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1. REFLECTION GROUPS

Our first encounter with symmetry might be an encounter with a butterfly

or perhaps with the face of our mother or father. We quickly learn to identify
the axis of symmetry and know intuitively that an object is symmetric if it
“the same” on both sides of this axis.

In mathematics symmetry is abundant and takes many forms. Symmetry
like that of the butterfly or a face is referred to as reflexive symmetry. Any
line in the plane determines a unique symmetry which reflects the plane
about this line:

A figure in the plane has reflexive symmetry if the reflection about a given
axis of symmetry yields an identical figure in the plane.

As children we were struck by the beauty of objects with many reflexive
symmetries. For example, a snowflake has six axes of symmetry:
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An infinite beehive has infinitely many symmetries:

· · · · · ·

A fascinating area of current mathematical study is that of reflection
groups. These are collections, or groups, of symmetries in which every
symmetry can be expressed as compositions of reflexive symmetries. The
symmetry group of a butterfly is the set {id, s} where s is the reflexive sym-
metry. We write ss = s2 = id to express the fact that if we perform s twice
we “do nothing”, referred to as the identity transformation in the theory of
groups.

The next simplest example of a reflection group is the symmetries of an
equilateral triangle:

The reflections in the marked axes of symmetries give three reflexive sym-
metries. The reader can check that performing two reflections in two diffe-
rent axes of symmetry yields a rotation. This gives a complete description
of the group of symmetries of the triangle: it has three reflexive symmetries,
two rotational symmetries and the identity transformation.

Similarly, the symmetries of a regular polygon with n faces

n = 7

yields a group with n reflections, n − 1 rotations and the identity transfor-
mation, giving a total of 2n symmetries. If n = 6 we recover the symmetries
of the snowflake!

The notion of reflexive symmetry makes sense in any dimension. In one
dimension the “axis of symmetry” is a point:

•
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In three dimensions reflections take place about a plane:

How many reflection groups are there? In one dimension there are on-
ly two. The first is the symmetries of the butterfly, which is really a one-
dimensional example (perhaps the reader can see why?). The second can be
described as the symmetries of an infinite row of symmetrical houses:

· · · · · ·

Or as the symmetries of the whole numbers amongst all real numbers:

• • • •

Here there are infinitely many axes of symmetry. This is an example of an
infinite reflection group.

In two dimensions the situation is more complicated. One might start
with the symmetries of a rectangle:

However mathematicians regard this as being simply two copies of the sym-
metries of the butterfly. (The horizontal and vertical symmetries do not in-
terract. Hence the symmetry group of the rectangle is simply a “product” of
the symmetries in the horizonal and verticle directions.)

Ignoring examples that “come from one dimension” it turns out that all fi-
nite reflection groups are given by the symmetries of a regular n-gon, which
we discussed above. There are infinite examples of two types. The first type
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consists of the symmetries of crystal structures in the plane:

(The last example is the infinite beehive.)
The second class of infinite reflection groups consists of symmetries of

the hyperbolic plane, an example of a non-euclidean geometry. In school
we learn that sum of the angles of a triangle is always equal to π. However
this is only true in the plane. On the surface of a sphere the angle sum of
a triangle lies between π and 3π, depending on how big the triangle is. In
the hyperbolic plane all triangles have angle sums between 0 (big triangles)
and π (small triangles).

It turns out that for any positive integers p, q, r ≥ 2 such that

1

p
+

1

q
+

1

r
< 1

there exists a two dimensional reflection group, acting as symmetries on the
hyperbolic plane. For example, the symmetries of the following configura-
tion in the hyperbolic plane

corresponds to p = 2, r = 3 and q = 7. Because almost all triples (p, q, r)
of positive integers satisfy the above inequality, almost all two dimensional
reflection groups are hyperbolic.
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In three dimensions there are many infinite reflection groups. However,
it turns out that the only finite reflection groups are those that “come from
dimension 2” together with the symmetries of the platonic solids:

The reader might remember that the cube and octahedron as well as the ico-
sahedron and dodecahedron are “dual”, and hence their symmetry groups
are equal.

