(pj!F → pj∗F).

then we have a factorisation

j!F → pj!F � j!∗F ↪→ pj∗F → j∗F.

(The two extremities are not necessarily perverse.) In particular

Lemma 11.5. j!∗F has no subobjects or quotients supported on Z.

Exercise 11.6. Let i : Z ↪→ X be the inclusion. Let F ∈ MX denote
a perverse sheaf.

(1) Show that the adjunction morphism i!
pi!F → F agrees with the

inclusion of the largest subobject supported on Z.
(2) Similarly, the adjunction morphism F → i∗

pi∗F agrees with the
largest quotient supported on Z.

Lemma 11.7. If F ∈MU is simple then so is j!∗F.

Proof. Assume F is simple and consider an exact sequence

G′ ↪→ j!∗F � G′′

Applying j∗ = j! and using the simplicity of F we see that either j∗G′ or
j∗G′′ is zero. Hence either G′ or G′′ is supported on Z. Hence either G′ or
G′′ is zero by the previous lemma. Hence j!∗F is simple as claimed. �
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Remark 11.8. j!∗ is a strange functor. For example it preserves injec-
tions and surjections, but is not exact in general. We will see examples
of this soon.

Given an abelian category A write IrrA for its isomorphism classes
of simple objects. The following is immediate:

Lemma 11.9.

IrrM = {i∗F | F ∈ IrrMZ} ∪ {j!∗F | F ∈ IrrMU}.

11.1. The Deligne construction. Deligne gave an explicit inductive
construction of the functor j!∗ in the geometric setting.

We now specialize to the geometric setting and assume that Z is
a closed stratum. Write dZ for its complex dimension and τ≤0 for the
normal truncation functor (for the standard t-structure). The following
is the core of the Deligne construction:

Exercise 11.10. (1) Fix p ∈ Z and F ∈ DU . Consider extensions

F̃ of F satisfying

(∗) i!F̃ ∈ D≥p+1
Z and i∗F̃ ∈ D≤p+1

Z .

Show that:
(a) τF≤p−1j∗F̃ satisfies (*);

(b) any F̃ satisfying (*) is unique (up to unique isomorphism
if one fixes F);

(c) τF≤p−1j∗F̃ = τF≥p+1j!F.
(2) Deduce that one has

pj!F = τZ≤d−2j∗F, j!∗F = τZ≤d−1j∗F,
pj∗F = τZ≤dj∗F.

Example 11.11. If X = C = C∗ ∪ {0} and j : C∗ ↪→ X denotes the
inclusion then the stalks of j∗Q[1] are

−1 0
C∗ Q 0
{0} Q Q

The stalks of τZ≤pj∗Q[1] for p = −2,−1 and 0 are

−1 0
C∗ Q 0
{0} 0 0

−1 0
C∗ Q 0
{0} Q 0

−1 0
C∗ Q 0
{0} Q Q

and we recover j!Q[1], j!∗Q[1] = QX [1] and j∗Q[1].
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Remark 11.12. In general, we will have pj! = j! and pj∗ = j∗ if j is an
affine morphism (for example the inclusion of an affine stratum). This
explains why one has pj! = j! and pj∗ = j∗ above.

Exercise 11.13. Let j : U := C2 \ {0} ↪→ C2 show that j∗QU [2] is not
perverse and hence pj∗ 6= j∗.

Let Sm denote the union of strata of dimension m and denote by
X≥m the union of all strata of dimension greater than or equal to m.
We have a sequence of inclusions:

X≥d
jd−1

↪→ X≥d−1

jd−2

↪→ X≥d−2 ↪→ · · · ↪→ X≥1

j0
↪→ X≥0 = X.

Now let L be an irreducible local system on S ∈ S. We still denote
by L its extension by zero to X≥dS . One has an isomorphism

IC(S,L) ' (τ≤−1 ◦ j0∗) ◦ (τ≤−2 ◦ j1∗) ◦ · · · ◦ (τ≤−dS ◦ jdS−1∗)(L[dS]).

This allows the calculation of IC(X,L) inductively on the strata. We
will see examples of this construction below. However, the j∗ functors
are not easy to compute explicitly in general.

