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CHAPTER 1

Localization of Categories

1. Localization of categories

1.1. Localization of categories. Let A be a category and S an arbitrary
class of morphisms in A. In this section we establish the following result.

1.1.1. Theorem. There exist a category A[S−1] and a functor Q : A −→
A[S−1] such that

(i) Q(s) is an isomorphism for every s in S;
(ii) for any category B and functor F : A −→ B such that F (s) is an iso-

morphism for any s in S, there exists a unique functor G : A[S−1] −→ B
such that F = G ◦Q, i.e., we have the following commutative diagram of
functors:

A
F //

Q

��

B

A[S−1]

G

<<xxxxxxxxx

The category A[S−1] is unique up to isomorphism.

The category A[S−1] is called the localization of A with respect to S.
We first prove the uniqueness. Assume that we have two pairs (C, Q) and

(C′, Q′) satisfying the conditions of the theorem. Then, the universal property
would imply the existence of the functors G : C −→ C′ and H : C′ −→ C such that
Q′ = G◦Q and Q = H ◦Q′, i.e., we would have the following commutative diagram
of functors:

A
Q //

Q′

��

C

G

��
C′

H

EE

This implies that Q′ = (G ◦H) ◦Q′ and Q = (H ◦G) ◦Q. In particular, we have
the following commutative diagram of functors

A
Q //

Q

��

C

idC

��
H◦G

xx
C

1



2 1. LOCALIZATION OF CATEGORIES

where idC is the identity functor on C. By the uniqueness of the factorization we
must have H ◦ G = idC . Analogously, we get G ◦H = idC′ . Therefore, H and G
are isomorphisms of categories.

It remains to establish the existence of A[S−1]. We put

ObA[S−1] = ObA.

It remains to define morphisms in A[S−1].
We fix two objects M and N in A. Let In = (0, 1, . . . , n), Jn = {(i, i+ 1) | 0 ≤

i ≤ n− 1}. A path of length n is

(i) a map L of In into the objects of A such that L0 = M and Ln = N ;
(ii) a map Φ of Jn into the morphisms of A such that either Φ(i, i+ 1) = fi :

Li −→ Li+1 or Φ(i, i+ 1) = si : Li+1 −→ Li with si in S.

Diagrammatically, a path can be represented by an oriented graph as

M L1 Li Ln−1 N

f0 f1 si−1 fi sn−2 sn−1
• - • - · · · •� - · · · •� •�

An elementary transformation of a path is:

(i) Switch of

Li−1 Li Li+1

fi−1 fi
· · · • - • - • · · ·

and

Li−1 Li+1

fi ◦ fi−1
· · · • - • · · · .

(ii) Switch of

L P L

s s
· · · • - • � • · · ·

and

L L

idL
· · · • - • · · · .

(iii) Switch of

L P L

s s
· · · •� • - • · · ·

and

L L

idL
· · · • - • · · · .



1. LOCALIZATION OF CATEGORIES 3

(iv) Switch of

L L P

idL s
· · · • - • � • · · ·

and

L P

s
· · · • � • · · · .

Two paths between M and N are equivalent if one can be obtained from the
other by a finite sequence of elementary transformations. This is clearly an equiv-
alence relation on the set of all paths between M and N .

We define morphisms between M and N in A[S−1] as equivalence classes of
paths between M and N . The composition of paths is defined as concatenation. It
clearly induces a composition on equivalence classes. The identity morphism of an
object M is given by the equivalence class the path

M M

idM
• - • .

It is easy to check that A[S−1] is a category. We define the functor Q from A into
A[S−1] to be the identity on objects, and to map the morphism f : M −→ N into
the path

M N

f
• - • .

Clearly, Q(s) is represented by

M N

s
• - •

and its inverse is

M N

s
•� • .

Hence, Q(s), s ∈ S, are isomorphisms. We define G to be equal to F on objects.
For a path of length n between M and N , we put

G(P ) = G(Φ(n− 1, n)) ◦ · · · ◦G(Φ(2, 1)) ◦G(Φ(1, 0))

where

G(Φ(i, i+ 1)) =

{

F (fi), if Φ(i, i+ 1) = fi : Li −→ Li+1

F (si)
−1, if Φ(i, i+ 1) = si : Li+1 −→ Li

.

If a path P ′ is obtained from another path P by an elementary transformation, it
is clear that G(P ′) = G(P ). Therefore, G is constant on the equivalence classes of
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paths. Hence, it induces a map from HomA[S−1](M,N) into HomB(G(M), G(N)).

It is easy to check that G, defined in this way, is a functor from A[S−1] into B such
that G ◦ Q = F . Moreover, by the construction, G is uniquely determined by F .
Therefore, the pair (A[S−1], Q) satisfies the conditions of the theorem.

1.2. Localization of the opposite category. Let Aopp be the category
opposite to the category A. Let S be a class of morphisms in A. We can also
view them as morphisms in Aopp. The functor Q : A −→ A[S−1] can be viewed as
the a functor from Aopp into the opposite category A[S−1]opp of A[S−1] which we
denote with the same symbol. For any morphism s ∈ S, the morphism Q(s)
is an isomorphism in A[S−1]opp. Hence, the functor Q : Aopp −→ A[S−1]opp

factors through the localization Aopp[S−1] of Aopp, i.e., we have a unique functor
α : Aopp[S−1] −→ A[S−1]opp such that the diagram of functors

Aopp
Q //

Qopp

��

A[S−1]opp

Aopp[S−1]

α

88qqqqqqqqqq

commutes. The functor α is identity on the objects. Moreover, if ϕ : M −→ N is
a morphism represented by a path

M L1 Li Ln−1 N

f0 f1 si−1 fi sn−2 sn−1
• - • - · · · •� - · · · •� •�

in Aopp[S−1], the morphism α(ϕ) is the morphism in A[S−1]opp corresponding to
the morphism in A[S−1] represented by the path

N Ln−1 Li L1 M

sn−1 sn−2 fi si−1 f1 f0
•� •� · · · •- � · · · •- •-

obtained by inverting the order of segments in the original path. This immediately
leads to the following result.

1.2.1. Theorem. The functor α : Aopp[S−1] −→ A[S−1]opp is an isomorphism
of categories.

1.3. Localizing classes of morphisms. Let A be a category. If S is an arbi-
trary class of morphisms, it is very hard to say anything about A[S−1]. Therefore,
we concentrate on special types of classes of morphisms. For such classes, one can
give a more manageable description of morphisms.

A class of morphisms S in A is a localizing class if it has the following properties:

(LC1) For any object M in A, the identity morphism idM on M is in S.
(LC2) If s, t are morphisms in S, their composition s ◦ t is in S.



1. LOCALIZATION OF CATEGORIES 5

(LC3a) For any pair f in MorA and s in S, there exist g in MorA and t in S
such that the diagram

K
g //

t

��

L

s

��
M

f
// N

is commutative.
(LC3b) For any pair f in MorA and s in S, there exist g in MorA and t in S

such that the diagram

K L
goo

M

t

OO

N
f

oo

s

OO

is commutative.
(LC4) Let f, g : M −→ N be two morphisms. Then there exists s in S such that

s ◦ f = s ◦ g if and only if there exists t in S such that f ◦ t = g ◦ t.

Clearly, if S is a localizing class in A, it is also a localizing class in the opposite
category Aopp.

1.3.1. Example. Let S be a family of isomorphisms in A which satisfies (LC1)
and (LC2). Then, S is a localizing class in A. To check (LC3a), we put K = M ,
t = idM and g = s−1 ◦ f . The check of (LC3b) is analogous. It is obvious that
(LC4) holds.

Let A be a category and S a localizing class in A. Let A[S−1] be the local-
ization of A with respect to S. Then any morphism in A[S−1] is represented as a
composition of several morphisms Q(s)−1, s ∈ S, and Q(f).

By (LC2), Q(s ◦ t)−1 = Q(t)−1 ◦ Q(s)−1, hence any morphism in A[S−1] has
the form

Q(f1) ◦Q(s1)
−1 ◦Q(f2) ◦Q(s2)

−1 ◦ · · · ◦Q(fn) ◦Q(sn)
−1

with s1, s2, . . . , sn ∈ S. On the other hand, by (LC3a), for any morphism f and
s ∈ S, there exist g and t ∈ S such that f ◦ t = s ◦ g. Therefore, Q(f) ◦ Q(t) =
Q(s) ◦ Q(g), and Q(s)−1 ◦ Q(f) = Q(g) ◦ Q(t)−1. By induction in n, this implies
that that any morphism in A[S−1] can be represented as Q(f)◦Q(s)−1 with s ∈ S.
Analogously, it can also be represented by Q(s)−1 ◦ Q(f) with s ∈ S. Therefore,
any morphism can be viewed as a left or right “fraction”.

We are going to describe now a more manageable description of morphisms in
A[S−1] which is suitable for computations.

Let A be a category and S a localizing class of morphisms in A. A (left) roof
between M and N is a diagram

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

where s is in S. The symbol ∼ denotes that that arrow is in S.
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Analogously, we define a (right) roof between M and N as a diagram

L

M

g

>>}}}}}}}}
N

t
∼

__@@@@@@@

where t is in S.
Clearly, going from A to the opposite category Aopp switches left roofs between

M and N and right roofs between N and M . Therefore, it is enough to study
properties of left roofs.

If

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

K
t

∼
~~||

||
||

|| g

  A
AA

AA
AA

M N

are two left roofs, we say that they are equivalent if there exist an object H in A
and morphisms p : H −→ L and q : H −→ K such that the diagram

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M H

p

OO

q

��

N

K

t

∼

``BBBBBBBB g

>>}}}}}}}

commutes and s ◦ p = t ◦ q ∈ S.

1.3.2. Remark. If

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

K
t

∼
~~||

||
||

|| g

  A
AA

AA
AA

M N

are two equivalent left roofs, Q(p ◦ s) = Q(p) ◦Q(s) is an isomorphism in A[S−1].
Since Q(s) is also an isomoprphism, Q(p) is an isomorphism too. Analogously, we
see that Q(q) is also an isomorphism. Hence,

Q(f) ◦Q(s)−1 = Q(f) ◦Q(p) ◦Q(p)−1 ◦Q(s)−1 = Q(f ◦ p) ◦Q(s ◦ p)−1

= Q(g ◦ q) ◦Q(t ◦ q)−1 = Q(q) ◦Q(q) ◦Q(q)−1 ◦Q(t) = Q(g) ◦Q(t)−1.

This motivates the above definition.

1.3.3. Lemma. The above relation on left roofs is an equivalence relation.
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Proof. Clearly, the commutative diagram

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M L

idL

OO

idL

��

N

L

s

∼

``AAAAAAAA f

??~~~~~~~

implies that the roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

is equivalent to itself. Moreover, the relation is obviously symmetric. It remains to
show that it is transitive. Assume that the roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

is equivalent to

K
t

∼
~~||

||
||

|| g

  A
AA

AA
AA

M N

and this latter is equivalent to

H
u

∼
~~}}

}}
}}

}} h

  A
AA

AA
AA

M N

.

Then we have the commutative diagrams

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M P

p

OO

q

��

N

K

t

∼

``BBBBBBBB g

>>}}}}}}}
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and

K
t

∼
~~}}

}}
}}

}} g

  @
@@

@@
@@

@

M Q

r

OO

v

��

N

H

u

∼

``AAAAAAAA h

>>~~~~~~~~

where s ◦ p = t ◦ q ∈ S and u ◦ v = t ◦ r ∈ S. Consider now the morphisms
s ◦ p : P −→ M and t ◦ r : Q −→ M . Since t ◦ r ∈ S, by (LC3a), there exists an
object R and morphisms z : R −→ P and a : R −→ Q such that z ∈ S and the
diagram

R

z ∼

��

a // Q

∼ t◦r

��
P s◦p

// M

commutes. Now consider b = q ◦ z : R −→ K and c = r ◦ a : R −→ K. Clearly, we
have

t ◦ b = t ◦ q ◦ z = s ◦ p ◦ z = t ◦ r ◦ a = t ◦ c;

hence, by (LC4), there exist an object T and w : T −→ R in S, such that b◦w = c◦w.
Now, put x = p ◦ z ◦ w and y = v ◦ a ◦w. Then

s◦x = s◦p◦z◦w = t◦q◦z◦w = t◦b◦w = t◦c◦w = t◦r◦a◦w = u◦v◦a◦w = u◦y.

Moreover, since s ◦ p, z and w are in S, this morphism is in S. In addition,

h◦y = h◦v◦a◦w = g◦r◦a◦w = g◦c◦w = g◦b◦w = g◦q◦z◦w = f ◦p◦z◦w = f ◦x,

i.e., the diagram

L
s

∼
~~}}

}}
}}

}} f

  A
AA

AA
AA

A

M T

x

OO

y

��

N

H

u

∼

``BBBBBBBB h

>>}}}}}}}

is commutative. Therefore, the roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

is equivalent to

H
u

∼
~~}}

}}
}}

}} h

  A
AA

AA
AA

M N

and the relation is transitive. �
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Analogously, we define a relation on right roofs. If

L

M

f
>>}}}}}}}}

N

s
∼

__@@@@@@@

K

M

g
>>||||||||

N

t
∼

``AAAAAAA

are two right roofs, we say that they are equivalent if there exist an object H in A
and morphisms p : L −→ H and q : K −→ H such that the diagram

L

p

��
M

f
>>||||||||

g
  B

BB
BB

BB
B H N

s
∼

``AAAAAAAA

t

∼

~~}}
}}

}}
}

K

q

OO

commutes and p ◦ s = q ◦ t ∈ S.
Again, going from A to Aopp maps equivalent left roofs into equivalent right

roofs and vice versa.

1.3.4. Lemma. The above relation on right roofs is an equivalence relation.

Proof. This follows from 1.3.3 by switching from A to Aopp. �

Now we are going to establish a bijection between the equivalence classes of
left roofs and right roofs between two objects in A.

Let

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

be a left roof between M and N in A. Then, by (LC3b), there exists a right roof

K

M

g
>>||||||||

N

t
∼

``AAAAAAA

between M and N such that the diagram

K M
goo

N

t ∼

OO

L
f

oo

s∼

OO

commutes. Assume that

K ′

M

g′
==||||||||

N

t′

∼

``BBBBBBBB
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is another such right roof. Then, by (LC3b), there exists an object U and morphisms
u : K −→ U and u′ : K ′ −→ U such that the diagram

U K ′u′

oo

K

u ∼

OO

N
t

∼oo

t′∼

OO

commutes and u ∈ S. Therefore, we have

u ◦ g ◦ s = u ◦ t ◦ f = u′ ◦ t′ ◦ f = u′ ◦ g′ ◦ s.

By (LC4), there exists an object V in A and a morphism v : U −→ V in S such
that v ◦ u ◦ g = v ◦ u′ ◦ g′. This in turn implies that

v ◦ u ◦ t = v ◦ u′ ◦ t′

is in S and the diagram

K

v◦u ∼

��
M

g

>>||||||||||||

g′

  A
AA

AA
AA

AA
AA

A V N

t
∼

``AAAAAAAAAAAA

t′

∼

~~}}
}}

}}
}}

}}
}}

K ′

v◦u′

OO

commutes. Therefore the above right roofs are equivalent.
It follows that we have a well defined function from left roofs between M and

N into equivalence classes of right roofs between M and N .
Now we claim that this map is constant on equivalence classes of left roofs

between M and N . Let

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

L′

s′

∼
~~}}

}}
}}

}} f ′

  A
AA

AA
AA

M N

be two equivalent left roofs between M and N . Then there exist an object W and
morphisms w : W −→ L and w′ : W −→ L′ such that the diagram

L
s

∼
}}||

||
||

|| f

  B
BB

BB
BB

B

M W

w

OO

w′

��

N

L′

s′

∼

``BBBBBBBB f ′

>>}}}}}}}}
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commutes and s ◦w = s′ ◦w′ is in S. Assume that we have the right roofs between
M and N

K

M

g
>>||||||||

N

t
∼

``AAAAAAA

K ′

M

g′
==||||||||

N

t′

∼

``BBBBBBBB

such that the diagrams

K M
goo

N

t ∼

OO

L
f

oo

s∼

OO K ′ M
g′oo

N

t′ ∼

OO

L′

f ′
oo

s′∼

OO

are commutative. Then the diagrams

K M
goo

N

t ∼

OO

W
f◦w

oo

s◦w∼

OO K ′ M
g′oo

N

t′ ∼

OO

W
f ′◦w′
oo

s′◦w′∼

OO

are commutative, i.e., the above two right roofs correspond to the same left roof
between M and N . By the first part of the proof, these right roofs are equivalent.

It follows that the above map is constant on the equivalence classes of left roofs
between M and N . Therefore, we have a well defined map from the equivalence
classes of left roofs between M and N into the equivalence classes of right roof
between M and N .

Clearly, by going from A to Aopp we see that there exists an analogous map from
equivalence classes of right roofs between M and N into the equivalence classes left
roofs betweenM andN . Moreover, by their construction, it is clear that these maps
are inverses of each other. It follows that the above correspondence is a bijection
between equivalence classes of left roofs between M and N and equivalence classes
of right roofs between M and N .

Now we define the composition of equivalence classes of roofs. Again, it is
enough to consider left roofs.

Let

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

be a left roof between M and N and

K
t

∼
~~}}

}}
}}

}
g

  @
@@

@@
@@

N P
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a left roof between N and P . Then, by (LC3a), there exist an object U and
morphisms u : U −→ L in S and h : U −→ K such that

U
u

∼
��

h

  
L

s
∼

~~}}
}}

}}
}} f

��@
@@

@@
@@

K
t

∼
~~}}

}}
}}

}
g

  @
@@

@@
@@

M N P

is a commutative diagram. It determines the left roof

U
s◦u

∼
~~}}

}}
}}

}} g◦h

��@
@@

@@
@@

M P

which depends on a choice of U , u and h. We claim that its equivalence class is
independent of these choices. Moreover, this equivalence class depends only on the
equivalence classes of the first and second left roof.

To check this, we first consider the dependence on the first left roof. Let

L′

s′

∼
~~}}

}}
}}

}} f ′

  A
AA

AA
AA

M N

be a left roof equivalent to the first left roof, i.e., there exist an object V and
morphisms v : V −→ L and v′ : V −→ L′ such that the diagram

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M V

v

OO

v′

��

N

L′

s′
∼

``AAAAAAAA f ′

>>}}}}}}}

commutes and s ◦ v = s′ ◦ v′ is in S. Then there exist an object U ′ and morphisms
u′ : U ′ −→ L′ in S and h′ : U ′ −→ K such that

U ′

u′

∼
~~

h′

  
L′

s′

∼
~~}}

}}
}}

}} f ′

  A
AA

AA
AA

A K
t

∼
~~}}

}}
}}

}} g

  @
@@

@@
@@

@

M N P
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is a commutative diagram. As before, it determines the left roof

U ′

s′◦u′

∼
~~||

||
||

|| g◦h′

  A
AA

AA
AA

M P

.

By applying (LC3a) twice, we see that there exist objects W and W ′ an morphisms
w : W −→ V and w′ : W ′ −→ V in S and morphisms a : W −→ U and a′ : W ′ −→
U ′ such that the diagrams

W
a //

w ∼

��

U

u∼

��
V v

// L

W ′ a′ //

w′ ∼

��

U ′

u′∼

��
V

v′
// L′

commute. Applying (LC3a) again, we see that there exists an object T and mor-
phisms r : R −→W and r′ : R −→W ′ in S such that the diagram

R
r //

r′ ∼

��

W

w∼

��
W ′

w′

∼ // V

commutes. Now

s ◦ u ◦ a ◦ r = s ◦ v ◦ w ◦ r = s′ ◦ v′ ◦ w′ ◦ r′ = s′ ◦ u′ ◦ a′ ◦ r′

is in S, since s′ ◦ v′, w′ and r′ are in S. Moreover,

t◦h◦a◦r = f ◦u◦a◦r = f ◦v ◦w◦r = f ′ ◦v′ ◦w′ ◦r′ = f ′ ◦u′ ◦a′ ◦r′ = t◦h′ ◦a′ ◦r′

and, by (LC4), there exists an object Q and a morphism q : Q −→ R in S such
that

h ◦ a ◦ r ◦ q = h′ ◦ a′ ◦ r′ ◦ q.

If we put b = a ◦ r ◦ q : Q −→ U and b′ = a′ ◦ r′ ◦ q : Q −→ U ′, we see that

s ◦ u ◦ b = s ◦ u ◦ a ◦ r ◦ q = s′ ◦ u′ ◦ a′ ◦ r′ ◦ q = s′ ◦ u′ ◦ b′

is in S and g ◦ h ◦ b = g ◦ h′ ◦ b′, i.e., the diagram

U
s◦u

∼
~~}}

}}
}}

}} g◦h

  @
@@

@@
@@

@

M Q

b

OO

b′

��

P

U ′

s◦u′

∼

``AAAAAAAA g◦h′

??~~~~~~~~

is commutative. Therefore, the above left roofs are equivalent. In particular, equiv-
alence class of the “composition” of two left roofs is independent of the choice of
U , u and h.
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Now, we consider the dependence on the second left roof. Let

K ′

t′

∼
~~||

||
||

|| g′

  A
AA

AA
AA

A

N P

be a left roof equivalent to the second left roof, i.e., there exist an object V and
morphisms v : V −→ K and v′ : V −→ K ′ such that the diagram

K
t

∼
~~||

||
||

|| g

  A
AA

AA
AA

A

N V

v

OO

v′

��

P

K ′

t′

∼

``BBBBBBBB g′

>>}}}}}}}}

commutes and t ◦ v = t′ ◦ v′ is in S.
By (LC3a), there exists an object U and morphisms u : U −→ L in S and

a : U −→ V such that the diagram

U
a //

u ∼

��

V

t◦v∼

��
L

f
// N

commutes. Therefore, the diagram

U
u

∼
��~~

~~
~~

~
v◦a

  A
AA

AA
AA

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

K
t

∼
~~}}

}}
}}

}
g

  @
@@

@@
@@

M N P

is commutative and the “composition” of the above left roofs is the given by

U
s◦u

∼
����

��
��

�
g◦v◦a

��@
@@

@@
@@

L P

.

Analogously, the diagram

U
u

∼
��~~

~~
~~

~
v′◦a

  B
BB

BB
BB

B

L
s

∼
~~~~

~~
~~

~~ f

��@
@@

@@
@@

K ′

t′

∼
~~||

||
||

|| g′

  A
AA

AA
AA

A

M N P
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is commutative and the “composition” of these left roofs is the given by

U
s◦u

∼
����

��
��

�
g′◦v′◦a

��@
@@

@@
@@

L P

which is identical to the above left roof. Therefore, the equivalence class of the
“composition” of left roofs is independent of the choice of the second left roof.

It follows that the above process defines a map from the product of the sets of
equivalence classes of left roofs between M and N and equivalence classes of left
roofs between N and P into the set of equivalence classes of left roofs between M
and P . By abuse of language, we call this map the composition of left roofs.

By passing from A to Aopp, we see that in an analogous fashion we can define
the composition of (equivalence classes) of right roofs.

Let

L

M

f
>>}}}}}}}}

N

s
∼

__@@@@@@@

be a right roof between M and N and

K

N

g
>>}}}}}}}

P

t
∼

``@@@@@@@

a right roof between N and P . Then, by (LC3b), there exist an object U and
morphisms u : K −→ U in S and h : L −→ U such that

U

L

h

??

K

u
∼

``

M

f
>>}}}}}}}}

N

s
∼

__@@@@@@@
g

>>}}}}}}}
P

t
∼

``@@@@@@@

is a commutative diagram. It determines the right roof

U

M

h◦f
>>}}}}}}}}

P

∼

u◦t

__@@@@@@@

and its equivalence class depends only on the equivalence classes of the above two
right roofs.

We claim that the composition of roofs is compatible with the bijection between
left and right roofs. Let

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

K
t

∼
~~}}

}}
}}

}
g

  @
@@

@@
@@

N P
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be two left roofs. Denote by

U

M

a

>>}}}}}}}}
N

u

∼

``@@@@@@@

V

N

b

>>~~~~~~~~
P

v

∼

__@@@@@@@

the corresponding two right roofs such that the diagrams

L

s ∼

��

f // N

u∼

��
M a

// U

K

t ∼

��

g // N

v∼

��
N

b
// V

are commutative. Then there exist Q and R and morphisms q : Q −→ L, r : V −→
R in S and h : Q −→ K, c : U −→ R, such that the diagrams

Q
q

∼
����

��
��

�
h

  @
@@

@@
@@

@

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

K
t

∼
~~}}

}}
}}

}
g

  @
@@

@@
@@

M N P

and

R

U

c

>>~~~~~~~
V

r
∼

``@@@@@@@@

M

a

>>}}}}}}}}
N

u
∼

``@@@@@@@
b

>>~~~~~~~~
P

v
∼

__@@@@@@@

commute. Therefore the composition of the left roofs is represented by the left roof

Q
s◦q

∼
~~~~

~~
~~

~~ g◦h

��?
??

??
??

M P

and the composition of the right roofs is represented by the right roof

R

M

c◦a

>>}}}}}}}}
P

r◦v
∼

__@@@@@@@

.

Since
c ◦ a ◦ s ◦ q = c ◦ u ◦ f ◦ q = r ◦ b ◦ t ◦ h = r ◦ v ◦ g ◦ h

the left roof corresponds to the right roof between M and P .
Now we prove that the composition of equivalence classes of left roofs is asso-

ciative. By the above discussion, this would immediately imply the associativity of
the composition of right roofs.
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Let M , N , P and Q be objects in A. Consider three left roofs

U
s

∼
~~}}

}}
}}

}} f

  @
@@

@@
@@

M N

V
u

∼
~~~~

~~
~~

~~ g

��@
@@

@@
@@

N P

Z
v

∼
����

��
��

�� h

��?
??

??
??

P Q

and the corresponding commutative diagram

W
w

∼
~~

m

  
X

x
∼

~~

k

  

Y
y

∼
~~

l

��
U

s
∼

~~~~
~~

~~
~~ f

��@
@@

@@
@@

@ V

u
∼

~~}}
}}

}}
}} g

  @
@@

@@
@@

@ Z

v
∼

����
��

��
�� h

��?
??

??
??

M N P Q

which can be constructed by repeated use of (LC3a). Then the composition of the
equivalence classes of the first two left roofs is represented by

X
s◦x

∼
~~}}

}}
}}

}} g◦k

  @
@@

@@
@@

M P

and its composition with third left roof is represented by

W
s◦x◦w

∼
~~}}

}}
}}

}} h◦l◦m

  @
@@

@@
@@

@

M Q

.

Analogously, the composition of last two left roofs is represented by the left roof

Y
u◦y

∼
��~~

~~
~~

~~ h◦l

��?
??

??
??

N Q

and its composition with first left roof is represented by

W

s◦x◦w
∼

~~}}
}}

}}
}} h◦l◦m

  @
@@

@@
@@

@

M Q

.

Therefore, the composition is associative.
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For any object M in A we denote by idM the equivalence class of the left roof

M
idM

}}||
||

||
|| idM

!!B
BB

BB
BB

B

M M

.

Then the commutative diagram

L
s

∼
}}||

||
||

|| idL

  A
AA

AA
AA

A

M

idM

∼

}}||
||

||
|| idM

!!B
BB

BB
BB

B L
s

∼
~~}}

}}
}}

}}

f ��@
@@

@@
@@

M M N

implies that the composition the equivalence class ϕ of left roofs with idM is equal
to ϕ. Analogously, the commutative diagram

L
idN

∼
��~~

~~
~~

~~ f

  A
AA

AA
AA

A

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

N
idN

∼
~~}}

}}
}}

}
idN

  A
AA

AA
AA

M N N

implies that the composition of idN with the equivalence class of ϕ is also equal to
ϕ.

Therefore, the objects of A with equivalence classes of left roofs as morphisms
form a category. We denote this category by Al

S . Analogously, by taking equiva-
lence classes of right roofs as morphisms we get the category Ar

S . From the previous
discussion it is clear that these categories are isomorphic. Therefore, by abuse of
notation we can denote them just by AS and identify the morphism represented by
equivalence classes of corresponding left or right roofs.

We define an assignment Q from the category A to the category AS , which is
identity on objects and assigns to a morphism f : M −→ N the equivalence class
of left roofs attached to the roof

M
idM

∼
}}||

||
||

|| f

  B
BB

BB
BB

B

M N

.

We claim that this is a functor from A into AS . Clearly, Q(idM ) = idM for any
object M . If g : N −→ P is another morphism, the composition of the equivalence
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classes Q(g) and Q(f) corresponds to the commutative diagram

M
idM

∼
}}||

||
||

|| f

  B
BB

BB
BB

B

M
idM

∼
}}||

||
||

|| f

!!B
BB

BB
BB

B N
idN

∼
~~}}

}}
}}

}} g

  @
@@

@@
@@

M N P

i.e., it is equal to Q(f ◦ g).
Since the diagram

N M
foo

N

idN ∼

OO

M
f

oo

idM∼

OO

is commutative, if morphisms in AS are represented by equivalence classes of right
roofs, the morphism Q(s) is represented by the equivalence class of the right roof

M

M

f
==||||||||

N

idN

∼

``BBBBBBBB

.

Moreover, if s : M −→ N is in S, from the diagram

M
idM

∼
}}||

||
||

|| idM

!!B
BB

BB
BB

B

M
idM

∼
}}||

||
||

|| s

!!B
BB

BB
BB

B M
s

∼
}}||

||
||

|| idM

!!B
BB

BB
BB

B

M N M

we see that the equivalence class of the left roof

M
s

∼
~~}}

}}
}}

}} idN

  B
BB

BB
BB

B

N N

is a right inverse of Q(s). Moreover, from the commutative diagram

M
idM

∼
}}||

||
||

|| idM

!!B
BB

BB
BB

B

M
idM

!!B
BB

BB
BB

B
s

∼
~~}}

}}
}}

}}
M

s

  B
BB

BB
BB

B
idM

∼
}}||

||
||

||

N M N
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we see that the composition of these equivalence classes in the opposite order is the
equivalence class of the left roof

M
s

∼
~~}}

}}
}}

}} s

  B
BB

BB
BB

B

N N

,

and since the diagram

M
s

∼
~~}}

}}
}}

}} s

  B
BB

BB
BB

B

N M

idM

OO

s

��

N

N

idN

∼

``BBBBBBBB idN

>>}}}}}}}}

is commutative, it is equal to idN . Therefore, the equivalence class of

M
s

∼
~~}}

}}
}}

}} idN

  B
BB

BB
BB

B

N N

is the inverse of Q(s). Hence, for any s ∈ S, Q(s) is an isomorphism in AS .
Let F be a functor from the category A into the category B, such that F (s) is

an isomorphism for any s ∈ S. Let

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

K
t

∼
~~||

||
||

|| g

  A
AA

AA
AA

M N

be two equivalent left roof between M and N . Then there exist an object U in A
and morphisms u : U −→ L and v : U −→ K such that the diagram

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M U

u

OO

v

��

N

K

t

∼

``BBBBBBBB g

>>}}}}}}}

commutes and s ◦ u = t ◦ v ∈ S. It follows that

F (f) ◦ F (u) = F (g) ◦ F (v)

and

F (s) ◦ F (u) = F (t) ◦ F (v).

Since s◦u is in S, F (s)◦F (u) is an isomorphism. Moreover, F (s) is an isomorphism.
This implies that F (u) is an isomorphism. Analogously, F (v) is an isomorphism.
Hence,

F (u)−1 ◦ F (s)−1 = F (v)−1 ◦ F (t)−1
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and finally

F (f) ◦ F (s)−1 = F (f) ◦ F (u) ◦ F (u)−1 ◦ F (s)−1

= F (g) ◦ F (v) ◦ F (v)−1 ◦ F (t)−1 = F (g) ◦ F (t)−1.

Hence, the map which assigns to the left roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

the morphism F (f) ◦ F (s)−1 : F (M) −→ F (N) is constant on equivalence classes
of roofs.

Therefore, we can define an assignment G which assigns to any object M in
AS the object F (M) in B and to a morphism ϕ represented by the left roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

the morphism G(ϕ) = G(f) ◦G(s)−1.
We claim that G is a functor from AS into B. Clearly, it maps identity mor-

phisms into identity morphisms. Let ϕ : M −→ N and ψ : N −→ P be two
morphisms determined by left roofs

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

K
t

∼
~~}}

}}
}}

}
g

  @
@@

@@
@@

N P

.

Then we have the commutative diagram

U
u

∼
��~~

~~
~~

~
h

  A
AA

AA
AA

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

K
t

∼
~~}}

}}
}}

}
g

  @
@@

@@
@@

M N P

and the composition ψ ◦ ϕ is represented by the left roof

U
s◦u

∼
~~}}

}}
}}

}} g◦h

��@
@@

@@
@@

M P

.

Moreover, we have

G(ψ) ◦G(ϕ) = F (g) ◦ F (t)−1 ◦ F (f) ◦ F (s)−1.

From the above commutative diagram we see that

F (f) ◦ F (u) = F (t) ◦ F (h),
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i.e.,

F (t)−1 ◦ F (f) = F (h) ◦ F (u)−1.

Hence, we have

G(ψ) ◦G(ϕ) = F (g) ◦ F (h) ◦ F (u)−1 ◦ F (s)−1 = F (g ◦ h) ◦ F (s ◦ u)−1 = G(ψ ◦ ϕ).

It follows that G is a functor from AS into B.
Clearly, we have G ◦Q = F . On the other hand, let H : AS −→ B is a functor

such that H ◦ Q = F . Then H(M) = F (M) = G(M) for any object M in AS .
Moreover if ϕ : M −→ N is a morphism in AS represented by the left roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

,

we have ϕ = Q(f) ◦Q(s)−1 and

H(ϕ) = H(Q(f)) ◦H(Q(s))−1 = F (f) ◦ F (s)−1 = G(Q(f)) ◦G(Q(s))−1 = G(ϕ).

Therefore, H = G. Hence, G : AS −→ B is the unique functor satisfying G◦Q = F .
It follows that the pair (AS , Q) is the localization of A with respect to the localizing
class S, i.e., A[S−1] = AS . This construction of the localization is more practical
for actual calculation than the one from the first section.

Let Aopp be the opposite category of A. Let S be a localizing class in A.
Then S is also a localizing class in Aopp. By 1.2.1, we have an isomorphism α :
Aopp[S−1] −→ A[S−1]opp of categories. This isomorphism is identity on objects,
and maps a morphism ϕ : M −→ N represented by the left roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

into a morphism in A[S−1]opp corresponding to the morphism represented by the
right roof

L

N

f
??~~~~~~~

M

s
∼

``AAAAAAAA

in A[S−1].
The next result is an analogue of the “reduction to the common denominator”.

1.3.5. Lemma. Let

Li
si

∼
~~}}

}}
}}

}} fi

  A
AA

AA
AA

M N

,

be left roofs representing morphisms ϕi : M −→ N , 1 ≤ i ≤ n, in A[S−1]. Then
there exist an object L in A, s ∈ S and morphisms gi : L −→ N in A such that the
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left roofs

L
s

∼
~~}}

}}
}}

}} gi

��@
@@

@@
@@

M N

represent ϕi for all 1 ≤ i ≤ n.

Proof. The proof is by induction in n. If n = 1, there is nothing to prove.
Assume that n > 1 and that there exist K, t ∈ S and hi, 1 ≤ i ≤ n− 1, such that

K
t

∼
~~||

||
||

|| hi

  A
AA

AA
AA

M N

represent ϕi for 1 ≤ i ≤ n− 1. By (LC3a) there exist a commutative diagram

U
u′

//

u ∼

��

Ln

sn∼

��
K

t

∼ // M

where u is in S. Therefore, s = t ◦ u = sn ◦ u′ is in S. Then the diagram

K
t

∼
~~||

||
||

|| hi

  A
AA

AA
AA

M U

u

OO

idU

��

N

U

s

∼

``BBBBBBBB hi◦u

>>}}}}}}}

is commutative, i.e., the left roofs

U
s

∼
~~}}

}}
}}

}} hi◦u

  @
@@

@@
@@

M N

represent ϕi for any 1 ≤ i ≤ n− 1. Moreover,

Ln
sn

∼
}}||

||
||

|| fn

  A
AA

AA
AA

A

M U

u′

OO

idU

��

N

U

s

∼

aaCCCCCCCC fn◦u′

==||||||||

is commutative, i.e.,

U
s

∼
~~}}

}}
}}

}} fn◦u′

  @
@@

@@
@@

M N
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represents ϕn. Hence, L = U , gi = hi ◦ u, 1 ≤ i ≤ n− 1, and gn = fn ◦ u′ satisfy
our conditions. �

Clearly, by going from A to its opposite category, we can deduce from the above
result an analogous result for morphisms represented by right roofs.

1.4. Subcategories and localization. Let A be a category and B its sub-
category. Let S be a localizing class in A. Assume that SB = S ∩ Mor(B) form
a localizing class in B. Then we have a natural functor B[S−1

B ] −→ A[S−1]. This

functor maps an object in B into itself, and a morphism in B[S−1
B ] represented by

a left roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

into the equivalence class of the same roof in A[S−1].

1.4.1. Proposition. Let A be a category, S a localizing class of morphisms in
A and B a full subcategory of A. Assume that the following conditions are satisfied:

(i) SB = S ∩ MorB is a localizing class in B;
(ii) for each morphism s : N −→ M with s ∈ S and M ∈ ObB, there exists

u : P −→ N such that s ◦ u ∈ S and P ∈ ObB.

Then the natural functor B[S−1
B ] −→ A[S−1] is fully faithful.

Proof. Let M and N be two objects in B. We have to show that the map
HomB[S−1

B
](M,N) −→ HomA[S−1](M,N) is a bijection.

