C2.1a Lie algebras

Mathematical Institute, University of Oxford
Michaelmas Term 2010

Problem Sheet 7

1. Let \mathfrak{g} be a complex semi-simple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra, and $R \subset \mathfrak{h}^{*}$ the corresponding root system. Find an expression for the dimension of \mathfrak{g} in terms of R.
2. In this exercise we calculate the root systems of the classical Lie algebras.
i) Show that the diagonal matrices $\mathfrak{h} \subset \mathfrak{s l}_{n}(\mathbb{C})$ form a Cartan subalgebra. Hence describe the roots $R \subset \mathfrak{h}^{*}$ and conclude that $\mathfrak{s l}_{n}(\mathbb{C})$ is a simple Lie algebra of type A_{n-1}.
ii) Find a Cartan subalgebra, and calculate the corrsponding root system for $\mathfrak{g}=\mathfrak{s o}_{2 n+1}, \mathfrak{g}=\mathfrak{s p}_{2 n}$ and $\mathfrak{g}=\mathfrak{s o}_{2 n}$. (Hint: Use the definitions of $\mathfrak{s o}_{n}$ and $\mathfrak{s p}_{2 n}$ given in Problem Sheet 2, Question 6.)
iii) Calculate the number of roots in the root systems obtained in i) and ii).
iv) In Problem Sheet 2, Question 6 we calculated the dimensions of $\mathfrak{s l}_{n}, \mathfrak{s o}_{n}$, and $\mathfrak{g}=\mathfrak{s p}_{2 n}$. Check that your formula obtained in Question 1 gives the same answer in each case.
3. Let V be a real vector space. A lattice is a discreet subgroup $Q \subset V$ which spans V over \mathbb{R}. Equivalently, a lattice is a subgroup $Q \subset V$ of the form

$$
\left\{\sum \lambda_{i} \beta_{i} \mid \lambda_{i} \in \mathbb{Z}\right\}
$$

where $\left\{\beta_{i}\right\}_{i=1}^{n}$ is a basis of V.
Assume that V is equipped with a positive definite inner product (,--). A lattice $Q \subset V$ is called integral if $(\alpha, \beta) \in \mathbb{Z}$ for all $\alpha, \beta \in Q$. A lattice $Q \subset V$ is called even if $(\alpha, \alpha) \in 2 \mathbb{Z}$ for all $\alpha \in Q$.
i) Prove that an even lattice is integral.
ii) Let $Q \subset V$ be an even lattice. Assume that the set $R_{Q}=\{\alpha \in V \mid(\alpha, \alpha)=2\}$ spans V. Show that R_{Q} is a root system in V.
iii) Let $V=\bigoplus_{i=1}^{r} \mathbb{R} e_{i}$ equipped with the standard inner product $\left(e_{i}, e_{j}\right)=\delta_{i j}$. Consider

$$
\Gamma_{r}=\left\{\sum a_{i} e_{i} \left\lvert\, \begin{array}{l}
\text { either all } a_{i} \in \mathbb{Z} \\
\text { or all } a_{i} \in \mathbb{Z}+\frac{1}{2}
\end{array}\right. \text { and } \sum a_{i} \in 2 \mathbb{Z}\right\}
$$

Prove that Γ_{r} is an even lattice if r is divisible by 8.
iv) Consider $\Gamma=\Gamma_{8} \subset V=\mathbb{R}^{8}$. Show that $V \in \Gamma$ is spanned by vectors such that $(v, v)=2$. Describe the roots in R_{Γ}.
v) Find a basis for R_{Γ} and conclude that R_{Γ} is a root system of type E_{8}. (Hint: Consider the functional $t \in V^{*}$ given by

$$
t=\sum_{i=1}^{7}(i-1) e_{i}^{*}+23 e_{8}^{*}
$$

where e_{i}^{*} is the dual basis of $\left\{e_{i}\right\}_{i=1}^{n}$ (i.e. $\left\langle e_{i}^{*}, e_{j}\right\rangle=\delta_{i j}$ for all i, j). Show that $0 \neq\langle t, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in R_{\Gamma}$. Calculate the set of roots $\alpha \in R_{\Gamma}$ with $\langle t, \alpha\rangle=1$ and use results from lectures.)
v) Let H_{7} be the hyperplane orthogonal to $e_{7}+e_{8}$. Show that $R \cap H_{7}$ is a root system of type E_{7}.
vi) Let $H_{6} \subset R$ be the subspace orthogonal to $e_{6}+e_{7}+2 e_{8}$ and $e_{7}+e_{8}$. Show that $R \cap H_{6}$ is a root system of type E_{6}.

We have now constructed all the irreducible root systems!

