Parity sheaves and the decomposition theorem Ruhr-Universität Bochum

Monday Problem Sheet

1. Let $G = GL_n(\mathbb{C})$, $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$, $\mathcal{N} = \{x \in \mathfrak{g} \mid x \text{ is nilpotent}\}$ be the nilpotent cone. Consider the Springer resolution (introduced today in lectures):

$$\pi: \widetilde{\mathcal{N}} \to \mathcal{N}$$

- a) Let G act on \mathcal{N} by conjugation. Establish a natural bijection between G-orbits on \mathcal{N} and partitions of \mathcal{N} .
- b) Show that π is proper and birational.
- c) Given a partition λ of n, let \mathcal{O}_{λ} denote the corresponding G-orbit on \mathcal{N} under the bijection in a). Determine the structure of the fibre $\pi^{-1}(x)$ for $x \in \mathcal{O}_{\lambda}$ in the following cases: $\lambda = (n-1, 1)$, $\lambda = (2, 2)$.
- d)* Find a normal slice to the orbit $\mathcal{O}_{(2,1)} \subset \mathcal{N}$. Show that S is a Dynkin singularity of type A_2 and that the restriction of the Springer resolution to S is a minimal resolution.

2. In this question we explore the topology of the Weierstraß family of elliptic curves. This gives a non-trivial example of Deligne's theorem on the semi-simplicity of monodromy. On the next sheet we will use the decomposition theorem to explore this map further.

a) Fix $\lambda \in \mathbb{C}$ and consider the elliptic curve

$$E_{\lambda} = \{ [x: y: z] \in \mathbb{P}^2 \mid zy^2 = x(x - z)(x - \lambda z) \}.$$

Show that E_{λ} is smooth if and only if $\lambda \neq 0, 1$.

b) Describe the topology of E_{λ} as follows: Show that the rational map

$$\mathbb{P}^2 \longrightarrow \mathbb{P}^1 : [x:y:z] \mapsto [x:z]$$

induces a morphism of varieties $\alpha_{\lambda} : E_{\lambda} \to \mathbb{P}^1$ which is finite of degree 2, and is ramified over 0, 1, λ and ∞ . Now consider a triangulation of \mathbb{P}^1 as a tetrahedron with vertices at 0, 1, λ and ∞ . Explain how α_{λ} allows one to lift this to a triangulation of E_{λ} . Hence prove that E_{λ} is homeomorphic to $S^1 \times S^1$.

c) Consider the variety

$$E = \{ ([x:y:z],\lambda) \in \mathbb{P}^2 \times \mathbb{C} \mid zy^2 = x(x-z)(x-\lambda z) \}.$$

The second projection induces a map $p: E \to \mathbb{C}$ allowing us to view E is a family of elliptic curves over \mathbb{C} . Let $\widetilde{E} = p^{-1}(\mathbb{C} \setminus \{0, 1\})$. Show that

$$\widetilde{p}: \widetilde{E} \to \mathbb{C} \setminus \{0, 1\}$$

is smooth.

d)* Using part b) or otherwise, describe the local system on $\mathbb{C} \setminus \{0,1\}$ formed by the first homology of the fibres of \tilde{p} . Show that the monodromy around each point $0, 1 \in \mathbb{C}$ is unipotent and that the corresponding representation of the fundamental group of $\mathbb{C} \setminus \{0,1\}$ is simple.

3. Let X be a complex algebraic variety and k a ring of coefficients. Show that Loc(X; k), the category of local systems of k-modules, is abelian.

4. Good fun! Let X be complex algebraic variety and $U \subset X$ an open subset. Why does one have a restriction map $H^!_*(X) \to H^!_*(U)$ in Borel-Moore homology, but not in homology?