First we prove that this map is an injection. Let

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

K
t

∼
~~||

||
||

|| g

  A
AA

AA
AA

M N

be two left roofs representing morphisms in B[S−1
B ] which determine the same mor-

phism in A[S−1]. Then this implies that we have the following commutative dia-
gram of roofs

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M U

u

OO

v

��

N

K

t

∼

``BBBBBBBB g

>>}}}}}}}
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where U is in A and s ◦ u = t ◦ v ∈ S. By (ii), there exists V in B and w : V −→ U
such that s ◦ u ◦ w = t ◦ v ◦ w ∈ S. Hence, we get the diagram

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M V

u◦w

OO

v◦w

��

N

K

t

∼

``BBBBBBBB g

>>}}}}}}}

which is clearly commutative. It follows that the above left roofs determine the
same morphism in B[S−1

B ]. Hence, the above map is an injection.
It remains to show surjectivity. Let

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

be the left roof representing a morphism ϕ in HomA[S−1](M,N). By (ii), there
exists U in B and u : U −→ L in S such that s ◦ u ∈ S. Hence, we have the
commutative diagram

L
s

∼
~~}}

}}
}}

}} f

  @
@@

@@
@@

@

M U

u

OO

idU

��

N

U

s◦u

∼

``AAAAAAAA f◦u

>>~~~~~~~

which implies that the left roof

U
s◦u

∼
~~}}

}}
}}

}} f◦u

  @
@@

@@
@@

M N

also represents ϕ. On the other hand, it determines also a morphism between M
and N in B[S−1

B ] which maps into ϕ, i.e., the map is surjective. �

Therefore, one can view B[S−1
B ] as a full subcategory of A[S−1].

Analogously, by replacing A with its opposite category, we see that the following
result holds.

1.4.2. Proposition. Let A be a category, S a localizing class of morphisms in
A and B a full subcategory of A. Assume that the following conditions are satisfied:

(i) SB = S ∩ MorB is a localizing class in B;
(ii) for each morphism s : M −→ N with s ∈ S and M ∈ ObB, there exists

u : N −→ P such that u ◦ s ∈ S and P ∈ ObB.

Then the natural functor B[S−1
B ] −→ A[S−1] is fully faithful.
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2. Localization of additive categories

2.1. Localization of an additive category. Assume now that A is an ad-
ditive category and that S is a localizing class of morphisms in A.

First we remark that (LC4) in the definition of the localizing class can be
replaced with

(LC4’) Let f : M −→ N be a morphism. Then there exists s in S such that
s ◦ f = 0 if and only if there exists t in S such that f ◦ t = 0.

Clearly, since HomA(M,N) is an abelian group, s ◦ f = s ◦ g is equivalent to
s ◦ (f − g) = 0, and f ◦ t = g ◦ t is equivalent to (f − g) ◦ t = 0. Therefore, if we
replace f by f − g in (LC4’), it becomes identical to (LC4).

We want to show that the localization A[S−1] has a natural structure of an
additive category such that the quotient functor Q : A −→ A[S−1] is additive.

Assume that M and N are two objects in A. Let ϕ and ψ be two morphisms
in HomA[S−1](M,N). Then by 1.3.5, there exist an object L in A, s ∈ S and
f, g : L −→M such that these morphisms are represented by left roofs

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

L
s

∼
~~}}

}}
}}

}} g

��@
@@

@@
@@

M N

respectively.

2.1.1. Lemma. The morphism M −→ N determined by the left roof

L
s

∼
~~}}

}}
}}

}} f+g

��@
@@

@@
@@

M N

depends only on ϕ and ψ, i.e., it is independent of the choice of L, s, f and g.

Proof. Assume that ϕ and ψ are also represented by

K
t

∼
~~||

||
||

|| f ′

  A
AA

AA
AA

M N

L
t

∼
~~}}

}}
}}

}} g′

��@
@@

@@
@@

M N

respectively. Then we have the commutative diagrams

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M U

r

OO

r′

��

N

K

t

∼

``BBBBBBBB f ′

>>}}}}}}}
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and

L
s

∼
~~||

||
||

|| g

  A
AA

AA
AA

A

M V

p

OO

p′

��

N

K

t

∼

``BBBBBBBB g′

>>}}}}}}}

where s ◦ r = t ◦ r′ ∈ S and s ◦ p = t ◦ p′ ∈ S.
By (LC3a) we can complete the commutative diagram

W
w′

//

w ∼

��

V

s◦p∼

��
U s◦r

∼ // M

with w ∈ S. Then s ◦ r ◦ w = s ◦ p ◦ w′ ∈ S. By (LC4), there exists q ∈ S,
q : Z −→W , such that r ◦ w ◦ q = p ◦ w′ ◦ q. Also,

t ◦ r′ ◦ w = s ◦ r ◦ w = s ◦ p ◦ w′ = t ◦ p′ ◦w′ ∈ S

implies that

t ◦ r′ ◦ w ◦ q = t ◦ p′ ◦ w′ ◦ q ∈ S.

Hence, by (LC4), there exists q′ ∈ S, q′ : X −→ Z, such that

r′ ◦ w ◦ q ◦ q′ = p′ ◦ w′ ◦ q ◦ q′.

Put

a = r ◦ w ◦ q ◦ q′ = p ◦ w′ ◦ q ◦ q′ : X −→ L

and

a′ = r′ ◦ w ◦ q ◦ q′ = p′ ◦w′ ◦ q ◦ q′ : X −→ K,

then we have

s ◦ a = s ◦ p ◦ w′ ◦ q ◦ q′ = t ◦ p′ ◦ w′ ◦ q ◦ q′ = t ◦ a′

and, since s ◦ p ◦ w ∈ S, q ∈ S and q′ ∈ S, this is an element of S. Moreover,

f ◦ a = f ◦ r ◦ w ◦ q ◦ q′ = f ′ ◦ r′ ◦ w ◦ q ◦ q′ = f ′ ◦ a′

and

g ◦ a = g ◦ p ◦ w′ ◦ q ◦ q′ = g′ ◦ p′ ◦ w′ ◦ q ◦ q′ = g′ ◦ a′.

Therefore, the diagrams

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M X

a

OO

a′

��

N

K

t

∼

``BBBBBBBB f ′

>>}}}}}}}
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and

L
s

∼
~~||

||
||

|| g

  A
AA

AA
AA

A

M X

a

OO

a′

��

N

K

t

∼

``BBBBBBBB g′

>>}}}}}}}

are commutative. This in turn implies that

L
s

∼
~~||

||
||

|| f+g

  A
AA

AA
AA

A

M X

a

OO

a′

��

N

K

t

∼

``BBBBBBBB f ′+g′

>>}}}}}}}

commutes, i.e., the left roofs

L
s

∼
~~}}

}}
}}

}} f+g

��@
@@

@@
@@

M N

K
s

∼
~~||

||
||

|| f ′+g′

  A
AA

AA
AA

M N

represent the same morphism in A[S−1]. �

Therefore, we can denote the morphism determined by the left roof

L
s

∼
~~}}

}}
}}

}} f+g

��@
@@

@@
@@

M N

by ϕ+ψ. Clearly, this defines a binary operation (ϕ, ψ) 7−→ ϕ+ψ on HomA[S−1](M,N).
Moreover, ϕ+ ψ and ψ + ϕ are equal to the equivalence classes of the left roofs

L
s

∼
~~}}

}}
}}

}} f+g

��@
@@

@@
@@

M N

L
s

∼
~~}}

}}
}}

}} g+f

��@
@@

@@
@@

M N

,

i.e., this operation is commutative.
Let ϕ, ψ and χ be three morphisms in HomA[S−1](M,N). By 1.3.5, we can

represent them by the left roofs

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

L
s

∼
~~}}

}}
}}

}} g

��@
@@

@@
@@

M N

L
s

∼
~~}}

}}
}}

}} h

��@
@@

@@
@@

M N
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for some object L in A, S ∈ S and f, g, h ∈ HomA(L,N). Then ϕ + (ψ + χ) is
represented by the left roof

L
s

∼
~~}}

}}
}}

}} f+(g+h)

��@
@@

@@
@@

M N

and (ϕ+ ψ) + χ is represented by the left roof

L
s

∼
~~}}

}}
}}

}} (f+g)+h

��@
@@

@@
@@

M N

.

Since the addition of morphisms in HomA(L,N) is associative, the binary operation
on HomA[S−1](M,N) is also associative.

If we represent the morphism ϕ and ψ by right roofs

K

M

a

>>||||||||
N

t
∼

``AAAAAAA

K

M

b

>>||||||||
N

t
∼

``AAAAAAA

corresponding to

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

L
s

∼
~~}}

}}
}}

}} g

��@
@@

@@
@@

M N

,

such that the diagrams

K M
aoo

N

t ∼

OO

L
f

oo

s∼

OO K M
boo

N

t ∼

OO

Lg
oo

s∼

OO

commute. Then we have

t ◦ (f + g) = t ◦ f + t ◦ g = a ◦ s+ b ◦ s = (a+ b) ◦ s,

i.e., the diagram

K M
a+boo

N

t ∼

OO

L
f+g
oo

s∼

OO

commutes. Therefore, the right roof

K

M

a+b
>>||||||||

N

t
∼

``AAAAAAA
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corresponds to the left roof

L
s

∼
~~}}

}}
}}

}} f+g

��@
@@

@@
@@

M N

and represents ϕ+ ψ. It follows that, if we use right roofs to represent morphisms
instead of left roofs, we get the same binary operation on the sets of morphisms.

We denote by 0 the morphism in HomA[S−1](M,N) represented by the left roof

M
idM

∼
}}||

||
||

|| 0

  B
BB

BB
BB

B

M N

Let s : L −→M be in S. Then we have the commutative diagram

L
s

∼
}}||

||
||

|| 0

  B
BB

BB
BB

B

M L

idL

OO

s

��

N

M

idM

∼

aaBBBBBBBB 0

>>}}}}}}}}

hence the left roof

L
s

∼
~~}}

}}
}}

}} 0

��@
@@

@@
@@

M N

represents 0 too. This implies that ϕ + 0 = ϕ for any ϕ in HomA[S−1](M,N)
represented by a roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

.

It follows that 0 is the neutral element in HomA[S−1](M,N). Moreover, it is clear
that the inverse of ϕ is represented by the left roof

L
s

∼
~~}}

}}
}}

}} −f

��@
@@

@@
@@

M N

.

Therefore, HomA[S−1](M,N) is an abelian group.
Let M,N,P be three objects in A. We claim that the composition

HomA[S−1](M,N) × HomA[S−1](N,P ) −→ HomA[S−1](M,P )

is biadditive.
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Let χ be in HomA[S−1](M,N) and ϕ and ψ in HomA[S−1](N,P ). Let

L
s

∼
��~~

~~
~~

~
f

��?
??

??
??

N P

L
s

∼
��~~

~~
~~

~
g

��?
??

??
??

N P

K
t

∼
~~||

||
||

|| h

  A
AA

AA
AA

M N

be left roofs representing ϕ, ψ and χ respectively. Using (LC3a) we get the diagram

U
u

∼
~~

v

��
K

t
∼

~~||
||

||
|| h

  A
AA

AA
AA

L
s

∼
��~~

~~
~~

~
f

��?
??

??
??

M N P

and we see that the composition of ϕ ◦ χ is represented by the left roof

U
t◦u

∼
~~}}

}}
}}

}} f◦v

��@
@@

@@
@@

M P

.

Analogously, from the diagram

U
u

∼
~~

v

  
K

t
∼

~~||
||

||
|| h

  A
AA

AA
AA

K
s

∼
~~}}

}}
}}

}
g

  @
@@

@@
@@

M N P

we see that the composition of ψ ◦ χ is represented by the left roof

U
t◦u

∼
~~}}

}}
}}

}} g◦v

��@
@@

@@
@@

M P

.

Therefore, ϕ ◦ χ+ ψ ◦ χ is represented by the left roof

U
t◦u

∼
~~}}

}}
}}

}} f◦v+g◦v

��@
@@

@@
@@

M P

.

On the other hand, ϕ+ ψ is represented by the left roof

L
s

∼
��~~

~~
~~

~
f+g

��?
??

??
??

N P

,
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hence the commutative diagram

U
u

∼
~~}}

}}
}}

}
v

��@
@@

@@
@@

K
t

∼
~~||

||
||

|| h

  A
AA

AA
AA

L
s

∼
��~~

~~
~~

~
f+g

��?
??

??
??

M N P

implies that (ϕ+ ψ) ◦ χ is represented by the left roof

U
t◦u

∼
~~}}

}}
}}

}} (f+g)◦v

��@
@@

@@
@@

M P

.

It follows that (ϕ + ψ) ◦ χ = ϕ ◦ χ + ψ ◦ χ, i.e., the composition is additive in the
first variable.

Now, let ϕ and ψ be in HomA[S−1](M,N) and χ in HomA[S−1](N,P ). Let

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

L
s

∼
~~}}

}}
}}

}} g

��@
@@

@@
@@

M N

K
t

∼
~~}}

}}
}}

}
h

  @
@@

@@
@@

N P

be left roofs representing ϕ, ψ and χ respectively. Using (LC3a) we get the diagram

U
u

∼
��

x

  
L

s
∼

~~}}
}}

}}
}} f

��@
@@

@@
@@

K
t

∼
~~}}

}}
}}

}
h

  @
@@

@@
@@

M N P

and we see that the composition of χ ◦ ϕ is represented by the left roof

U
s◦u

∼
~~}}

}}
}}

}} h◦x

��@
@@

@@
@@

M P

.

Analogously, from the diagram

V
v

∼
��

y

  
L

s
∼

~~}}
}}

}}
}} g

��@
@@

@@
@@

K
t

∼
~~}}

}}
}}

}
h

  @
@@

@@
@@

M N P
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we see that the composition of χ ◦ ψ is represented by the left roof

V
s◦v

∼
~~}}

}}
}}

}} h◦y

��@
@@

@@
@@

M P

.

Using (LC3a) again, we construct the commutative diagram

W

∼w

��

w′

// U

u∼

��
V v

∼ // L

with u ◦ w′ = v ◦ w ∈ S. Therefore, we get the commutative diagrams

W
u◦w′

∼
~~}}

}}
}}

}} x◦w′

  B
BB

BB
BB

B

L
s

∼
~~}}

}}
}}

}} f

  A
AA

AA
AA

A K
t

∼
~~||

||
||

|| h

  @
@@

@@
@@

M N P

and

W
v◦w

∼
~~}}

}}
}}

}} y◦w

  B
BB

BB
BB

B

L
s

∼
~~}}

}}
}}

}} g

  A
AA

AA
AA

A K
t

∼
~~||

||
||

|| h

  @
@@

@@
@@

M N P

which imply that left roofs

W
s◦u◦w′

∼
}}||

||
||

|| h◦x◦w′

  A
AA

AA
AA

A

M P

W
s◦v◦w

∼
}}||

||
||

|| h◦y◦w

  A
AA

AA
AA

A

M P

represent χ ◦ ϕ and χ ◦ ψ respectively. Therefore, χ ◦ ϕ + χ ◦ ψ is represented by
the left roof

W
s◦v◦w

∼
}}||

||
||

|| h◦x◦w′+h◦y◦w

  A
AA

AA
AA

A

M P

.

On the other hand, we have

f ◦ u ◦ w′ = t ◦ x ◦ w′

and
g ◦ u ◦ w′ = g ◦ v ◦ w = t ◦ y ◦ w.

Hence,
(f + g) ◦ u ◦ w′ = t ◦ (x ◦ w′ + y ◦ w)



34 1. LOCALIZATION OF CATEGORIES

and the diagram

W
u◦w′

∼
~~}}

}}
}}

}} x◦w′+y◦w

  B
BB

BB
BB

B

L
s

∼
~~}}

}}
}}

}} f+g

  A
AA

AA
AA

A K
t

∼
~~||

||
||

|| h

  @
@@

@@
@@

M N P

is commutative. Therefore, χ ◦ (ϕ+ ψ) is represented by the left roof

W
s◦u◦w′

∼
}}||

||
||

|| h◦(x◦w′+y◦w)

  A
AA

AA
AA

A

M P

.

This implies that χ ◦ (ϕ + ψ) = χ ◦ ϕ + χ ◦ ψ, i.e., the composition is additive in
the second variable. It follows that the composition of morphisms is biadditive.

The zero object in A[S−1] is the zero object 0 in A. To see this, consider an
endomorphism of 0 in A[S−1]. It is represented by a left roof