Another version of the above lemma is:

Lemma 11.14. For a fixed stratification Λ we have

IrrMΛ := {IC(Xλ,L) | λ ∈ Λ,L ∈ LocXλ}.
Remark 11.15. We could have just as well written

IC(Xλ,L) := j!∗(L[dλ]).

11.2. Sample computations using the Deligne construction.

11.2.1. On a smooth curve. Suppose that D is a disc centred at 0 in C.
Let D∗ := D \ {0} and suppose that L is a local system given a finite
dimensional vector space V and monodromy µ. Then it is an exercise
to compute that the stalks of j∗L[1] are given by

−1 0
D∗ V 0
{0} V µ Vµ

where V µ (resp. Vµ) are the invariants (resp. coinvariants) for µ. In
other words we have a four term exact sequence

0→ V µ ↪→ V
µ−1→ V � Vµ → 0.

It follows that the stalks of j!∗L are

−1 0
D∗ V 0
{0} V µ 0



AN ILLUSTRATED GUIDE TO PERVERSE SHEAVES 39

Exercise 11.16. Extending a Jordan block with unipotent monodromy.

11.2.2. Quadrics. Let Cn denote an n-dimensional quadric cone and
Qn a smooth n-dimensional affine quadric.

We will see in the next section that we have a degeneration Qn  Cn
and that Cn is diffeomorphic to T ∗Sn and the degeneration contracts
the zero section Sn ⊂ T ∗Sn to the unique singular point 0 ∈ Cn.

Hence we can calculate U := Cn \ {0} = T ∗Sn \ Sn via the Gysin
sequence. We get the following:

∗ H∗−n(Sn) H∗−n(T ∗Sn) H∗(T ∗Sn \ Sn)
2n Q 0 0

2n− 1 0 0 Q
...

...
...

...
n Q Q ∗

n− 1 0 0 ∗
...

...
...

...
0 0 Q Q

The only non-zero map is multiplication with the Euler class ±χ(Sn)
which is non-zero if and only if n is even. We conclude that the coho-
mology groups of H∗(U) are as follows:
n even:

0 1 . . . n− 1 n . . . 2n− 1
Q 0 . . . 0 0 . . . Q

n odd:
0 1 . . . n− 1 n . . . 2n− 1
Q 0 . . . Q Q . . . Q

It follows that the stalks of j∗QU [n] are
n even:

−n −n+ 1 . . . −1 0 . . . n− 1
U Q 0 . . . 0 0 0 0
{0} Q 0 . . . 0 0 0 Q

n odd:
−n −n+ 1 . . . −1 0 . . . n− 1

U Q 0 . . . 0 0 0 0
{0} Q 0 . . . Q Q 0 Q

We get the stalks of IC(Cn) = j!∗QU [n] by truncating at ≤ −1:
n even:

−n −n+ 1 . . . −1 0
U Q 0 . . . 0 0
{0} Q 0 . . . 0 0
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n even:
−n −n+ 1 . . . −1 0

U Q 0 . . . 0 0
{0} Q 0 . . . Q 0

Exercise 11.17. (1) Show that the category of perverse sheaves
on Cn (constructible with respect to Cn := U ∪ {0}, and with
coefficients in Q) is semi-simple if and only if n is even.

(2) (Harder) Describe the category when n is odd.

12. Statement of the decomposition theorem

In its simplest form the decomposition theorem says the following:

Theorem 12.1. Let f : X → Y be a proper morphism, with X smooth
of dimension d and k a field of characteristic 0. Then f∗kX [dX ] is a
direct sum of shifts of simple perverse sheaves.

We have already seen two examples of this phenomena: the case of
a map between curves, and the case of the Weierstraß family. Even in
these examples the result was true for non-trivial geometric reasons.

Let us consider another example: consider the affine singular quadric

Q = {XY = ZW} ⊂ C4

if we blow up Q in the origin the exceptional fibre is the corresponding
smooth projective quadric given by the same equation, which here is
isomorphic to P1 × P1. It turns out that one can contract each of the
P1’s separately, to produce a diagram of resolutions (πb denotes the
blow-up):

Q̃l Q̃r

Q̃b

Q

πb

πl πr

The passage Q̃l  Q̃r is the Atiyah flop.
We have π−1

l (0) = π−1
r (0) = P1C. It is a nice exercise to explain why

this implies that

πl∗QQ̃l
[3] = IC(Q,Q) = πr∗QQ̃r

[3].
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(The moral is that even though the resolutions are different, the direct
images agree.)

