Parity sheaves and the decomposition theorem

Ruhr-Universität Bochum

Monday Problem Sheet

1. Let $G=G L_{n}(\mathbb{C}), \mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{C}), \mathcal{N}=\{x \in \mathfrak{g} \mid x$ is nilpotent $\}$ be the nilpotent cone. Consider the Springer resolution (introduced today in lectures):

$$
\pi: \tilde{\mathcal{N}} \rightarrow \mathcal{N}
$$

a) Let G act on \mathcal{N} by conjugation. Establish a natural bijection between G-orbits on \mathcal{N} and partitions of \mathcal{N}.
b) Show that π is proper and birational.
c) Given a partition λ of n, let \mathcal{O}_{λ} denote the corresponding G-orbit on \mathcal{N} under the bijection in a). Determine the structure of the fibre $\pi^{-1}(x)$ for $x \in \mathcal{O}_{\lambda}$ in the following cases: $\lambda=(n-1,1)$, $\lambda=(2,2)$.
d)* Find a normal slice to the orbit $\mathcal{O}_{(2,1)} \subset \mathcal{N}$. Show that S is a Dynkin singularity of type A_{2} and that the restriction of the Springer resolution to S is a minimal resolution.
2. In this question we explore the topology of the Weierstraß family of elliptic curves. This gives a non-trivial example of Deligne's theorem on the semi-simplicity of monodromy. On the next sheet we will use the decomposition theorem to explore this map further.
a) Fix $\lambda \in \mathbb{C}$ and consider the elliptic curve

$$
E_{\lambda}=\left\{[x: y: z] \in \mathbb{P}^{2} \mid z y^{2}=x(x-z)(x-\lambda z)\right\} .
$$

Show that E_{λ} is smooth if and only if $\lambda \neq 0,1$.
b) Describe the topology of E_{λ} as follows: Show that the rational map

$$
\mathbb{P}^{2}-\rightarrow \mathbb{P}^{1}:[x: y: z] \mapsto[x: z]
$$

induces a morphism of varieties $\alpha_{\lambda}: E_{\lambda} \rightarrow \mathbb{P}^{1}$ which is finite of degree 2 , and is ramified over $0,1, \lambda$ and ∞. Now consider a triangulation of \mathbb{P}^{1} as a tetrahedron with vertices at $0,1, \lambda$ and ∞. Explain how α_{λ} allows one to lift this to a triangulation of E_{λ}. Hence prove that E_{λ} is homeomorphic to $S^{1} \times S^{1}$.
c) Consider the variety

$$
E=\left\{([x: y: z], \lambda) \in \mathbb{P}^{2} \times \mathbb{C} \mid z y^{2}=x(x-z)(x-\lambda z)\right\}
$$

The second projection induces a map $p: E \rightarrow \mathbb{C}$ allowing us to view E is a family of elliptic curves over \mathbb{C}. Let $\widetilde{E}=p^{-1}(\mathbb{C} \backslash\{0,1\})$. Show that

$$
\widetilde{p}: \widetilde{E} \rightarrow \mathbb{C} \backslash\{0,1\}
$$

is smooth.
d)* Using part b) or otherwise, describe the local system on $\mathbb{C} \backslash\{0,1\}$ formed by the first homology of the fibres of \widetilde{p}. Show that the monodromy around each point $0,1 \in \mathbb{C}$ is unipotent and that the corresponding representation of the fundamental group of $\mathbb{C} \backslash\{0,1\}$ is simple.
3. Let X be a complex algebraic variety and k a ring of coefficients. Show that $\operatorname{Loc}(X ; k)$, the category of local systems of k-modules, is abelian.
4. Good fun! Let X be complex algebraic variety and $U \subset X$ an open subset. Why does one have a restriction map $H_{*}^{!}(X) \rightarrow H_{*}^{!}(U)$ in Borel-Moore homology, but not in homology?