M
s

∼
~~~~

~~
~~

~~ 0

  @
@@

@@
@@

@

0 0

.

Then we have the commutative diagram

M
s

∼
��~~

~~
~~

~~ 0

��@
@@

@@
@@

@

0 M

idM

OO

s

��

0

0

id0

∼

``@@@@@@@@ 0

>>~~~~~~~~

,

hence the morphism is also represented by the left roof

0
id0

∼
����

��
��

�
0

��>
>>

>>
>>

0 0

.

It also represents the zero morphism. Therefore, the only endomorphism of 0 in
A[S−1] is the zero morphism. This implies that 0 is the zero object in A[S−1].

Moreover, ifM andN are two objects in A[S−1], we define their direct sumM⊕
N as the direct sum of these objects in A. The canonical injections and projections
in A[S−1] are the morphisms corresponding to the corresponding morphisms in A.

It is clear that A[S−1] becomes an additive category in this way.
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Let f, g : M −→ N be two morphisms in A. Then the corresponding morphisms
Q(f) and Q(g) in A[S−1] are represented by left roofs

M
idM

∼
}}||

||
||

|| f

  B
BB

BB
BB

B

M N

M
idM

∼
}}||

||
||

|| g

  B
BB

BB
BB

B

M N

respectively. Hence, Q(f) +Q(g) is represented by the left roof

M
idM

∼
}}||

||
||

|| f+g

  A
AA

AA
AA

A

M P

,

i.e., Q(f) +Q(g) = Q(f + g). Therefore, the quotient functor Q : A −→ A[S−1] is
additive.

Let B be an additive category and F : A −→ B an additive functor such that
F (s) is an isomorphism for any s ∈ S. Then, by 1.1.1, there exists a functor
G : A[S−1] −→ B such that F = G ◦Q. Clearly, G(M) = F (M) for any object M
in A. Moreover, if ϕ is a morphism of M into N in A[S−1] represented by a left
roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

,

we have G(ϕ) = F (f) ◦ F (s)−1.
If ϕ and ψ are morphisms in A[S−1] between M and N , by 1.3.5, they are

represented by left roofs

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

L
s

∼
~~}}

}}
}}

}} g

��@
@@

@@
@@

M N

,

the sum ϕ+ ψ is represented by the left roof

L
s

∼
~~}}

}}
}}

}} f+g

��@
@@

@@
@@

M N

.

Therefore, we have

G(ϕ+ ψ) = F (f + g) ◦ F (s)−1 = F (f) ◦ F (s)−1 + F (g) ◦ F (s)−1 = G(ϕ) +G(ψ),

i.e., the functor G is additive.
Therefore, we proved the existence part of the following result.

2.1.2. Theorem. Let A be an additive category and S a localizing class. There
exist an additive category A[S−1] and an additive functor Q : A −→ A[S−1] such
that

(i) Q(s) is an isomorphism for every s in S;
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(ii) for any additive category B and additive functor F : A −→ B such that
F (s) is an isomorphism for any s in S, there exists a unique additive
functor G : A[S−1] −→ B such that F = G◦Q, i.e., we have the following
commutative diagram of functors:

A
F //

Q

��

B

A[S−1]

G

<<xxxxxxxxx

The category A[S−1] is unique up to isomorphism.

Proof. The proof of uniqueness is identical to the corresponding proof in
1.1.1. �

Let Aopp be the opposite category of A. Let S be a localizing class in A. As
we remarked before, S is also a localizing class in Aopp. Moreover, we have an
isomorphism α : Aopp[S−1] −→ A[S−1]opp of corresponding categories. From its
construction, and 2.1.2, it follows that α is an additive functor. Therefore, we have
the following result.

2.1.3. Theorem. The functor α : Aopp[S−1] −→ A[S−1]opp is an isomorphism
of additive categories.

Now we want to characterize zero morphisms in localizations.

2.1.4. Lemma. Let ϕ : M −→ N be a morphism in A[S−1] represented by a
left roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

.

Then the following conditions are equivalent:

(i) ϕ = 0;
(ii) There exists t ∈ S such that f ◦ t = 0.
(iii) There exists t ∈ S such that t ◦ f = 0.

Proof. First we remark that by (LC4’) the conditions (ii) and (iii) are equiv-
alent.

Assume that (i) holds. Then 0 = Q(f) ◦Q(s)−1, and Q(f) = 0. Therefore, the
left roof

L
idL

∼
����

��
��

�
f

��@
@@

@@
@@

L N

represents the zero morphism in HomA[S−1](L,N). The zero morphism between L
and N is represented by the left roof

L
idL

∼
����

��
��

�
0

��@
@@

@@
@@

L N

.



2. LOCALIZATION OF ADDITIVE CATEGORIES 37

Hence, these left roofs are equivalent, i.e., there exists U in A and t : U −→ L such
that the diagram

L
idL

∼
����

��
��

�
f

  @
@@

@@
@@

@

L U

t

OO

t

��

N

L

idL

∼

__??????? 0

>>~~~~~~~~

commutes and t is in S. This implies that f ◦ t = 0.
Conversely, if (ii) holds, f ◦ t = 0 and Q(f) ◦Q(t) = 0. Hence, Q(f) = 0 and

ϕ = Q(f) ◦Q(s)−1 = 0. �

By switching A with its opposite category, we get the dual result for morphisms
represented by right roofs.

2.1.5. Lemma. Let ϕ : M −→ N be a morphism in A[S−1] represented by a
right roof

L

M

f
>>}}}}}}}}

N

s

∼

__@@@@@@@

.

Then the following conditions are equivalent:

(i) ϕ = 0;
(ii) There exists t ∈ S such that t ◦ f = 0;
(iii) There exists t ∈ S such that f ◦ t = 0.

2.1.6. Corollary. Let f : M −→ N be a morphism in A. Then the following
conditions are equivalent:

(i) Q(f) = 0;
(ii) There exists t ∈ S such that t ◦ f = 0;
(iii) There exists t ∈ S such that f ◦ t = 0.

Proof. The morphism Q(f) is represented by the left roof

M
idM

∼
}}||

||
||

|| f

  B
BB

BB
BB

B

M N

.

Hence, the result follows from 2.1.4. �

2.1.7. Corollary. Let M be an object in A. Then the following conditions
are equivalent:

(i) Q(M) = 0;
(ii) There exists an object N in A such that the zero morphism N −→ M is

in S;
(iii) There exists an object N in A such that the zero morphism M −→ N is

in S.
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Proof. By switching to the opposite category we see that (ii) and (iii) are
equivalent.

Assume that Q(M) = 0. This implies that Q(idM ) = 0. Hence, by 2.1.6, there
exists s ∈ S, s : N −→M such that s = idM ◦ s = 0. This implies (ii).

If (ii) holds, the zero morphism Q(N) −→ Q(M) is an isomorphism. This
implies that Q(M) = Q(N) = 0. �

Finally we have the following consequence of the above results.

2.1.8. Lemma. Let f : M −→ N be a morphism in A. Then:

(i) If f is a monomorphism, then Q(f) is a monomorphism;
(ii) If f is an epimorphism, then Q(f) is an epimorphism.

Proof. Clearly, by switching from A to the opposite category A◦, we see that
(i) and (ii) are equivalent.

Therefore, it suffices to prove (i). Let ϕ : L −→ M be a morphism in A[S−1]
such that Q(f) ◦ ϕ = 0. Then the morphism ϕ is represented by a left roof

U
s

∼
����

��
��

�
g

  A
AA

AA
AA

A

L M

.

and we have ϕ = Q(g) ◦Q(s)−1. This implies that

0 = Q(f) ◦ ϕ = Q(f) ◦Q(g) ◦Q(s)−1 = Q(f ◦ g) ◦Q(s)−1

and Q(f ◦ g) = 0. By 2.1.6, it follows that there exists t ∈ S such that f ◦ g ◦ t = 0.
Since f is a monomorphism, this implies that g ◦ t = 0. By using 2.1.6 again, we
see that Q(g) = 0. It follows that ϕ = Q(g) ◦ Q(s)−1 = 0. Therefore, Q(f) is a
monomorphism. �

2.2. Localization of abelian categories. Let A be an abelian category and
S a localizing class in A. Then, by the results of the preceding section, the local-
ization A[S−1] of A with respect to S is an additive category.

We want to prove now that A[S−1] is an abelian category.

2.2.1. Lemma. Let ϕ : M −→ N be a morphism in A[S−1]. Then ϕ has a
kernel and a cokernel.

Proof. The morphism ϕ is represented by a right roof

L

M

f
>>}}}}}}}}

N

s
∼

__@@@@@@@

.

Therefore, ϕ = Q(s)−1 ◦ Q(f). Since Q(s) is an isomorphism, χ : K −→ M is a
kernel of ϕ if and only if it is a kernel of Q(f).

By our assumption, f : M −→ L has a kernel k : K −→ M in A. We claim
that χ = Q(k) : K −→M is a kernel of Q(f) in A[S−1].
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Let ψ : P −→ M be a morphism in A[S−1] such that Q(f) ◦ ψ = 0. Then ψ
can be represented by a left roof

U
t

∼
��~~

~~
~~

~
g

  A
AA

AA
AA

A

P M

and ψ = Q(g) ◦Q(t)−1. Hence,

0 = Q(f) ◦ ψ = Q(f) ◦Q(g) ◦Q(t)−1 = Q(f ◦ g) ◦Q(t)−1

and Q(f ◦ g) = 0. By 2.1.6, it follows that there exists morphism v : V −→ U ,
v ∈ S, such that f ◦ g ◦ v = 0. Hence, g ◦ v can be uniquely factor through the
kernel, i.e., there exists unique morphism w : W −→ K such that k ◦ w = g ◦ v.
Therefore, Q(k) ◦Q(w) = Q(g) ◦Q(v), and Q(g) = Q(k) ◦Q(w) ◦Q(v)−1. Hence,

ψ = Q(g) ◦Q(t)−1 = Q(k) ◦Q(w) ◦Q(v)−1 ◦Q(t)−1 = χ ◦Q(w) ◦Q(v)−1 ◦Q(t)−1.

Hence, ψ factors through χ : K −→M .
Assume that ψ = χ ◦ α = χ ◦ β are two factorizations. Then we have χ ◦

(α − β) = 0. Since the kernel k : K −→ M is a monomorphism, by 2.1.8, χ is a
monomorphism. This implies that α = β and the above factorization is unique.
Hence, χ : K −→M is a kernel of Q(f).

This result, by switching from A to the opposite category A◦, implies also the
existence of a cokernel of ϕ. �

Therefore, any morphism ϕ : M −→ N in A[S−1] has a kernel and cokernel.
Let χ : kerϕ −→ M be a kernel of ϕ and ρ : N −→ cokerϕ a cokernel of ϕ. Then
we denote a cokernel of χ by α : M −→ coimϕ. Clearly, since ϕ ◦ χ = 0, there
exists a unique morphism ψ : coimϕ −→ N such that the diagram

kerϕ
χ // M

ϕ //

α

��

N
ρ // cokerϕ

coimϕ

ψ

<<xxxxxxxxx

commutes. Since α is a cokernel, it is an epimorphism. Therefore,

0 = ρ ◦ ϕ = ρ ◦ ψ ◦ α

implies that ρ ◦ ψ = 0. Also, we denote a kernel of ρ by β : imϕ −→ N . Then
there exists a unique morphism ϕ̄ : coimϕ −→ imϕ such that ψ = β ◦ ϕ̄, i.e., the
diagram

kerϕ
χ // M

ϕ //

α

��

N
ρ // cokerϕ

coimϕ
ϕ̄

//
ψ

::vvvvvvvvv
imϕ

β

OO

commutes. To show that A[S−1] is an abelian category, we have to show that the
map ϕ̄ : coimϕ −→ imϕ is an isomorphism.
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Assume that ϕ is represented by a left roof

L
s

∼
����

��
��

�
f

  A
AA

AA
AA

A

P M

,

i.e., ϕ = Q(f) ◦Q(s)−1. Since A is abelian, we have a commutative diagram

ker f
k // L

f //

a

��

N
c // coker f

coim f
f̄

// im f

b

OO

where f̄ : coim f −→ im f is an isomorphism. By applying the functor Q, we get
the commutative diagram

ker f
Q(k) // L

Q(f) //

Q(a)

��

N
Q(c) // coker f

coim f
Q(f̄)

// im f

Q(b)

OO

where Q(f̄) is an isomorphism. By the argument in the proof of 2.2.1 and the dual
argument, we conclude that Q(k) : ker f −→ L is a kernel of Q(f) and Q(c) : N −→
coker f is a cokernel of Q(f). This in turn implies that Q(a) : L −→ coim f is a
coimage and Q(b) : im f −→ N an image of Q(f).

Since ϕ = Q(f) ◦Q(s)−1, clearly we can assume that Q(c) : N −→ coker f is a
cokernel of ϕ : M −→ N , i.e., we can put cokerϕ = coker f and ρ = Q(c). This in
turn implies, by the same argument, that Q(b) : im f −→ N is a kernel of ρ : N −→
cokerϕ, i.e., we can put imϕ = im f and β = Q(b). Finally, since ϕ = Q(f)◦Q(s)−1,
Q(s) ◦ Q(k) : ker f −→ M is a kernel of ϕ, and we can put kerϕ = ker f and
χ = Q(s) ◦ Q(k). Analogously, this implies that Q(a) ◦ Q(s)−1 : M −→ coim f is
a cokernel of χ, and we can put coimϕ = coim f and α = Q(a) ◦Q(s)−1. This in
turn implies that

Q(f) ◦Q(s)−1 = ϕ = β ◦ ϕ̄ ◦ α = Q(b) ◦ ϕ̄ ◦Q(a) ◦Q(s)−1

and

Q(b) ◦ ϕ̄ ◦Q(a) = Q(f) = Q(b) ◦Q(f̄) ◦Q(a).

Since Q(b) is an monomorphism, this implies that ϕ̄ ◦ Q(a) = Q(f̄) ◦ Q(a). Since
Q(a) is an epimorphism, it follows that ϕ̄ = Q(f̄). Hence ϕ̄ is an isomorphism.

This implies that the category A[S−1] is abelian.

2.2.2. Theorem. Let A be an abelian category and S a localizing class in A.
Then the localization A[S−1] is an abelian category.

The quotient functor Q : A −→ A[S−1] is exact.

Proof. It remains to prove the exactness of the functor Q : A −→ A[S−1]. If

M
f

−−−−→ N
g

−−−−→ P
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is an exact sequence in A, we have to prove that

M
Q(f)

−−−−→ N
Q(g)

−−−−→ P

is exact. Clearly, we have Q(g) ◦Q(f) = 0. On the other hand, if i : im f −→ N is
an image of f , the above argument implies that Q(i) : im f −→ N is an image of
Q(f). Moreover, if k : ker g −→ N is a kernel of g, Q(k) : ker g −→ N is a kernel of
Q(g). Hence, the exactness of the first sequence implies the exactness of the second
sequence. �

A nontrivial full subcategory B of A is thick if for any short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

in A, M is in B if and only if M ′ and M ′′ are in B. Clearly, a thick subcategory of
A contains 0.

2.2.3. Lemma. Let B is a thick subcategory of A. Then

(i) B is strictly full subcategory.
(ii) B is abelian.
(iii) Any subobject and any quotient of an object M in B is in B.
(iv) Any extension of any two objects in B is in B.

Proof. (i) Let M be an object in B and i : N −→M an isomorphism. Then

0 −−−−→ N
i

−−−−→ M −−−−→ 0 −−−−→ 0

is exact. Therefore, N is in B.
(iii) If M is in B and M ′ a subobject of M in A, we have the exact sequence

0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0

in A. Since B is thick, M ′ and M ′′ are in B.
(iv) If

0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0

is an exact sequence in A and M ′ and M ′′ are in B, the extension M of M ′ and
M ′′ is in B.

(ii) Let M and N be two objects in B. Then we have the exact sequence

0 −−−−→ M −−−−→ M ⊕N −−−−→ N −−−−→ 0

in A. Hence, M ⊕ N is in B, and B is additive. If f : M −→ N is a morphism
in B, it is also a morphism in A. Hence, its kernel, image, cokernel and coimage
exist in A, and since B is thick, they are objects in B. Moreover, they represent
kernel, image, cokernel and coimage of f in B. This implies that the canonical
representation of a morphism f in A is the canonical representation of f in B, and
B is abelian. �

2.2.4. Lemma. Let A be an abelian category and S a localizing class in A. Then
the full subcategory B consisting all objects M in A which are isomorphic to 0 in
A[S−1] is thick.

Proof. Let

0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0

be a short exact sequence in A. Then, since Q : A −→ A[S−1] is an exact functor,

0 −−−−→ Q(M ′) −−−−→ Q(M) −−−−→ Q(M ′′) −−−−→ 0
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is exact in A[S−1]. If M is in B, we have Q(M) = 0. By exactness, we must have
Q(M ′) = 0 and Q(M ′′) = 0. Therefore, M ′ and M ′′ are in B. Conversely, if M ′ and
M ′′ are in B, we have Q(M ′) = Q(M ′′) = 0 and, by exactness, we have Q(M) = 0.
Hence, M is in B. It follows that B is a thick subcategory of A. �

Let B be a thick subcategory of A. Let SB be the class of all morphisms
f : M −→ N in A such that ker f and coker f are in B.

2.2.5. Lemma. The class SB of morphisms in A is a localizing class.

Proof. Clearly, if A◦ is the opposite category of A, the full subcategory of A◦

consisting of all objects in B is isomorphic to the opposite category of B, therefore
we can denote it by B◦. Clearly, going from A to A◦ identifies SB with SB◦ . This
allows to argue by duality.

Obviously, (LC1) holds for SB.
If s and t are in SB and s◦ t is defined, we see that ker(s◦ t) = t−1(im t∩ker s),

i.e., we have the following exact sequence

0 −→ ker t −→ ker(s ◦ t) −→ im t ∩ ker s −→ 0.

By the definition of SB, ker s is in B. Since B is thick, by 2.2.3, it follows that
im t ∩ ker s is in B. Applying 2.2.3 again, it follows that ker(s ◦ t) is in B. By
duality, we conclude that coker(s ◦ t) is in B. Therefore, s ◦ t is in SB, and (LC2)
holds for SB.

Let f : M −→ N be a morphism in A and s : P −→ N a morphism in SB.
Let p and q be the natural projections of M ⊕N onto the first and second factor.
Denote by i : M −→M ⊕ P and j : P −→M ⊕ P , the canonical monomorphisms.
Then we can construct the diagram

Q
g

−−−−→ P

t





y





y

s

M −−−−→
f

N

where Q is the fiber product of M and P over N , i.e., the kernel of the morphism
f ◦ p− s ◦ q : M ⊕ P −→ N . Let m : Q −→M ⊕ P be the canonical inclusion.

We claim that t is in SB. The morphism t is induced by the restriction of p
to Q, i.e., t = p ◦m. Therefore, the kernel of t is the intersection of 0 ⊕ P with
ker(f ◦ p− s ◦ q). Clearly, this is equal to 0⊕ ker s. Since B is thick and this object
is isomorphic to ker s, it is in B. It follows that ker t is in SB.

Let L = im(f ◦p−s◦ q). Since f = (f ◦p−s◦ q)◦ i and s = (f ◦p−s◦ q)◦ j, we
see that im f ⊂ L and im s ⊂ L. Therefore, in the above diagram, we can replace
N by L, i.e., we can consider

Q
g

−−−−→ P

t





y





y

s

M −−−−→
f

L

.

Clearly, since B is thick and L ⊂ N , cokernel of the morphism s : P −→ L is in
SB. Let r : M −→ coker t be the natural morphism. Then r ◦ t = 0, i.e., we have
r◦p◦m = 0. This implies that r◦p factors through cokerm, i.e., r◦p = r′◦(f◦p−s◦q)
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for some morphism r′. Moreover, since p and r are epimorphisms, r′ has to be an
epimorphism onto coker t. By composing with j we see that

0 = r ◦ p ◦ j = r′ ◦ (f ◦ p− s ◦ q) ◦ j = r′ ◦ s,

i.e., ker r′ ⊃ im s. This implies that r′ factors through coker s. It follows that
coker t is a quotient of coker s. Since s is in SB and B is thick, we conclude that
coker t is in B. Hence, t is in SB. Therefore, (LC3a) holds. By switching to the
opposite category, we see that (LC3b) holds too.

If t ◦ f = 0 for some t ∈ SB, we have im f ⊂ ker t. By the definition of SB, ker t
is in B. Since B is thick, im f is also in B. On the other hand, im f is isomorphic to
M/ ker f , and we see that M/ ker f is in B. Therefore, the inclusion s : ker f −→M
is in SB and f ◦ s = 0.

By duality, this implies that if f : M −→ N is a morphism such that f ◦ s = 0
for some s ∈ SB, there exists t in SB such that t ◦ f = 0. Therefore (LC4’) holds
for SB. �

Let B be a thick category of A. Denote by SB the localizing class constructed
in 2.2.5. Let M be in B. The morphism M −→ 0 has kernel equal to M and
cokernel 0. Therefore, this morphism is in S, and M is isomorphic to 0 in A[S−1

B ].

On the other hand, if M is isomorphic to 0 in A[S−1
B ], the identity morphism on

M represented by the left roof

M
idM

∼
}}||

||
||

|| idM

!!B
BB

BB
BB

B

M M

has to be equal to the zero morphism represented by the left roof

M
idM

∼
}}||

||
||

|| 0

!!B
BB

BB
BB

B

M M

.

Therefore, there exists u : U −→M such that the diagram

M
idM

∼
}}||

||
||

|| idM

!!B
BB

BB
BB

B

M U

u

OO

u

��

M

M

idM

∼

aaBBBBBBBB 0

==||||||||

commutes and u ∈ SB. It follows that u is a zero morphism. Therefore, the cokernel
of u is M , and M is in B.

Therefore, B is the thick category of all objects in A that are isomorphic to 0
in A[S−1

B ]. Hence, we will denote A[S−1
B ] by A/B and call it the quotient category

of A with respect to the thick subcategory B.

2.2.6. Proposition. Let A be an abelian category and let B and C be two thick
subcategories of A. Then

(i) the full subcategory B ∩ C is a thick subcategory of A.
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(ii) The natural functor B/(B ∩ C) −→ A/C is fully faithful.

Proof. (i) Follows immediately from the definition.
By (i), C ∩ B is a thick subcategory of B too.
Clearly, any morphism in B which is in SC is also in SB∩C . Therefore, the

natural functor from B into A/C factors through the functor i : B/(B∩C) −→ A/C.
Let M and N be two objects in B and φ : M −→ N a morphism in B/(B ∩ C).

Then it can be represented by a left roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

where L is also in B, s : L −→ M is a morphism in SB∩C and f : L −→ N is a
morphism in B. If i(φ) = 0, by 2.1.6, there exists a an morphism t : K −→ L in SC

such that f ◦ t = 0. This implies that coker t is in B∩C and im t is in B. Therefore,
the natural morphism u : im t −→ L is in SB∩C . Since f ◦ u = 0, by recalling
2.1.6 again, we see that φ = 0. Hence, the homomorphism HomB/(B∩C)(M,N) −→
HomA/C(M,N) is injective.

Consider now morphism ψ : M −→ N in A/C. Then it can be represented by
a left roof

L
s

∼
~~}}

}}
}}

}} f

��@
@@

@@
@@

M N

where L is in A, s is in SC and f : L −→ N is a morphism in A. Let K be the
quotient of L by ker s∩ ker f and let q : L −→ K be the quotient morphism. Then
there exist t : K −→ M and g : K −→ N such that s = t ◦ q and f = g ◦ q. This
implies that the diagram

L
s

∼
~~||

||
||

|| f

  A
AA

AA
AA

A

M L

idL

OO

q

��

N

K

t

∼

``BBBBBBBB g

>>}}}}}}}

commutes. Since q is an epimorphism, im t = im s and coker t = coker s. In
addition, ker t is a quotient of ker s. Hence, t is also in SC . It follows that we can
replace the left roof representing ψ with the left roof

K
t

∼
~~||

||
||

|| g

  A
AA

AA
AA

M N

.

Hence, from the beginning, we can assume that ker s ∩ ker f = 0. Let i :
M −→ M ⊕ N and j : N −→ M ⊕ N be the canonical monomorphisms. Then,
i ◦ s + j ◦ f : L −→ M ⊕N is a monomorphism. Hence, L is in B in this case. It
follows that the left roof above determines a morphism in B/(B ∩ C).

�
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Therefore, we can identify B/(B ∩ C) with a full subcategory of A/C.





CHAPTER 2

Triangulated Categories

1. Triangulated categories

1.1. Definition of triangulated categories. Let C be an additive category.
Let T : C −→ C be an additive functor which is an automorphism of the category C.
We call T the translation functor on C. If X is an object of C, we use the notation
T n(X) = X [n] for any n ∈ Z.

A triangle in C is a diagram

X −→ Y −→ Z −→ T (X).

We are going to represent a triangle schematically as

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

A morphism of triangles is a commutative diagram

X −−−−→ Y −−−−→ Z −−−−→ T (X)

u





y

v





y

w





y





y

T (u)

X ′ −−−−→ Y ′ −−−−→ Z ′ −−−−→ T (X ′)

A morphism of triangles is an isomorphism of triangles if u, v and w are isomor-
phisms.

The category C is a triangulated category if it is equipped with a family of
triangles called distinguished triangles, which satisfy the following properties:

(TR1.a) Any triangle isomorphic to a distinguished triangle is a distinguished tri-
angle.

(TR1.b) For any object X in C,

0

[1]

��		
		

		
		

		

X
idX // X

ZZ6666666666

is a distinguished triangle.

47
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(TR1.c) For any morphism f : X −→ Y in C, there exists a distinguished triangle

Z

[1]

����
��

��
��

��

X
f // Y

ZZ6666666666

(TR2) The triangle

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666

is distinguished if and only if the triangle

T (X)

−T (f)

[1]

����
��

��
��

��
�

Y
g // Z

h

\\:::::::::::

is distinguished.
(TR3) Let

X −−−−→ Y −−−−→ Z −−−−→ T (X)

u





y

v





y





y

T (u)

X ′ −−−−→ Y ′ −−−−→ Z ′ −−−−→ T (X ′)

be a diagram where the rows are distinguished triangles and the first
square is commutative. Then there exists a morphism w : Z −→ Z ′ such
that the diagram

X −−−−→ Y −−−−→ Z −−−−→ T (X)

u





y

v





y

w





y





y

T (u)

X ′ −−−−→ Y ′ −−−−→ Z ′ −−−−→ T (X ′)

is a morphism of distinguished triangles.
(TR4) Let f , g and h = g ◦ f be morphisms in C. Then the diagram

X
f

−−−−→ Y
a

−−−−→ Z ′ −−−−→ T (X)

idX





y

g





y





y

T (idX )

X
h

−−−−→ Z
b

−−−−→ Y ′ −−−−→ T (X)

f





y

idZ





y





y

T (f)

Y
g

−−−−→ Z
c

−−−−→ X ′ −−−−→ T (Y )
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where the rows are distinguished triangles can be completed to the dia-
gram

X
f

−−−−→ Y
a

−−−−→ Z ′ −−−−→ T (X)

idX





y

g





y





y

u





y

T (idX )

X
h

−−−−→ Z
b

−−−−→ Y ′ −−−−→ T (X)

f





y

idZ





y





y

v





y

T (f)

Y
g

−−−−→ Z
c

−−−−→ X ′ −−−−→ T (Y )

a





y
b





y

idX′





y





y

T (a)

Z ′ u
−−−−→ Y ′ v

−−−−→ X ′ w
−−−−→ T (Z ′)

where all four rows are distinguished triangles and the vertical arrows are
morphisms of triangles.

The second property is called the turning of triangles axiom, and the fourth
property is called the octahedral axiom. To see the connection consider the octahe-
dral diagram

Y ′

[1]

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

v

$$
Z ′

u

HH

[1]

xxppppppppppppp X ′

[1]

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~

w

[1]
oo

X
h //

f

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
C Z

WW////////////////////////////

88ppppppppppppp

Y

TT)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

g

DD���������������������

where the original diagram consist of three distinguished triangles over three mor-
phisms f , g and h which form a commutative triangle. This diagram can be com-
pleted by adding the dotted distinguished triangle which completes the octahedron.
The other sides containing dotted arrows are commutative and define morphisms
between pairs of original distinguished triangles. In particular, the square diagrams
connecting Y on the bottom to Y ′ on the top through Z and Z ′, and Y ′ on the top
to T (Y ) on the bottom through T (X) and X ′ commute.

Let C and D be two triangulated categories. An additive functor F : C −→ D
is called graded if
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(FT1) T ◦ F is isomorphic to F ◦ T .

If F : C −→ D is a graded functor and let η be the isomorphism of F ◦ T into
T ◦ F . If

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666

is a triangle in C, by applying F to it, we get a diagram

F (X)
F (f)

−−−−→ F (Y )
F (g)

−−−−→ F (Z)
F (h)

−−−−→ F (T (X))
ηX

−−−−→ T (F (X))

i.e., we get a triangle

F (Z)

ηX◦F (h)

[1]

����
��

��
��

��
��

F (X)
F (f) // F (Y )

F (g)

^^>>>>>>>>>>>>

.

We say that F maps the first triangle into the second one.
If we have a morphism of triangles

X −−−−→ Y −−−−→ Z −−−−→ T (X)

u





y

v





y

w





y





y

T (u)

X ′ −−−−→ Y ′ −−−−→ Z ′ −−−−→ T (X ′)

,

by applying F we get the commutative diagram

F (X) −−−−→ F (Y ) −−−−→ F (Z) −−−−→ F (T (X))
ηX

−−−−→ T (F (X))

F (u)





y

F (v)





y

F (w)





y





y

F (T (u))





y

T (F (u))

F (X ′) −−−−→ F (Y ′) −−−−→ F (Z ′) −−−−→ F (T (X ′)) −−−−→
ηX′

T (F (X ′))

and by collapsing the last two rectangles into one, we get a morphism of triangles.
Clearly, if the original morphism is an isomorphism of triangles, so is the latter one.

Let C and D be two triangulated categories. A graded functor F : C −→ D is
called exact if

(FT2) F maps distinguished triangles into distinguished triangles.

Let C and D be two triangulated categories. Let F and G be two exact functors
between C and D. A morphism ω : F −→ G of functors is a graded morphism if the
diagram

F (T (X))
ηF,X

−−−−→ T (F (X))

ωT (X)





y





y

T (ωX)

G(T (X)) −−−−→
ηG,X

T (G(X))
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commutes for any X in C. In this case for any distinguished triangle

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

we get a commutative diagram

F (X) −−−−→ F (Y ) −−−−→ F (Z) −−−−→ F (T (X))
ηF,X

−−−−→ T (F (X))

ωX





y

ωY





y





y

ωZ





y

ωT (X)





y

T (ωX)

G(X) −−−−→ G(Y ) −−−−→ G(Z) −−−−→ G(T (X)) −−−−→
ηG,X

T (G(X))

and by collapsing the last two rectangles into one, we get a morphism of triangles.
Since F and G are exact functors, this morphism is a morphism of distinguished
triangles.

1.2. The opposite triangulated category. Let C be a triangulated cate-
gory. Let Copp be the opposite category. We define the translation functor on Copp

as the inverse of the translation functor X 7−→ T (X) on C. If

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666

is a distinguished triangle in C, we declare

X

T−1(h)

[1]

����
��

��
��

��

Z
g // Y

f

[[6666666666

to be a distinguished triangle in Copp.

1.2.1. Proposition. The category Copp is a triangulated category.

We call Copp the opposite triangulated category of C.
First we need a simple fact.

1.2.2. Lemma. Let

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666
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be a distinguished triangle in C. Then

Z

h
[1]

����
��

��
��

��

X
−f // Y

−g

ZZ6666666666

is a distinguished triangle in C.

Proof. Clearly,

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)

idX





y

−idY





y

idZ





y





y

idT (X)

X −−−−→
−f

Y −−−−→
−g

Z −−−−→
h

T (X)

is an isomorphism of triangles. Since the top row is a distinguished triangle, the
bottom row is also a distinguished triangle. �

Now we can check the axioms of triangulated categories for Copp.
Let X be an object in C. Then we have the distinguished triangle

0

[1]

��		
		

		
		

		

X
idX // X

ZZ6666666666

in C. By turning this triangle, we get distinguished triangle

X

[1]

��		
		

		
		

		

0 // X

idX

[[7777777777

in C. This implies that

0

[1]

��		
		

		
		

		

X
idX // X

ZZ6666666666

is a distinguished triangle in Copp.
Let f : X −→ Y be a morphism in Copp. Then f : Y −→ X is a morphism in

C. There exists a distinguished triangle

Z

[1]
h

����
��

��
��

��

Y
f // X

g

[[6666666666
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in C. By turning this triangle we get the distinguished triangle

X

[1]

g

����
��

��
��

��
�

T−1(Z)
−T−1(h) // Y

f

ZZ66666666666

in C. Hence,

T−1(Z)

[1]

T−1(g)

����
��

��
��

��
�

X
f // Y

−T−1(h)

^^===========

is a distinguished triangle in Copp. Therefore, (TR1) holds for Copp.
Let

Z

[1]
h

����
��

��
��

��

X
f // Y

g

ZZ6666666666

be a triangle in Copp. It is a distinguished triangle if and only if

X

[1]

T (h)

����
��

��
��

��

Z
g // Y

f

[[6666666666

is a distinguished triangle in C. Therefore, it is distinguished if and only if the
turned triangle

Y

[1]

f

����
��

��
��

��
�

T−1(X)
−h // Z

g

ZZ55555555555

is a distinguished triangle in C. On the other hand, this is a distinguished triangle
if and only if

T−1(X)

[1]

T−1(f)

����
��

��
��

��
�

Y
g // Z

−h

^^===========
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is a distinguished triangle in Copp. By 1.2.2 and (TR2), it follows that this triangle
is distinguished if and only if

T−1(X)

[1]

−T−1(f)

����
��

��
��

��
�

Y
g // Z

h

^^===========

is distinguished in Copp. This establishes (TR2).
Let

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T−1(X)

u





y

v





y





y
T−1(u)

X ′ f ′

−−−−→ Y ′ g′

−−−−→ Z ′ h′

−−−−→ T−1(X ′)

a diagram in Copp where the rows are distinguished triangles and the first square is
commutative. Then it gives the diagram

Z
g

−−−−→ Y
f

−−−−→ X
T (h)

−−−−→ T (Z)

v

x





x





u

Z ′ −−−−→
g′

Y ′ −−−−→
f ′

X ′ −−−−→
T (h′)

T (Z ′)

with rows which are distinguished triangles and the commutative middle square in
C. By turning these triangles we get the diagram

Y
f

−−−−→ X
T (h)

−−−−→ T (Z)
−T (g)
−−−−→ T (Y )

v

x





x





u T (v)

x





Y ′ −−−−→
f ′

X ′ −−−−→
T (h′)

T (Z ′) −−−−→
−T (g)

T (Y ′)

with rows which are distinguished triangles and the commutative first square in C.
By (TR3), there exists a morphism w : Z ′ −→ Z such that

Y
f

−−−−→ X
T (h)

−−−−→ T (Z)
−T (g)
−−−−→ T (Y )

v

x





x





u T (w)

x





T (v)

x





Y ′ −−−−→
f ′

X ′ −−−−→
T (h′)

T (Z ′) −−−−→
−T (g′)

T (Y ′)

is a morphism of triangles in C. This immediately implies that

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T−1(X)

u





y

v





y





y

w





y
T−1(u)

X ′ f ′

−−−−→ Y ′ g′

−−−−→ Z ′ h′

−−−−→ T−1(X ′)

is a morphism of triangles in Copp. This establishes (TR3) for Copp.
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Finally, let h = g ◦ f in Copp. Consider the diagram

X
f

−−−−→ Y
a

−−−−→ Z ′ r
−−−−→ T−1(X)

idX





y

g





y





y

id
T−1(X)

X
h

−−−−→ Z
b

−−−−→ Y ′ s
−−−−→ T−1(X)

f





y

idZ





y





y
T−1(f)

Y
g

−−−−→ Z
c

−−−−→ X ′ t
−−−−→ T−1(Y )

where the rows are distinguished triangles and the squares in the first column
commute. This leads to the diagram

X ′ c
−−−−→ Z

g
−−−−→ Y

T (t)
−−−−→ T (X ′)

idZ





y

f





y

Y ′ b
−−−−→ Z

h
−−−−→ X

T (s)
−−−−→ T (Y ′)

g





y

idX





y

Z ′ a
−−−−→ Y

f
−−−−→ X

T (r)
−−−−→ T (Z ′)

in C where the rows are distinguished triangles and the squares in the middle column
commute. By turning the rows we get the diagram

Z
g

−−−−→ Y
T (t)

−−−−→ T (X ′)
−T (c)
−−−−→ T (Z)

idZ





y

f





y





y

idT (Z)

Z
h

−−−−→ X
T (s)

−−−−→ T (Y ′)
−T (b)
−−−−→ T (Z)

g





y

idX





y





y

T (g)

Y
f

−−−−→ X
T (r)

−−−−→ T (Z ′)
−T (a)
−−−−→ T (Y )

where the rows are distinguished triangles and the squares in the first column
commute. By (TR4), this diagram can be completed to an octahedral diagram

Z
g

−−−−→ Y
T (t)

−−−−→ T (X ′)
−T (c)
−−−−→ T (Z)

idZ





y

f





y





y

T (u)





y

idT (Z)

Z
h

−−−−→ X
T (s)

−−−−→ T (Y ′)
−T (b)
−−−−→ T (Z)

g





y

idX





y





y

T (v)





y

T (g)

Y
f

−−−−→ X
T (r)

−−−−→ T (Z ′)
−T (a)
−−−−→ T (Y )

T (t)





y

T (s)





y





y

idT (Z′)





y
T 2(t)

T (X ′)
T (u)

−−−−→ T (Y ′)
T (v)

−−−−→ T (Z ′)
T (w)

−−−−→ T 2(X ′)
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in C. By turning the last row three times we get the distinguished triangle

Z ′

[1]

−w

����
��

��
��

��
�

X ′
−u // Y ′ ;

−v

]];;;;;;;;;;;

and, by 1.2.2, the distinguished triangle

Z ′

[1]

−w

����
��

��
��

��
�

X ′ u // Y ′

v

[[7777777777

in C. This implies that

X ′

[1]

−T−1(w)

����
��

��
��

��
�

Z ′ v // Y ′

u

[[88888888888

is a distinguished triangle in Copp. Hence, our original diagram completes to the
octahedral diagram

X
f

−−−−→ Y
a

−−−−→ Z ′ r
−−−−→ T−1(X)

idX





y

g





y





y

v





y

id
T−1(X)

X
h

−−−−→ Z
b

−−−−→ Y ′ s
−−−−→ T−1(X)

f





y

idZ





y





y

u





y
T−1(f)

Y
g

−−−−→ Z
c

−−−−→ X ′ t
−−−−→ T−1(Y )

a





y
b





y





y

idX′





y
T−1(a)

Z ′ v
−−−−→ Y ′ u

−−−−→ X ′ −T−1(w)
−−−−−−→ T−1(Z ′)

in Copp. This establishes (TR4) and completes the proof of 1.2.1.

1.3. Cohomological functors. Clearly, a distinguished triangle

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666

leads to an infinite diagram

. . .
T−1(h)
−−−−−→ X

f
−−−−→ Y

g
−−−−→ Z

h
−−−−→ T (X)

T (f)
−−−−→ . . . .
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1.3.1. Lemma. Let

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666

be a distinguished triangle. Then the composition of any two consecutive morphisms
in the triangle is equal to 0, i.e.

g ◦ f = h ◦ g = T (f) ◦ h = 0.

Proof. By (TR2) it is enough to prove that we have g ◦ f = 0. Consider the
diagram

X
idX−−−−→ X −−−−→ 0 −−−−→ T (X)

idX





y

f





y





y

T (idX )

X
f

−−−−→ Y
g

−−−−→ Z −−−−→ T (X)

.

By (TR1) the rows in this diagram are distinguished triangles. By (TR3) there
exists a morphism u : 0 −→ Z which completes the above diagram to the diagram

X
idX−−−−→ X −−−−→ 0 −−−−→ T (X)

idX





y

f





y

u





y





y

T (idX )

X
f

−−−−→ Y
g

−−−−→ Z −−−−→ T (X)

which is a morphism of triangles. Since u must be the zero morphism, from the
commutativity of the middle square we conclude that g ◦ f = 0. �

Let C be a triangulated category and A an abelian category. Let F : C −→ A
be an additive functor. For any distinguished triangle

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666

we have

F (g) ◦ F (f) = 0

by 1.3.1. Moreover, the above long sequence of morphisms leads to the following
complex

. . .
F (T−1(h))
−−−−−−−→ F (X)

F (f)
−−−−→ F (Y )

F (g)
−−−−→ F (Z)

F (h)
−−−−→ F (T (X))

F (T (f))
−−−−−→ . . .

of objects in A.
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An additive functor F : C −→ A is a cohomological functor if for any distin-
guished triangle

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666

we have an exact sequence

F (X)
F (f)

−−−−→ F (Y )
F (g)

−−−−→ F (Z)

in A. Therefore, the above complex is exact.

1.4. Basic properties of triangulated categories. The results of this sec-
tion do not depend on the octahedral axiom (TR4).

Let f : X −→ Y be a morphism. Then, for any object U in C, it induces
a morphism f∗ : HomC(U,X) −→ HomC(U, Y ) given by f∗(ϕ) = f ◦ ϕ; and f∗ :
HomC(Y, U) −→ HomC(X,U) given by f∗(ψ) = ψ ◦ f .

Let

Z

h
[1]

����
��

��
��

��

X
f // Y

g

ZZ6666666666

be a distinguished triangle and U an object in C. Then f , g and h induce morphisms
in the following infinite sequences of abelian groups

· · · → HomC(U,X)
f∗
−→ HomC(U, Y )

g∗
−→ HomC(U,Z)

h∗−→ HomC(U, T (X))
T (f)∗
−−−−→ . . .

and

. . .
T (f)∗

−−−−→ HomC(T (X), U)
h∗

−→ HomC(Z,U)
g∗

−→ HomC(Y, U)
f∗

−→ HomC(X,U) → . . . .

The next result says that these are long exact sequences of abelian groups.

1.4.1. Proposition. Let U be an object in C. Then

(i) The functor X 7−→ HomC(U,X) from C into the category of abelian groups
is a cohomological functor.

(ii) The functor X 7−→ HomC(X,U) from Copp into the category of abelian
groups is a cohomological functor.

Proof. Clearly, it is enough to prove (i). Hence, it is enough to prove that
im f∗ = ker g∗. We know that im f∗ ⊂ ker g∗.

Assume that u : U −→ Y is such that g∗(u) = 0, i.e., g ◦ u = 0. Then we can
consider the diagram

U
idU−−−−→ U −−−−→ 0 −−−−→ T (U)

u





y





y
0

X
f

−−−−→ Y
g

−−−−→ Z −−−−→ T (X)
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where the middle square commutes and the rows are distinguished triangles. By
turning both triangles we get the diagram

U −−−−→ 0 −−−−→ T (U)
−idU−−−−→ T (U)

u





y
0





y





y

T (u)

Y
g

−−−−→ Z −−−−→ T (X)
−T (f)
−−−−→ T (Y )

which we complete by (TR3) to a morphism of distinguished triangles

U −−−−→ 0 −−−−→ T (U)
−idU−−−−→ T (U)

u





y
0





y





y

T (v)





y

T (u)

Y
g

−−−−→ Z −−−−→ T (X)
−T (f)
−−−−→ T (Y )

.

By turning these triangles back, we get the morphism of distinguished triangles

U
idU−−−−→ U −−−−→ 0 −−−−→ T (U)

v





y

u





y





y
0





y

T (v)

X
f

−−−−→ Y
g

−−−−→ Z −−−−→ T (X)

.

Hence, we constructed v : U −→ X such that u = f ◦ v = f∗(v). It follows that
u ∈ im f∗. Hence, ker g∗ ⊂ im f∗, and ker g∗ = im f∗. �

1.4.2. Lemma. Let

X −−−−→ Y −−−−→ Z −−−−→ T (X)

u





y

v





y

w





y





y

T (u)

X ′ −−−−→ Y ′ −−−−→ Z ′ −−−−→ T (X ′)

be a morphism of two distinguished triangles. If two of morphisms u, v and w are
isomorphisms, the third one is also an isomorphism.

Proof. By turning the triangles we can assume that u and v are isomorphisms.
By 1.4.1, we have the following commutative diagram

Hom(Z ′, X) −→ Hom(Z ′, Y ) −→ Hom(Z ′, Z) −→ Hom(Z ′, T (X)) −→ Hom(Z ′, T (Y ))

u∗





y

v∗





y

w∗





y





y

u∗





y

T (v)∗

Hom(Z ′, X ′) −→Hom(Z ′, Y ′) −→Hom(Z ′, Z ′) −→Hom(Z ′, T (X ′)) −→Hom(Z ′, T (Y ′))

where both rows are exact and all vertical arrows are isomorphisms, except possibly
the middle one. By five lemma, the middle arrow is also an isomorphism. Therefore,
there exists a : Z ′ −→ Z such that w∗(a) = w ◦ a = idZ′ .

Analogously, by 1.4.1, we have the following commutative diagram

Hom(T (Y ′), Z) −→Hom(T (X ′), Z) −→Hom(Z ′, Z) −→Hom(Y ′, Z) −→Hom(X ′, Z)

T (v)∗




y u∗





y w∗





y





yv∗




yu∗

Hom(T (Y ), Z) −→ Hom(T (X), Z) −→ Hom(Z,Z) −→ Hom(Y, Z) −→ Hom(X,Z)
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where both rows are exact and all vertical arrows are isomorphisms, except possibly
the middle one. By five lemma, the middle arrow is also an isomorphism. Therefore,
there exists b : Z ′ −→ Z such that w∗(b) = b ◦ w = idZ . It follows that

b = b ◦ (w ◦ a) = (b ◦ w) ◦ a = a.

Hence, w is an isomorphism. �

Therefore, in the morphism

X
f

−−−−→ Y −−−−→ Z −−−−→ T (X)

idX





y

idY





y

w





y





y

T (idX)

X
f

−−−−→ Y −−−−→ Z ′ −−−−→ T (X)

of two distinguished triangles based on f : X −→ Y , the morphism w : Z −→ Z ′

is an isomorphism. It follows that the third vertex in a distinguished triangle is
determined up to an isomorphism. We call it a cone of f .

1.4.3. Lemma. Let

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

be a distinguished triangle in D. If two of its vertices are isomorphic to 0, the third
one is isomorphic to 0.

Proof. By turning the triangle, we can assume that it is equal to

X

[1]

��		
		

		
		

		

0 // 0

ZZ6666666666

i.e., X is a cone of the isomorphism id : 0 −→ 0. By (TR1b), this cone is isomorphic
to 0. �

1.4.4. Lemma. Let

Z

[1]

����
��

��
��

��

X
f // Y

ZZ6666666666

be a distinguished triangle. Then the following statements are equivalent:

(i) f is an isomorphism;
(ii) Z = 0.
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Proof. Consider the following morphism of distinguished triangles

X
idX−−−−→ X −−−−→ 0 −−−−→ T (X)

idX





y

f





y





y





y

T (idX )

X −−−−→
f

Y −−−−→ Z −−−−→ T (X)

.

If Z = 0, the first and the third vertical arrow are isomorphisms, therefore by 1.4.2,
f : X −→ Y is an isomorphism.

Conversely, if f : X −→ Y is an isomorphism, then first two vertical arrows are
isomorphisms, and by the same result the third vertical arrow is an isomorphism,
i.e., Z = 0. �

The following result is a refinement of (TR3).

1.4.5. Proposition. Let

Z

[1]
h

����
��

��
��

��

X
f // Y

g

ZZ6666666666

and

Z ′

[1]
h′

����
��

��
��

��
�

X ′
f ′

// Y ′

g′

[[7777777777

be two distinguished triangles and v : Y −→ Y ′. Then we have the following diagram

X
f //

u

��

Y
g //

v

��

Z
h //

w

��

T (X)

T (u)

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// T (X ′)

and the following statements are equivalent:

(i) g′ ◦ v ◦ f = 0;
(ii) there exists u such the the first square in the diagram is commutative;
(iii) there exists w such that the second square in the diagram is commutative;
(iv) there exist u and w such that the diagram is a morphism of triangles.

If these conditions are satisfied and Hom(X,Z ′[−1]) = 0, the morphism u in (ii)
(resp. w in (iii)) is unique.

Proof. By 1.4.1, we have the following exact sequence

Hom(X,Z ′[−1]) → Hom(X,X ′)
f ′

∗−−→ Hom(X,Y ′)
g′∗−−→ Hom(X,Z ′) .

Therefore, if g′∗(v◦f) = g′◦v◦f = 0, v◦f = f ′
∗(u) = f ′◦u for some u : X −→ X ′.

Therefore, (i) implies (ii).
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Moreover, if Hom(X,Z ′[−1]) = 0, the morphism u is unique.
Conversely, if (ii) holds,

g′ ◦ v ◦ f = g′ ◦ f ′ ◦ u = 0

by 1.3.1, and (i) holds.
Analogously, by 1.4.1, we have the following exact sequence

Hom(X [1], Z ′) → Hom(Z,Z ′)
g∗

−→ Hom(Y, Z ′)
f∗

−→ Hom(X,Z ′) .

Therefore, if f∗(g′ ◦ v) = g′ ◦ v ◦ f = 0, there exists w : Z −→ Z ′ such that
g∗(w) = w ◦ g = g′ ◦ v, i.e., (iii) holds.

Moreover, if Hom(X [1], Z ′) = Hom(X,Z ′[−1]) = 0, the morphism w is unique.
Conversely, if (iii) holds,

g′ ◦ v ◦ f = w ◦ g ◦ f = 0

by 1.3.1, and (i) holds.
Finally, (ii) implies (iv) by (TR3). �

1.4.6. Corollary. Let

Z

[1]
h

����
��

��
��

��

X
f // Y

g

ZZ6666666666

be a distinguished triangle such that Hom(X,Z[−1]) = 0. Then:

(i) If

Z ′

[1]
h′

����
��

��
��

��
�

X
f // Y

g′

[[7777777777

is another distinguished triangle based on f : X −→ Y , there exists a
unique isomorphism u : Z −→ Z ′ such that the diagram

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)

idX





y

idY





y





y

u





y

idT (X)

X
f

−−−−→ Y
g′

−−−−→ Z ′ h′

−−−−→ T (X)

is an isomorphism of triangles.
(ii) If

Z

[1]
h′

����
��

��
��

��

X
f // Y

g

ZZ6666666666

is another distinguished triangle, h′ is equal to h.
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Proof. (i) Consider the diagram

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)

idX





y

idY





y





y

idT (X)

X
f

−−−−→ Y
g′

−−−−→ Z ′ h′

−−−−→ T (X)

where the first rectangle commutes. By (TR3) we can complete it to a morphism
of distinguished triangles

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)

idX





y

idY





y





y

w





y

idT(X)

X
f

−−−−→ Y
g′

−−−−→ Z ′ h′

−−−−→ T (X)

.

By 1.4.2, w is an isomorphism. This, together with Hom(X,Z[−1]) = 0, implies
that Hom(X,Z ′[−1]) = 0. Hence, by 1.4.5, the morphism w is unique.

(ii) Consider the diagram

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)

idY





y

X
f

−−−−→ Y
g

−−−−→ Z
h′

−−−−→ T (X)

.

The identity morphism idX : X −→ X satisfies the condition (ii) in 1.4.5. Also, the
identity morphism idZ : Z −→ Z satisfies the condition (iii) in 1.4.5. Therefore, by
1.4.5, we have a morphism of triangles

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)

u





y

idY





y





y

w





y

T (u)

X
f

−−−−→ Y
g

−−−−→ Z
h′

−−−−→ T (X)

By the uniqueness part in 1.4.5, we must have u = idX and w = idZ . Therefore
h = h′. �

1.4.7. Lemma. Let

Z

[1]
h

����
��

��
��

��

X
f // Y

g

ZZ6666666666

and

Z ′

[1]
h′

����
��

��
��

��
�

X ′
f ′

// Y ′

g′

[[7777777777
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be two distinguished triangles. Then

Z ⊕ Z ′

[1]

h⊕h′

}}{{
{{

{{
{{

{{
{{

{

X ⊕X ′
f⊕f ′

// Y ⊕ Y ′

g⊕g′

aaBBBBBBBBBBBBB

is a distinguished triangle.

Proof. By (TR1) there exists a distinguished triangle

U

[1]

����
��

��
��

��
�

X ⊕X ′
f⊕f ′

// Y ⊕ Y ′

^^===========

based on f ⊕ f ′. Moreover, if p : X ⊕X ′ −→ X and q : Y ⊕Y ′ −→ Y are canonical
projections, we have the diagram

X ⊕X ′ f⊕f ′

−−−−→ Y ⊕ Y ′ −−−−→ U −−−−→ T (X ⊕X ′)

p





y

q





y





y

T (p)

X −−−−→
f

Y −−−−→
g

Z −−−−→
h

T (X)

Which by (TR3) we can complete to a morphism of distinguished triangles

X ⊕X ′ f⊕f ′

−−−−→ Y ⊕ Y ′ −−−−→ U −−−−→ T (X ⊕X ′)

p





y

q





y





y

u





y

T (p)

X −−−−→
f

Y −−−−→
g

Z −−−−→
h

T (X)

.

Analogously, if p′ : X⊕X ′ −→ X ′ and q′ : Y ⊕Y ′ −→ Y ′ are canonical projections,
we get a morphism

X ⊕X ′ f⊕f ′

−−−−→ Y ⊕ Y ′ −−−−→ U −−−−→ T (X ⊕X ′)

p′




y
q′




y





yu′





y
T (p′)

X ′ −−−−→
f ′

Y ′ −−−−→
g′

Z ′ −−−−→
h′

T (X ′)

of distinguished triangles.
Let ϕ : U −→ Z ⊕Z ′ be the morphism determined by u and u′. Then we have

the commutative diagram

X ⊕X ′ f⊕f ′

−−−−→ Y ⊕ Y ′ −−−−→ U −−−−→ T (X ⊕X ′)

idX⊕X′





y

idY ⊕Y ′





y





y

ϕ





y
idT (X⊕X′)

X ⊕X ′ −−−−→
f⊕f ′

Y ⊕ Y ′ −−−−→
g⊕g′

Z ⊕ Z ′ −−−−→
h⊕h′

T (X ⊕X ′)

.
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Let V be in C. The above diagram implies that the diagram

...
...





y





y

Hom(V,X ⊕X ′)
id

−−−−→ Hom(V,X ⊕X ′)

(f⊕f ′)∗





y





y
(f⊕f ′)∗

Hom(V, Y ⊕ Y ′)
id

−−−−→ Hom(V, Y ⊕ Y ′)




y





y
(g⊕g′)∗

Hom(V, U)
ϕ∗

−−−−→ Hom(V, Z ⊕ Z ′)




y





y
(h⊕h′)∗

Hom(V, T (X ⊕X ′))
id

−−−−→ Hom(V, T (X ⊕X ′))




y





y
T (f⊕f ′)∗

Hom(V, T (Y ⊕ Y ′))
id

−−−−→ Hom(V, T (Y ⊕ Y ′))




y





y

...
...

is commutative. Since the second column comes from morphisms into a distin-
guished triangle, it is exact by 1.4.1. By the same result, we also have the long
exact sequences

. . .
f∗
−→ Hom(V, Y )

g∗
−→ Hom(V, Z)

h∗−→ Hom(V, T (X))
T (f)∗
−−−−→ . . .

and

. . .
f ′
∗−→ Hom(V, Y ′)

g′∗−→ Hom(V, Z ′)
h′
∗−→ Hom(V, T (X ′))

T (f ′)∗
−−−−→ . . . .

The direct sum of the last two long exact sequences is the long exact sequence
appearing in the first column of the above diagram. By the five lemma we see
that ϕ∗ : Hom(V, U) −→ Hom(V, Z ⊕ Z ′) is an isomorphism. Analogously, by
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considering the morphisms of the diagram into V , we get the commutative diagram

...
...





y





y

Hom(T (Y ⊕ Y ′), V )
id

−−−−→ Hom(T (Y ⊕ Y ′), V )

T (f⊕f ′)∗




y





y

T (f⊕f ′)∗

Hom(T (X ⊕X ′), V )
id

−−−−→ Hom(T (X ⊕X ′), V )

(h⊕h′)∗




y





y

Hom(Z ⊕ Z ′, V )
ϕ∗

−−−−→ Hom(U, V )

(h⊕h′)∗





y





y

Hom(Y ⊕ Y ′, V )
id

−−−−→ Hom(T (Y ⊕ Y ′), V )

T (g⊕g′)∗




y





y
T (g⊕g′)∗

Hom(X ⊕X ′, V )
id

−−−−→ Hom(X ⊕X ′, V )




y





y

...
...

As above, using 1.4.1, we conclude that this diagram has exact columns and by the
five lemma we see that ϕ∗ : Hom(Z ⊕Z ′, V ) −→ Hom(U, V ) is an isomorphism for
arbitrary V in C. Therefore, there exist α : Z ⊕ Z −→ U and β : Z ⊕ Z ′ −→ U
such that α ◦ ϕ = ϕ∗(α) = idZ⊕Z′ , and ϕ ◦ β = ϕ∗(β) = idU . Moreover,

α = α ◦ (ϕ ◦ β) = (α ◦ ϕ) ◦ β = β

and ϕ : U −→ Z ⊕ Z ′ is an isomorphism. �

1.4.8. Corollary. Let i : X −→ X ⊕ Y be the natural inclusion and p :
X ⊕ Y −→ Y the natural projection. Then

Y

[1]
0

����
��

��
��

��

X
i // X ⊕ Y

p

^^<<<<<<<<<<<

is a distinguished triangle.

Proof. Clearly,

0

[1]

��		
		

		
		

		

X
idX // X

ZZ6666666666
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and

0

[1]

��		
		

		
		

		

Y
idY // Y

ZZ5555555555

are distinguished triangles by (TR1). By (TR2),

Y

[1]

��		
		

		
		

		

0 // Y

idY

[[6666666666

is also a distinguished triangle. The sum of the first and third distinguished triangle
is a distinguished triangle by 1.4.7. �

This result has the following converse.

1.4.9. Corollary. Let

Y

[1]
0

����
��

��
��

��

X
u // Z

v

ZZ6666666666

be a distinguished triangle in C. Then there exists an isomorphism ϕ : X⊕Y −→ Z
such that the diagram

X
i

−−−−→ X ⊕ Y
p

−−−−→ Y
0

−−−−→ T (X)

idX





y

ϕ





y





y

idY





y

idT (X)

X −−−−→
u

Z −−−−→
v

Y −−−−→
0

T (X)

is an isomorphism of triangles.
In particular, the composition s of the canonical morphism j : Y −→ X ⊕ Y

and ϕ : X ⊕ Y −→ Z satisfies v ◦ s = idY .

Proof. By turning the commutative diagram

X
i

−−−−→ X ⊕ Y
p

−−−−→ Y
0

−−−−→ T (X)

idX





y





y

idY





y

idT (X)

X
u

−−−−→ Z
v

−−−−→ Y
0

−−−−→ T (X)

and using (TR2) and (TR3), we see that there exists ϕ : X ⊕ Y −→ Z such that
the diagram

X
i

−−−−→ X ⊕ Y
p

−−−−→ Y
0

−−−−→ T (X)

idX





y

ϕ





y





y

idY





y

idT (X)

X
u

−−−−→ Z
v

−−−−→ Y
0

−−−−→ T (X)
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is a morphism of triangles. By 1.4.2, ϕ is an isomorphism.
Moreover,

v ◦ s = v ◦ ϕ ◦ j = p ◦ j = idY .

�

In other words, a cone of a zero morphism of X into Y is isomorphic to X⊕Y .

1.5. Monomorphisms and epimorphisms in triangulated categories.

Let C be a triangulated category andX and Y two objects in C. Let i : X −→ X⊕Y
be the canonical inclusion and p : X ⊕ Y −→ X the canonical projection. Then we
have p ◦ i = idX . Hence, if i ◦ α = 0 for some morphism α, we have

α = p ◦ i ◦ α = 0;

and i is a monomorphism. Analogously, if β ◦ p = 0 for some morphism β, we have

β = β ◦ p ◦ i = 0;

and p is an epimorphism. We claim that these are essentially the only monomor-
phisms and epimorphisms in a triangulated category.

1.5.1. Proposition. (i) Let f : X −→ Y be a monomorphism in C.
Then there exist an object Z in C and an isomorphism ϕ : X ⊕ Z −→ Y
such that f is the composition of the natural inclusion i : X −→ X ⊕ Z
with ϕ.

(ii) Let f : X −→ Y be an epimorphism in C. Then there exist an object Z in
C and an isomorphism ψ : X −→ Y ⊕Z such that f is the composition of
ψ with the natural projection p : Y ⊕ Z −→ Y .

Proof. (i) Let f : X −→ Y be a monomorphism in C. Let

Z

[1]
h

����
��

��
��

��

X
f

// Y

g

ZZ6666666666

be a distinguished triagle based on f . Then, by 1.3.1, we have f ◦ h[−1] = 0. Since
f is a monomorphism this implies that h[−1] = 0 and h = 0. By 1.4.8 we conclude
that there exists an isomorphism of distinguished triangles

X
i

−−−−→ X ⊕ Z
p

−−−−→ Z
0

−−−−→ T (X)

idX





y

ϕ





y





y

idZ





y

idT (X)

X −−−−→
f

Y −−−−→
g

Z −−−−→
h

T (X)

.

This clearly implies (i).
(ii) Let f : X −→ Y be an epimorphism in C. Let

U

[1]
h

����
��

��
��

��

X
f

// Y

g

[[6666666666
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be a distinguished triagle based on f . Then, by 1.3.1, we have g ◦ f = 0. Since
f is an epimorphism this implies that g = 0. By turning this triangle we get the
distinguished triangle

Y

[1]

0

����
��

��
��

��
�

U [−1]
−h[−1]

// X

f

ZZ66666666666

By 1.4.8 we conclude that there exists an isomorphism of distinguished triangles

U [−1]
i

−−−−→ U [−1]⊕ Y
p

−−−−→ Y
0

−−−−→ U

idU[−1]





y

γ





y





y

idY





y

idU

U [−1] −−−−−→
−h[−1]

X −−−−→
f

Y −−−−→
0

U

.

If we put Z = U [−1] and ψ = γ−1, the statement (ii) follows. �

1.6. Localization of triangulated categories. Let C be a triangulated cat-
egory. A localizing class S in C is compatible with triangulation if it satisfies

(LT1) For any morphism s, s ∈ S if and only if T (s) ∈ S.
(LT2) The diagram

X −−−−→ Y −−−−→ Z −−−−→ T (X)

s





y
t





y





y

T (s)

X ′ −−−−→ Y ′ −−−−→ Z ′ −−−−→ T (X ′)

where rows are distinguished triangles, the first square is commutative
and s, t ∈ S can be completed to a morphism of triangles

X −−−−→ Y −−−−→ Z −−−−→ T (X)

s





y
t





y





y

p





y

T (s)

X ′ −−−−→ Y ′ −−−−→ Z ′ −−−−→ T (X ′)

where p ∈ S.

Let C be a triangulated category and S a localizing class in C compatible with
the triangulation. Let Q : C −→ C[S−1] be the quotient functor. Then, for any
s ∈ S, (Q◦T )(s) = Q(T (s)) is an isomorphism. Therefore, the functor Q◦T factors
through C[S−1], i.e., we have the following commutative diagram of functors

C
T

−−−−→ C

Q





y





y

Q

C[S−1] −−−−→
TS

C[S−1]

.

It is clear that TS is an automorphism of the category C[S−1]. In the following, by
abuse of notation, we denote it simply by T .
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A triangle

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

in C[S−1] is distinguished if there exists a distinguished triangle

W

[1]

����
��

��
��

��
�

U // V

[[7777777777

in C and an isomorphism of triangles

U −−−−→ V −−−−→ W −−−−→ T (U)

a





y
b





y





y

c





y

T (a)

X −−−−→ Y −−−−→ Z −−−−→ T (X)

in C[S−1].

1.6.1. Theorem. Let C be a triangulated category and S a localizing class in C
compatible with the triangulation. The category C[S−1] is triangulated. The natural
functor Q : C −→ C[S−1] is exact.

Proof. First we prove that C[S−1] is triangulated.
Let f : X −→ Y be a morphism in C[S−1]. Then f can be represented by a

roof

U
s

∼
~~~~

