C2.1a Lie algebras

Mathematical Institute, University of Oxford Michaelmas Term 2010

Problem Sheet 7

1. Let \mathfrak{g} be a complex semi-simple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra, and $R \subset \mathfrak{h}^*$ the corresponding root system. Find an expression for the dimension of \mathfrak{g} in terms of R.

2. In this exercise we calculate the root systems of the classical Lie algebras.

- i) Show that the diagonal matrices $\mathfrak{h} \subset \mathfrak{sl}_n(\mathbb{C})$ form a Cartan subalgebra. Hence describe the roots $R \subset \mathfrak{h}^*$ and conclude that $\mathfrak{sl}_n(\mathbb{C})$ is a simple Lie algebra of type A_{n-1} .
- ii) Find a Cartan subalgebra, and calculate the corresponding root system for $\mathfrak{g} = \mathfrak{so}_{2n+1}$, $\mathfrak{g} = \mathfrak{sp}_{2n}$ and $\mathfrak{g} = \mathfrak{so}_{2n}$. (*Hint:* Use the definitions of \mathfrak{so}_n and \mathfrak{sp}_{2n} given in Problem Sheet 2, Question 6.)
- iii) Calculate the number of roots in the root systems obtained in i) and ii).
- iv) In Problem Sheet 2, Question 6 we calculated the dimensions of \mathfrak{sl}_n , \mathfrak{so}_n , and $\mathfrak{g} = \mathfrak{sp}_{2n}$. Check that your formula obtained in Question 1 gives the same answer in each case.

3. Let V be a real vector space. A *lattice* is a discrete subgroup $Q \subset V$ which spans V over \mathbb{R} . Equivalently, a lattice is a subgroup $Q \subset V$ of the form

$$\left\{\sum \lambda_i \beta_i \ \Big| \ \lambda_i \in \mathbb{Z}\right\}$$

where $\{\beta_i\}_{i=1}^n$ is a basis of V.

Assume that V is equipped with a positive definite inner product (-, -). A lattice $Q \subset V$ is called *integral* if $(\alpha, \beta) \in \mathbb{Z}$ for all $\alpha, \beta \in Q$. A lattice $Q \subset V$ is called *even* if $(\alpha, \alpha) \in 2\mathbb{Z}$ for all $\alpha \in Q$.

- i) Prove that an even lattice is integral.
- ii) Let $Q \subset V$ be an even lattice. Assume that the set $R_Q = \{\alpha \in V \mid (\alpha, \alpha) = 2\}$ spans V. Show that R_Q is a root system in V.
- iii) Let $V = \bigoplus_{i=1}^{r} \mathbb{R}e_i$ equipped with the standard inner product $(e_i, e_j) = \delta_{ij}$. Consider

$$\Gamma_r = \left\{ \sum a_i e_i \middle| \quad \text{either all } a_i \in \mathbb{Z} \\ \text{or all } a_i \in \mathbb{Z} + \frac{1}{2} \quad \text{and } \sum a_i \in 2\mathbb{Z} \right\}.$$

Prove that Γ_r is an even lattice if r is divisible by 8.

- iv) Consider $\Gamma = \Gamma_8 \subset V = \mathbb{R}^8$. Show that $V \in \Gamma$ is spanned by vectors such that (v, v) = 2. Describe the roots in R_{Γ} .
- v) Find a basis for R_{Γ} and conclude that R_{Γ} is a root system of type E_8 . (*Hint:* Consider the functional $t \in V^*$ given by

$$t = \sum_{i=1}^{7} (i-1)e_i^* + 23e_8^*.$$

where e_i^* is the dual basis of $\{e_i\}_{i=1}^n$ (i.e. $\langle e_i^*, e_j \rangle = \delta_{ij}$ for all i, j). Show that $0 \neq \langle t, \alpha \rangle \in \mathbb{Z}$ for all $\alpha \in R_{\Gamma}$. Calculate the set of roots $\alpha \in R_{\Gamma}$ with $\langle t, \alpha \rangle = 1$ and use results from lectures.)

- v) Let H_7 be the hyperplane orthogonal to $e_7 + e_8$. Show that $R \cap H_7$ is a root system of type E_7 .
- vi) Let $H_6 \subset R$ be the subspace orthogonal to $e_6 + e_7 + 2e_8$ and $e_7 + e_8$. Show that $R \cap H_6$ is a root system of type E_6 .

We have now constructed all the irreducible root systems!