On the other hand, for the blow-up we have (by proper base change):

(πb∗QQ̃l
[3])0 = H∗(P1 × P1)[3] =

−3 −2 −1 0 1
Q 0 Q2 0 Q

In this case one has

(πb∗QQ̃l
[3])0 = i∗Q0[1]⊕ IC(Q,Q)⊕ i∗Q0[−1].

12.1. What does the decomposition theorem mean? This is a
subtle question. However I think a good first approximation of how
to think about it as follows: Suppose for simplicity that f : X → Y
is proper between smooth varieties. We can ask: how much of the
topology of f is already determined when we know f on the smooth
locus? The decomposition theorem tells us that we know much more
than we think!

Examples that we have seen so far:

(1) If f is a map between smooth curves, then knowing f on the
smooth locus is equivalent to knowing f and the minimal ex-
tension reflections this.

(2) In the example of the Weierstraß family of curves we knew that
the cohomology of the exceptional fibres was the invariants and
the decomposition theorem tells us that this has to be the case.

(3) In the example of the quadric there are non-isomorphic “min-
imal” resolutions which both give rise to the IC on Q. The
“non-minimality” of the blow-up is expressed by the two extra
direct summands in the direct image.

An example of this phenomenon. Suppose that we have a family

f : X → C

where X is smooth and C is a smooth curve. As usual denote by Xz

the fibre over z ∈ C. Denote the singular points of C as ζ1, . . . , zm. Let
µi denote a small loop encircling zi based at a point z′i near to zi.

Theorem 12.2 (“local invariant cycle theorem”). The map

H i(Xzi)→ H i(Xz′i
)µi

is surjective.

The moral of this theorem is very much of the flavour of the decom-
position theorem: “part of the topology of a singular fibre is forced by
the behaviour on the regular locus”.
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Exercise 12.1. (1) Deduce the invariant cycle theorem from the
decomposition theorem.

(2) Explain why the failure of

H i(Xzi)→ H i(Xz′i
)µi

to be an isomorphism (as it was in the case of the Weierstraß
family) is controlled by the presence of shifted skyscraper sum-
mands in f∗kX [dX ].
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13. Picard-Lefschetz theory

The global goal: understand a variety X ⊂ PN via its hyperplane
sections XH := X ∩H.

Considering the hyperplane sections of a variety is probably our first
instinct when we encounter an algebraic variety (think of what we do
when we try to sketch an algebraic surface). Hence Picard-Lefschetz
theory is the formalization of a natural and elementary idea.

One can think of this as being “complex Morse theory”, however it is
much older than Morse theory. It is probably more technical, because
of the absense of −∞ and∞ which are so important for Morse theory.
(The absence of a clear “direction” also explains the complicated role
played by fundamental groups, monodromy etc.)

Remark 13.1. Throughout we will be considering the hyperplane sec-
tions of X ⊂ PN . Let PN ↪→ PN ′ denote the dth Veronese embedding.
Then hyperplane sections for X ⊂ PN ′ correspond to degree d hy-
persurface sections of X ⊂ PN . Hence whenever we say “hyperplane
section” we could instead say “hypersurface section” without any gain
in generality.

14. Weak Lefschetz theorem and perverse sheaves

Throughout this section X ⊂ PN denotes a smooth complex projec-
tive variety, XH = X∩H denotes a hyperplane section and i : XH ↪→ X
denotes the inclusion. The classic weak Lefschetz theorem is:

Theorem 14.1. The restriction map i∗ : Hm(X) → H∗(XH) is an
isomorphism in degrees m < dimX − 1 and injective in degres m =
dimX − 1.

Note that U := X \ XH is a closed subvariety of PN \ H = AN ,
an affine space. In particular, U is affine. Writing out the long exact
sequence of cohomology for

. . .→ Hm
! (U)→ Hm(X)→ Hm(XH)→ Hm+1

! (U)→ . . .

we see that the weak Lefschetz theorem is equivalent to either of the
two vanishing statements (which are equivalent by Poincaré duality)

(V !) Hm
! (U) = 0 for m < dimX,

(V ∗) Hm(U) = 0 for m > dimX.