~~
~~

~
g

��@
@@

@@
@@

X Y

where s ∈ S. Since C is a triangulated category, there exists a distinguished triangle

V

[1]
w

����
��

��
��

��

U g
// Y

v

[[6666666666

based on g : U −→ Y . Consider the diagram

U
Q(g)

−−−−→ Y
Q(v)

−−−−→ V
Q(w)

−−−−→ T (U)

Q(s)





y

idY





y





y

idV





y

T (Q(s))

X −−−−→
f

Y −−−−→
Q(v)

V −−−−−−−−−→
T (Q(s))◦Q(w)

T (X)
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This is clearly an isomorphism of triangles in C[S−1]. Therefore,

V

[1]

T (Q(s))Q(w)

����
��

��
��

��

X
f

// Y

Q(v)

[[6666666666

is a distinguished triangle in C[S−1] based on f : X −→ Y . Hence (TR1) is satisfied.
(TR2) follows immediately from the definition of distinguished triangles in

C[S−1].
To prove (TR3) we can assume that both distinguished triangles came from

distinguished triangles in C, i.e., that in the commutative diagram

X
Q(f)

−−−−→ Y
Q(g)

−−−−→ Z
Q(h)

−−−−→ T (X)

ϕ





y

ψ





y





y

T (ϕ)

X ′ −−−−→
Q(f ′)

Y ′ −−−−→
Q(g′)

Z ′ −−−−→
Q(h′)

T (X ′)

the rows are distinguished triangles in C[S−1] and the first square commutes.
The morphisms ϕ and ψ can be represented by roofs

U
s

∼
~~~~

~~
~~

~~ u

  A
AA

AA
AA

A

X X ′

and

V
t

∼
��~~

~~
~~

~
v

  A
AA

AA
AA

Y Y ′

respectively; i.e., we have the diagram

X
f

−−−−→ Y

∼

x





s ∼

x




t

U V

u





y





y

v

X ′ −−−−→
f ′

Y ′

.

Consider now the morphisms f ◦ s : U −→ Y and t : V −→ Y . Since S is a
localizing class, they can be completed to a commutative diagram

U ′ a
−−−−→ V

t′





y

∼ ∼





y
t

U −−−−→
f◦s

Y
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in C. On the other hand, we have the commutative diagram

U
s

∼
~~}}

}}
}}

}} u

!!B
BB

BB
BB

B

X U ′

∼t′

OO

idU′

��

X ′

U ′

∼

s◦t′

``AAAAAAAA u◦t′

>>||||||||

and the top and bottom roof are equivalent. Therefore, we can represent ϕ with
the roof

U ′

s◦t′

∼
~~}}

}}
}}

}} u◦t′

  B
BB

BB
BB

B

X X ′

and the analogue of the above diagram now looks like

X
f

−−−−→ Y

s◦t′

x





∼ ∼

x




t

U ′ a
−−−−→ V

u◦t′





y





y

v

X ′ −−−−→
f ′

Y ′

where f ◦ s◦ t′ = a◦ t, i.e., the top square commutes in C. By relabeling the objects
and the morphisms we can assume that we had

X
f

−−−−→ Y

s

x





∼ ∼

x




t

U
a

−−−−→ V

u





y





y

v

X ′ −−−−→
f ′

Y ′

at the beginning and that the top square is commutative in C.
We have ϕ = Q(u) ◦Q(s)−1, ψ = Q(v) ◦Q(t)−1. Since the first square in the

original diagram is commutative, we have

ψ ◦Q(f) = Q(f ′) ◦ ϕ,

i.e.,
Q(v) ◦Q(t)−1 ◦Q(f) = Q(f ′) ◦Q(u) ◦Q(s)−1.

This leads to
Q(v) ◦Q(t)−1 ◦Q(f) ◦Q(s) = Q(f ′) ◦Q(u).

On the other hand, the commutativity of the top square implies that Q(f)◦Q(s) =
Q(f ◦ s) = Q(t ◦ a) = Q(t) ◦Q(a), and we get

Q(v) ◦Q(a) = Q(f ′) ◦Q(u),
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i.e., the lower square commutes in C[S−1]. This implies that there exists r : U ′′ −→
U , r ∈ S, such that the following diagram commutes

U
idU

~~||
||

||
|| v◦a

!!C
CC

CC
CC

C

U U ′′

∼ r

OO

∼ r

��

Y ′

U

idU

``BBBBBBBB f ′◦u

=={{{{{{{{

i.e., the top and bottom roofs are equivalent. In particular, we have

v ◦ a ◦ r = f ′ ◦ u ◦ r.

Since the diagram

U
s

∼
}}||

||
||

|| u

!!C
CC

CC
CC

C

X U ′′

∼r

OO

idU′′

��

X ′

U ′′

∼

s◦r

``BBBBBBBB u◦r

=={{{{{{{{

is commutative in C, i.e., ϕ is also represented by the roof

U ′′

s◦r
∼

~~||
||

||
|| u◦r

!!C
CC

CC
CC

C

X X ′

and we can replace the above diagram with

X
f

−−−−→ Y

s◦r

x





∼ ∼

x




t

U ′′ a◦r
−−−−→ V

u◦r





y





y

v

X ′ −−−−→
f ′

Y ′

where both squares commute in C.
By relabeling objects and morphisms again, we can assume that we had

X
f

−−−−→ Y

s

x





∼ ∼

x




t

U
a

−−−−→ V

u





y





y

v

X ′ −−−−→
f ′

Y ′
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from the beginning and that both squares in the diagram are commutative in C.
Let

W

[1]

����
��

��
��

��
�

U a
// V

[[7777777777

be a distinguished triangle in C based on a : U −→ V . Then our diagram can be
considered as a part of a bigger diagram

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)

s

x





∼ t

x





∼ ∼

x





T (s)

U
a

−−−−→ V −−−−→ W −−−−→ T (U)

u





y

v





y





y

T (u)

X ′ −−−−→
f ′

Y ′ −−−−→
g′

Z ′ −−−−→
h′

T (X ′)

,

where rows are distinguished triangles in C. By (LT2), there exists p : W −→ Z,
p ∈ S, which completes the top of this diagram to a morphism of distinguished
triangles in C. By (TR3), there exists w : W −→ Z ′ which completes the bottom
of this diagram to a morphism of distinguished triangles in C. Therefore, we have
the diagram

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)

s

x





∼ t

x





∼ ∼

x





p ∼

x





T (s)

U
a

−−−−→ V −−−−→ W −−−−→ T (U)

u





y

v





y





y

w





y

T (u)

X ′ −−−−→
f ′

Y ′ −−−−→
g′

Z ′ −−−−→
h′

T (X ′)

where all squares are commutative. Let χ : Z −→ Z ′ be a morphism represented
by the roof

W
p

∼
��~~

~~
~~

~~ w

  B
BB

BB
BB

B

Z Z ′,

then the above diagram can be interpreted as a morphism

X
Q(f)

−−−−→ Y
Q(g)

−−−−→ Z
Q(h)

−−−−→ T (X)

ϕ





y

ψ





y





y

χ





y

T (ϕ)

X ′ −−−−→
Q(f ′)

Y ′ −−−−→
Q(g′)

Z ′ −−−−→
Q(h′)

T (X ′)

of distinguished triangles in C[S−1]. This establishes (TR3).
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It remains to show that the octahedral axiom (TR4) is satisfied. Let ϕ : X −→
Y be the morphism represented by the roof

U
s

∼
~~~~

~~
~~

~
f

��@
@@

@@
@@

X Y

and ψ : Y −→ Z be the morphism represented by the roof

V
t

∼
~~~~

~~
~~

~
g

""D
DD

DD
DD

D

Y Z .

Then their composition is represented by

W
s′

∼
~~

f ′

  
U

s
∼

��~~
~~

~~
~~ f

  @
@@

@@
@@

@ V

t
∼

~~~~
~~

~~
~~ g

!!D
DD

DD
DD

D

X Y Z ;

i.e., by the roof

W
s◦s′

∼
~~}}

}}
}}

}} g◦f ′

""E
EE

EE
EE

E

X Z .

From the commutative diagram

U
s

∼
~~}}

}}
}}

}} f

  A
AA

AA
AA

A

X W

∼s′

OO

idW

��

Y

W

∼

s◦s′

``BBBBBBBB f◦s′

>>}}}}}}}}

we see that the top roof is equivalent to the bottom roof, i.e., ϕ is represented by
a roof

W
s◦s′

∼
~~}}

}}
}}

}} f◦s′

""E
EE

EE
EE

E

X Y .

Hence, after relabeling of objects and morphisms we can assume that

(i) ϕ : X −→ Y is represented by

U

s
∼

��~~
~~

~~
~~ f

!!D
DD

DD
DD

D

X Y ;
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(ii) ψ : Y −→ Z be the morphism represented by the roof

V
t

∼
����

��
��

�� g

!!D
DD

DD
DD

D

Y Z ;

(iii) χ = ψ ◦ ϕ : X −→ Z is represented by

U
idU

∼
��

f ′

  
U

s

∼
��~~

~~
~~

~~ f

��?
??

??
??

? V
t

∼
����

��
��

�� g

!!D
DD

DD
DD

D

X Y Z ;