2. CONTINUOUS AND DISCRETE SYMMETRY

Reflection groups are discrete: one cannot move a symmetry a small
amount and obtain a new symmetry. For example in any of the examples
above, moving an axis of symmetry a small amount never results in a new
axis of symmetry.

An example of a group which does not have this property is the group of
symmetries of a circle:

Here any line through the origin serves as an axis of symmetry. Similarly
any rotation about the origin is a symmetry. Here one speaks of continuous
symmetry. Other examples of continuous symmetry include the symmetries
of a sphere, or the group of all rigid motions of space.

Groups of continous symmetry were first investigated in depth by a Nor-
wegian mathematician Sophus Lie, and today are called Lie groups. Lie
noticed that many equations governing the world around us have large de-
grees of continuous symmetry. He hoped that the presence of this symmetry
could be used to constrain solutions. This simple idea plays a fundamental
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role in modern mathematics and physics. (Fourier analysis, a basic and per-
vasive tool in modern science, gives one of the simplest examples of this
phenomenon.)

Lie also initiated a program, which continues to this day, to understand
the structure of groups of continous symmetry. Here an amazing fact emer-
ges: one can associated to any Lie group (usually a rather complicated high-
dimensional object) a finite reflection group! This finite reflection group is
called Weyl group after the German mathematician Hermann Weyl who
emphasised its importance in understanding the structure of Lie groups.

The way in which one associates the Weyl group to a Lie group is a
somewhat tricky process, and we will have to be content with discussing
the first interesting example. If we consider the Lie gorup of symmetries of
the sphere, then its Weyl group is the symmetries of the butterfly!

(For the interested reader, one obtains the Weyl group in this example
as follows: first, fix a line ` through the origin and consider all rotations of
the sphere which preserve this line. Such rotations are of two types: those
rotations in the axis ` (which fix ` pointwise), and those rotations through π
in an axis perpendicular to the chosen line (which act as a reflection on the
line `). The residual action of these rotations on ` is the simplest example
of a reflection group!)

These ideas allowed Lie, Cartan and Killing to obtain a complete classi-
fication of the so-called connected compact Lie groups. A startling feature
of this classification is that one has a number of families in all dimensi-
ons (for example the symmetries of the spheres in all dimensions), together
with certain exceptional groups, which occur only in “small” dimensions.
The largest of these examples if a 248 dimensional Lie group which mathe-
maticians call E8.

The Weyl group of the Lie group E8 is a fascinating, but complicated
8-dimensional reflection group which is the symmetries of a certain col-
lection of vectors in 8 dimenionsal space. Mathematicians have drawn the
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following picture of these vectors:

The group Lie group E8 been the subject of much investigation and specu-
lation by mathematicians and physicists alike, with some even positing it as
giving the elusive theory of everything!

3. CURRENT DIRECTIONS

Fourier series and the Fourier transform emerges naturally when on does
calculus on the two simplest Lie groups: the groups of rotations of the circle,
and the group of translations of the real line. Doing calculus on the Lie
group of rotations of the 2-sphere may be used to determine the spectrum of
the hydrogen atom, which was the first breakthrough in quantum mechanics.

Today the subject of calculus on Lie groups is an active and fascinating
subject. In modern language one wishes to determine the unitary dual of a
Lie group. This remains an unsolved problem. A major breakthrough was
obtained by Kazhdan and Lusztig in 1979 who defined certain polynomials
for every pair of elements in the Weyl group of a Lie group. Work of a num-
ber of mathematicians has highlighted the importance of these polynomials
in many situations where discrete or continuous symmetry is present. In par-
ticular, this led to a major breakthrough (though not a complete solution) to
the problem of determining the unitary dual.

One curious feature of Kazhdan and Lusztig’s construction is the follo-
wing: if one starts with a Lie group, its Weyl group is necessarily a finite
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reflection group of a special type. For example the only two dimensional re-
flection groups which occur are the symmetries of the triangle, square and
hexagon. Similarly, in dimension three the symmetry group of the a tetra-
hedron and cube occurs, whereas the symmetry group of the icosahedron
does not. However Kazhdan and Lusztig’s constructure still makes sense,
and produces polynomials with remarkable properties. Only time will tell
what these polynomials are trying to tell us!
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