A satisfying explanation for this vanishing is given by the Andreotti-
Frankel (spelling ?? ) theorem

Theorem 14.2. Any smooth affine variety A is homotopic to a CW
complex of real dimension equal to the complex dimension of A.
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The vanishing theorem (V ∗) above is immediate from this theorem.

Example 14.1. A lovely illustration of the Andreotti-Frankel (spelling
?? ) theorem is given by an affine curve, which is always obtained from
a projective curve by deleting some number of points. It is homotopy
equivalent to a bouquet of circles. [picture here]

A more powerful variant of the above is the following theorem of
Artin and Grothendieck:

Theorem 14.3. Let F be a constructible sheaf on an affine variety A.
Then

(CV ∗) Hm(A,F) = 0 for m > dimA.

Example 14.2. The ! variant of (AV ∗) obviously fails. If we take
F = ik{a} where i : {a} ↪→ A is the inclusion of a (closed) point then

H0
! (A,F) = k 6= 0.

The following is a good exercise in getting used to the perverse t-
structure. If A is a affine and F ∈ Db

c(X) then

(PV !) F ∈ pD≥0 ⇒ Hm
! (A,F) = 0 for m < 0,

(PV ∗) F ∈ pD≤0 ⇒ Hm(A,F) = 0 for m > 0.

In particular, if F is perverse it satisfies both (PV !) and (PV ∗).
Remarkably this property characterises perverse sheaves:

Theorem 14.4. Let X be arbitrary and F ∈ Db
c(X). Then F ∈MX if

and only if (PV !) and (PV ∗) are satisfied for all open affine subvari-
eties A ⊂ X.

Example 14.3. Let L be a one-dimensional local system on C∗ with
monodromy 1 6= µ ∈ k∗. Then

H∗(C∗,L) = H∗! (C∗,L) = 0.

In particular, one really needs to check (PV !) and (PV ∗) for all open
affine subvarieties A ⊂ X, not just a cover.

The most general version of all of this if the following (which is an
immediate consequence of Artin’s theorem on cohomology amplitude
of affine maps):

Theorem 14.5. Suppose f : X → Y is an affine map. Then

(1) f∗(
pD≤0

X ) ⊂ pD≤0
Y ,

(2) f!(
pDge0

X ) ⊂ pD≥0
Y .
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15. Classical theory of vanishing cycles

Here I am following Lamotke and Voisin. The idea is to give some
understanding of where the terminology “vanishing cycles” comes from.

We fix P := PN and let P∨ denote the dual projective space of hyper-
planes in P. We fix a smooth n-dimensional closed subvariety X ⊂ P.

We try to keep the treatment as geometric as possible. To begin we
fix an “axis”A ⊂ P, a hyperplane of codimension 2 in P (a point in P2,
a line in P3 etc.) Fixing an axis is the same thing as fixing a projective
line P1

A in the dual projective space P∨. Points t ∈ P1
A correspond to

hyperplanes Ht containing A. In other words, the choice of A gives us
a family of hyperplanes in P parametrized by P1

A.

If a point of X does not lie in A then there is a unique hyperplane
containing x and A. In other words we have a map

X \ (X ∩ A)→ P1
A.

In order to make this map defined everywhere we consider the modifi-
cation

X̃ := {(x, t) ∈ X × P1
A | x ∈ Ht}.

(In fact, X̃ is the blowing up of X along X ∩A.) Then we have a map

f : X̃ → P1
A

whose fibres are the hyperplane sections Xt := Ht ∩X of X.
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A family of hyperplane sections sections {Ht}t∈P1 is called a “pencil”
(for reasons that are not clear to me). We call A (or equivalently f) a
Lefschetz pencil if:

(1) A and X are transverse (and hence X ∩ A, X̃ are smooth);
(2) each fibre of f contains at most one singular point, and this

singularity is an ordinary double point.

Remark 15.1. Additionally we could consider pencils of hypersurfaces
(that is, choices of lines in the projectivisation of Γ(O(m)) for some
m ≥ 2). However these pencils correspond to pencils of hyperplanes on
X ∈ P((Nm)) (Veronese embedding). The moral is that there is no loss
of generality in taking only hyperplane sections.