i.e., by

U
s

∼
~~~~

~~
~~

~
g◦f ′

""D
DD

DD
DD

D

X Z .

We put h = g ◦ f ′ and W = Z. Since C is a triangulated category we can construct
an octahedral diagram determined by morphisms f ′, g and h; i.e.,

U
f ′

−−−−→ V −−−−→ W ′ −−−−→ T (U)

idU





y

g





y





yu′





y

T (idU )

U
h

−−−−→ W −−−−→ V ′ −−−−→ T (U)

f ′





y

idW





y





yv′





y
T (f ′)

V
g

−−−−→ W −−−−→ U ′ −−−−→ T (V )




y





y

idU′





y





y

W ′ u′

−−−−→ V ′ v′
−−−−→ U ′ w

−−−−→ T (W ′)

in C. The image of this octahedron in C[S−1] is clearly the diagram of the same
type.

Now we consider the starting part of the octahedral diagram

X
ϕ

−−−−→ Y −−−−→ Z ′ −−−−→ T (X)

idX





y

ψ





y





y

T (idX )

X
χ

−−−−→ Z −−−−→ Y ′ −−−−→ T (X)

ϕ





y

idZ





y





y

T (ϕ)

Y
ψ

−−−−→ Z −−−−→ X ′ −−−−→ T (Y )



1. TRIANGULATED CATEGORIES 77

in C[S−1]. Its top part

X
ϕ

−−−−→ Y −−−−→ Z ′ −−−−→ T (X)

idX





y

ψ





y





y

idT (X)

X −−−−→
χ

Z −−−−→ Y ′ −−−−→ T (X)

we can expand to a diagram

X
ϕ

−−−−→ Y −−−−→ Z ′ −−−−→ T (X)

Q(s)

x





Q(t)

x





x





T (Q(s))

U
Q(f ′)

−−−−→ V −−−−→ W ′ −−−−→ T (U)

idU





y

Q(g)





y





y
Q(u′)





y

idT (U)

U −−−−→
Q(h)

W −−−−→ V ′ −−−−→ T (U)

Q(s)





y

idW





y





y

T (Q(s))

X −−−−→
χ

Z −−−−→ Y ′ −−−−→ T (X)

where the top and bottom squares in the first row commute in C[S−1] by our
construction. The middle row is the morphism of distinguished triangles coming
from the above octahedron. Since we already proved that (TR3) holds in C[S−1],
we can complete the top and bottom row with morphisms α : W ′ −→ Z ′ and
β : V ′ −→ Y ′ to the diagram

X
ϕ

−−−−→ Y −−−−→ Z ′ −−−−→ T (X)

Q(s)

x





Q(t)

x





x





α

x





T (Q(s))

U
Q(f ′)

−−−−→ V −−−−→ W ′ −−−−→ T (U)

idU





y

Q(g)





y





y
Q(u′)





y

idT (U)

U −−−−→
Q(h)

W −−−−→ V ′ −−−−→ T (U)

Q(s)





y

idW





y





y

β





y

T (Q(s))

X −−−−→
χ

Z −−−−→ Y ′ −−−−→ T (X)

in C[S−1] where all three rows are morphisms of distinguished triangles. As we
remarked, 1.4.2 doesn’t depend on the octahedral axiom, hence we can apply it to
above diagram and conclude that α and β are isomorphisms in C[S−1].

Analogously, we expand the middle part

X
χ

−−−−→ Z −−−−→ Y ′ −−−−→ T (X)

ϕ





y

idZ





y





y

T (ϕ)

Y −−−−→
ψ

Z −−−−→ X ′ −−−−→ T (Y )
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of the above diagram to

X
χ

−−−−→ Z −−−−→ Y ′ −−−−→ T (X)

Q(s)

x




id

x





x





β

x





T (Q(s))

U
Q(h)

−−−−→ W −−−−→ V ′ −−−−→ T (U)

Q(f ′)





y

idW





y





y
Q(v′)





y
T (f ′)

V −−−−→
Q(g)

W −−−−→ U ′ −−−−→ T (V )

Q(t)





y

idW





y





y

T (Q(t))

Y −−−−→
ψ

Z −−−−→ X ′ −−−−→ T (Y )

.

As in the preceding argument, there exists γ : X ′ −→ U ′ which completes this
diagram to

X
χ

−−−−→ Z −−−−→ Y ′ −−−−→ T (X)

Q(s)

x




id

x





x





β

x





T (Q(s))

U
Q(h)

−−−−→ W −−−−→ V ′ −−−−→ T (U)

Q(f ′)





y

idW





y





y
Q(v′)





y
T (f ′)

V −−−−→
Q(g)

W −−−−→ U ′ −−−−→ T (V )

Q(t)





y

idW





y





y

γ





y

T (Q(t))

Y −−−−→
ψ

Z −−−−→ X ′ −−−−→ T (Y )

and γ is an isomorphism.
Define now

u = β ◦Q(u′) ◦ α−1, v = γ ◦Q(v′) ◦ β−1 and w = T (α) ◦Q(w′) ◦ γ−1.

Then the commutative diagram

W ′ Q(u′)
−−−−→ V ′ Q(v′)

−−−−→ U ′ Q(w′)
−−−−→ T (W ′)

α





y

β





y





y

γ





y

T (α)

Z ′ −−−−→
u

Y ′ −−−−→
v

X ′ −−−−→
w

T (Z ′)
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shows that the second row is a distinguished triangle in C[S−1]. Finally, we can put
all of this together and get the octahedral diagram

X
ϕ

−−−−→ Y −−−−→ Z ′ −−−−→ T (X)

idX





y

ψ





y





y

u





y

T (idX )

X
χ

−−−−→ Z −−−−→ Y ′ −−−−→ T (X)

ϕ





y

idZ





y





y

v





y

T (ϕ)

Y
ψ

−−−−→ Z −−−−→ X ′ −−−−→ T (Y )




y





y





y

idX′





y

Z ′ −−−−→
u

Y ′ −−−−→
v

X ′ −−−−→
w

T (Z ′)

in C[S−1]. This proves (TR4) in C[S−1]. Hence, C[S−1] is a triangulated category.
From the definition of distinguished triangles in C[S−1] it is clear that Q is an

exact functor. �

1.6.2. Theorem. Let C and D be two triangulated categories and F : C −→ D
an exact functor. Let S be a localizing class in C compatible with the triangulation
such that s ∈ S implies F (s) is an isomorphism in D. Then there exists a unique
functor FS : C[S−1] −→ D such that the diagram

C

Q

��

F

""E
EE

EE
EE

EE
E

C[S−1]
FS

// D

of functors commutes. The functor FS : C[S−1] −→ D is exact.

Proof. The existence of an additive functor FS such that F = FS ◦Q follows
from 2.1.2 in Ch.1. We have to prove that FS is exact.

First, we have

T ◦ FS ◦Q = T ◦ F and FS ◦ T ◦Q = FS ◦Q ◦ T = F ◦ T,

i.e., T ◦ FS ◦Q and FS ◦ T ◦Q are isomorphic. Let η be the isomorphism of F ◦ T
into T ◦ F . Then, for any object X in C, ηX : (F ◦ T )(X) −→ (T ◦ F )(X) is an
isomorphism. Moreover, for any morphism f : X −→ Y in C, the diagram

(F ◦ T )(X)
(F◦T )(f)
−−−−−−→ (F ◦ T )(Y )

ηX





y





y

ηY

(T ◦ F )(X)
(T◦F )(f)
−−−−−−→ (T ◦ F )(Y )

commutes. Since the objects in C[S−1] are the same as in C, for any object X we
have the isomorphism ηX : (FS ◦T )(X) −→ (T ◦FS)(X). Moreover, if ϕ : X −→ Y
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is a morphism in C[S−1] represented by a left roof

U
s

∼
��~~

~~
~~

~~ g

!!D
DD

DD
DD

D

X Y ;

we have
(T ◦ F )(s) ◦ ηU = ηX ◦ (F ◦ T )(s)

and
(T ◦ F )(g) ◦ ηU = ηY ◦ (F ◦ T )(g).

The first relation implies that

(T ◦ FS)(Q(s)) ◦ ηU = ηX ◦ (FS ◦ T )(Q(s))

and
ηU ◦ (FS ◦ T )(Q(s)−1) = (T ◦ FS)(Q(s)−1) ◦ ηX

since Q(s) is an isomorphism. Therefore, we have

ηY ◦(FS◦T )(ϕ) = ηY ◦(FS◦T )(Q(g)◦Q(s)−1) = ηY ◦(FS◦T )(Q(g))◦(FS◦T )(Q(s)−1)

= (T ◦FS)(Q(g)) ◦ ηU ◦ (FS ◦T )(Q(s)−1) = (T ◦FS)(Q(g)) ◦ (T ◦FS)(Q(s)−1) ◦ ηX

= (T ◦ FS)(Q(g) ◦Q(s)−1) ◦ ηX = (T ◦ FS)(ϕ) ◦ ηX ;

i.e., the diagram

(T ◦ FS)(X)
(FS◦T )(ϕ)
−−−−−−−→ (T ◦ F )(Y )

ηX





y





y

ηY

(FS ◦ T )(X)
(T◦FS)(ϕ)
−−−−−−−→ (FS ◦ T )(Y )

commutes. Hence, η induces an isomorphism of T ◦ FS into FS ◦ T , which defines
the grading of the functor FS .

Let

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

be a distinguished triangle in C[S−1]. By definition, there exists a distinguished
triangle

W

[1]

����
��

��
��

��
�

U // V

[[7777777777

and an isomorphism of triangles

U −−−−→ V −−−−→ W −−−−→ T (U)

a





y
b





y





y

c





y

T (a)

X −−−−→ Y −−−−→ Z −−−−→ T (X)
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in C[S−1]. By applying FS to this commutative diagram and using the grading of
FS , we get the commutative diagram

F (U) −−−−→ F (V ) −−−−→ F (W ) −−−−→ F (T (U))
ηU

−−−−→ T (F (U))

FS(a)





y

FS(b)





y





y

FS(c)





y

FS(T (a))





y

T (FS(a))

FS(X) −−−−→ FS(Y ) −−−−→ FS(Z) −−−−→ FS(T (X)) −−−−→
ηX

T (FS(X))

.

By collapsing the last two squares in one, we get an isomorphism of triangles

F (U) −−−−→ F (V ) −−−−→ F (W ) −−−−→ T (F (U))

FS(a)





y

FS(b)





y





y

FS(c)





y

T (FS(a))

FS(X) −−−−→ FS(Y ) −−−−→ FS(Z) −−−−→ T (FS(X))

in D. Since F is exact, the top triangle is distinguished in D. This implies that the
bottom one is also distinguished. Hence, FS is an exact functor. �

Let Copp be the opposite category of C. Let S be a localizing class in C. As
we remarked before, S is also a localizing class in Copp. Moreover, we have an
isomorphism α : Copp[S−1] −→ C[S−1]opp of corresponding categories. From its
construction, and 1.6.2, it follows that α is an additive functor. Therefore, we have
the following result.

1.6.3. Theorem. The functor α : Copp[S−1] −→ C[S−1]opp is an isomorphism
of triangulated categories.

We also have an analogous result about cohomological functors.

1.6.4. Proposition. Let C be a triangulated category, A an abelian category
and F : C −→ A a cohomological functor. Let S be a localizing class in C compatible
with the triangulation such that s ∈ S implies F (s) is an isomorphism in A. Then
there exists a unique functor FS : C[S−1] −→ A such that the diagram

C

Q

��

F

""E
EE

EE
EE

EE
E

C[S−1]
FS

// A

of functors commutes. The functor FS : C[S−1] −→ A is a cohomological functor.

Proof. The existence of an additive functor FS such that F = FS ◦Q follows
from 2.1.2 in Ch.1. We have to prove that FS is a cohomological functor.

Let

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666
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be a distinguished triangle in C[S−1]. By definition, there exists a distinguished
triangle

W

[1]

����
��

��
��

��
�

U // V

[[7777777777

in C and an isomorphism of triangles

U −−−−→ V −−−−→ W −−−−→ T (U)

a





y
b





y





y

c





y

T (a)

X −−−−→ Y −−−−→ Z −−−−→ T (X)

in C[S−1]. By applying FS to the first part of this commutative diagram we get the
commutative diagram

F (U) −−−−→ F (V ) −−−−→ F (W )

FS(a)





y

FS(b)





y





y

FS(c)

FS(X) −−−−→ FS(Y ) −−−−→ FS(Z)

in A. Since F is a cohomological functor, the top row is exact in A. This implies
that the bottom one is also exact. Hence, FS is an cohomological functor. �

1.7. Triangulated subcategories. Let C be a triangulated category. Let D
be a full subcategory of C such that

(TS1) the zero object is in D;
(TS2) for any two objects X and Y in D, X ⊕ Y is also in D;
(TS3) an object X in C is in D if and only if T (X) is in D;
(TS4) for any two objects X and Y in D and a morphism f : X −→ Y there is

a Z in D such that

Z

[1]

����
��

��
��

��

X
f

// Y

ZZ6666666666

is a distinguished triangle in C.

Then D is an additive category, Clearly, all triangles in D with vertices which are
objects in C define a triangulated structure in D, i.e., D is a triangulated category.
Moreover, the inclusion functor is exact. We say that D is a full triangulated
subcategory of C.

1.7.1. Proposition. Let C be a category, S a localizing class of morphisms in
C compatible with triangulation and D a full triangulated subcategory of C. Assume
that the following conditions are satisfied:

(i) SD = S ∩ Mor(D) is a localizing class in D;
(ii) for each morphism s : Y −→ X with s ∈ S and X ∈ Ob(D), there exists

u : Z −→ Y such that s ◦ u ∈ S and Z ∈ Ob(D).
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Then SD is compatible with the triangulation of D, and D[S−1
D ] is a full triangulated

subcategory in C[S−1].

Proof. Clearly, SD is compatible with triangulation. Therefore, by 1.6.2 the
natural inclusion of D into C induces an exact functor ι from triangulated category
D[S−1

D ] into C[S−1]. Clearly, ι is the identity on objects, and by 1.4.1 in Ch. 1, it

is also fully faithful. Therefore, D[S−1
D ] is a full additive subcategory of C[S−1].

It remains to show that D is a full triangulated category. If

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

is a distinguished triangle in D[S−1
D ], then it is also distinugished triangle in C[S−1],

since the inclusion is an exact functor. Conversely, if

Z

[1]

����
��

��
��

��

X
f

// Y

ZZ6666666666

is a distinguished triangle in C[S−1] with all vertices in D[S−1
D ], there exists a

distinguished triangle

Z ′

[1]

����
��

��
��

��
�

X
f

// Y

[[7777777777

in D[S−1
D ]. Therefore, we have the diagram

X
f

−−−−→ Y −−−−→ Z −−−−→ T (X)

idX





y

idY





y





y

idT(X)

X
f

−−−−→ Y −−−−→ Z ′ −−−−→ T (X)

;

which can be completed to an isomorphism of triangles

X
f

−−−−→ Y −−−−→ Z −−−−→ T (X)

idX





y

idY





y





y





y

idT (X)

X
f

−−−−→ Y −−−−→ Z ′ −−−−→ T (X)

in C[S−1] by 1.4.2. Since D[S−1
D ] is a full subcategory, this is an isomorphism of

triangles in D[S−1
D ]. Hence, the top triangle is distinguished in D[S−1

D ]. �

By going to the opposite categories, we can also prove the dual result.
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1.7.2. Proposition. Let C be a category, S a localizing class of morphisms in
C compatible with triangulation and D a full triangulated subcategory of C. Assume
that the following conditions are satisfied:

(i) SD = S ∩ Mor(D) is a localizing class in D;
(ii) for each morphism s : X −→ Y with s ∈ S and X ∈ Ob(D), there exists

u : Y −→ Z such that u ◦ s ∈ S and Z ∈ Ob(D).

Then SD is compatible with the triangulation of D, and D[S−1
D ] is a full triangulated

subcategory in C[S−1].

1.8. S-injective and S-projective objects. Let C be a triangulated cate-
gory and S a localizing class in C compatible with the triangulation. Let C[S−1]
be the localization of C with respect to S and Q : C −→ C[S−1] the corresponding
quotient functor.

We say that an object X in C is S-null, if Q(X) = 0.
An object I in C is called S-injective if HomC(M, I) = 0 for any S-null object

M in C. We denote by I the full subcategory of C consisting of S-injective objects.
An object P in C is called S-projective if HomC(P,M) = 0 for any S-null object

M in C. We denote by P the full subcategory of C consisting of S-projective objects.
Clearly, both I and P are strictly full.
Let Copp be the triangulated category opposite to C. As we remarked before, S

is also a localizing class compatible with triangulation in Copp. Moreover, by 2.1.7
in 1, an object X is S-null in C if and only if it is S-null in Copp. It follows that
S-injective objects in C are S-projective in Copp and vice versa. Therefore, we can
restrict ourselves to the study of S-injective objects.

1.8.1. Lemma. (i) The category I is a full triangulated subcategory of C;
(ii) The category P is a full triangulated subcategory of C.

Proof. As we remarked, it is enough to show (i).
Clearly, 0 is in I. Moreover, if I and J are in I, we have

HomC(M, I ⊕ J) = HomC(M, I) ⊕ HomC(X, J) = 0

for any S-null object M in C. Therefore, I ⊕ J is in I. Hence, I is a full additive
subcategory of C.

Since Q is an exact functor, we have Q(T (M)) ∼= T (Q(M)), i.e., Q(T (M)) = 0
if and only if Q(X) = 0. Hence, M is S-null, if and only if T (M) is S-null.

Let I be an S-injective object in C. Then we have

HomC(M,T (I)) = HomC(T−1(M), I) = 0

for any S-null object M in C. Hence, it follows that T (I) is in I. Analogously, we
see that T−1(I) is also in I. Hence, I is translation invariant.

Let

K

[1]

����
��

��
��

��

I // J

ZZ6666666666

be a distinguished triangle in C such that I and J are S-injective. Let M be an
S-null object in C. Since by 1.4.1, HomC(M,−) is a cohomological functor form C
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into the category of abelian groups, we conclude that HomC(M,K) = 0. This in
turn implies that K is also S-injective.

Therefore, I is a full triangulated subcategory of C. �

Put SI = S ∩ Mor(I) and SP = S ∩ Mor(P).

1.8.2. Lemma. (i) Any morphism in SI is an isomorphism.
(ii) Any morphism in SP is an isomorphism.

Proof. Again, it is enough to prove (i).
Let s : I −→ J be a morphism in SI . Since I is a full triangulated subcategory,

there exists a distinguished triangle

K

[1]

����
��

��
��

��

I s
// J

ZZ6666666666

in C with K in I. By applying the exact functor Q : C −→ C[S−1] to this distin-
guished triangle, we get the distinguished triangle

Q(K)

[1]

����
��

��
��

��
�

Q(I)
Q(s)

// Q(J)

^^>>>>>>>>>>>>

in D. Since s is in S, Q(s) is an isomorphism and Q(K) = 0 by 1.4.4. Hence, K
is S-null. Since K is also S-injective, it follows that HomC(K,K) = 0 and K = 0.
Applying again 1.4.4, it follows that s is an isomorphism. �

By 1.3.1 in Ch. 1, this immediately implies that SI is a localizing class in I
and SP is a localizing class in P . Moreover, they are compatible with translation.
Hence, we have the following result.

1.8.3. Lemma. (i) The family SI is a localizing class compatible with
translation in I.

(ii) The family SP is a localizing class compatible with translation in P.

1.8.4. Lemma. Let M and I be objects in C. Assume that I is S-injective. Let
s : I −→ M be a morphism in S. Then there is a morphism t : M −→ I such that
t ◦ s = idI .

Proof. We have a distinguished triangle

N

[1]

��		
		

		
		

		

I s
// M

[[7777777777
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in C. Applying the exact functor Q on it we get the distinguished triangle

Q(N)

[1]

����
��

��
��

��
��

�

Q(I)
Q(s)

// Q(M)

\\::::::::::::::

in C[S−1]. Since Q(s) is an isomorphism, we see that Q(N) = 0, i.e., N is S-null.
By 1.4.1, applying the functor HomC(−, I) to the above distinguished triangle, we
see that the morphism HomC(N, I) −→ HomC(I, I) given by f 7−→ f ◦ s is an
isomorphism. Therefore, there exists a morphism t : I 7−→ X such that t ◦ s =
idI . �

By 1.7.2, there natural functor I[S−1
I ] −→ C[S−1] identifies I[S−1

I ] with a full
triangulated subcategory in C[S−1]. On the other hand, since morphisms in SI are
isomorphisms, I = I[S−1

I ]. Therefore, we can identify I with a full triangulated
subcategory of C[S−1].

Analogously, we can identify P with a full triangulated subcategory of C[S−1].
Let C and D be two triangulated categories and F : C −→ D and G : D −→ C

and adjoint pair of exact functors, i.e.,

HomC(G(N),M) = HomD(N,F (M))

for any object M in C and N in D. Let S and T be two localizing classes compat-
ible with translation in C and D, respectively. Assume that the functor G maps
morphisms in T into S. Then we have the following result.

1.8.5. Lemma. The functor F maps S-injective objects into T -injective objects.

Proof. Let I be an S-injective object in C. Let N be an T -null object in
D. Then, by 2.1.7, there exists an object N ′ in D such that the zero morphism
N ′ −→ N is in T . By our assumption, this implies that the zero morphism
G(N ′) −→ G(N) is in S. Applying 2.1.7 again, we see that G(N) is S-null. There-
fore, HomC(G(N), I) = 0. This in turn implies that HomD(N,F (I)) = 0. It follows
that F (I) is T -injective. �

An analogous result holds for S-projective objects.

1.9. Abelian and triangulated categories. Let A be an abelian category.
Let

0 −−−−→ X
f

−−−−→ Y
g

−−−−→ Z −−−−→ 0

be a short exact sequence in A. We say that this short exact sequence splits if there
exists a morphism s : Z −→ Y such that g ◦ s = idZ . In this case, there exists
a natural morphism γ : X ⊕ Z −→ Y such that the compositions of the natural
inclusions iX : X −→ X ⊕ Z and iZ : Z −→ X ⊕ Z with γ are equal to f and s
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respectively. Hence, the following diagram

0 −−−−→ X
iX−−−−→ X ⊕ Z

p
−−−−→ Z −−−−→ 0

idX





y

γ





y





y

idZ

0 −−−−→ X −−−−→
f

Y −−−−→
g

Z −−−−→ 0

with exact rows is commutative. By five lemma, γ : X⊕Z −→ Y is an isomorphism.
An abelian category A is semisimple if any short exact sequence in A splits.
Let A be a semisimple abelain category. Let F : X −→ Y be a morphism in

A. Then, we have the short exact sequences

0 −→ ker f −→ X −→ coim f −→ 0

and

0 −→ im f −→ Y −→ coker f −→ 0

and the isomorphism f̄ : coim f −→ im f such that f is the composition of X −→
coim f followd by f̄ and im f −→ Y . Since the above short exact sequence split,
we see that there exist the isomorphisms α : X −→ ker f ⊕ coim f and β : Y −→
coker f ⊕ im f such that the diagram

X
f

−−−−→ Y

α





y





y

β

ker f ⊕ coim f −−−−→
0⊕f̄

coker f ⊕ im f

commutes.
Let C be a triangulated category. Assume that C is also abelian. We want to

describe the structure of such category. First, let

0 −−−−→ X
f

−−−−→ Y
g

−−−−→ Z −−−−→ 0

be a short exact sequence in C. Then g is an epimorphism, and by 1.5.1, there
exist an object U in C and an isomorphism ψ : Y −→ Z ⊕ U such that g is a
composition of ψ with the natural projection projection p : Z ⊕ U −→ Z. Let s
be the composition of the natural inclusion i : Z −→ Z ⊕ U with the inverse of ψ.
Then we have

g ◦ s = g ◦ ψ−1 ◦ i = p ◦ ψ ◦ ψ−1 ◦ i = idZ

and the above short exact sequence splits. Therefore, it follows that C is a semisim-
ple abelian category.

Let f : X −→ Y be a morphism in C. By the above discussion,

f = β−1 ◦ (f̄ ⊕ 0) ◦ α .
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On the other hand, by 1.4.8

T (ker f) ⊕ coker f

p

[1]

����
��

��
��

��
��

��
��

��
��

ker f
0

// coker f

i

__????????????????????

is a distinguished triangle; and by 1.4.4

0

[1]

����
��

��
��

��
�

coim f
f̄

// im f

[[88888888888

is a distinguished triangle. Therefore, by 1.4.7,

T (ker f) ⊕ coker f

idT (ker f)⊕0

[1]

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

ker f ⊕ coim f
0⊕f̄

// coker f ⊕ im f

t

``@@@@@@@@@@@@@@@@@@@@@@@@

,

where

t =

[

0 0
idcoker f 0

]

,

is a distinguished triangle. By (TR3) and 1.4.2, follows that the comutative diagram

X
f

−−−−→ Y

α





y

β





y

ker f ⊕ coim f −−−−→
0⊕f̄

coker f ⊕ im f

leads to an isomorphism γ : Z −→ T (ker f) ⊕ coker f such that α, β and γ define
an isomorphism of an distinguished triangle

Z

h
[1]

����
��

��
��

��

X
f

// Y

g

ZZ6666666666
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based on f with the distinguished triangle

T (ker f) ⊕ coker f

idT (ker f)⊕0

[1]

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

ker f ⊕ coim f
0⊕f̄

// coker f ⊕ im f

t

``@@@@@@@@@@@@@@@@@@@@@@@@

.

It follows that any distinguished triangle based on f is isomorphic to

T (ker f) ⊕ coker f

h
[1]

����
��

��
��

��
��

��
��

��
��

�

X
f

// Y

g

[[888888888888888888888

where g is the composition of the natural projection Y −→ coker f with the natural
inclusion coker f −→ T (ker f) ⊕ coker f , and h is the composition of the natural
projection T (ker f) ⊕ coker f −→ T (ker f) with the natural inclusion T (ker f) −→
T (X).

On the other hand, let C be a semisimple abelian category with an automor-
phism T . We consider a collection of triangles

Z

h
[1]

����
��

��
��

��

X
f

// Y

g

ZZ6666666666

in C which are isomorphic to the triangles of the form

T (U) ⊕W

idT (U)⊕0

[1]

����
��

��
��

��
��

��
��

�

U ⊕ V
0⊕idV

// W ⊕ V

t

^^<<<<<<<<<<<<<<<<<

with

t =

[

0 0
idcoker f 0

]

.
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We claim that this collection of triangles defines a structure of a triangulated cate-
gory on C. From the above discussion it is clear that the axiom (TR1) is satisfied.
If we turn the above triangle, we get the triangle

T (U)⊕ T (V )

−(0⊕idT(V ))

[1]

����
��

��
��

��
��

��
��

��

W ⊕ V
t

// T (U) ⊕W

idT (U)⊕0

``AAAAAAAAAAAAAAAAAA

and since the diagram

W ⊕ V
t

−−−−→ T (U) ⊕W
idT (U)⊕0
−−−−−−→ T (U) ⊕ T (V )

−(0⊕idT (V ))
−−−−−−−−→ T (W ) ⊕ T (V )

a





y

idT (U)⊕idW





y





y
b





y

T (a)

V ⊕W −−−−→
0⊕idW

T (U) ⊕W −−−−→
u

T (V ) ⊕ T (U) −−−−−−→
idT (V )⊕0

T (V ) ⊕ T (W )

with

u =

[

0 0
idT (V ) 0

]

, a =

[

0 −idV
idW 0

]

and b =

[

0 idT (V )

idT (U) 0

]

is commutative, this triangle is also distinguished. From this we can immediately
deduce that (TR2) holds.



CHAPTER 3

Derived Categories

1. Category of complexes

1.1. Complexes. Let A be an additive category. A graded A-object is a family
X · = (Xn;n ∈ Z) of objects of A. The object Xn is called the homogeneous
component of degree n of X ·.

LetX · and Y · be two graded A-objects and n ∈ Z. We denote by Homp(X ·, Y ·)
the set of all graded morphisms of degree p, i.e., the set of all families f = (fn;n ∈ Z)
with fn ∈ Hom(Xn, Y n+p).

A complex of A-objects is a pair (X ·, dX) consisting of a graded A-object X ·

and a graded morphism dX ∈ Hom1(X ·, X ·) such that dX ◦dX = 0. The morphism
dX is called the differential of the complex. We can view the complex as a diagram

. . . −−−−→ Xn−1
dn−1

X−−−−→ Xn dn
X−−−−→ Xn+1 −−−−→ . . . .

If (X, dX) and (Y ·, dY ) are two complexes of A-objects, a morphism of complexes
f : (X ·, dX) −→ (Y ·, dY ) is a graded morphism f ∈ Hom0(X ·, Y ·) such that

f ◦ dX = dY ◦ f ;

i.e., the diagram

. . . −−−−→ Xn−1
dn−1

X−−−−→ Xn dn
X−−−−→ Xn+1 −−−−→ . . .

fn−1





y

fn





y





y
fn+1

. . . −−−−→ Y n−1
dn−1

X−−−−→ Y n
dn

X−−−−→ Y n+1 −−−−→ . . .
commutes.

The category of complexes of A-objects is the category C(A) with complexes of
A-objects as objects and morphisms of complexes as morphisms.

Let X · and Y · be two complexes of A-objects. We denote by HomC(A)(X
·, Y ·)

the abelian group of all morphisms of X · into Y ·.
We define a translation functor T : C(A) −→ C(A) as the functor which

attaches to a complex X · the complex T (X ·) such that

T (X ·)n = Xn+1 and dnT (X·) = −dn+1
X

for any n ∈ Z; and to any morphism f : X · −→ Y · of complexes the morphism
T (f) : T (X ·) −→ T (Y ·) given by T (f)n = fn+1 for any n ∈ Z. Clearly, T is
an automorphism of the category C(A). Often we are going to use the notation
T p(X ·) = X ·[p], where X ·[p] is the complex X · shifted to the left p times.

The complex

. . . −→ 0 −→ 0 −→ . . .

is the zero object in C(A).

91
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Also, for any two complexes X · and Y · we define the complex X · ⊕ Y · where
(X · ⊕ Y ·)p = Xp ⊕ Y p and dpX⊕Y = dpX ⊕ dpY : Xp ⊕ Y p −→ Xp+1 ⊕ Y p+1 for all
p ∈ Z. We call X · ⊕ Y · the direct sum of complexes X · and Y ·.

Clearly, we have the natural morphisms iX : X · −→ X · ⊕ Y ·, iY : Y · −→
X · ⊕ Y ·, pX : X · ⊕ Y · −→ X · and pY : X · ⊕ Y · −→ Y · which satisfy

pX ◦ iX = idX , pY ◦ iY = idY and iX ◦ pX + iY ◦ pY = idX⊕Y .

Therefore, we have the following result.

1.1.1. Lemma. The category C(A) is an additive category.

Define an additive functor C : A −→ C(A) by

C(X)p =

{

X if p = 0,

0 if p 6= 0;
and dC(X) = 0

for any object X in A, and

C(f)p =

{

f if p = 0,

0 if p 6= 0;

for any morphism f : X −→ Y in A.

1.1.2. Lemma. The functor C : A −→ C(A) is fully faithful.

Hence A is isomorphic to the full subcategory of C(A) consisting of complexes
X · with Xp = 0 for p 6= 0.

We say that a complex X · is bounded from below (resp. bounded from above)
if there exists n0 ∈ Z such that Xn = 0 for n < n0 (resp. Xn = 0 for n > n0).
The complex X · is bounded if it is bounded from above and below. We denote
by C−(A) (resp. C+(A) and Cb(A)) the full subcategories of C(A) consisting of
bounded from above complexes (resp. bounded from below complexes and bounded
complexes). Obviously all these subcategories are invariant for the action of the
translation functor. Also, they are additive.

In the following we are going to use the shorthand C∗(A) for any of the above
categories.

1.2. Opposite categories. Let A be an additive category and Aopp its op-
posite category. Denote by C(A) and C(Aopp) the corresponding categories of
complexes.

For any complex X · in C(A) we define by ι(X ·) the complex in C(Aopp) in the
following way: ι(X ·)p = X−p for all p ∈ Z; and the differential dpι(X) : ι(X ·)p −→

ι(X ·)p+1 is given by d−p−1
X : X−p−1 −→ X−p for all p ∈ Z.

A morphism f : X · −→ Y · defines the family of morphisms ι(f)p = f−p :
Y −p −→ X−p in Aopp for p ∈ Z. Moreover, we have

dpι(X) ◦ ι(f)p = f−p ◦ d−p−1
X = d−p−1

Y ◦ f−p−1 = ι(f)p+1 ◦ dpι(Y )

for all p ∈ Z; i.e., ι(f) is a morphism of ι(Y ·) into ι(X ·) in C(Aopp).
Therefore, we can interpret ι as an additive functor from the opposite category

C(A)opp of C(A) into C(Aopp). Clearly, ι : C(A)opp −→ C(Aopp) is an isomorphism
of categories. Evidently, the functor ι induces also isomorphisms of C+(A)opp −→
C−(Aopp), C−(A)opp −→ C+(Aopp) and Cb(A)opp −→ Cb(Aopp).
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By abuse of notation, we denote by T the translation functors on C(A) and
C(Aopp). For an object X · in C(A), we have

T (ι(X))p = ι(X)p+1 = X−p−1 = T−1(X ·)−p = ι(T (X ·))p;

and

dpT (ι(X)) = −dp+1
ι(X) = −d−p−2

X = d−p−1
T−1(X) = dpι(T−1(X))

for all p ∈ Z; i.e., we have T (ι(X ·)) = ι(T−1(X ·)). Let f : X · −→ Y · be a morphism
in C(A). Then

T (ι(f))p = ι(f)p+1 = f−p−1 = T−1(f)−p = ι(T−1(f))p

for all p ∈ Z; i.e., we have T (ι(f)) = ι(T−1(f)). Therefore, we have

T ◦ ι = ι ◦ T−1.

1.3. Homotopies. Let f : X · −→ Y · be a morphism in C(A). Then f is
homotopic to zero if there exists h ∈ Hom−1(X ·, Y ·) such that

f = dY ◦ h+ h ◦ dX .

We call h the homotopy.
Let Ht(X ·, Y ·) be the set of all morphisms in HomC(A)(X

·, Y ·) which are ho-
motopic to zero.

1.3.1. Lemma. The subset Ht(X ·, Y ·) is a subgroup of HomC(A)(X
·, Y ·).

Proof. Clearly, the zero morphism is in Ht(X ·, Y ·). Assume that f, g ∈
Ht(X ·, Y ·). Then there exist homotopies h and k such that f = dY ◦ h + h ◦ dX
and g = dY ◦ k + k ◦ dX . This implies that

f + g = dY ◦ (h+ k) + (h+ k) ◦ dX ,

i.e., f + g is homotopic to zero. Therefore, Ht(X ·, Y ·) is closed under addition.
Moreover, −f = dY ◦ (−h) + (−h) ◦ dX , so −f is homotopic to zero. This implies
that Ht(X ·, Y ·) is a subgroup. �

We say that the morphisms f : X · −→ Y · and g : X · −→ Y · are homotopic
if f − g ∈ Ht(X ·, Y ·) and denote f ∼ g. Clearly, ∼ is an equivalence relation on
HomC(A)(X

·, Y ·).

1.3.2. Lemma. Let X ·, Y · and Z · be three complexes of A-objects and f :
X · −→ Y · and g : Y · −→ Z · two morphisms of complexes. If either f or g is
homotopic to zero, g ◦ f is homotopic to zero.

Proof. Assume that f is homotopic to zero. Then there exists a homotopy
h ∈ Hom−1(X ·, Y ·) such that f = dY ◦ h+ h ◦ dX . This implies that

g ◦ f = g ◦ dY ◦ h+ g ◦ h ◦ dX = dZ ◦ g ◦ h+ g ◦ h ◦ dX

where g ◦h ∈ Hom−1(X ·, Z ·). Therefore, g ◦h is a homotopy which establishes that
g ◦ f is homotopic to zero.

Assume that g is homotopic to zero. Then there exists a homotopy k ∈
Hom−1(Y ·, Z ·) such that g = dZ ◦ k + k ◦ dY . This implies that

g ◦ f = dZ ◦ k ◦ f + k ◦ dY ◦ f = dZ ◦ k ◦ f + k ◦ f ◦ dX

where k ◦ f ∈ Hom−1(X ·, Z ·). Therefore, k ◦ f is a homotopy which establishes
that g ◦ f is homotopic to zero. �
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Let X · and Y · be two complexes of A-objects. Put

HomK(A)(X
·, Y ·) = HomC(A)(X

·, Y ·)/Ht(X ·, Y ·).

This is an abelian group of classes of homotopic morphisms between X · and Y ·.
Let X ·, Y · and Z · be three complexes of A-objects. By the above lemma, the

composition map (g, f) 7−→ g ◦ f from HomC(A)(Y
·, Z ·) × HomC(A)(X

·, Y ·) into
HomC(A)(X

·, Z ·) induces a biadditive map HomK(A)(Y
·, Z ·) × HomK(A)(X

·, Y ·)
into HomK(A)(X

·, Z ·) such that the following diagram commutes

HomC(A)(Y
·, Z ·) × HomC(A)(X

·, Y ·) −−−−→ HomC(A)(X
·, Z ·)





y





y

HomK(A)(Y
·, Z ·) × HomK(A)(X

·, Y ·) −−−−→ HomK(A)(X
·, Z ·)

.

Let K(A) be the category consisting of complexes of A objects as objects and
classes of homotopic morphisms as morphisms. We call this category the homotopic
category of complexes of A-objects and denote it by K(A).

The zero object in K(A) is the zero object in C(A). Also, for any two com-
plexes in K(A) we define their direct sum as the direct sum in C(A). Moreover,
the canonical inclusions and projections are just the homotopy classes of the cor-
responding morphisms in C(A).

This immediately leads to the following result.

1.3.3. Lemma. The category K(A) is an additive category.

1.3.4. Lemma. Let f : X · −→ Y · be a morphism of complexes. Then the
following statements are equivalent:

(i) f is homotopic to zero;
(ii) T (f) is homotopic to zero.

Proof. If f is homotopic to zero, there exist a homotopy h ∈ Hom−1(X ·, Y ·)
such that f = dY ◦ h + h ◦ dX . The homotopy h is given by a family of mor-
phisms hp : Xp −→ Y p−1. Therefore, we can interpret it also as a morphism
k ∈ Hom−1(T (X ·), T (Y ·)). In this case, we have

T (f)p = fp+1 = dpY ◦ hp+1 + hp+2 ◦ dp+1
X = −dp−1

T (Y ) ◦ k
p − kp+1 ◦ dpT (X)

for all p ∈ Z, i.e., T (f) is homotopic to zero with the homotopy −k.
The proof of the converse is analogous. �

Therefore, the translation functor T induces an isomorphism of HomK(A)(X
·, Y ·)

onto HomK(A)(T (X ·), T (Y ·)). It follows that T induces and automorphism of the
additive category K(A). By abuse of language and notation, we call it the transla-
tion functor and denote again by T .

As before, we define the full subcategories K+(A), K−(A) and Kb(A) of com-
plexes bounded from below, resp. complexes bounded from above and bounded
complexes.

Again, we are going to use the shorthandK∗(A) for any of the above categories.
Clearly, all of these subcategories are additive and invariant under the transla-

tion functor.
Let H : C(A) −→ K(A) be the natural functor which is the identity on objects

and maps morphisms of complexes into their homotopy classes. This is clearly an
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additive functor which commutes with the translation functors. Moreover, we have
the additive functor K = H ◦ C : A −→ K(A).

1.3.5. Lemma. The functor K : A −→ K(A) is fully faithful.

Proof. Let X and Y be two objects in A. Then K(X) and K(Y ) are com-
plexes such that K(X)p = K(Y )p = 0 for all p 6= 0. Therefore any morphism
in Hom−1(K(X),K(Y )) must be 0. In particular, Ht(K(X),K(Y )) = 0 and
HomK(A)(K(X),K(Y )) = HomC(A)(K(X),K(Y )). The statement follows from
1.1.2. �

Hence A is isomorphic to the full subcategory of K(A) consisting of complexes
X · with Xp = 0 for p 6= 0.

Let f : X · −→ Y · be an element in Ht(X ·, Y ·), i.e., there is a homotopy
h : X · −→ Y · such that f = dY ◦ h+ h ◦ dX . Then hp : Xp −→ Y p−1, and we can
interpret it as a morphism of Y p−1 into Xp in Aopp for any p ∈ Z. Therefore, we