Recall that if f : X → C is a holomorphic function we say that f
has an ordinary double point at x ∈ X if df(x) = 0 and in some local
coordinates the Hessian

(
∂2f

∂zi∂zj
)(x)

is non-degenerate. (Does not depend on the choice of local coordinates.)
The significance of the first condition should be clear enough. The

significance of the second condition is two-fold. Firstly, ordinary double
points are the generic singularities of maps to one-dimensional spaces.
The classical picture of this situation in dimension 1 is:

[picture here]
A generic small peturbation of a map f with singularities will pro-

duce a map with only ordinary double points. Also one cannot remove
ordinary double points by peturbation.

The second lovely point is that ordinary double points have a canon-
ical form:

Lemma 15.2 (Holomorphic Morse lemma). Suppose that f : X → C
has an ordinary double point at x. Then there are local (holomorphic)
coordinates z1, . . . , zn at x such that f has the form

f = z2
1 + z2

2 + · · ·+ z2
n.

The basic result is the following:

Theorem 15.3. Any generic choice of axis A ⊂ P yields a Lefschetz
pencil.

To summarise: we would like to understand the cohomology of X.

We blow up X along a smooth subvariety A to obtain X̃. One has

H∗(X̃) = H∗(X)⊕H∗−2(A).
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(even motivically). Hence we may as well understand H∗(X̃). Now we
have a map

X̃ → P1
A

which has fibres the hyperplane sections of X. This map is generically
a smooth fibration with fibres Xt (which we might hope to understand
by induction). Also, the singularities of f have a very special form, and
hence we might hope to understand them explicitly (at least locally).

We divide P1
A up into two hemispheres D+ and D− (so that D+ ∩

D− = S1 and assume that all singularities of f occur in the interior of
D+. We denote the number of singularities of f by r. We also fix a
point b ∈ S1 and let

X̃± := f−1(D±) and Xb := f−1(b).

The restriction of f to D− is a trivial fibre bundle (with fibre Xb). Now
we state the “main lemma” of Lefschetz theory:

Lemma 15.4.

Hq(X̃+, Xb) =

{
Zr if q = n,

0 otherwise.

From this one can deduce the following fundamental theorems of
Lefschetz:

Theorem 15.1. The restriction map Hq(X)→ Hq(Xb) is an isomor-
phism for q ≤ n− 2 and injective for n = n− 1.

One also sees the spectre of the hard Lefschetz theorem emerging

which allows a description of H∗(X̃) in terms of H∗(Xb) the vanishing
cycles and the monodromy. This will be the subject of the next lecture.

The local theory is summed up by the following:

Exercise 15.5. Fix n ≥ 1 and let f = z2
1 + · · · + z2

n. Then f−1(ε)
is homoemorphic (even symplectomorphic) to T ∗Sn−1. Moreover, as
ε→ 0, the zero section Sn−1 ⊂ T ∗Sn−1 is contracted to zero.

Examples:

(1) n = 1: this is the two points of S0 colliding.
(2) n = 2: xy = ε becomes reducible as ε → 0 (or alternatively

x2 + y2 = ε which makes the vanishing cycle visible).
(3) n = 3: the implosion of T ∗P1 (simultaneous resolution for sl2).

One can picture the “vanishing cycles”Hq(X̃+, Xb) as “thimbles”:
(It is important to take homology here.)
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16. Review of Hodge theory

In this section we review the basics of Hodge theory.
Let X ⊂ PN denote a smooth projective variety of complex dimen-

sion

dimCX = n.

Recall that H∗(PN) = Q[x], where x = c1(O(1)) is the first Chern class
of O(1), the positive (i.e. ample) generator of PicPn = Z.

If we denote by i : X ↪→ PN the inclusion, then we get a class
ω := i∗c1(O(1)) by pull-back. We denote by L the operator

L : H∗(X)→ H∗+2(X) : α 7→ ω ∧ α.
The operator L is called the Lefschetz operator.

Exercise 16.1. L is Poincaré dual to the operator which maps a cycle
C to C ∩H, where H ⊂ PN is a general hyperplane.

16.1. The hard Lefschetz theorem. With the above notation, the
hard Lefschetz theorem is the following:

Theorem 16.1. For any i ≥ 0, the map

Li : Hn−i(X,Q)→ Hn+i(X,Q)

is an isomorphism.

Exercise 16.2. What does the hard Lefschetz theorem say for curves?
For surfaces?

Exercise 16.3. Check the hard Lefschetz theorem explicitly for quadrics.