can view h−p as a morphism from ι(Y ·)p+1 into ι(X ·)p for any p ∈ Z. Hence, we
can define k ∈ Hom−1(ι(Y ·), ι(X ·)) by kp = h−p+1 for all p ∈ Z. Clearly, we have

ι(f)p = f−p = d−p−1
Y ◦ h−p + h−p+1 ◦ d−pX = kp+1 ◦ dpι(Y ) + dp−1

ι(X) ◦ k
p

for all p ∈ Z, i.e., ι(f) = k◦dι(Y )+dι(X)◦k. It follows that ι(f) is in Ht(ι(Y ·), ι(X ·)).
Therefore, ι defines a bijection of Ht(X ·, Y ·) onto Ht(ι(Y ·), ι(X ·)). Hence, ι induces
a functor from K(A)opp into K(Aopp) which is an isomorphism of categories. By
abuse of notation, we denote it also by ι. Clearly, ι induces an isomorphisms
K+(A)opp −→ K−(Aopp), K−(A)opp −→ K+(Aopp) and Kb(A)opp −→ Kb(Aopp).
Also, we have

T ◦ ι = ι ◦ T−1.

1.4. Cohomology. Assume now that A is an abelian category. For p ∈ Z

and any complex X · in C(A) we define

Hp(X ·) = ker dpX/ imdp−1
X

in A. If f : X · −→ Y · is a morphism of complexes, fp(ker dpX) ⊂ ker dpY and

fp(im dp−1
X ) ⊂ im dp−1

Y , and f induces a morphism Hp(f) : Hp(X ·) −→ Hp(Y ·).
Therefore, Hp is a functor from the category C(A) into the category A. Clearly,
the functors Hp, p ∈ Z, are additive. they are called the cohomology functors.

Clearly,

Hp(T (X ·)) = ker dpT (X)/ imdp−1
T (X) = ker dp+1

X / im dpX = Hp+1(X ·)

and Hp(T (f)) = Hp+1(f). Therefore,

Hp = H0 ◦ T p

for any p ∈ Z, and it is enough to study the functor H0 : C(A) −→ A.

1.4.1. Lemma. Let f : X · −→ Y · and g : X · −→ Y · be two homotopic mor-
phisms of complexes. Then Hp(f) = Hp(g) for all p ∈ Z.

Proof. By the above remark it is enough to prove that H0(f) = H0(g). Let
h be the corresponding homotopy, then we have

f0 − g0 = d−1
Y ◦ h0 + h1 ◦ d0

X .
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This implies that the restriction f0 − g0 to kerd0
X agrees with the morphism d−1

Y ◦
h0. Therefore, the image of f0 − g0 : ker d0

X −→ Y 0 is contained in im d−1
Y . It

follows that f0−g0 induces the zero morphism from ker d0
X into H0(Y ·). Therefore,

H0(f) −H0(g) = H0(f − g) : H0(X ·) −→ H0(Y ·) is the zero morphism. �

Therefore, the functors Hp : C(A) −→ A induce functors Hp : K(A) −→ A.
Clearly, these functors are additive. Moreover, they satisfy

Hp = H0 ◦ T p

for any p ∈ Z.
The cohomology functors Hp : K(A) −→ A can also be interpreted as func-

tors from K(A)opp −→ Aopp. For any p ∈ Z, Hp(ι(X ·)) is the cokernel of the

morphism im dp−1
ι(X·) −→ ker dpι(X) in Aopp. Therefore, it is the kernel of the mor-

phism cokerdp−1
ι(X) −→ coimdpι(X·). In A, this can be interpreted as the cokernel of

im d−p−1
X −→ ker d−pX , i.e., as H−p(X ·). Therefore, we have Hp(ι(X ·)) = H−p(X ·)

for all p ∈ Z. Analogously, for any morphism f : X · −→ Y · in K(A) we have
Hp(ι(f)) = H−p(f) : H−p(Y ·) −→ H−p(X ·) for all p ∈ Z. Therefore, it follows
that Hp ◦ ι = H−p for all p ∈ Z.

1.5. Cone of a morphism. Let A be an additive category. Let f : X · −→ Y ·

be a morphism of complexes in C∗(A). We define a graded object C·
f by

Cnf = Xn+1 ⊕ Y n

for all n ∈ Z. Also, we define dnCf
: Cnf −→ Cn+1

f by

dnCf
=

[

−dn+1
X 0

fn+1 dnY

]

for any n ∈ Z. Clearly, we have

dn+1
Cf

◦ dnCf
=

[

−dn+2
X 0

fn+2 dn+1
Y

] [

−dn+1
X 0

fn+1 dnY

]

=

[

dn+2
X dn+1

X 0
−fn+2dn+1

X + dn+1
Y fn+1 dn+1

Y dnY

]

= 0,

i.e., dCf
is a differential and (C·

f , dCf
) is a complex in C∗(A). We call this complex

the cone of the morphism f .
Consider the graded morphism if : Y · −→ C·

f given by inf = iY n : Y n −→ Cnf
for all n ∈ Z. Then we have

dnCf
◦ inf =

[

−dn+1
X 0

fn+1 dnY

] [

0
idY n

]

=

[

0
dnY

]

= in+1
f ◦ dnY

for all n ∈ Z, i.e., if : Y · −→ C·
f is a morphism of complexes in C∗(A).

Analogously, we consider the graded morphism pf : C·
f −→ T (X ·) given by

pnf = pXn+1 : Cnf −→ Xn+1 for all n ∈ Z. Then we have

pn+1
f ◦ dnCf

=
[

idXn+2 0
]

[

−dn+1
X 0

fn+1 dnY

]

=
[

−dn+1
X 0

]

= dnT (X·) ◦ p
n
f

for all n ∈ Z, i.e., pf : C·
f −→ T (X ·) is a morphism of complexes in C∗(A).

Clearly, from the construction we always have

pf ◦ if = 0.
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Let f : X · −→ Y · be a morphism in C(A). Then, we can consider the morphism
ι(f) : ι(Y ·) −→ ι(X ·). The cone of this morphism is given by the graded object

Cnι(f) = T (ι(Y ·))n ⊕ ι(X ·)n = ι(Y ·)n+1 ⊕ ι(X ·)n = Y −n−1 ⊕X−n,

for all n ∈ Z. For any n ∈ Z, the differential of the cone is

dnCι(f)
=

[

−dn+1
ι(Y ) 0

ι(f)n+1 dnι(Y )

]

=

[

−d−n−2
Y 0

f−n−1 d−n−1
X

]

as a matrix from Y −n−1 ⊕X−n into Y −n−2 ⊕X−n−1 in Aopp. It corresponds to
the morphism represented by the matrix

[

−d−n−2
Y f−n−1

0 d−n−1
X

]

between Y −n−2 ⊕X−n−1 and Y −n−1 ⊕X−n in A.
On the other hand, the complex ι(C−f ) is given by

ι(Cf )
n = C−n

−f = X−n+1 ⊕ Y −n

and its differential is given by

dnι(Cf) = d−n−1
Cf

=

[

−d−nX 0
−f−n dn−1

Y

]

for all n ∈ Z. Therefore, the shifted complex ι(Cf )[1] satisfies

(ι(Cf )[1])n = ι(Cf )
n+1 = C−n−1

f = X−n ⊕ Y −n−1

with the differential

dnι(Cf )[1] = −dn+1
ι(Cf) = −d−n−2

Cf
=

[

d−n−1
X 0
f−n−1 −d−n−2

Y

]

for all n ∈ Z. Let s be a morphism of Cι(f) into ι(C−f )[1] given by canonical

isomorphisms sn : Y −n−1 ⊕X−n −→ X−n ⊕ Y −n−1 for all n ∈ Z, then the above
calculations shows that s : Cι(f) −→ ι(C−f )[1] is an isomorphism.

Consider now the natural morphisms

ι(X ·)
iι(f)

−−−−→ C·
ι(f)

pι(f)
−−−−→ T (ι(Y ·)).

The morphism iι(f) : ι(X ·) −→ C·
ι(f) is given by the canonical monomorphisms

inι(f) : ι(X ·)n −→ ι(Y ·)n+1 ⊕ ι(X ·)n for all n ∈ Z. On the other hand, p−f :

C·
−f −→ T (X ·) is given by the canonical morphisms pn−f : Xn+1 ⊕ Y n −→ Xn+1

for p ∈ Z. Therefore, ι(p−f )
n = p−nf : X−n+1 −→ X−n+1 ⊕ Y −n are the

canonical morphisms for all n ∈ Z, representing ι(p−f ) : ι(T (X ·)) −→ ι(C−f ).
Since ι(T (X ·)) = T−1(ι(X ·)), by applying the translation functor we see that
ι(p−f )[1] : ι(X ·) −→ ι(C−f )[1] is represented by the canonical morphisms X−n −→
X−n ⊕ Y −n−1. It follows that we have the commutative diagram

ι(X ·)
iι(f) //

ι(p−f )[1] $$J
JJJJJJJJ
C·
ι(f)

s

��
ι(C−f )[1]
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On the other hand, the morphism pι(f) : C·
ι(f) −→ T (ι(Y ·)) is given by the canonical

epimorphisms pnι(f) : ι(Y ·)n+1 ⊕ ι(X ·)n −→ ι(Y ·)n+1 for all n ∈ Z. Moreover, i−f :

Y · −→ C·
−f is given by the canonical morphisms in−f : Y n −→ Xn+1⊕Y n for n ∈ Z.

Therefore, ι(i−f )
n = i−nf : X−n+1 ⊕ Y −n −→ Y −n are the canonical morphisms

for all n ∈ Z, representing ι(i−f ) : ι(C−f ) −→ ι(Y ·). As in the above calculation,
by applying the translation functor, we see that ι(i−f )[1] : ι(C−f )[1] −→ ι(Y ·)[1] is
represented by the canonical morphisms X−n ⊕ Y −n−1 −→ Y −n−1 for all n ∈ Z.
It follows that the diagram

C·
ι(f)

s

��

pι(f) // T (ι(Y ·))

ι(i−f )[1]yyrrrrrrrrrr

ι(C−f )[1]

is commutative. From the above results we see that the following holds.

1.5.1. Lemma. The morphism s : Cι(f) −→ ι(C−f )[1] is an isomorphism of
complexes.

Moreover, the following diagram

ι(X ·)
iι(f) //

ι(p−f )[1] $$J
JJJJJJJJ
C·
ι(f)

s

��

pι(f) // T (ι(Y ·))

ι(i−f )[1]yyrrrrrrrrrr

ι(C−f )[1]

is commutative.

Assume now that A is an abelian category. Then we have an exact sequence
of complexes

0 −−−−→ Y · if
−−−−→ C·

f

pf
−−−−→ T (X ·) −−−−→ 0.

1.5.2. Lemma. Let f : X · −→ Y · be a morphism of complexes in C∗(A). Then
the sequence

H0(Y ·)
H0(if )
−−−−→ H0(C·

f )
H0(pf )
−−−−−→ H0(X ·)

is exact.

Proof. Consider C0
f = X1⊕Y 0 and its subobject im d0

X⊕Y 0. Clearly, im d−1
Cf

is a subobject of im d0
X ⊕ Y 0. Now consider the morphism
[

d0
X 0
0 idY 0

]

−

[

0 0
f0 idY 0

]

=

[

d0
X 0

−f0 0

]

from X0 ⊕ Y 0 into im d0
X ⊕ Y 0. Clearly, it is equal to the morphism which is the

composition of
[

idX0 0
0 0

]

: X0 ⊕ Y 0 −→ X0 ⊕ Y −1

with −d0
Cf

. Therefore, it induces a zero morphism of X0 ⊕ Y 0 into the quotient of

(im d0
X ⊕ Y 0) by im d−1

Cf
. It follows that
[

d0
X 0
0 idY 0

]

and

[

0 0
f0 idY 0

]
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induce the same morphism of X0 ⊕ Y 0 into (im d0
X ⊕ Y 0)/ im d−1

Cf
. Hence,

(0 ⊕ Y 0) + im d−1
Cf

= im d0
X ⊕ Y 0.

Therefore, we have

kerd0
Cf

∩ (im d0
X ⊕ Y 0) = ker d0

Cf
∩ ((0 ⊕ Y 0) + im d−1

Cf
) = (0 ⊕ kerd0

Y ) + im d−1
Cf
.

This in turn implies that the kernel of H0(pf ) is equal to the image of H0(if). �

1.6. Standard triangles. Let A be an additive category. Let f : X · −→ Y ·

be a morphism in C∗(A). Then the diagram

C·
f

[1]

pf

����
��

��
��

��
�

X ·
f // Y ·.

if

\\88888888888

is called the standard triangle in C∗(A) atteched to f .

1.6.1. Lemma. Let

X · f
−−−−→ Y ·

u





y





y

v

X ·
1 −−−−→

g
Y ·

1

be a diagram in C∗(A) which commutes up to homotopy. Then there exists a
morphism w : C·

f −→ C·
g such that the diagram

X · f
−−−−→ Y · if

−−−−→ C·
f

pf
−−−−→ T (X ·)

u





y

v





y





y

w





y

T (u)

X ·
1 −−−−→

g
Y ·

1 −−−−→
ig

C·
g −−−−→

pg

T (X ·
1)

commutes up to homotopy.
If the first diagram commutes in C∗(A), the second diagram commutes in

C∗(A).

Proof. By the assumption, v◦f : X · −→ Y ·
1 is homotopic to g◦u : X · −→ Y ·

1 .
Therefore, there exists a graded morphism h : X · −→ Y ·

1 of degree −1 such that

g ◦ u− v ◦ f = dY1 ◦ h+ h ◦ dX .

We define a graded morphism w : C·
f −→ C·

g by

wn =

[

un+1 0
−hn+1 vn

]

for all n ∈ Z. We have

dnCg
◦ wn =

[

−dn+1
X1

0
gn+1 dnY1

] [

un+1 0
−hn+1 vn

]

=

[

−dn+1
X1

un+1 0
gn+1un+1 − dnY1

hn+1 dnY1
vn

]

=

[

−un+2dn+1
X 0

vn+1fn+1 + hn+2dn+1
X vn+1dnY

]

=

[

un+2 0
−hn+2 vn+1

] [

−dn+1
X 0

fn+1 dnY

]

= wn+1◦dnCf



100 3. DERIVED CATEGORIES

for all n ∈ Z. Therefore, dCg
◦ w = w ◦ dCf

, i.e., w is a morphism of complexes.
In addition, we have

wn ◦ inf =

[

un+1 0
−hn+1 vn

] [

0
idY n

]

=

[

0
vn

]

= ing ◦ vn

for all n ∈ Z, i.e.,
w ◦ if = ig ◦ v

and the second square in the diagram commutes.
Finally, we have

un+1 ◦ pnf =
[

un+1 0
]

=
[

idXn+1 0
]

[

un+1 0
−hn+1 vn

]

= png ◦ wn

for all n ∈ Z, i.e.,
u ◦ pf = pg ◦ w

and the last square in the diagram commutes.
Finally, if the first diagram commutes, h = 0, and the statement follows as

above. �

Let f : X · −→ Y · be a morphism of complexes. Then we have the morphism
if : Y · −→ C·

f . Let D·
f be the cone of if . Then

Dn
f = Y n+1 ⊕ Cnf = Y n+1 ⊕Xn+1 ⊕ Y n

for any n ∈ Z and its differential is

dnDf
=

[

−dn+1
Y 0

in+1
f dnCf

]

=





−dn+1
Y 0 0
0 −dn+1

X 0
idY n+1 fn+1 dnY



 .

Define a graded morphism α : T (X ·) −→ D·
f by

αn =





−fn+1

idXn+1

0





for any n ∈ Z. Then

dnDf
◦ αn =





−dn+1
Y 0 0
0 −dn+1

X 0
idY n+1 fn+1 dnY









−fn+1

idXn+1

0



 =





dn+1
Y fn+1

−dn+1
X

0





=





fn+2dn+1
X

−dn+1
X

0



 = −





fn+2

−idXn+2

0



 dn+1
X = αn+1 ◦ dnT (X·)

for any n ∈ Z, i.e., α : T (X ·) −→ D·
f is a morphism of complexes.

Also, define a graded morphism β : D·
f −→ T (X ·) by

βn =
[

0 idXn+1 0
]

for any n ∈ Z. Then

dnT (X·)◦β
n =

[

0 −dn+1
X 0

]

=
[

0 idXn+2 0
]





−dn+1
Y 0 0
0 −dn+1

X 0
idY n+1 fn+1 dnY



 = βn+1◦dnDf

for any n ∈ Z, i.e., β : D·
f −→ T (X ·) is a morphism of complexes.
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First, we have

βn ◦ αn =
[

0 idXn+1 0
]





−fn+1

idXn+1

0



 = idXn+1

for any n ∈ Z, i.e., β ◦ α = idT (X·).
On the other hand, if we denote by h : D·

f −→ D·
f the graded morphism of

degree −1 given by

hn =





0 0 idY n

0 0 0
0 0 0





for any n ∈ Z, we have

dn−1
Cf

hn + hn+1dnCf

=





−dnY 0 0
0 −dnX 0

idY n fn dn−1
Y









0 0 idnY
0 0 0
0 0 0



 +





0 0 idn+1
Y

0 0 0
0 0 0









−dn+1
Y 0 0
0 −dn+1

X 0
idY n+1 fn+1 dnY





=





0 0 −dnY
0 0 0
0 0 idY n



 +





idn+1
Y fn+1 dnY
0 0 0
0 0 0



 =





idn+1
Y fn+1 0
0 0 0
0 0 idY n





=





idn+1
Y 0 0
0 idXn+1 0
0 0 idY n



 −





0 −fn+1 0
0 idXn+1 0
0 0 0



 = idDn
f
− αn ◦ βn,

for any n ∈ Z, i.e., α ◦ β : D·
f −→ D·

f is homotopic to the identity morphism.
Therefore, we proved the following result.

1.6.2. Lemma. The morphism α : T (X ·) −→ D·
f is an isomorphism in the

homotopic category of complexes.

This implies the following result.

1.6.3. Lemma. The diagram

Y ·
if

−−−−→ C·
f

pf

−−−−→ T (X ·)
−T (f)
−−−−→ T (Y ·)

idY ·





y

idC·
f





y





y

α





y

idT (Y ·)

Y · if
−−−−→ C·

f

iif
−−−−→ D·

f

pif
−−−−→ T (Y ·)

commutes up to homotopy.

Proof. Clearly, we have

pnif ◦ αn =
[

idY n+1 0 0
]





−fn+1

idXn+1

0



 = −fn+1 = −T (f)n

for any n ∈ Z. Hence, pif ◦ α = −T (f) and the third square commutes.
On the other hand,

βn ◦ inif =
[

0 idXn+1 0
]





0 0
idXn+1 0

0 idY n



 =
[

idXn+1 0
]

= pnf
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for any n ∈ Z. Hence, we have β◦iif = pf . By 1.6.2, it follows that α◦pf = α◦β◦iif
is homotopic to iif . Therefore, the second square commutes up to homotopy. �

2. Homotopic category of complexes

2.1. Triangulated structure on the homotopic category of complexes.

Let A be an additive category. Denote by K∗(A) the corresponding homotopic
category of complexes of objects in A. Let T be the corresponding translation
functor on K∗(A).

We say that a triangle

Z ·

[1]

����
��

��
��

��
�

X · // Y ·

[[88888888888

in K∗(A) is distinguished if it is isomorphic to a the image of a standard triangle
in K∗(A). The main goal of this section is to prove the following theorem.

2.1.1. Theorem. The additive category K∗(A) equipped with the translation
functor T and the class of distinguished triangles in K∗(A) is a triangulated cate-
gory.

Clearly, the axioms (TR1.a) and (TR1.c) are satisfied. The next lemma implies
that (TR1.b) holds.

2.1.2. Lemma. Let X · be a complex of objects in A. Then the cone CidX· of
the identity morphism idX· on X · is isomorphic to 0 in K∗(A).

Proof. Clearly, as a graded object

C· = C·
idX·

= T (X ·) ⊕X ·.

Let h be a morphism of the graded object C· of degree −1 given by

hn =

[

0 idXn

0 0

]

for all n ∈ Z. Then we have

dn−1
C hn + hn+1dnC

=

[

−dnX 0
idXn dn−1

X

] [

0 idXn

0 0

]

+

[

0 idXn+1

0 0

] [

−dn+1
X 0

idXn+1 dnX

]

=

[

0 −dnX
0 idXn

]

+

[

idXn+1 dnX
0 0

]

=

[

idXn+1 0
0 idXn

]

= idnC

for all n ∈ Z. Hence, dCh + hdC = idC· and idC· is homotopic to 0. Therefore,
C· = 0 in K∗(A). �

Therefore, the diagram

X · idX·

−−−−→ X · −−−−→ 0 −−−−→ T (X ·)

idX·





y

idX·





y





y
0





y

idT (X·)

X · idX·

−−−−→ X · −−−−→ C·
idX·

−−−−→ T (X ·)
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is commutative in K∗(A) and the vertical arrows are isomorphisms. Since the
bottom row is the image of a standard triangle, the top row is a distinguished
triangle. This completes the proof of (TR1).

Now we prove (TR2). Let

Z ·

[1]
h

����
��

��
��

��
�

X ·

f
// Y ·

g

[[88888888888

be a distinguished triangle in K∗(A). By definition, there exists a standard triangle

C·
a

[1]

pa

����
��

��
��

��
�

U ·
a

// V ·

ia

[[88888888888

such that its image in K∗(A) is isomorphic to the above distinguished triangle, i.e.,
we have an isomorphism of triangles1

X · f
−−−−→ Y · g

−−−−→ Z · h
−−−−→ T (X ·)

u





y

v





y





y

w





y

T (u)

U · −−−−→
a

V · −−−−→
i
a

C·
a −−−−→

p
a

T (U ·)

in K∗(A). By 1.6.2 and 1.6.3, the image of the triangle

T (U ·)

[1]

−T (a)

����
��

��
��

��
�

V ·
ia

// C·
a

pa

]];;;;;;;;;;;

is isomorphic to the image of a standard triangle in K∗(A). Therefore, it is a
distinguished triangle in K∗(A). It follows that

Y · g
−−−−→ Z · h

−−−−→ T (X ·)
−T (f)
−−−−→ T (Y ·)

v





y

w





y





y

T (u)





y

T (v)

V · −−−−→
i
a

C·
a −−−−→

p
a

T (U ·) −−−−→
−T (a)

T (U ·)

1The underlined symbols represent homotopy classes of the corresponding morphisms.
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is an isomorphism of triangles in K∗(A). Since the bottom triangle is distinguished,
the top one is also distinguished by (TR1.a). Therefore,

T (X ·)

[1]

−T (f)

����
��

��
��

��
�

Y ·
g

// Z ·

h

]]<<<<<<<<<<<

is a distinguished triangle.
Assume now that

T (X ·)

[1]

−T (f)

����
��

��
��

��
�

Y ·
g

// Z ·

h

]]<<<<<<<<<<<

is a distinguished triangle in K∗(A). By definition, there exists a standard triangle

C·
a

[1]

pa

����
��

��
��

��
�

U ·
a

// V ·

ia

[[88888888888

such that its image in K∗(A) is isomorphic to the above distinguished triangle, i.e.,
we have an isomorphism of triangles

Y · g
−−−−→ Z · h

−−−−→ T (X ·)
−T (f)
−−−−→ T (X ·)

u





y

v





y





y

w





y

T (u)

U · −−−−→
a

V · −−−−→
i
a

C·
a −−−−→

p
a

T (U ·)

in K∗(A). Consider now the morphism T−2(a) : T−2(U ·) −→ T−2(V ·) and its
standard triangle

C·
T−2(a)

[1]

p
T−2(a)

}}{{
{{

{{
{{

{{
{{

{

T−2(U ·)
T−2(a)

// T−2(V ·)

i
T−2(a)

aaCCCCCCCCCCCCC

.

As a graded object

CnT−2(a) = T−1(U ·)n ⊕ T−2(V ·)n = Un−1 ⊕ V n−2 = T−2(C·
a)

and its differential is

dnCT−2(a)
=

[

−dn+1
T−2(U ·) 0

T−2(a)n+1 dnT−2(V ·)

]

=

[

−dn−1
U 0

an−1 dn−2
V

]

= dnT−2(C·
a).
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Therefore, C·
T−2(a) = T−2(C·

a) and

T−2(C·
a)

[1]

T−2(p
a
)

}}zz
zz

zz
zz

zz
zz

z

T−2(U ·)
T−2(a)

// T−2(V ·)

T−2(i
a
)

bbDDDDDDDDDDDDD

is a distinguished triangle in K∗(A). By applying T−2 to the above isomorphism
of triangles, we see that

T−1(X ·)

[1]

−T−1(f)

||zz
zz

zz
zz

zz
zz

z

T−2(Y ·)
T−2(g)

// T−2(Z ·)

T−2(h)

aaDDDDDDDDDDDDD

is a distinguished triangle. Therefore, the first part of the proof implies that

T−1(Y ·)

[1]

−T−1(g)

}}zz
zz

zz
zz

zz
zz

z

T−2(Z ·)
T−2(h)

// T−1(X ·)

−T−1(f)

bbDDDDDDDDDDDDD

is a distinguished triangle. Applying this argument again and again, we see that

T−1(Z ·)

[1]

−T−1(h)

}}zz
zz

zz
zz

zz
zz

z

T−1(X ·)
−T−1(f)

// T−1(Y ·)

−T−1(g)

aaDDDDDDDDDDDDD

,

X ·

[1]

f

����
��

��
��

��
��

T−1(Y ·)
−T−1(g)

// T−1(Z ·)

−T−1(h)

__????????????

,

Y ·

[1]

g

����
��

��
��

��
��

T−1(Z ·)
−T−1(h)

// X ·

f

[[77777777777

,
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and

Z ·

[1]
h

����
��

��
��

��
�

X ·

f
// Y ·

g

[[88888888888

are distinguished triangles in K∗(A). Therefore, (TR2) holds.
Now we prove (T3). Let

X · −−−−→ Y · −−−−→ Z · −−−−→ T (X ·)




y





y





y

X ·
1 −−−−→ Y ·

1 −−−−→ Z ·
1 −−−−→ T (X ·

1)

be a diagram in K∗(A) such that its rows are distinguished triangles and the first
square commutes. Then there exist standard triangles

C·
a

[1]

����
��

��
��

��
�

U · a // V ·

[[88888888888

and

C·
b

[1]

����
��

��
��

��
�

U ·
1

b // V ·
1

[[7777777777

such that their images inK∗(A) are isomorphic to the above distinguished triangles.
This implies that there exist morphisms of complexes u : U · −→ U ·

1 and v : V · −→
V ·

1 such that the image of the diagram

U · a
−−−−→ V · −−−−→ C·

a −−−−→ T (U ·)

u





y

v





y





y

T (u)

U ·
1 −−−−→

b
V ·

1 −−−−→ C·
b −−−−→ T (U ·

1)

in K∗(A) is isomorphic to the above diagram. In particular, the first square com-
mutes up to homotopy. By 1.6.1, there exists a morphism of complexes w : C·

a −→
C·
b such that the diagram

U · a
−−−−→ V · −−−−→ C·

a −−−−→ T (U ·)

u





y

v





y





y

w





y

T (u)

U ·
1 −−−−→

b
V ·

1 −−−−→ C·
b −−−−→ T (U ·

1)
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commutes up to homotopy. This implies that there exists a morphism Z · −→ Z ·
1

which completes the diagram

X · −−−−→ Y · −−−−→ Z · −−−−→ T (X ·)




y





y





y





y

X ·
1 −−−−→ Y ·

1 −−−−→ Z ·
1 −−−−→ T (X ·

1)

to a morphism of triangles in K∗(A).
Now we prove (TR4). We first need a different characterization of distinguished

triangles in K∗(A).

2.1.3. Lemma. Let f : X · −→ Y · be a morphism in K∗(A) and a : X · −→ Y ·

a morphism of complexes which represents f . Then the following conditions are
equivalent:

(i) The triangle

Z ·

[1]

����
��

��
��

��
�

X ·
f // Y ·

[[88888888888

is distinguished.
(ii) There exists an isomorphism u : Z · −→ C·

a such that the diagram

X · f
−−−−→ Y · −−−−→ Z · −−−−→ T (X ·)

idX·





y

idY ·





y

u





y





y

idT (X·)

X · −−−−→
f

Y · −−−−→
i
a

C·
a −−−−→

p
a

T (X ·)

is an isomorphism of triangles.

Proof. Clearly, (ii) implies (i).
The image of the standard triangle

C·
a

[1]

����
��

��
��

��
�

X · a // Y ·

[[88888888888

is distinguished in K∗(A). Therefore, we have the diagram

X · f
−−−−→ Y · −−−−→ Z · −−−−→ T (X ·)

idX·





y

idY ·





y





y

idT (X·)

X · −−−−→
f

Y · −−−−→
i
a

C·
a −−−−→

p
a

T (X ·)

where both rows are distinguished triangles and the first square commutes in
K∗(A). Since we already established (TR3), it follows that this diagram can be



108 3. DERIVED CATEGORIES

completed to a morphism of triangles

X · f
−−−−→ Y · −−−−→ Z · −−−−→ T (X ·)

idX·





y

idY ·





y





y





y

idT (X·)

X · −−−−→
f

Y · −−−−→
i
a

C·
a −−−−→

p
a

T (X ·)

.

Moreover, since 1.4.2 in Ch. 2 doesn’t depend on the octahedral axiom, this mor-
phism must be an isomorphism. �

Let f : X · −→ Y ·, g : Y · −→ Z · and h = g ◦ f be three morphisms in K∗(A).
Consider the diagram

X · f
−−−−→ Y · −−−−→ Z ·

1 −−−−→ T (X ·)

idX·





y

g





y





y

idT(X·)

X · h
−−−−→ Z · −−−−→ Y ·

1 −−−−→ T (X ·)

f





y

idZ·





y





y

T (f)

Y · g
−−−−→ Z · −−−−→ X ·

1 −−−−→ T (Y ·)

where the rows are distinguished triangles and the squares in the first column
commute. By 2.1.3, there exist morphisms of complexes a : X · −→ Y · and b :
Y · −→ Z · and c = b ◦ a which represent f , g and h respectively, such that the
triangles

Z ·
1

[1]

����
��

��
��

��
�

X ·
f // Y ·

[[7777777777

X ·
1

[1]

����
��

��
��

��
�

Y ·
g // Z ·

[[88888888888

and

Y ·
1

[1]

����
��

��
��

��
�

X · h // Z ·

[[7777777777
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are isomorphic to the images of the standard triangles

C·
a

[1]

����
��

��
��

��
�

X · a // Y ·

[[88888888888

C·
b

[1]

����
��

��
��

��
�

Y · b // Z ·

[[7777777777

and

C·
c

[1]

����
��

��
��

��
�

X · c // Z ·

[[7777777777

respectively, and the isomorphisms are given by identity morphisms of X ·, Y · and
Z ·. Therefore, the above diagram is isomorphic to the image of the diagram

X · a
−−−−→ Y · ia−−−−→ C·

a
pa

−−−−→ T (X ·)

idX·





y
b





y





y

idT (X·)

X · c
−−−−→ Z · ic−−−−→ C·

c
pc

−−−−→ T (X ·)

a





y

idZ·





y





y

T (a)

Y · b
−−−−→ Z · ib−−−−→ C·

b

pb−−−−→ T (Y ·)

where the squares in the first column commute.
In the proof of 1.6.1, we established that the morphisms u : C·

a −→ C·
b and

v : C·
b −→ C·

c given by

un =

[

idXn+1 0
0 bn

]

vn =

[

an+1 0
0 idZn

]

n ∈ Z,

complete this diagram to a commutative diagram

X · a
−−−−→ Y · ia−−−−→ C·

a
pa

−−−−→ T (X ·)

idX·





y
b





y





y

u





y

idT (X·)

X · c
−−−−→ Z · ic−−−−→ C·

c
pc

−−−−→ T (X ·)

a





y

idZ·





y





y

v





y

T (a)

Y · b
−−−−→ Z · ib−−−−→ C·

b

pb−−−−→ T (Y ·)

.
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2.1.4. Lemma. The triangle

C·
b

[1]

T (i
a
)◦p

b

����
��

��
��

��
�

C·
a

u // C·
c,

v

[[88888888888

is distinguished in K∗(A).

Proof. To establish this it is enough to complete the diagram

C·
a

u
−−−−→ C·

c
v

−−−−→ C·
b

T (ia)◦pb
−−−−−−→ T (C·

a)

idC·
a





y

idC·
c





y





y

idT(C·
a)

C·
a −−−−→

u
C·
c −−−−→

iu
C·
u −−−−→

pu

T (Ca)

to the diagram

C·
a

u
−−−−→ C·

c
v

−−−−→ C·
b

T (ia)◦pb
−−−−−−→ T (C·

a)

idC·
a





y

idC·
c





y





y

ω





y

idT(C·
a)

C·
a −−−−→

u
C·
c −−−−→

iu
C·
u −−−−→

pu

T (Ca)

which commutes up to homotopy and where ω induces an isomorphism in K∗(A).
This would imply that the image of the top row in K∗(A) is a triangle isomorphic
to the image of a standard triangle in K∗(A), i.e., that it is a distinguished triangle.

As graded objects

C·
b = T (Y ·) ⊕ Z · and C·

u = T (C·
a) ⊕ C·

c = T 2(X ·) ⊕ T (Y ·) ⊕ T (X ·) ⊕ Z ·,

with differentials

dnCb
=

[

−dn+1
Y 0

bn+1 dnZ

]

and

dnCu
=

[

−dn+1
Ca

0
un+1 dnCc

]

=









dn+2
X 0 0 0

−an+2 −dn+1
Y 0 0

idXn+2 0 −dn+1
X 0

0 bn+1 cn+1 dnZ









.

Hence, we can define a morphism of degree zero ω : C·
b −→ C·

u by

ωn =









0 0
idY n+1 0

0 0
0 idZn









, n ∈ Z.
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Then we have

ωn+1 ◦ dnCb
=









0 0
idY n+2 0

0 0
0 idZn+1









[

−dn+1
Y 0

bn+1 dnZ

]

=









0 0
−dn+1

Y 0
0 0

bn+1 dnZ









=









dn+2
X 0 0 0

−an+2 −dn+1
Y 0 0

idXn+2 0 −dn+1
X 0

0 bn+1 cn+1 dnZ

















0 0
idY n+1 0

0 0
0 idZn









= dnCu
◦ ωn

for every n ∈ Z, i.e., ω is a morphism of complexes.
Now, we have

pnu ◦ ωn =

[

idXn+2 0 0 0
0 idY n+1 0 0

]









0 0
idY n+1 0

0 0
0 idZn









=

[

0 0
idn+1
Y 0

]

=

[

0
idY n+1

]

[

idY n+1 0
]

= T (ia)
n ◦ pnb ,

for every n ∈ Z, i.e., the third square in above diagram commutes.
Now we want to prove that the middle square commutes up to homotopy. We

have

ωn ◦ vn − inu =









0 0
idY n+1 0

0 0
0 idZn









[

an+1 0
0 idZn

]

−









0 0
0 0

idXn+1 0
0 idZn









=









0 0
an+1 0

0 0
0 idZn









−









0 0
0 0

idXn+1 0
0 idZn









=









0 0
an+1 0

−idXn+1 0
0 0









for all n ∈ Z. Let h : C·
c −→ C·

u be a graded morphism of degree −1 given by

hn =









idXn+1 0
0 0
0 0
0 0









, n ∈ Z.

Then we have

dn−1
Cu

hn + hn+1dnCc

=









dn+1
X 0 0 0

−an+1 −dnY 0 0
idXn+1 0 −dnX 0

0 bn cn dn−1
Z

















idXn+1 0
0 0
0 0
0 0









+









idXn+2 0
0 0
0 0
0 0









[

−dn+1
X 0

cn+1 dnZ

]

=









dn+1
X 0

−an+1 0
idXn+1 0

0 0









+









−dn+1
X 0
0 0
0 0
0 0









=









0 0
−an+1 0
idXn+1 0

0 0











112 3. DERIVED CATEGORIES

for every n ∈ Z. Therefore,

dCu
◦ h+ h ◦ dCc

= iu − ω ◦ v,

i.e., ω ◦ v is homotopic to iu.
It remains to show that ω : C·

b −→ C·
u is an isomorphism in K∗(A). We define

a graded morphism θ : C·
u −→ C·

b of degree 0 by the formula

θn =

[

0 idY n+1 an+1 0
0 0 0 idZn

]

for all n ∈ Z. Then we have

θn+1 ◦ dnCu
=

[

0 idY n+2 an+2 0
0 0 0 idZn+1

]









dn+2
X 0 0 0

−an+2 −dn+1
Y 0 0

idXn+2 0 −dn+1
X 0

0 bn+1 cn+1 dnZ









=

[

0 −dn+1
Y −an+2dn+1

X 0
0 bn+1 cn+1 dnZ

]

=

[

0 −dn+1
Y −dn+1

Y an+1 0
0 bn+1 bn+1an+1 dnZ

]

=

[

−dn+1
Y 0

bn+1 dnZ

] [

0 idY n+1 an+1 0
0 0 0 idZn

]

= dnCb
◦ θn

for all n ∈ Z. Therefore, θ : C·
u −→ C·

b is a morphism of complexes.
Moreover, we have

θn ◦ ωn =

[

0 idY n+1 an+1 0
0 0 0 idZn

]









0 0
idY n+1 0

0 0
0 idZn









=

[

idY n+1 0
0 idZn

]

= idnCb

for all n ∈ Z. Therefore, θ ◦ ω = idCb
.

On the other hand, we have

ωn ◦ θn =









0 0
idY n+1 0

0 0
0 idZn









[

0 idY n+1 an+1 0
0 0 0 idZn

]

=









0 0 0 0
0 idY n+1 an+1 0
0 0 0 0
0 0 0 idnZ









for every n ∈ Z. If we define a graded morphism χ of C·
u of degree −1 by

χn =









0 0 idXn+1 0
0 0 0 0
0 0 0 0
0 0 0 0








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for all n ∈ Z, we have

dn−1
Cu

◦ χn + χn+1 ◦ dnCu
=









dn+1
X 0 0 0

−an+1 −dnY 0 0
idXn+1 0 −dnX 0

0 bn cn dn−1
Z

















0 0 idXn+1 0
0 0 0 0
0 0 0 0
0 0 0 0









+









0 0 idXn+2 0
0 0 0 0
0 0 0 0
0 0 0 0

















dn+2
X 0 0 0

−an+2 −dn+1
Y 0 0

idXn+2 0 −dn+1
X 0

0 bn+1 cn+1 dnZ









=









0 0 dn+1
X 0

0 0 −an+1 0
0 0 idXn+1 0
0 0 0 0









+









idXn+2 0 −dn+1
X 0

0 0 0 0
0 0 0 0
0 0 0 0









=









idXn+2 0 0 0
0 0 −an+1 0
0 0 idXn+1 0
0 0 0 0









for all n ∈ Z. Therefore,

dCu
◦ χ+ χ ◦ dCu

= idCu
− ω ◦ θ.

Hence, ω ◦ θ is homotopic to idCu
. This implies that ω induces an isomorphism in

K∗(A). �

Therefore,

X · f
−−−−→ Y ·

i
a−−−−→ C·

a

p
a−−−−→ T (X ·)

idX·





y

g





y





y

u





y

idT (X·)

X · h
−−−−→ Z ·

i
c−−−−→ C·

c

p
c−−−−→ T (X ·)

f





y

idZ·





y





y

v





y

T (f)

Y · g
−−−−→ Z ·

i
b−−−−→ C·

b

p
b−−−−→ T (Y ·)

i
a





y

i
c





y





y

idC·
b





y

i
a

C·
a

u
−−−−→ C·

c

v
−−−−→ C·

b

T (i
a
)◦p

b−−−−−−→ T (C·
a)

is an octahedral diagram inK∗(A). This clearly implies that (TR4) holds inK∗(A),
and completes the proof 2.1.1.

2.2. Opposite category of the homotopic category of complexes. Let
A be an additive category and Aopp its opposite category. Then, by the results of the
preceding section, the categories K(A) and K(Aopp) are triangulated categories.
Therefore, K(A)opp has the structure of a triangulated category as the opposite
triangulated category of K(A). In this section we want to establish the following
result.

2.2.1. Theorem. The functor ι : K(A)opp −→ K(Aopp) is an isomorphism of
triangulated categories.

Proof. We already established that ι is an isomorphism of additive categories
and that it commutes with the translation functors on K(A)opp and K(Aopp). It
remains to show that it maps distinguished triangles onto distinguished triangles,
i.e., that ι is an exact functor.
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Let

Z ·

[1]
h

����
��

��
��

��
�

X ·
f // Y ·

g

[[88888888888

be a distinguished triangle in K(A)opp. Then, by definition of the triangulated
structure on the opposite category

X ·

[1]

T (h)

����
��

��
��

��
�

Z ·
g // Y ·

f

\\88888888888

is a distinguished triangle in K(A). By turning this triangle we get that

T (Z ·)

[1]

−T (g)

����
��

��
��

��
�

Y ·
f // X ·

T (h)

]]<<<<<<<<<<<

is a distinguished triangle in K(A). Let a be a representative of the homotopy class
f . Then, by 2.1.3, we have the commutative diagram

Y · f
−−−−→ X · T (h)

−−−−→ T (Z)
−T (g)
−−−−→ T (Y ·)

id·Y





y

id·X





y





y

u





y

idT (X·)

Y · −−−−→
f

X · −−−−→
i
a

Ca −−−−→
p

a

T (Y ·)

where u : T (Z) −→ Ca is an isomorphism. By turning this diagram we get the
isomorphism

Z · g
−−−−→ Y · f

−−−−→ X · T (h)
−−−−→ T (Z)

T−1(u)





y

id·Y





y

id·X





y





y

u

T−1(C·
a) −−−−−−→

−T−1(p
a
)
Y · −−−−→

f
X · −−−−→

i
a

Ca

of distinguished triangles in K(A). Going back to K(A)opp, we get that

X · f
−−−−→ Y ·

−T−1(p
a
)

−−−−−−→ T−1(C·
a)

T−1(i
a
)

−−−−−→ T−1(X ·)

id·X





y

id·Y





y





y
T−1(u)





y

id
T−1(X·)

X · −−−−→
f

Y · −−−−→
g

Z · −−−−→
h

T−1(X ·)
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is an isomorphism of triangles. By applying ι to this isomorphism, we get the
isomorphism of triangles

ι(X ·)
ι(f)

−−−−→ ι(Y ·)
−T (ι(p

a
))

−−−−−−→ T (ι(C·
a))

T (ι(i
a
))

−−−−−→ T (ι(X ·))

idι(X·)





y

idι(Y ·)





y





y

T (ι(u))





y

idT (ι(X·))

ι(X ·) −−−−→
ι(f)

ι(Y ·) −−−−→
ι(g)

ι(Z ·) −−−−→
ι(h)

T (ι(X ·))

.

To show that the bottom triangle is distinguished, it is enough to show that the
top triangle is distinguished. On the other hand, by 1.5.1, we see that the following
diagram is commutative

ι(X ·)
−ι(f)
−−−−→ ι(Y ·)

i
−ι(a)

−−−−→ C·
−ι(a)

p
−ι(a)

−−−−→ T (ι(X ·))

idι(X·)





y

−idι(Y ·)





y





y

s





y

idT (ι(X·))

ι(X ·)
ι(f)

−−−−→ ι(Y ·)
−T (ι(p

a
))

−−−−−−→ T (ι(C·
a))

T (ι((i
a
))

−−−−−−→ T (ι(X ·))

.

since the top triangle is the image of a standard triangle corresponding to −ι(a)
in K(Aopp), it is distinguished in K(Aopp). This in turn implies that the bottom
triangle is distinguished in K(Aopp). Hence,

ι(Z ·)

[1]

ι(h)

����
��

��
��

��
�

ι(X ·)
ι(f) // ι(Y ·)

ι(g)

^^===========

is distinguished in K(Aopp). It follows that ι is an exact functor. �

2.3. Homotopic category of complexes for an abelian category. As-
sume now that A is an abelian category.

2.3.1. Theorem. The functor H0 : K∗(A) −→ A is a cohomological functor.

Proof. It is enough to show that for any distinguished triangle

Z ·

[1]
h

����
��

��
��

��
�

X ·
f // Y ·

g

[[88888888888

in K∗(A), the sequence

H0(Y ·)
H0(g)
−−−−→ H0(Z ·)

H0(h)
−−−−→ H0(T (X ·))
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is exact in A. Let a : X · −→ Y · be a morphism of complexes representing f and
let

C·
a

[1]

pa

����
��

��
��

��
�

X · a // Y ·

ia

[[88888888888

be the corresponding standard triangle. Then we have the isomorphism of triangles

X · f
−−−−→ Y · g

−−−−→ Z · h
−−−−→ T (X ·)

idX·





y

idY ·





y





y

u





y

idT (X·)

X · f
−−−−→ Y ·

i
a−−−−→ C·

a

p
a−−−−→ T (X ·)

in K∗(A), where the bottom triangle is the image of the above standard triangle
in K∗(A). This induces a commutative diagram

H0(Y ·)
H0(g)
−−−−→ H0(Z ·)

H0(h)
−−−−→ H0(T (X ·))

idH0(Y ·)





y
H0(u)





y





y

idH0(X·)

H0(Y ·)
H0(ia)
−−−−→ H0(C·

a)
H0(pa)
−−−−−→ H0(T (X ·))

in A, where the vertical arrows are isomorphisms. Therefore, it is enough to show
that the bottom row is exact. This is proved in 1.5.2. �

This result has the following reformulation.

2.3.2. Corollary. Let

Z ·

[1]
h

����
��

��
��

��
�

X ·
f // Y ·

g

[[88888888888

be a distinguished triangle in K∗(A). Then

· · · → Hp(X ·)
Hp(f)
−−−−→ Hp(Y ·)

Hp(g)
−−−−→ Hp(Z ·)

Hp(h)
−−−−→ Hp+1(X ·) → . . .

is exact in A.

This exact sequence is called the long exact sequence of cohomology of the
distinguished triangle

Z ·

[1]
h

����
��

��
��

��
�

X ·
f // Y ·.

g

\\88888888888

Let Aopp be the opposite category of A. Then the functors Hp : K(A) −→ A,
p ∈ Z, induce the functors from K(A)opp into Aopp which we denote by the same
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symbol. If

Z ·

[1]
h

����
��

��
��

��
�

X ·
f // Y ·

g

[[88888888888

is a distinguished triangle in K(A)opp,

X ·

[1]

T (h)

����
��

��
��

��
�

Z ·
g // Y ·

f

\\88888888888

is a distinguished triangle in K(A). Therefore, we have an exact sequence

· · · → Hp(Z ·)
Hp(g)
−−−−→ Hp(Y ·)

Hp(f)
−−−−→ Hp(X ·)

Hp+1(h)
−−−−−→ Hp+1(Z ·) → . . .

is exact in A. By interpreting it as an exact sequence in Aopp we get the long exact
sequence

· · · → Hp(X ·)
Hp(f)
−−−−→ Hp(Y ·)

Hp(g)
−−−−→ Hp(Z ·)

Hp(h)
−−−−→ Hp−1(X ·) → . . . ,

so we can view H0 as a cohomological functor from K(A)opp into Aopp. Combining
this with 2.2.1, we see that the isomorphism ι idetifies the cohomological functors
H0 : K(A)opp −→ Aopp and H0 : K(Aopp) −→ Aopp. More generally, we have the
following commutative diagram of functors

K(A)opp
ι //

H−p

&&MMMMMMMMMM
K(Aopp)

Hp

��
Aopp

for any p ∈ Z.

3. Derived categories

3.1. Quasiisomorphisms. Let A be an abelian category. Denote by K∗(A)
the corresponding homotopic category of complexes with triangulated structure
considered in the last section.

A morphism f : X · −→ Y · in C∗(A) is called a quasiisomorphism if Hp(f) :
Hp(X ·) −→ Hp(Y ·) are isomorphisms for all p ∈ Z.

If f : X · −→ Y · is a quasiisomorphism, and g : X · −→ Y · is homotopic to f , g is
also a quasiisomorphism. Therefore, by abuse of language, we say that a morphism
in K∗(A) is a quasiisomorphism if all of its representatives are quasiisomorphisms.

Denote by S∗ the class of all quasiisomorphisms in K∗(A).
An object X · in K∗(A) is called acyclic if Hp(X ·) = 0 for all p ∈ Z.

3.1.1. Lemma. Let f : X · −→ Y · be a morphism in K∗(A). Then the following
conditions are equivalent:

(i) The morphism f is a quasiisomorphism.
(ii) The cone of f is acyclic.
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Proof. Let

Z ·

[1]

����
��

��
��

��
�

X ·
f // Y ·

[[88888888888

be a distinguished triangle based on f . By 2.3.2, we have the long exact sequence
of cohomology

· · · → Hp(X ·)
Hp(f)
−−−−→ Hp(Y ·) → Hp(Z ·) → Hp+1(X ·)

Hp+1(f)
−−−−−→ Hp+1(Y ·) → . . . .

Hence, if f is a quasiisomorphism, Hp(f) and Hp+1(f) are isomorphisms and
Hp(Z ·) = 0 for all p ∈ Z. Therefore Z · is acyclic.

Conversely, if Z · is acyclic, from the same long exact sequence

· · · → Hp(Z ·) → Hp(X ·)
Hp(f)
−−−−→ Hp(Y ·) → Hp(Z ·) → . . .

we conclude that Hp(f) is an isomorphism for all p ∈ Z, i.e., f is a quasiisomor-
phism. �

3.1.2. Proposition. The class S∗ of all quasiisomorphisms in K∗(A) is a
localizing class compatible with the triangulation.

Proof. First we show that S∗ is a localizing class.
First, if s and t are quasiisomorphisms, Hp(s) and Hp(t) are isomorphisms for

all p ∈ Z. This implies that Hp(s ◦ t) = Hp(s) ◦ Hp(t) are isomorphisms for all
p ∈ Z, i.e., s ◦ t is a quasiisomorphism.

Clearly, for any X ·, the identity morphism idX· is a quasiisomorphism.
Assume that we have a diagram of the form

Z ·





y

f

X · s
−−−−→ Y ·

.

Then we can construct a distinguished triangle

U ·

[1]

p

����
��

��
��

��
�

X · s // Y ·

i

[[88888888888

based on s. By 3.1.1, since s is a quasiisomorphism, U · is acyclic. By turning this
triangle, we get the distinguished triangle

T (X ·)

[1]

−T (s)

����
��

��
��

��
�

Y · i // U ·.

p

^^===========
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Also we can consider a distinguished triangle based on i ◦ f

V ·

[1]
u

����
��

��
��

��
�

Z ·
i◦f // U ·

[[88888888888

and the commutative diagram

Z · i◦f
−−−−→ U · −−−−→ V · u

−−−−→ T (Z ·)

f





y

idU·





y





y

T (f)

Y · −−−−→
i

U · −−−−→
p

T (X ·) −−−−→
−T (s)

T (Y ·)

.

By (TR3), we can complete this diagram to a morphism

Z · i◦f
−−−−→ U · −−−−→ V · u

−−−−→ T (Z ·)

f





y

idU·





y





y

v





y

T (f)

Y · −−−−→
i

U · −−−−→
p

T (X ·) −−−−→
−T (s)

T (Y ·)

of distinguished triangles. Since U · is acyclic, by 3.1.1, we conclude that u is a
quasiisomorphism. Therefore, if we apply the inverse of the translation functor to
the last commutative rectangle and put

W · = V ·[−1], t = u[−1] and g = −v[−1],

we get the commutative diagram

W · t
−−−−→ Z ·

g





y





y

f

X · −−−−→
s

Y ·

where t and s are in S.
Analogously, if we have a diagram of the form

X · s
−−−−→ Y ·

f





y

Z ·

,

we can construct a distinguished triangle

U ·

[1]

p

����
��

��
��

��
�

X · s // Y ·

i

[[88888888888
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based on s. By 3.1.1, since s is a quasiisomorphism, U · is acyclic. By turning this
distinguished triangle, we get the distinguished triangle

Y ·

[1]

i

����
��

��
��

��
�

U ·[−1]
−p[−1]

// X ·.

s

\\88888888888

On the other hand, we can consider the distinguished triangle based on −f ◦p[−1] :
U ·[−1] −→ Z,

V ·

[1]

i

����
��

��
��

��
�

U ·[−1]
−f◦p[−1]

// Z ·

t

[[77777777777

and the commutative diagram

U ·[−1]
−p[−1]
−−−−→ X · s

−−−−→ Y · i
−−−−→ U ·

idU·[−1]





y

f





y





y

idU·

U ·[−1] −−−−−−→
−f◦p[−1]

Z · −−−−→
t

V · −−−−→ U ·

.

This diagram can be completed to a morphism of distinguished triangles

U ·[−1]
−p[−1]
−−−−→ X · s

−−−−→ Y · i
−−−−→ U ·

idU·[−1]





y

f





y





y

g





y

idU·

U ·[−1] −−−−−−→
−f◦p[−1]

Z · −−−−→
t

V · −−−−→ U ·

.

By 3.1.1, since U · is acyclic, we see from the second distinguished triangle that t is
a quasiisomorphism. Therefore, the middle square completes the original diagram
to

X · s
−−−−→ Y ·

f





y





y

g

Z · −−−−→
t

V ·

,

Now we want to show that for two morphisms f, g : X · −→ Y · we have s ◦ f =
s ◦ g for some s in S∗, if and only if there exists t in S∗ such that f ◦ t = g ◦ t.
Clearly, by replacing the morphisms with their difference, it is enough to show that
s ◦ f = 0 for some s in S∗ is equivalent to f ◦ t = 0 for some t in S∗.

If s ◦ f = 0, we can consider the diagram

X · −−−−→ 0 −−−−→ T (X ·)
−idT (X·)
−−−−−−→ T (X ·)

f





y





y





y

T (f)

Y · −−−−→
s

Z · −−−−→
i

U · −−−−→
p

T (Y ·)
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where the first row is the distinguished triangle obtained by turning the distin-
guished triangle based on the identity morphism on X · and the second row is the
distinguished triangle based on s. By (TR3), this diagram can be completed to a
morphism of distinguished triangles

X · −−−−→ 0 −−−−→ T (X ·)
−idT (X·)
−−−−−−→ T (X ·)

f





y





y





y

−v





y

T (f)

Y · −−−−→
s

Z · −−−−→
i

U · −−−−→
p

T (Y ·)

.

This implies that f = p[−1] ◦ v[−1].
Since s is a quasiisomorphism, U · is acyclic. Therefore, if we consider the

distinguished triangle

V ·

[1]
t

����
��

��
��

��
�

X ·

v[−1]
// U ·[−1]

^^<<<<<<<<<<<

based on v[−1], we see that t is a quasiisomorphism by 3.1.1. Moreover, by 1.3.1,
we have v[−1] ◦ t = 0. This in turn implies that

f ◦ t = p[−1] ◦ v[−1] ◦ t = 0.

Conversely, if f ◦ t = 0, we can consider the diagram

X · t
−−−−→ Y · u

−−−−→ U · −−−−→ T (X ·)




y

f





y





y

0 −−−−→ Z · −−−−→
id

Z · −−−−→ 0

the first row is the distinguished triangle based on t and the second row is the
distinguished triangle obtained by turning the distinguished triangle based on the
identity morphism on Z ·. By (TR3), this diagram can be completed to a morphism
of distinguished triangles

X · t
−−−−→ Y · u

−−−−→ V · −−−−→ T (X ·)




y

f





y





y

v





y

0 −−−−→ Z · −−−−→
id

Z · −−−−→ 0

.

Hence, we have f = v ◦ u.
Since t is a quasiisomorphism, V · is acyclic. If we consider the distinguished

triangle

W ·

[1]

����
��

��
��

��
�

V ·
v

// Z ·

s

\\88888888888
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based on v, we see by 3.1.1 that s is a quasiisomorphism. Moreover, by 1.3.1,
s ◦ v = 0. This implies that

s ◦ f = s ◦ v ◦ u = 0.

Therefore, S is a localizing class.
Finally, we have to check that S∗ is compatible with triangulation. Obviously,

S∗ is invariant under the translation functor T .
On the other hand, consider the morphism

X · −−−−→ Y · −−−−→ Z · −−−−→ T (X ·)

s





y
t





y





y

u





y

T (s)

X ·
1 −−−−→ Y ·

1 −−−−→ Z ·
1 −−−−→ T (X ·

1)

of distinguished triangles where s and t are quasiisomorphisms. For any p ∈ Z, this
leads to a commutative diagram

Hp(X ·) −−−−→ Hp(Y ·) −−−−→ Hp(Z ·) −−−−→ Hp+1(X ·) −−−−→ Hp+1(Y ·)

Hp(s)





y

Hp(t)





y

Hp(u)





y





y
Hp+1(s)





y
Hp+1(t)

Hp(X ·
1) −−−−→ Hp(Y ·

1 ) −−−−→ Hp(Z ·
1) −−−−→ Hp+1(X ·

1) −−−−→ Hp+1(Y ·
1 )

where Hp(s), Hp+1(s), Hp(t) and Hp+1(t) are isomorphisms. Therefore, by the
five lemma, Hp(u) is an isomorphism. Since p ∈ Z is arbitrary, this in turn implies
that u is a quasiisomorphism. �

3.2. Derived categories. Let A be an abelian category, C∗(A) the corre-
sponding category of complexes and K∗(A) the homotopic category of complexes.
By 2.1.1, K∗(A) is a triangulated category.

Let S̃∗ be the class of all quasiisomorphisms in C∗(A). Also, let S∗ be class
of quasiisomorphisms in K∗(A). Then, by 3.1.2, S∗ is a localizing class compatible
with the triangulation of K∗(A). The localization of the category K∗(A) with
respect to the class S∗ of all quasiisomorphisms is denoted by D∗(A) and called
the derived category of A.

By definition, the cohomological functor H0 : K∗(A) −→ A maps quasiiso-
morphisms in K∗(A) into isomorphisms in A. Therefore, by 1.6.4, it induces a
cohomological functor from D∗(A) into A. By abuse of notation, we denote it also
by H0.

More explicitly, let

Z ·

[1]
h

����
��

��
��

��
�

X ·
f // Y ·

g

[[88888888888

be a distinguished triangle in D∗(A). Then

· · · → Hp(X ·)
Hp(f)
−−−−→ Hp(Y ·)

Hp(g)
−−−−→ Hp(Z ·)

Hp(h)
−−−−→ Hp+1(X ·) → . . .
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is exact in A. This exact sequence is called the long exact sequence of cohomology
of the distinguished triangle

Z ·

[1]
h

����
��

��
��

��
�

X ·
f // Y ·.

g

\\88888888888

Clearly, we have the canonical functors C∗(A) −→ K∗(A) −→ D∗(A). More-

over, any morphism s ∈ S̃∗ induces an isomorphism in D∗(A). By 1.1.1 in Ch. 1,

the above functor factors through the localization C∗(A)[S̃∗−1], i.e., we have the
following commutative diagram

C∗(A) −−−−→ K∗(A)

Q̃





y





y

Q

C∗(A)[S̃∗−1]
ι

−−−−→ D∗(A)

.

3.2.1. Theorem. The functor ι : C∗(A)[S̃∗−1] −→ D∗(A) is an isomorphism
of categories.

Proof. Clearly, ι is an identity on objects. Assume that X · and Y · are two
objects in C∗(A) and f and g two homotopic morphisms of X · into Y ·. We claim

that Q̃(f) = Q̃(g).
First, from the proof of 1.6.1, applied to the diagram

X · f
−−−−→ Y ·

idX·





y





y

idY ·

X · g
−−−−→ Y ·

which commutes up to homotopy, we see that there exists a morphism u : C·
f −→ C·

g

such that the diagram

Y ·
if //

ig

��

C·
f

u
��~~

~~
~~

~

C·
g

commutes in C∗(A), and

un =

[

idXn+1 0
−hn+1 idY n

]

for any n ∈ Z. Therefore, by applying 1.6.1 again to the commutative diagram

Y · if
−−−−→ C·

f

idY ·





y





y

u

Y · ig
−−−−→ C·

g
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we see that there exists a morphism v : D·
f −→ D·

g such that the diagram

D·
f

pif //

v

��

Y ·

D·
g

pig

??~~~~~~~~

commutes in C∗(A), and

vn =





idY n+1 0 0
0 idXn+1 0
0 −hn+1 idY n





for any n ∈ Z. This implies that

βng ◦ vn =
[

0 idXn+1 0
]





idY n+1 0 0
0 idXn+1 0
0 −hn+1 idY n



 =
[

0 idXn+1 0
]

= βnf ,

i.e., βg ◦ v = βf in C∗(A).
This in turn implies that βg[−1] ◦ v[−1] = βf [−1] and

Q̃(βg[−1]) ◦ Q̃(v[−1]) = Q̃(βf [−1]).

By 1.6.2, βf [−1] : D·
f [−1] −→ X · and βg[−1] : D·

g[−1] −→ X · are isomorphisms in
the homotopic category of complexes. Therefore, they are also quasiisomorphisms.
It follows that Q̃(βf [−1]) and Q̃(βg[−1]) are isomorphisms in C∗(A)[S̃−1]. By the
proof of 1.6.2, we have βf [−1] ◦ αf [−1] = idX· and βg[−1] ◦ αg[−1] = idX· . This
implies that

Q̃(βf [−1]) ◦ Q̃(αf [−1]) = idX· and Q̃(βg[−1]) ◦ Q̃(αg[−1]) = idX·

and finally

Q̃(αf [−1]) = Q̃(βf [−1])−1 and Q̃(αg[−1]) = Q̃(βg[−1])−1.

By the above formulas, it follows that

Q̃(v[−1]) ◦ Q̃(αf [−1]) = Q̃(αg[−1]).

As in the proof of 1.6.3, we see that the diagram

T (X ·)
−T (f) //

αf

��

T (Y ·)

D·
f

pif

;;vvvvvvvvv

commutes in C∗(A). By applying T−1 and changing signs of morphisms, we get
the commutative diagram

X ·
f //

αf [−1]

��

Y ·

D·
f [−1]

−pif
[−1]

;;xxxxxxxx

in C∗(A). Hence, we have the factorization f = −pif [−1] ◦ αf [−1].
Analogously, we have g = −pig [−1] ◦ αg[−1].
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This implies that

Q̃(f) = −Q̃(pif [−1]) ◦ Q̃(αf [−1])

= −Q̃(pig [−1]) ◦ Q̃(v[−1]) ◦ Q̃(αf [−1]) = −Q̃(pig [−1]) ◦ Q̃(αg[−1]) = Q̃(g).

Therefore, the natural quotient functor Q̃ : C∗(A) −→ C∗(A)[S̃∗−1] factors
through K∗(A), i.e., we get the following diagram of functors:

C∗(A) //

Q̃

��

K∗(A)

Q

��

ϕ

xxppppppppppp

C∗(A)[S̃−1] ι
// D∗(A) ,

where the square and the left triangle are commutative. Since the top arrow is
identity on objects and surjective on morphisms, the right triangle is also commu-
tative. Moreover, ϕ maps quasiisomorphisms into isomorphisms, so it also factors
through D∗(A), i.e., we have the commutative diagram

K∗(A)

Q

��

ϕ

&&MMMMMMMMMM

Q // D∗(A)

D∗(A)
ψ
// C∗(A)[S̃−1].

ι

OO

From the universal property we conclude that ι◦ψ = id. Putting these two diagrams
together we get the commutative diagram:

C∗(A)

Q̃

��

// K∗(A)

ϕ

xxrrrrrrrrrr

Q

��

ϕ

&&MMMMMMMMMM

Q // D∗(A)

C∗(A)[S̃−1] ι
// D∗(A)

ψ
// C∗(A)[S̃−1].

ι

OO

Applying the universal property again, this time to C·(A)[S̃−∗1], we conclude that
ψ ◦ ι = id. �

3.3. Derived category of the opposite category. Let Aopp be the opposite
category of A. Then we have the isomorphism of categories ι : K(A)opp −→
K(Aopp). Since Hp ◦ ι = H−p for any p ∈ Z, we see that quasiisomorphisms in
K(A)opp correspond to quasiisomorphisms in K(Aopp). Therefore, if we consider
the commutative diagram of functors

K(A)opp

β &&LLLLLLLLLL
ι // K(Aopp)

Q

��
D(Aopp)

we see that β maps quasiisomorphisms into isomorphisms. By 1.6.2, it follows that
there exists a unique exact functor γ : K(A)opp[S−1] −→ D(Aopp) such that the
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diagram

K(A)opp

�� β ''OOOOOOOOOOO
ι // K(Aopp)

Q

��
K(A)opp[S−1] γ

// D(Aopp)

commutes and γ is an isomorphism of triangulated categories. On the other hand,
by 1.6.3, the localization K(A)opp[S−1] is isomorphic to D(A)opp. Hence we have
a natural isomorphism of D(A)opp into D(Aopp), which by abuse of notation, we
denote also by ι.

3.3.1. Theorem. The functor ι : D(A)opp −→ D(Aopp) is an isomorphism of
triangulated categories.

3.4. Truncation functors. Let A be an abelian category. For a complex A·

of A-objects and n ∈ Z we define the complex τ≤n(A
·) as the subcomplex of A·

given by

τ≤n(A·)p =











Ap, if p < n

ker dn, if p = n

0, if p > n.

Let i : τ≤n(A
·) −→ A· be the canonical inclusion morphism. The following result

follows immediately from the definition.

3.4.1. Lemma. The morphism Hp(i) : Hp(τ≤n(A·)) −→ Hp(A·) is an isomor-
phism for p ≤ n and 0 for p > n.

Let B· be another such complex and f : A· −→ B· a morphism of complexes.
Then dnfn = fn+1dn and therefore fn(ker dn) ⊂ ker dn. It follows that f · induces a
morphism of complexes τ≤n(f) : τ≤n(A

·) −→ τ≤n(B·). Therefore, τ≤n : C(A) −→
C(A) is an additive functor.

Assume that f : A· −→ B· and g : A· −→ B· are homotopic, i.e., f − g =
dh+ hd. Then τ≤n(f) and τ≤n(g) are also homotopic with the homotopy given by
restriction of h to τ≤n(A

·), i.e., τ≤n induces a functor τ≤n : K(A) −→ K(A).
Clearly, we have

Hp(τ≤n(f)) =

{

Hp(f), if p ≤ n

0, if p > n.

Therefore, in combination with 3.4.1, we see that if f : A· −→ B· is a quasiisomor-
phism, τ≤n(f) is also a quasiisomorphism.

It follows that τ≤n induces a functor τ≤n : D(A) −→ D(A) which is called the
truncation functor τ≤n.

Consider the complex τ≥n(A
·) defined as a quotient complex of A·

τ≥n(A·)p =











0, if p < n

coker dn−1, if p = n

Ap, if p > n.

Let q : A· −→ τ≥n(A
·) be the canonical projection morphism.

The following result follows immediately from the definition.
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3.4.2. Lemma. The morphism Hp(q) : Hp(A·) −→ Hp(τ≥n(A·)) is an isomor-
phism for p ≥ n and 0 for p < n.

Let B· be another such complex and f : A· −→ B· a morphism of complexes.
Then dn−1fn−1 = fndn−1 and therefore fn(im dn−1) ⊂ im dn−1. It follows that
f · induces a morphism of complexes τ≥n(f) : τ≥n(A

·) −→ τ≥n(B·). Therefore,
τ≥n : C(A) −→ C(A) is an additive functor.

Assume that f : A· −→ B· and g : A· −→ B· are homotopic, i.e., f − g =
dh+ hd. Then τ≥n(f) and τ≥n(g) are also homotopic with the homotopy induced
by h to τ≥n(A

·), i.e., τ≥n induces a functor τ≥n : K(A) −→ K(A).
Clearly, we have

Hp(τ≥n(f)) =

{

Hp(f), if p ≥ n

0, if p < n.

Therefore, in combination with 3.4.2, we see that if f : A· −→ B· is a quasiisomor-
phism, τ≥n(f) is also a quasiisomorphism.

It follows that τ≥n induces a functor τ≥n : D(A) −→ D(A) which is called the
truncation functor τ≥n.

The natural functor K−(A) −→ K(A) induces the functor D−(A) −→ D(A).
Moreover, the localizing class S− consists of all morphisms in S which are mor-
phisms in K−(A). Let X · and Y · be two complexes. Assume that X · is bounded
from above. Let s : Y · −→ X · be a quasiisomorphism. Since X · is bounded from
above, there exists n ∈ Z such that Hp(X ·) = 0 for p > n. Since s is a quasiisomor-
phism, we must have Hp(Y ·) = 0 for p > n. Therefore, by 3.4.1, i : τ≤n(Y

·) −→ Y ·

is a quasiisomorphism. It follows that s◦ i : τ≤n(Y
·) −→ X · is a quasiisomorphism.

Hence, 1.4.1 in Ch. 1 implies the following result.

3.4.3. Proposition. The natural functor D−(A) −→ D(A) is fully faithful,
i.e., D−(A) is a full subcategory of D(A).

Analogously, the natural functorK+(A) −→ K(A) induces the functorD+(A) −→
D(A). Moreover, the localizing class S+ consists of all morphisms in S which are
morphisms inK+(A). LetX · and Y · be two complexes. Assume thatX · is bounded
from below. Let s : X · −→ Y · be a quasiisomorphism. Since X · is bounded from
below, there exists n ∈ Z such that Hp(X ·) = 0 for p < n. Since s is a quasiisomor-
phism, we must have Hp(Y ·) = 0 for p < n. Therefore, by 3.4.2, q : Y · −→ τ≥n(Y

·)
is a quasiisomorphism. It follows that q ◦s : X · −→ τ≥n(Y

·) is a quasiisomorphism.
Hence, 1.4.2 in Ch. 1 implies the following result.

3.4.4. Proposition. The natural functor D+(A) −→ D(A) is fully faithful,
i.e., D+(A) is a full subcategory of D(A).

Finally, the natural functor Kb(A) −→ K+(A) induces the functor Db(A) −→
D+(A). Moreover, the localizing class Sb consists of all morphisms in S+ which are
morphisms in Kb(A). Let X · and Y · be two complexes. Assume that X · is bounded
and that Y · is bounded from below. Let s : Y · −→ X · be a quasiisomorphism.
Since X · is bounded, there exists n ∈ Z such that Hp(X ·) = 0 for p > n. Since
s is a quasiisomorphism, we must have Hp(Y ·) = 0 for p > n. Therefore, by
3.4.1, i : τ≤n(Y ·) −→ Y · is a quasiisomorphism. Moreover, τ≤n(Y

·) is a bounded
complex. It follows that s ◦ i : τ≤n(Y

·) −→ X · is a quasiisomorphism. Hence, 1.4.1
in Ch. 1 implies the that the functor Db(A) −→ D+(A) is fully faithful. By 3.4.4
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we see that the natural functor Db(A) −→ D(A) is fully faithful, i.e., Db(A) is a
full subcategory of D(A). This finally proves the following result.

3.4.5. Proposition. The natural functor Db(A) −→ D(A) is fully faithful,
i.e., Db(A) is a full subcategory of D(A) equal to D−(A) ∩D+(A).

Let Aopp be the opposite category of A. From the construction of the isomor-
phism ι : D(A)opp −→ D(Aopp) we see that the following result holds.

3.4.6. Theorem. The isomorphism ι : D(A)opp −→ D(Aopp) induces iso-
morphisms ι : D+(A)opp −→ D−(Aopp), ι : D−(A)opp −→ D+(Aopp) and ι :
Db(A)opp −→ Db(Aopp) of triangulated categories.

Clearly, the truncation functors τ≤n and τ≥n preserve the full subcategories
Db(A), D+(A) and D−(A) of D(A). Therefore, they induce corresponding trun-
cation functors in these categories which we will denote by the same notation.

We denote by D : A −→ D∗(A) the natural functor which is the composition
of the functor C : A −→ K∗(A) and the quotient functor Q : K∗(A) −→ D∗(A).

3.4.7. Theorem. The functor D : A −→ D(A) is fully faithful.

Proof. Let M and N be objects in A. Let F : M −→ N be a morphism in A.
Then, H0(D(F )) = F and the mapping HomA(M,N) −→ HomD(A)(D(M), D(N))
is injective.

Now, let ϕ : D(M) −→ D(N). We can represent it by a roof

X ·

s
∼

{{xxxxxxxx
f

""F
FF

FF
FF

F

D(M) D(N)

where s : X · −→ D(M) is a quasiisomorphism. It follows that Hp(X ·) = 0 for
p 6= 0. Therefore, by 3.4.1, i : τ≤0(X

·) −→ X · is a quasiisomorphism. If we put
Y · = τ≤0(X

·), the diagram

X ·

s
∼

{{xxxxxxxx
f

""F
FF

FF
FF

F

D(M) Y ·

∼i

OO

idY ·

��

D(N)

Y ·

f◦i

<<xxxxxxxx
s◦i

∼

ccFFFFFFFF

is commutative. This implies that ϕ can be represented by a roof where X · satisfies
Xp = 0 for p > 0.

Hence, we have the commutative diagram

. . . −−−−→ X−1 −−−−→ X0 −−−−→ 0 −−−−→ . . .




y





yF 0





y

. . . −−−−→ 0 −−−−→ N −−−−→ 0 −−−−→ . . .

for a representative F of the homotopy class f . Clearly, all homotopies from X ·

to D(N) are zero. So, this representative is unique. In addition, F 0 vanishes on
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im d−1. Hence F 0 factors through H0(F ) : H0(X ·) −→ N and H0(F ) = H0(f) =
H0(ϕ) ◦H0(s). Therefore, the diagram

X ·

s
∼

zzuuuuuuuuu
f

$$I
IIIIIIII

D(M) X ·

idX·

OO

s∼

��

D(N)

D(M)

H0(ϕ)

::vvvvvvvvvidD(M)

ddIIIIIIIII

is commutative. This implies that ϕ = D(H0(ϕ)). Hence, the homomorphism
HomA(M,N) −→ HomD(A)(D(M), D(N)) is an surjective. �

Therefore, the full subcategory of D∗(A) consisting of all complexes X · such
that Xp = 0 for p 6= 0 is isomorphic to A.

3.5. Short exact sequences and distinguished triangles. For an abelian
category A, the category of complexes C∗(A) is also abelian.

Let

0 −−−−→ X · f
−−−−→ Y · g

−−−−→ Z · −−−−→ 0
be an exact sequence in C∗(A). We can also consider the standard triangle

C·
f

[1]

pf

����
��

��
��

��
�

X ·
f // Y ·

if

[[7777777777

attached to the monomorphism f : X · −→ Y ·. Let m : T (X ·) ⊕ Y · −→ Z ·

be the graded morphism which is the composition of the natural projection q :
T (X ·) ⊕ Y · −→ Y · with g : Y · −→ Z ·. Then we have

mn+1 ◦ dnCf
=

[

0 gn+1
]

[

−dn+1
X 0

fn+1 dnY

]

=
[

gn+1fn+1 gn+1dnY
]

=
[

0 dnZg
n
]

= dnZ ◦
[

0 gn
]

= dnZ ◦mn

for any n ∈ Z, i.e., m is a morphism of complexes.
Clearly, we have

m ◦ if = g.

On the other hand, by 1.6.1, to the commutative diagram

X · idX−−−−→ X ·

idX





y





y

f

X · −−−−→
f

Y ·

we attach a morphism of complexes w : C·
idX

−→ C·
f given by

wn =

[

idXn+1 0
0 fn

]

.
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This morphism is evidently a monomorphism and

imwn = Xn+1 ⊕ im fn = Xn+1 ⊕ ker gn = kermn

for any n ∈ Z. Hence,

0 −−−−→ C·
idX

w
−−−−→ C·

f
m

−−−−→ Z · −−−−→ 0

is an exact sequence in C∗(A).
By 2.1.2, C·

idX
= 0 in K∗(A), hence we have Hp(C·

idX
) = 0 for any p ∈ Z.

Therefore, from the long exact sequence of the cohomology attached to the above
short exact sequence, we see that Hp(m) : Hp(C·

f ) −→ Hp(Z ·) is an isomorphism
for all p ∈ Z, i.e., we have the following result.

3.5.1. Lemma. The morphism m : C·
f −→ Z · is a quasiisomorphism.

In particular, the homotopy class ofm : C·
f −→ Z · is an isomorphism in D∗(A).

This leads to the following result.

3.5.2. Proposition. Let

0 −−−−→ X · f
−−−−→ Y · g

−−−−→ Z · −−−−→ 0

be an exact sequence in C(A). Then it determines a distinguished triangle

Z ·

[1]

��




















X ·

f
// Y ·

g

YY444444444444

in D(A).

Proof. By 3.5.1, the diagram

X ·
f

−−−−→ Y ·
i
f

−−−−→ C·
f

p
f

−−−−→ T (X ·)

idX





y

idY





y





y

m





y

idT (X·)

X · −−−−→
f

Y · −−−−→
g

Z · −−−−→ T (X ·)

is an isomorphism of triangles in D∗(A). Since the top triangle is distinguished,
the lower one is also distinguished. �

We shall need later a result dual to 3.5.1. Let

0 −−−−→ X · f
−−−−→ Y · g

−−−−→ Z · −−−−→ 0

be an exact sequence in C∗(A). We can also consider the standard triangle

C·
g

[1]

pg

����
��

��
��

��
�

Y ·
g // Z ·

ig

[[7777777777
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attached to the monomorphism g : Y · −→ Z ·. Let k : X · −→ Y · ⊕ T−1(Z ·) =
C·
g[−1] be the graded morphism which is the composition of f : X · −→ Y · with

the natural injection i : Y · −→ Y · ⊕ T−1(Z ·). Then we have

dnCg[−1] ◦ k
n =

[

dnY 0
−gn −dn−1

Z

] [

fn

0

]

=

[

dnY f
n

−gnfn

]

=

[

fn+1dnX
0

]

=

[

fn+1

0

]

dnX = kn+1 ◦ dnX

for any n ∈ Z, i.e., k is a morphism of complexes.
Clearly, we have

pg[−1] ◦ k = f.

On the other hand, by 1.6.1, to the commutative diagram

Y · g
−−−−→ Z ·

g





y





y

idZ

Z · −−−−→
idZ

Z ·

we attach a morphism of complexes w : C·
g −→ C·

idZ
given by

wn =

[

gn+1 0
0 idnZ

]

.

This morphism is evidently an epimorphism and

kerwn = ker gn+1 ⊕ 0 = im fn+1 ⊕ 0 = im kn+1

for any n ∈ Z. Hence,

0 −−−−→ X · k
−−−−→ C·

g[−1]
w[−1]
−−−−→ C·

idZ
[−1] −−−−→ 0

is an exact sequence in C∗(A).
By 2.1.2, C·

idZ
= 0 in K∗(A), hence we have Hp(C·

idZ
) = 0 for any p ∈

Z. Therefore, from the long exact sequence of the cohomology attached to the
above short exact sequence, we see that Hp(k) : Hp(X ·) −→ Hp(C·

g [−1]) is an
isomorphism for all p ∈ Z, i.e., we have the following result.

3.5.3. Lemma. The morphism k : X · −→ Cg[−1]· is a quasiisomorphism.

3.6. The distinguished triangle of truncations. Let X · be a complex of
A-objects and n ∈ Z. Consider the exact sequence of complexes

0 −→ τ≤n(X
·) −→ X · −→ Qi −→ 0.

Clearly, we have

Qi =











0, if p < n

coimdn, if p = n

Xp, if p > n.

Therefore, Hp(Q·) = 0 for p ≤ n and Hp(Q·) = Hp(X ·) for p > n. If we consider
the canonical projection Q· −→ τ≥n+1(Q

·) = τ≥n+1(X
·), i.e., the commutative
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diagram

. . . −−−−→ 0 −−−−→ coim dn −−−−→ Xn+1 −−−−→ Xn+2 −−−−→ . . .




y





y





y





y
id

. . . −−−−→ 0 −−−−→ 0 −−−−→ cokerdn −−−−→ Xn+2 −−−−→ . . .

we see that this morphism is a quasiisomorphism.
By 3.5.2 we have a distinguished triangle

Q·

[1]

����
��

��
��

��
��

τ≤n(X
·)

i
// X ·

[[77777777777

in D(A). By the above discussion, Q· is isomorphic to τ≥n+1(X
·) and this leads to

a distinguished triangle

τ≥n+1(X
·)

[1]

||xxxxxxxxxxxxx

τ≤n(X ·)
i

// X ·

q

``@@@@@@@@@@@@@

This finally leads to the existence part of the following result.

3.6.1. Proposition. For any complex X · and n ∈ Z there exists a unique
morphism h : τ≥n+1(X

·) −→ τ≤n(X
·)[1] such that

τ≥n+1(X
·)

[1]

h

~~}}
}}

}}
}}

}}
}}

}}
}

τ≤n(X ·)
i

// X ·

q

]];;;;;;;;;;;;;;

is a distinguished triangle in D(A).

It remains to prove the uniqueness of h. It is a consequence of 1.4.6 and the
following lemma.

3.6.2. Lemma. Let X · and Y · be two complexes such that Xp = 0 for p ≥ n
and Y p = 0 for p < n. Then HomD(A)(X

·, Y ·) = 0.

Proof. Let ϕ be an element of HomD(A)(X
·, Y ·). Assume that it is repre-

sented by a roof

Z ·

s
∼

}}||
||

||
|| f

  B
BB

BB
BB

B

X · Y ·

.
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Since Hp(X ·) = 0 for p ≥ n and s is a quasiisomorphism, we see that Hp(Z ·) = 0
for all p ≥ n. It follows that i : τ≤n−1(Z

·) −→ Z · is a quasiisomorphism. Therefore,
if we put U · = τ≤n−1(Z

·), we have the following diagram

Z ·

s
∼

}}||
||

||
|| f

!!B
BB

BB
BB

B

X · U ·

i∼

OO

idU

��

Y ·

U ·

f◦i

==||||||||

∼

s◦i

aaBBBBBBBB

which is commutative. It shows that ϕ can be represented by a roof satisfying
Zp = 0 for p ≥ n. In this case, f must be zero. �

3.7. Exact sequences and distinguished triangles. Let A be an abelian
category. Let

0 −−−−→ L
f

−−−−→ M
g

−−−−→ N −−−−→ 0
be a short exact sequence in A. Then, by 3.5.2, we have an distinguished triangle

D(N)

[1]

����
��

��
��

��
��

D(M)
D(f)

// D(N)

D(g)

__????????????

in D∗(A). In this case, we have a stronger result.

3.7.1. Proposition. There exists a unique morphism h such that

D(N)

h

[1]

����
��

��
��

��
��

D(M)
D(f)

// D(N)

D(g)

__????????????

is distinguished in D∗(A).

Proof. The uniqueness of h follows from 1.4.6 in Ch. 2 and 3.6.2. �

3.8. Examples. In this section we discuss several examples which illustrates
some nonobvious properties of derived categories.

First we show that a nontrivial object of a homotopic category of complexes
can become trivial in the corresponding derived category.

Let Ab be the category of abelian groups. Let D(Ab) be its derived category.
Let X · be the complex

. . . −−−−→ 0 −−−−→ Z
f

−−−−→ Z
g

−−−−→ Z/2Z −−−−→ 0 −−−−→ . . .

where f(1) = 2 and g(1) = 1. Then this complex is acyclic, i.e., Hp(X ·) = 0 for
all p ∈ Z. Hence any morphism in HomK(Ab)(X

·, X ·) is a quasiisomorphism. This
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implies that 0 is an isomorphism in HomD(Ab)(X
·, X ·), i.e., X · is a zero object in

D(Ab). In particular, idX· = 0 in D(Ab).
On the other hand, X · is different from 0 in K(Ab). To see this consider

an element G of HomC(Ab)(X
·, X ·) which is homotopic to zero. Then we have a

diagram

. . . // 0 // Z
f //

G0

��

Z
g //

G1

��
h1����

��
��

��
Z/2Z //

G2

��h2
}}{{

{{
{{

{{
0 // . . .

. . . // 0 // Z
f

// Z g
// Z/2Z // 0 // . . .

and

h ◦ d+ d ◦ h = G.

Clearly, we must have h2 = 0. Hence G = g ◦ h2 = 0. Therefore, if G is homotopic
to zero, we must have G2 = 0. This implies that idX is not homotopic to zero.

Now we are going to show that there exists nontrivial morphisms in the derived
category which induce zero maps on all cohomologies.

Let X · be a complex

. . . −−−−→ 0 −−−−→ Z
a

−−−−→ Z −−−−→ 0 −−−−→ . . .

where a(1) = 2, and Y · a complex

. . . −−−−→ 0 −−−−→ Z
b

−−−−→ Z/3Z −−−−→ 0 −−−−→ . . .

where b(1) = 1 in D(Ab). Clearly, we have Hp(X ·) = 0 for p 6= 1 and H1(X ·) =
Z/2Z, and Hp(Y ·) = 0 for p 6= 0 and H0(Y ·) = 3Z.

Let F be a morphism of X · into Y · given by

. . . −−−−→ 0 −−−−→ Z
a

−−−−→ Z −−−−→ 0 −−−−→ . . .




y

c





y





y
d





y

. . . −−−−→ 0 −−−−→ Z
b

−−−−→ Z/3Z −−−−→ 0 −−−−→ . . .

where c(1) = 1 and d(1) = 2. Clearly, Hp(F ) = 0 for all p ∈ Z.
On the other hand, we claim that F defines a nontrivial morphism in D(Ab).

Assume the opposite. By 2.1.6 in Ch. 1, there would exist a complex Z · and a
quasiisomorphism s : Z · −→ X · such that F ◦ s is homotopic to zero. Therefore,
we have the following commutative diagram

. . . −−−−→ Z−1 −−−−→ Z0 −−−−→ Z1 −−−−→ Z2 −−−−→ . . .




y s0





y





ys1





y

. . . −−−−→ 0 −−−−→ Z
a

−−−−→ Z −−−−→ 0 −−−−→ . . .




y

c





y





y
d





y

. . . −−−−→ 0 −−−−→ Z
b

−−−−→ Z/3Z −−−−→ 0 −−−−→ . . .

and a homotopy k : Z · −→ Y · such that dY ◦ k + k ◦ dZ = F ◦ s. Since s is a
quasiisomorphism, H1(Z ·) ∼= H1(X ·) = Z/2Z. Let z ∈ ker d1

Z be a representative
of the nontrivial class in H1(Z ·). Then s1(z) is representative of the nontrivial class
in H1(X ·), i.e., s1(z) is an odd integer.
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Moreover, 2z determines 0 in H1(Z ·), i.e., 2z ∈ im d0
Z . Therefore, there exists

v ∈ Z0 such that 2z = d0
Z(v). This in turn implies that

2s0(v) = a(s0(v)) = s1(d0
Z(v)) = 2s1(z)

in Z, i.e., we have s0(v) = s1(z). On the other hand, we have

s0(v) = c(s0(v)) = (F ◦ s)0(v) = k1(d0
Z(v)) = 2k1(z).

Therefore, s1(z) = 2k1(z) is an even integer, contradicting the above statement.
It follows that the morphism determined by F is nonzero.

4. Generating classes

4.1. Relative derived categories. Let A be a abelian category and B a full
additive subcategory of A. Assume that for any two abjects M and N in B and
any morphism f : M −→ N there exist a kernel ker f and a cokernel coker f of f
(as a morphism in A) which are objects in B. Then, there exist an image im f and
coimage coim f which are also in B. Therefore, B is an abelian category. We say
that B is a full abelian subcategory of A.

We say that a full abelian subcategory B of A is a good abelian subcategory if
it satisfies the additional condition:

(GA) if
0 −→M ′ −→M −→M ′′ −→ 0

is a short exact sequence in A with M ′ and M ′′ in B, then M is in B.

Clearly, a good abelian subcategory is a strictly full subcategory.
Let A be an abelian category and B a good abelian subcategory. Let D∗

B(A)
be the full subcategory of the derived category D∗(A) of A-complexes consisting of
complexes X · such that Hp(X ·) are in B for all p ∈ Z.

Clearly, D∗
B(A) is translation invariant. Let

Z ·

[1]

����
��

��
��

��
�

X · // Y ·

[[88888888888

be a distinguished triangle in D∗(A) with X · and Y · in D∗
B(A). Then, we have the

long exact sequence of cohomology

· · · → Hp(X ·)
αp

−−→ Hp(Y ·) → Hp(Z ·) → Hp+1(X ·)
αp+1
−−−→ Hp+1(Y ·) → . . . .

Since B is a full abelian subcategory and Hp(X ·), Hp(Y ·), Hp+1(X ·) and Hp+1(Y ·)