Exercise 16.4. Find a few examples to show that the hard Lefschetz
does not hold over Z or with coefficients in a finite field.

Exercise 16.5. Recall that the Lie algebra sl2 has basis

e :=

(
0 1
0 0

)
, h :=

(
1 0
0 −1

)
, f :=

(
0 0
1 0

)
and commutation relations [h, e] = 2e, [h, f ] = 2f , [e, f ] = h.

Show that the hard Lefschetz theorem is equivalent to the existence
of an sl2-module structure on H∗(X,Q) such that e = L and h(α) =
(i − n)α for all α ∈ H i (i.e. the grading decomposition of H agrees
with the weight decomposition, up to a shift by n).

Much of the power of the hard Lefschetz theorem lies in the fact that
classes which lie in the image of L (which are dual to algebraic cyles
obtained by intersecting with other cycles) are “understood”.



AN ILLUSTRATED GUIDE TO PERVERSE SHEAVES 49

For i ≤ n define

P n−i := ker(Li+1 : Hn−i → Hn+i+2).

We call P n−i ⊂ Hn−i the primitive subspace. The primitive classes are
those classes which are not linear combinations of classes in the image
of the Lefschetz operator.

Proposition 16.6. One has a canonical “primitive” decomposition of
R[L]-modules

H∗ =
⊕
i≥0

Q[L]/(Li+1)⊗ P n−i.

Details of the proof of hard Lefschetz. (We will probably only state
the result in lectures.)

We consider the following diagram:

X X × P1
A X̃

pt P1
A

u

u

f f

v

h

Here X is a smooth projective variety in some Pd, A ⊂ Pd is the axis

of a Lefschetz pencil on X and X̃ is the blow-up of X in the smooth
codimension 2 subvariety X ∩ A.

Now choose K ∈ pD≥0(X). Because u is smooth we have

u∗pH i(K)[1] = pH i+1(u∗K).

and hence

u∗pH i(f ∗K)[1] = pH i+1(u∗f∗K) = pH i+1(f∗u
∗K).

Now consider the distinguished triangle

j!j
!u∗K → u∗K → v∗v

∗u∗K
[1]→

where j is the inclusion of the complement U of X × P1 into X × P1.
The induced map g : U → P1 is affine (exercise) and hence in the
disinguished triangle

g!j
∗u∗K → f∗u

∗K → h∗(vu)∗K
[1]→

the left hand term is in degree pD≥1 (g! is left t-exact because it is
affine). The induced map

pH i(f∗u
∗K)→ pH i(h∗(vu)∗K)

is an isomorphism for i < 0 and injective for i = 0.



50 GEORDIE WILLIAMSON

Lemma 16.7. Let F be a perverse sheaf on P1. Then a subobject

f : F′ ↪→ F

is the largest subsheaf of F corresponding to invariants if and only if
the map

pH−1(F′)→ pH−1(F)

is an isomorphism.

Proof. Exercise! �

Our aim is to show that the inclusion
pH0(u∗f∗K) ↪→ pH0(h∗(uv)∗K)

is the largest invariant subsheaf. Hence by the lemma we want to show
that we have an isomorphism

pH−1(u∗
pH0(u∗f∗K))

∼−→ pH−1(u∗
pH0(h∗(uv)∗K))

Applying u∗ to the distinguished triangles (pτ≤0, id,
pτ≥0) for f∗u

∗K
and h∗(uv)∗K gives a morphism of distinguished triangles:

u∗
pτ<0f∗u

∗K u∗f∗u
∗K u∗

pτ≥0f∗u
∗K

u∗
pτ<0h∗(uv)∗K u∗h∗(uv)∗K u∗

pτ≥0h∗(uv)∗K

[1]

[1]

By what we have already seen, the left hand vertical arrow is an iso-
morphism on all perverse cohomology groups.

Lemma 16.8. The middle arrow is an iso on pH i for i ≤ −1.

We conclude that we have an isomorphism
pH−1(u∗

pτ≥0f∗u
∗K)

∼−→ pH−1(u∗
pτ≥0h∗(uv)∗K)

but because u has cohomological amplitude ≥ −1 we can rewrite this
as

pH−1(u∗
pH0(f∗u

∗K))
∼−→ pH−1(u∗

pH0(h∗(uv)∗K))

which is what we wanted to show.
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