are in B, there exist cokerαp and kerαp+1 which are in B. Hence,

0 −→ cokerαp −→ Hp(Z ·) −→ kerαp+1 −→ 0

is exact, and Hp(Z ·) are in B, since B is good. It follows that Z · is in D∗
B(A).

Therefore, we proved the following result.

4.1.1. Lemma. The full subcategory D∗
B(A) of D∗(A) is a strictly full triangu-

lated subcategory of D∗(A).

We call D∗
B(A) the relative derived category of A with respect to B.

Clearly, the truncation functors τ≤s and τ≥s on D∗(A) induce functors on
DB(A).
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4.2. Generating classes in derived categories. Let A be an abelian cat-
egory and B a good abelian subcategory. Let Db

B(A) the corresponding relative
bounded derived category.

Let G be a class of objects in B containing the zero object 0. Denote by G1 the
class of all objects in Db

B(A) of the form D(M)[n] with M in G and n ∈ Z. Then we
construct by induction a family of classes Gm of objects in Db(A) in the following
way: X · is in Gm if there exists a distinguished triangle in Db

B(A) with X · as one
vertex and other two vertices in Gm−1.

Since G1 is translation invariant by definition, we see, by induction, that Gm
are translation invariant classes of objects.

4.2.1. Lemma. For any m > 1, if X · is in Gm−1, then X · is in Gm.

Proof. The proof is by induction in m. We can consider the distinguished
triangle

0

[1]

����
��

��
��

��

X · // X ·

[[6666666666

.

Since 0 is in G, the complex 0 is in G1. Therefore, if X · is in G1, we conclude that
X · is also in G2. In particular, 0 is in G2.

Assume that the statement holds for Gp, p < m. Then, 0 is also in Gm−1 by
the induction assumption. If X · is in Gm−1, by considering the same distinguished
triangle we conclude that X · is in Gm. �

Let D be the full subcategory of Db
B(A) with objects equal to

⋃

m∈N
Gm.

4.2.2. Lemma. The subcategory D is a strictly full triangulated subcategory of
Db

B(A).

Proof. Let X · be an object in Db(A) isomorphic to an object Y · in D. We
can assume that Y · is in Gm for some m ∈ N. Then, by 1.4.4 in Ch. 2, we have the
distinguished triangle

0

[1]

����
��

��
��

��

X · // Y ·

[[6666666666

and X · is in Gm+1. Hence, X · is in D and D is strictly full.
Assume that X · and Y · are in D. Then, there exists m ∈ Z such that X · and

Y · are in Gm. If we consider the distinguished triangle

Z ·

[1]

����
��

��
��

��
�

X · // Y ·

[[88888888888

it follows that Z · is in Gm+1. Hence, Z · is in D and D is a full triangulated
subcategory. �
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The class G is called a generating class of D. We say that D is the full trian-
gulated subcategory generated by G.

4.2.3. Proposition. The class Ob(B) is a generating class of Db
B(A).

The proof is based on the following discussion. Then for any bounded complex
A· we can define its homological length

ℓh(X
·) = Card{p ∈ Z | Hp(X ·) 6= 0}.

Consider the distinguished triangle

τ≤s(X
·)

[1]

����
��

��
��

��
��

��

τ≤s(X
·) // X ·

\\99999999999999

.

Then the next result follows immediately from 3.4.1 and 3.4.2.

4.2.4. Lemma. Let X · be a bounded complex. Then, for any s ∈ Z, we have

ℓh(X
·) = ℓh(τ≤s(X

·)) + ℓh(τ≥s+1(X
·)).

Now we can prove 4.2.3. It follows immediately from the following remark. Let
G = ObB, and

Gm = {X · ∈ ObDb
B(A) | ℓh(X

·) ≤ m}.

4.2.5. Lemma. We have Gm ⊂ Ob(D) for all m ∈ N.

Proof. The proof is by induction in m. Let X · be a complex in Gm. Assume
first that m = 0. Then X · is isomorphic to the zero complex 0 in Db(A). Since 0
is in D and D is strictly full, it follows that X · is in D.

Assume now that m = 1. Then there exists n0 such that Hp(X ·) = 0 for
p 6= n0. Hence, by 3.4.1, i : τ≤n0(X

·) −→ X · is a quasiisomorphism. On the
other hand, by 3.4.2, q : τ≤n0(X

·) −→ τ≥n0(τ≤n0 (X
·)) is also a quasiisomorphism.

Clearly, we have τ≥n0(τ≤n0(X
·)) = D(Hn0(X ·))[−n0] and τ≥n0(τ≤n0(X

·)) is in D.
Since D is strictly full subcategory of Db(A), this implies that X · is in D.

Assume that m > 1. Let s = min{p ∈ Z | Hp(X ·) 6= 0}. Then, we have
ℓh(τ≤s(X

·)) = 1. Moreover, by 4.2.4, we have ℓh(τ≥s+1(X
·)) = m − 1. Hence,

τ≤s(X
·) is in D by the first part of the proof, and τ≥s+1(X

·) is in D by the induction
assumption. It follows that they are in Gm for sufficiently large m ∈ N. This in
turn implies that X · is in Gm+1, i.e., X · is in D. �

Let A and B be two abelian categories and C and D two good abelian sub-
categories of A, resp. B. Let F be an exact functor from Db

C(A) into D∗(B). Let
G ⊂ ObC be a generating class of Db

C(A).

4.2.6. Proposition. Assume that Hp(F (D(M))), p ∈ Z, are in D for any M
in G. Then F (X ·) is in D∗

D(B) for any X · in Db
C(A).
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Proof. Let

Z ·

[1]

����
��

��
��

��
�

X · // Y ·

[[88888888888

be a distinguished triangle in Db
C(A), with X ·, Y · in Gm−1 and Z · in Gm. Since F

is exact, we have a distinguished triangle

F (Z ·)

[1]

����
��

��
��

��
��

��

F (X ·) // F (Y ·)

]]::::::::::::::

in D∗(B). If m = 2, F (X ·) and F (Y ·) are in D∗
D(B), by the assumption of the

proposition. If m > 2, this is the induction assumption. Since, by 4.2.2, D∗
D(B) is a

strictly full triangulated subcategory of D∗(B), it follows that Z · is in D∗
D(B). By

induction, it follows that F (X ·) is in D∗
D(B) for any X · in Gm and m ∈ N. since

G is a generating class of Db
C(A), it follows that F (X ·) is in D∗

D(B) for any X · in
Db

C(A). �

Therefore, F induces an exact functor F : Db
B(A) −→ D∗

D(C).
Consider now two exact functors F and G from Db

C(A) into D∗(B). Let ω :
F −→ G be a graded morphism of functors.

4.2.7. Proposition. Assume that ωD(M) : F (D(M)) −→ G(D(M)) is an
isomorphism for any M in G. Then ω is an isomorphism of functors.

Proof. As in the preceding proof, consider the distinguished triangle

Z ·

[1]

����
��

��
��

��
�

X · // Y ·

[[88888888888

in Db
C(A), with X ·, Y · in Gm−1 and Z · in Gm.
Since F and G are exact functors, ω defines a morphism

F (X ·) −−−−→ F (Y ·) −−−−→ F (Z ·) −−−−→ T (F (X ·))

ωX





y

ωY





y





y

ωZ





y

T (ωX)

G(X ·) −−−−→ G(Y ·) −−−−→ G(Z ·) −−−−→ T (G(X ·))

of distinguished triangles. If m = 2, ωX and ωY are are isomorphisms, by the as-
sumption of the proposition. If m > 2, this is the induction assumption. Therefore,
by 1.4.2 in Ch. 2, ωZ is also an isomorphism. It follows that ωX is an isomorphism
for any X in Gm and m ∈ N. Since G is a generating class of Db

C(A), we see that ωX
is an isomorphism for any X in Db

C(A). Hence, ω is an isomorphism of functors. �
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4.3. Exact functors of finite amplitude. Under certain conditions we can
extend the results from the end of the preceding section to unbounded derived
categories.

Let A and B be two abelian categories and C a good abelian subcategory of A.
Let F an exact functor from DC(A) into D(B). We say that the amplitude of F is
≤ n ∈ Z+, if

(FA1) for anyX · inDC(A) such thatHp(X ·) = 0 for p ≥ p0, we haveHp(F (X ·)) =
0 for p ≥ p0 + n;

(FA2) for anyX · inDC(A) such thatHq(X ·) = 0 for q ≤ q0, we haveHq(F (X ·)) =
0 for q ≤ q0 − n.

4.3.1. Lemma. Let F : DC(A) −→ D(B) be an exact functor of amplitude ≤ n.

(i) The natural morphism Hp(F (i)) : Hp(F (τ≤s(X
·))) −→ Hp(F (X ·)) is an

isomorphism for p ≤ s− n.
(ii) The natural morphism Hp(F (q)) : Hp(F (X ·)) −→ Hp(F (τ≥s(x

·))) is an
isomorphism for p > s+ n.

Proof. Let X · be an object in DC(A) and s ∈ Z. Consider the distinguished
triangle of truncations

τ≥s+1(X
·)

[1]

~~}}
}}

}}
}}

}}
}}

}}
}

τ≤s(X
·) // X ·

]];;;;;;;;;;;;;;

.

Since F is an exact functor, we get the distinguished triangle

F (τ≥s+1(X
·))

[1]

{{xx
xxx

xxx
xxx

xxx
xxx

F (τ≤s(X
·)) // F (X ·)

aaBBBBBBBBBBBBBBBB

.

If the amplitude of F is ≤ n, we have Hp(F (τ≤s(X
·))) = 0 for p > s + n and

Hp(F (τ≥s+1(X
·))) = 0 for p ≤ s− n. The assertions follow immediately from the

long exact sequence of cohomology attached to the above distinguished triangle. �

Let F : DC(A) −→ D(B) be an exact functor of finite amplitude. Let D be a
good abelian subcategory in B.

4.3.2. Lemma. Assume that F (X ·) is in DD(B) for any bounded complex X ·

in DC(A). Then F (X ·) is in DD(B) for any X · in DC(A).

Proof. Assume that the amplitude of F is ≤ n. Let X · be a complex bounded
below inDC(A). Then τ≤s(X

·) is a bounded complex inDC(A). By the assumption,
F (τ≤s(X

·)) is in DD(B). By 4.3.1, Hp(F (X ·)) is in D for p ≤ s − n. Since s is
arbitrary, this implies that X · is in DD(B).

Assume now that X · is arbitrary. Then τ≥s(X
·) is a complex bounded below in

DC(A). Hence, by the first part of the proof, we see that F (τ≥s(X
·)) is in DD(B).
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By 4.3.1, Hp(F (X ·)) is in D for p ≥ s + n. Since s is arbitrary, this implies that
X · is in DD(B). �

Therefore, F induces a functor F : DC(A) −→ DD(B).

4.3.3. Lemma. Let F and G be two exact functors from DC(A) into D(B) of
finite amplitude and ω : F −→ G a graded morphism of functors. Assume that
ηX· : F (X ·) −→ G(X ·) is an isomorphism for any bounded complex X · in DC(A).
Then ω is an isomorphism of functors.

Proof. Assume that the amplitude of F and G is ≤ n. Let X · be a complex
bounded below. Then τ≤s(X

·) is a bounded complex. Therefore, in the commuta-
tive diagram

F (τ≤s(X
·))

F (i)
−−−−→ F (X ·)

ωτ≤s(X·)





y





y

ωX·

G(τ≤s(X
·)) −−−−→

G(i)
G(A·)

the first vertical arrow is an isomorphism. Applying the functor Hp to this com-
mutative diagram we get the commutative diagram

Hp(F (τ≤s(X
·)))

Hp(F (i))
−−−−−−→ Hp(F (X ·))

Hp(ωτ≤s(X·))





y





y

Hp(ωX· )

Hp(G(τ≤s(X
·)))

Hp(G(i))
−−−−−−→ Hp(G(X ·))

;

hence, by 4.3.1, we conclude that Hp(ωX·) is an isomorphism for p ≤ s− n. Since
s is arbitrary, it follows that Hp(ωX·) is an isomorphism for all p ∈ Z, i.e., ωX· is
an isomorphism.

Assume now that X · is an arbitrary complex. Then we have the commutative
diagram

F (X ·)
F (q)

−−−−→ F (τ≥s(X
·))

ωX·





y





y

ωτ≥s(X·)

G(τ≤s(X
·)) −−−−→

G(q)
G(τ≥s(X

·))

and the second vertical arrow is an isomorphism, since τ≥s(X
·) is a complex

bounded below. Applying the functor Hp to this commutative diagram we get
the commutative diagram

Hp(F (X ·))
Hp(F (q))
−−−−−−→ Hp(F (τ≥s(X

·)))

Hp(ωX· )





y





y

Hp(ωτ≥s(X·))

Hp(G(X ·)) −−−−−−→
Hp(G(q))

Hp(G(τ≥s(X
·)))

;

hence, by 4.3.1, we conclude that Hp(ωX·) is an isomorphism for p > s+ n. Since
s is arbitrary, it follows that Hp(ωX·) is an isomorphism for all p ∈ Z, i.e., ωX· is
an isomorphism. �
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4.4. Stupid truncations. We can define another type of truncation functors.
They are called stupid truncations. For a complex X · and s ∈ Z, we define the
truncated complex σ≥s(A

·) as the subcomplex of A· given by

σ≥s(X
·)p =

{

0, if p < s;

Xp, if p ≥ s.

We denote the quotient complex by σ≤s−1(X
·). Clearly,

σ≤s−1(X
·)p =

{

Xp, if p < s;

0, if p ≥ s.

Then we have an exact sequence in the category C∗(A) of complexes

0 −→ σ≥s(X
·) −→ X · −→ σ≤s−1(X

·) −→ 0.

Clearly, we have

Hp(σ≥s(X
·)) =











0 if p < s;

ker ds if p = s;

Hp(X ·) if p > s.

Analogously, we have

Hp(σ≤s−1(X
·)) =











Hp(X) if p < s− 1;

coker ds if p = s− 1;

0 if p > s− 1.

Clearly, if we denote by ι : σ≥s(X
·) −→ X · the canonical monomorphism, we see

that Hp(ι) : Hp(σ≥s(X
·)) −→ Hp(X ·) is 0 for p < s; the epimorphism ker ds −→

Hs(X ·) for p = s; and the identity on Hp(X ·) for p > s.
If we denote by π : X · −→ σ≤s−1(X

·) the canonical epimorphism, we see that
Hp(π) : Hp(X ·) −→ Hp(σ≤s(X

·)) is the identity on Hp(X ·) for p < s − 1; the
monomorphism Hs−1(X ·) −→ cokerds−1 for p = s− 1; and 0 for p > s− 1.

In addition, we have the morphism of complexes δ : σ≤s−1(X
·) −→ T (σ≥s(X

·))
given by

. . . −−−−→ Xs−2 −−−−→ Xs−1 −−−−→ 0 −−−−→ . . .




y ds−1





y





y

. . . −−−−→ 0 −−−−→ Xs −−−−→ Xs+1 −−−−→ . . .

.

Let C·
ι be the cone of ι. By the results from §3.5, we know that the graded

morphism m which is the composition of the projection of C·
ι to X · with the epi-

morphism π : X · −→ σ≤s−1(X
·) is a morphism of complexes. This morphism is

given by the morphisms
[

0 πn
]

: σ≥s(X
·)n+1 ⊕Xn −→ σ≤s−1(X

·)n

for n ∈ Z. On the other hand, we have the morphism of complexes pι : C·
ι −→

T (σ≥s(X
·)) given by

[

idσ≥s(X·)n+1 0
]

: σ≥s(X
·)n+1 ⊕Xn −→ σ≥s(X

·)n+1.
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Then δ ◦m : C·
ι −→ T (σ≥p(X

·)) is a morphism of complexes given by

. . . −−−−→ Xp−2 −−−−→ Xp ⊕Xp−1 −−−−→ Xp+1 ⊕Xp −−−−→ . . .

0





y

[

0 dp−1
]





y





y
0

. . . −−−−→ 0 −−−−→ Xp −−−−→ Xp+1 −−−−→ . . .

.

4.4.1. Lemma. The morphism −δ ◦m is homotopic to pι.

Proof. We define the homotopy hn : σ≥p(X
·)n+1 ⊕ Xn −→ T (σ≥s(X

·))n−1

in the following way: hn = 0 if n < s; hn : Xn+1 ⊕Xn −→ Xn is the projection
onto the second summand if n ≥ s.

There are two different cases to consider. First, we have

ps−1
ι + δs−1 ◦ms−1 =

[

idXs ds−1
]

=
[

0 idXs

]

[

−dsX 0
idXs ds−1

X

]

= hs ◦ ds−1
Cι

+ ds−2
T (σ≥s(X)) ◦ h

s−1 .

Second, if n ≥ s− 1, we have

pnj + δn ◦mn =
[

idXn+1 0
]

=
[

0 idXn+1

]

[

−dn+1
X 0

idXn+1 dnX

]

− dnX
[

0 idXn

]

= hn+1 ◦ dnCj
+ dn−1

T (σ≥s(X)) ◦ h
n .

Hence, we have
pι + δ ◦m = h ◦ dCι

+ dT (σ≥s(X)) ◦ h

and our statement follows. �

Therefore, we have a morphism of triangles

σ≥s(X
·)

ι
−−−−→ X ·

i
ι−−−−→ C·

ι

p
ι−−−−→ T (σ≥s(X

·))

idσ≥s(X·)





y

idX





y





y

m





y

idT (σ≥s(X·))

σ≥s(X
·) −−−−→

ι
X · −−−−→

π
σ≤s−1(X

·) −−−−→
−δ

T (σ≥p(X
·))

in K∗(A).
Since m is a quasiisomorphism by 3.5.1, the above morphism of triangles is

an isomorphism of triangles in D∗(A). Moreover, since the top triangle is distin-
guished, the bottom one is also distinguished in D∗(A).

This establishes the following result.

4.4.2. Lemma. For any complex X · and s ∈ Z we have the distinguished triangle

σ≤s−1(X
·)

−δ

[1]

����
��

��
��

��
��

��
��

�

σ≥s(X
·)

ι
// X ·

π

[[8888888888888888

in D∗(A).
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4.5. A technical result. Sometimes we need a stronger version of 4.2.3.

4.5.1. Proposition. Let C be a class of objects in A such that:

(i) C contains 0;
(ii) for every object B in B the complex D(B) is isomorphic in Db(A) to a

bounded complex C· such that Cp are in C for all p ∈ Z+.

Then C is a generating class in Db
B(A).

To prove this we consider the length of a bounded complex A· in Db(A) defined
by

ℓ(A·) = Card{p ∈ Z | Ap 6= 0}.

The following observation is evident.

4.5.2. Lemma. Let A· be a bounded complex. Then, for any s ∈ Z, we have

ℓ(A·) = ℓ(σ≥s(A
·)) + ℓ(σ≤s−1(A

·)).

Let D be the triangulated subcategory of Db(A) generated by C. Then it
contains all complexes D(C)[n] for any object C in C and any n ∈ Z. Let C· be
a complex in Db(A) such that Cp is in C for all p ∈ Z. By induction in ℓ(C·) we
are going to prove that C· is in D. If ℓ(C·) = 1, C· = D(Cq)[−q] for some q ∈ Z.
Hence, C· is in D. If ℓ(C·) > 1, there exists s ∈ Z such that ℓ(σ≥s(C

·)) > 0 and
ℓ(σ≤s−1(C

·)) > 0. Hence, by 4.5.2, we have ℓ(σ≥s(C
·)) < ℓ(C·) and ℓ(σ≤s−1(A

·)) <
ℓ(C·). By the induction assumption, σ≥s(C

·) and σ≤s−1(C
·) are in D. By 4.4.2,

we have the distinguished triangle

σ≤s−1(C
·)

[1]

~~}}
}}

}}
}}

}}
}}

}}
}

σ≥s(C
·) // C·

]];;;;;;;;;;;;;;

.

Since D is a full triangulated category, it follows that C· is in D.
Since D is strictly full, the condition (ii) implies that D(B)[n] are in D for any

object B in B and n ∈ Z. Hence, by 4.2.3, D is equal to Db
B(A). This completes

the proof of 4.5.1.





CHAPTER 4

Truncations

1. t-structures

1.1. Truncations in derived categories. Let A be an abelian category. Let
D = D∗(A). For n ∈ Z, we denote by D≥n the full subcategory of D consisting of
all complexes A· such that Hp(A·) = 0 for p < n. We also denote by D≤n the full
subcategory of D consisting of all complexes A· such that Hp(A·) = 0 for p > n.

We have

D≤n = T−n(D≤0) and D≥n = T−n(D≥0).

Also, we have

· · · ⊂ D≤n−1 ⊂ D≤n ⊂ D≤n+1 ⊂ . . .

and

· · · ⊃ D≥n−1 ⊃ D≥n ⊃ D≥n+1 ⊃ . . .

Clearly, we can view the truncation functor τ≤n as a functor from D into D≤n

and the truncation functor τ≥n as the functor from D into D≥n.

1.1.1. Lemma. Let n ∈ Z. Then

(i) τ≤n : D −→ D≤n is a right adjoint of the inclusion functor D≤n −→ D;
(ii) τ≥n : D −→ D≥n is a left adjoint of the inclusion functor D≥n −→ D.

Proof. (i) Let A· be a complex in D≤n and B· in D. Clearly, the map ψ 7−→
i ◦ ψ induces a homomorphism of HomD(A·, τ≤n(B

·)) into HomD(A·, B·). It is
enough to prove that this map is a bijection.

Let ϕ : A· −→ B· represented by a roof

C·

s
∼

~~||
||

||
|| f

!!B
BB

BB
BB

B

A· B·

where s : C· −→ A· is a quasiisomorphism. Therefore, Hp(C·) = 0 for p > n, i.e.,
C· is in D≤n. It follows that j : τ≤n(C·) −→ C· is a quasiisomorphism. Therefore,
the commutative diagram

C·

s

∼
{{wwwwwwwww

f

##H
HHHHHHHH

A· τ≤n(C
·)

∼j

OO

id

��

B·

τ≤n(C
·)

s◦j

∼

ccFFFFFFFFF f◦j

;;wwwwwwwww

145
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establishes the equivalence of the top and bottom roof. Hence, after relabeling ϕ is
represented by the roof

C·

s
∼

~~||
||

||
|| f

!!B
BB

BB
BB

B

A· B·

with C· such that Cp = 0 for p > n. Therefore, the morphism f : C· −→ B· of
complexes looks like

. . . −−−−→ Cn−1 −−−−→ Cn −−−−→ 0 −−−−→ . . .

fn−1





y





y

fn





y

. . . −−−−→ Bn−1 −−−−→ Bn −−−−→ Bn+1 −−−−→ . . .

.

Clearly, the image of fn has to be in kerdn, i.e., the image of f is in the subcomplex
τ≤n(B). Therefore, we can write f = i ◦ g with g : C· −→ τ≤n(B·). It follows that
ϕ = i ◦ ψ, where ψ : A· −→ τ≤n(B

·) is represented by a roof

C·

t
∼

~~}}
}}

}}
}} g

%%JJ
JJ

JJ
JJ

JJ

A· τ≤n(B·) ,

and the above map is surjective.
Assume that ψ : A· −→ τ≤n(B·) is such that ϕ = i ◦ ψ = 0. Then, by the

preceding discussion, ψ is represented by a roof

C·

t
∼

~~}}
}}

}}
}} g

##H
HH

HH
HH

HH

A· τ≤n(B·)

with C· such that Cp = 0 for p > n. Moreover, since the composition of ψ with i
is 0, there exists D· and a quasiisomorphism j : D· −→ C· such that the diagram

C·

t
∼

}}||
||

||
|| i◦g

!!B
BB

BB
BB

B

A· D·

∼j

OO

��

B·

A·

idA·

∼

aaBBBBBBBB 0

==||||||||

commutes. Since j is a quasiisomorphism, Hp(D·) = 0 for p > n. Hence, E· =
τ≤n(D

·) −→ D· is a quasiisomorphism, and we can replace the above diagram with

C·

t
∼

~~||
||

||
|| i◦g

!!B
BB

BB
BB

B

A· E·

∼k

OO

id

��

B·

A·

∼

idA·

``BBBBBBBB 0

==||||||||
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which also commutes. Therefore, a = i ◦ g ◦ k is homotopic to zero. We have the
commutative diagram

. . . −−−−→ En−1 −−−−→ En −−−−→ 0 −−−−→ . . .

an−1





y





y
an





y

. . . −−−−→ Bn−1 −−−−→ Bn −−−−→ Bn+1 −−−−→ . . .

and i ◦ g ◦ k = a = dh + hd. Clearly, hn = hn+1 = · · · = 0, and the image of
the homotopy h is in the subcomplex τ≤n(B

·) of B·. Therefore, h = i ◦ h′ and
g ◦ k = dh′ + h′d, i.e., g ◦ k is homotopic to zero . Therefore, ψ = 0.

The proof of (ii) is analogous. �

1.1.2. Corollary. Let m < n. Then HomD(A·, B·) = 0 for any A· in D≤m

and B· in D≥n.

Proof. By 1.1.1, we have

HomD(A·, B·) = HomD(A·, τ≤m(B·)).

On the other hand, Hp(τ≤m(B·)) = 0 for all p ∈ Z, i.e., τ≤m(B·) = 0 in D. �

Let B = D≤0 ∩D≥0. Clearly, the functor D : A −→ D has the image in B and
the induced functor from A into B is an equivalence of categories by 3.4.7 in Ch. 3.

1.1.3. Lemma. The functor τ≤0 ◦ τ≥0 = τ≥0 ◦ τ≤0 is isomorphic to H0.

1.2. t-structures. The discussion in the last section illustrates the following
definition.

Let D be a triangulated category. A t-structure on D is a pair of strictly full
subcategories (D≤0,D≥0) satisfying the following conditions:

If we put

D≤n = T−n(D≤0) and D≥n = T−n(D≥0),

for n ∈ Z, we have

(t1) D≤0 ⊂ D≤1, D≥0 ⊃ D≥1;
(t2) Hom(X,Y ) = 0 for X in D≤0 and Y in D≥1;
(t3) for any X in D there exists a distinguished triangle

B

[1]

����
��

��
��

��

A // X

[[6666666666

such that A is in D≤0 and B is in D≥1.

The core of the t-structure is D≥0 ∩ D≤0.
For any m,n ∈ Z, m ≤ n, we put

D[m,n] = D≥m ∩ D≤n.

Our goal is to to prove the following theorem.

1.2.1. Theorem. The core A of a t-structure (D≤0,D≥0) on D is an abelian
category.
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1.2.2. Example. If D = D∗(A) and D≤0 and D≥0 as defined in the last section,
we see from the results proved there that this is a t-structure on D∗(A). This T -
structure is called the standard t-structure on D∗(A). The core of that t-structure
is equivalent to A by 3.4.7 in Ch. 3.

From the definition, we clearly have

· · · ⊂ D≤n−1 ⊂ D≤n ⊂ D≤n+1 ⊂ . . . ,

i.e., the family (D≤n;n ∈ Z) is increasing. Analogously, we have

· · · ⊃ D≥n−1 ⊃ D≥n ⊃ D≥n+1 ⊃ . . . ,

i.e., the family (D≥n;n ∈ Z) is decreasing.
If X is in D≤n, X = T−n(X ′) for some X ′ in D≤0. If Y is in D≥n+1, then

Y = T−n(Y ′) for some Y ′ in D≥1. Therefore, we have

Hom(X,Y ) = Hom(T−n(X ′), T−n(Y ′)) = Hom(X ′, Y ′) = 0.

This immediately implies the following result.

1.2.3. Lemma. Let n,m ∈ Z, n < m. Let X in D≤n and Y in D≥m. Then
Hom(X,Y ) = 0.

1.2.4. Lemma. There exist functors τ≤n : D −→ D≤n and τ≥n : D −→ D≥n

such that

(i) τ≤n : D −→ D≤n is a right adjoint to the inclusion functor D≤n −→ D;
(ii) τ≥n : D −→ D≥n is a left adjoint to the inclusion functor D≥n −→ D.

The proof of this result is based on the following observation. Let n ∈ Z. By
(t3), for an object X in D there exist a distinguished triangle

T n(B)

[1]

����
��

��
��

��
��

��

T n(A) // T n(X)

]]<<<<<<<<<<<<<<

where T n(A) is in D≤0 and T n(B) in D≥1. By turning this triangle 3n times we
get the distinguished triangle

B

[1]

����
��

��
��

��
��

A // X

YY333333333333
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where A is in D≤n and B in D≥n+1. Let Y be another object in D and f : X −→ Y
a morphism. Assume that

D

[1]

����
��

��
��

��
��

C // X

YY333333333333

is the corresponding distinguished triangle for Y , i.e., C is in D≤n and D is in
D≥n+1. Then we have the diagram

A −−−−→ X −−−−→ B −−−−→ T (A)

f





y

C −−−−→ Y −−−−→ D −−−−→ T (C)

.

Since A is in D≤n and D is in D≥n+1, we have Hom(A,D) = 0 by 1.2.3. Therefore,

the composition of the morphisms A → X
f
−→ Y → D in the above diagram is 0.

By 1.4.5 in Ch. 2, the above diagram can be completed to a morphism of triangles

A −−−−→ X −−−−→ B −−−−→ T (A)

ϕ





y

f





y





y

ψ





y

T (ϕ)

C −−−−→ Y −−−−→ D −−−−→ T (C)

.

Moreover, since A is in D≤n and D[−1] is in D≥n+2, we have Hom(A,D[−1]) = 0,
and ϕ and ψ are unique. We can specialize this to the case X = Y and f = idX .
Then we get unique morphisms α : A −→ C and β : B −→ D such that the diagram

A −−−−→ X −−−−→ B −−−−→ T (A)

α





y

idX





y





y

β





y

T (α)

C −−−−→ X −−−−→ D −−−−→ T (C)

is a morphism of triangles. Analogously, we have unique γ : C −→ A and δ : D −→
B such that

C −−−−→ X −−−−→ D −−−−→ T (C)

γ





y

idX





y





y
δ





y

T (γ)

A −−−−→ X −−−−→ B −−−−→ T (A)

is a morphism of triangles. The composition of these two morphisms of triangles is

A −−−−→ X −−−−→ B −−−−→ T (A)

γ◦α





y

idX





y





y

δ◦β





y

T (γ◦α)

A −−−−→ X −−−−→ B −−−−→ T (A)

and by the uniqueness we conclude that γ ◦α = idA and δ ◦ β = idB. Analogously,
α ◦ γ = idC and β ◦ δ = idD. Hence, α and β are isomorphisms and γ and δ their
respective inverses.

It follows that A and B are unique up to a (unique) isomorphism. Therefore,
for each X in D, we can pick A and B and denote them by τ≤n(X) and τ≥n+1(X).
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If F : X −→ Y is a morphism, by the above discussion we get a morphism of
triangles

τ≤n(X) −−−−→ X −−−−→ τ≥n+1(X) −−−−→ T (τ≤n(X))

ϕ





y

f





y





y

ψ





y

T (ϕ)

τ≤n(Y ) −−−−→ Y −−−−→ τ≥n+1(Y ) −−−−→ T (τ≤n(X))

with unique morphisms ϕ and ψ. We denote τ≤n(f) = ϕ and τ≥n+1(f) = ψ.
It is easy to check that τ≤n and τ≥n+1 so defined are functors from D into D≤n

and D≥n+1, respectively.
Let X be in D≤n. Then, we have the distinguished triangle

0

[1]

����
��
��
��
��
��

X
idX // X

XX222222222222

which satisfies the above conditions. Therefore, the composition morphism f :
X −→ Y defines a morphism

X
idX−−−−→ X −−−−→ 0 −−−−→ T (X)

ϕ





y

f





y





y





y

T (ϕ)

τ≤n(Y ) −−−−→ Y −−−−→ τ≥n+1(Y ) −−−−→ T (τlen(Y ))

of distinguished triangles. Since ϕ is uniquely determined by f , the map f 7−→ ϕ
from Hom(X,Y ) into Hom(X, τ≤n(Y )) is a bijection. Therefore, τ≤n is a right
adjoint to the inclusion functor D≤n −→ D.

The proof of adjointness for τ≥n+1 is analogous. This completes the proof of
1.2.4.

Clearly, we have adjointness morphisms i : τ≤n(X) −→ X and p : X −→
τ≥n(X). Because of the above example we call τ≤n and τ≥n the truncation functors
corresponding to the t-structure (D≤0,D≥0).

From the above proof and 1.4.6 in Ch. 2 we also see that we the following result
holds.

1.2.5. Lemma. For any X in D we have the distinguished triangle

τ≥n+1(X)

[1]

q

��~~
~~

~~
~~

~~
~~

~~
~

τ≤n(X)
i

// X

p

]]::::::::::::::

where q is uniquely determined.

1.2.6. Lemma. For any n ∈ Z, we have

(i)
τ≤n ◦ T ∼= T ◦ τ≤n+1;
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(ii)

τ≥n ◦ T ∼= T ◦ τ≥n+1.

Proof. Let A be an object in D≤n and X an object in D. Then, T−1(A) is
in D≤n+1. Hence, by 1.2.4, we have

Hom(A, τ≤n(X)) = Hom(A, T (X)) = Hom(T−1(A), X)

= Hom(T−1(A), τ≤n+1(X)) = Hom(A, T (τ≤n+1(X))).

This proves (i). The proof of (ii) is analogous. �

Now we show that the truncation functors determine the t-structure.

1.2.7. Lemma. Let X be in D. Then:

(a) The following conditions are equivalent:
(i) X is in D≤n;
(ii) i : τ≤n(X) −→ X is an isomorphism;
(iii) τ≥n+1(X) = 0;

(b) The following conditions are equivalent:
(i) X is in D≥n;
(ii) p : X −→ τ≥n(X) is an isomorphism;
(iii) τ≤n−1(X) = 0.

Proof. (a) Let X be an object in D. By 1.2.5, it determines a distinguished
triangle

τ≥n+1(X)

[1]

��~~
~~

~~
~~

~~
~~

~~
~

τ≤n(X)
i

// X.

p

]];;;;;;;;;;;;;;

By 1.4.4 in Ch. 2, τ≥n+1(X) = 0 if and only if i : τ≤n(X) −→ X is an isomorphism.
Therefore, (ii) and (iii) are equivalent. Clearly, τ≤n(X) is in D≤n. Since D≤n is a
strictly full subcategory of D, if i : τ≤n(X) −→ X is an isomorphism, X is in D≤n.
On the other hand, if X is in D≤n, i : τ≤n(X) −→ X is an isomorphism. This
proves (a).

The proof of (b) is analogous. �

1.2.8. Lemma. Let

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

be a distinguished triangle in D.

(i) If X and Z are in D≤n, then Y is also in D≤n.
(ii) If X and Z are in D≥n, then Y is also in D≥n.
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Proof. Let U be an object in D. Then, by 1.4.1 in Ch. 2, we have the long
exact sequence

. . . −→ Hom(Z,U) −→ Hom(Y, U) −→ Hom(X,U) −→ . . . .

By 1.2.3, if U is in D≥n+1, we have Hom(X,U) = Hom(Z,U) = 0. Hence, it follows
that Hom(Y, U) = 0. By 1.2.4, we see that

Hom(τ≥n+1(Y ), U) = Hom(Y, U) = 0

for any U in D≥n+1. In particular, Hom(τ≥n+1(Y ), τ≥n+1(Y )) = 0 and τ≥n+1(Y ) =
0. By 1.2.7, it follows that Y is in D≤n. This proves (i).

The proof of (ii) is analogous. �

1.2.9. Lemma. Let n ∈ Z.

(i) The subcategories D≤n and D≥n are additive subcategories in D.
(ii) The functors τ≤n : D −→ D≤n and τ≥n : D −→ D≥n are additive.

Proof. Let X and Y be in D≤n. By 1.4.8 in Ch. 2, we have a distinguished
triangle

Y

[1]

����
��

��
��

��

X // X ⊕ Y

^^<<<<<<<<<<<

By 1.2.8, we conclude that X ⊕ Y is in D≤n. Therefore, D≤n is an additive sub-
category. The proof for D≥n is analogous.

Let f and g be morphisms from X to Y . Then τ≤n(f), τ≥n+1(f), τ≥n+1(f)
and τ≥n+1(g) are unique morphisms which make

τ≤n(X) −−−−→ X −−−−→ τ≥n+1(X) −−−−→ T (τ≤n(X))

τ≤n(f)





y





y

f





y

τ≥n+1(f)





y

T (τ≤n(f))

τ≤n(Y ) −−−−→ Y −−−−→ τ≥n+1(Y ) −−−−→ T (τ≤n(Y ))

and
τ≤n(X) −−−−→ X −−−−→ τ≥n+1(X) −−−−→ T (τ≤n(X))

τ≤n(g)





y





y

g





y

τ≥n+1(g)





y

T (τ≤n(g))

τ≤n(Y ) −−−−→ Y −−−−→ τ≥n+1(Y ) −−−−→ T (τ≤n(Y ))

morphisms of triangles. This implies that

τ≤n(X) −−−−→ X −−−−→ τ≥n+1(X) −−−−→ T (τ≤n(X))

τ≤n(f)+τ≤n(g)





y





y

f+g





y

τ≥n+1(f)+τ≥n+1(g)





y

T (τ≤n(f)+τ≤n(g))

τ≤n(Y ) −−−−→ Y −−−−→ τ≥n+1(Y ) −−−−→ T (τ≤n(Y ))

is a morphism of triangles. Therefore,

τ≤n(f) + τ≤n(g) = τ≤n(f + g) and τ≥n+1(f) + τ≥n+1(g) = τ≥n+1(f + g)

and the functors are additive. �

In particular, this proves that the core A is an additive subcategory of D.
Now we want to study the compositions of truncation functors.
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1.2.10. Lemma. Let m,n ∈ Z, m ≤ n. Then:

(i)

τ≤m ◦ τ≤n ∼= τ≤n ◦ τ≤m ∼= τ≤m;

(ii)

τ≥m ◦ τ≥n ∼= τ≥n ◦ τ≥m ∼= τ≥n.

Proof. Since m ≤ n, we have D≤m ⊂ D≤n. Therefore, τ≤m(X) is in D≤n and
the adjointness morphisms τ≤n(τ≤m(X)) −→ τ≤m(X) is an isomorphism by 1.2.7.

Since the adjointness morphism is a natural transformation, we have the com-
mutative diagram

τ≤n(X)
i

−−−−→ X




y





y

τ≤m(τ≤n(X)) −−−−→
τ≤m(i)

τ≤m(X)

.

For any A in D≤m it leads to the commutative diagram

Hom(A, τ≤n(X)) −−−−→ Hom(A,X)




y





y

Hom(A, τ≤m(τ≤n(X))) −−−−→ Hom(A, τ≤m(X))

.

On the other hand, by the adjointness, we have

Hom(A, τ≤m(X)) = Hom(A,X) = Hom(A, τ≤n(X)) = Hom(A, τ≤m(τ≤n(X))),

i.e., τ≤m(τ≤n(X)) −→ τ≤m(X) is an isomorphism.
The proof of (ii) is analogous. �

1.2.11. Lemma. Let m,n ∈ Z, m < n. Then:

τ≤m ◦ τ≥n = τ≥n ◦ τ≤m = 0.

Proof. By 1.2.5, we have the distinguished triangle

τ≥m+1(τ≥n(X))

[1]

zzvvvvvvvvvvvvvvvvvv

τ≤m(τ≥n(X)) // τ≥n(X)

bbEEEEEEEEEEEEEEEE

By 1.2.10, the morphism τ≥n(X) −→ τ≥m+1(τ≥n(X)) is an isomorphism. By 1.4.4
in Ch. 2, this implies that τ≤m(τ≥n(X)) = 0.

The proof of the other isomorphism is analogous. �

It remains to study τ≤m ◦ τ≥n and τ≥n ◦ τ≤m if m ≥ n.

1.2.12. Lemma. Let m,n ∈ Z be such that m ≥ n. Let X be in D. Then
τ≤m(τ≥n(X)) and τ≥n(τ≤m(X)) are in D[n,m].
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Proof. Consider the truncation distinguished triangle for τ≥n(X)

τ≥m+1(τ≥n(X))

[1]

zzvvvvvvvvvvvvvvvvvv

τ≤m(τ≥n(X)) // τ≥n(X)

bbEEEEEEEEEEEEEEEE

Since m+ 1 > n, by 1.2.10 we have τ≥m+1(τ≥n(X)) = τ≥m+1(X), i.e.,

τ≥m+1(X)

[1]

zzuuuuuuuuuuuuuuu

τ≤m(τ≥n(X)) // τ≥n(X)

bbEEEEEEEEEEEEE

is a distinguished triangle. By turning it, we get the distinguished triangle

τ≥n(X)

[1]

{{vvvvvvvvvvvvvv

τ≥m+1(X)[−1] // τ≤m(τ≥n(X))

ccGGGGGGGGGGGGGG

Clearly, since τ≥m+1(X) is in D≥m+1, τ≥m+1(X)[−1] is in D≥m+2. In particular,
τ≥m+1(X)[−1] is in D≥n. On the other hand, τ≥n(X) is also in D≥n. Hence, by
1.2.8, we conclude that τ≤m(τ≥n(X)) is in D≥n. This implies that τ≤m(τ≥n(X)) is

in D≥n ∩ D≤m, i.e., it is in D[n,m].
Analogously, consider the truncation distinguished triangle

τ≥n(τ≤m(X))

[1]

zzvvvvvvvvvvvvvvvvvv

τ≤n−1(τ≤m(X)) // τ≤m(X)

aaCCCCCCCCCCCCCCCC

for τ≤m(X). Since n − 1 < m, by 1.2.10, we have τ≤n−1(τ≤m(X)) = τ≤n−1(X).
Therefore, we have a distinguished triangle

τ≥n(τ≤m(X))

[1]

||yy
yyy

yyy
yyy

yyy
yy

τ≤n−1(X) // τ≤m(X)

aaCCCCCCCCCCCCCCCC
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By turning it, we get the distinguished triangle

τ≤n−1(X)[1]

[1]

}}||
||

||
||

||
||

||
||

τ≤m(X) // τ≥n(τ≤m(X))

ccFFFFFFFFFFFFFFFFF

Clearly τ≤m(X) is in D≤m. On the other hand, τ≤n−1(X) is in D≤n−1. Hence,
τ≤n−1(X)[1] is in D≤n−2. This in turn implies that τ≤n−1(X)[1] is also in D≤m. By

1.2.8, we conclude that τ≤n(τ≥m(X)) is in D≤m. Therefore, it is also in D[n,m]. �

Let X be an object in D. Then we have the truncation morphisms

τ≤m(X)
i

−−−−→ X
p

−−−−→ τ≥n(X).

By 1.2.4, this composition τ≤m(X) −→ τ≥n(X) admits unique factorization through
τ≥n(τ≤m(X)), i.e., we have the following commutative diagram:

τ≤m(X) //

��

τ≥n(X)

τ≥n(τ≤m(X))

88ppppppppppp

where the vertical arrow is the truncation morphism τ≤m(X) −→ τ≥n(τ≤m(X)). By
1.2.12, τ≥n(τ≤m(X)) is in D≤n. Therefore, by 1.2.4, the morphism τ≥n(τ≤m(X)) −→
τ≥n(X) factors uniquely through τ≤m(τ≥n(X)), i.e., we have the commutative di-
agram

τ≤m(X) //

��

τ≥n(X)

τ≥n(τ≤m(X))
φ // τ≤m(τ≥n(X))

OO

where both vertical arrows are truncation morphisms.

1.2.13. Lemma. Let m,n ∈ Z be such that m ≥ n. Let X be an object in D.
Then there exists a unique morphism φ : τ≥n(τ≤m(X)) −→ τ≤m(τ≥n(X)) such that
the diagram

τ≤m(X)
i //

��

X
p // τ≥n(X)

τ≥n(τ≤m(X))
φ // τ≤m(τ≥n(X))

OO

is commutative. This morphism is an isomorphism.

Proof. The existence of φ and its uniqueness follows from the above discus-
sion. It remains to prove that φ is an isomorphism.
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Let h : τ≤n−1(X) −→ X be the truncation morphism. Then, by 1.2.4, it factors
through τ≤m(X), i.e., we have the commutative diagram

τ≤n−1(X)
h //

f

��

X

τ≤m(X)

g

::vvvvvvvvvv

where g : τ≤m(X) −→ X is also the truncation morphism. These morphisms
determine the following diagram

τ≤n−1(X)
f

−−−−→ τ≤m(X) −−−−→ τ≥n(τ≤m(X)) −−−−→ T (τ≤n−1(X))

idτ≤n−1(X)





y

g





y





y

idT (τ≤n−1(X))

τ≤n−1(X)
h

−−−−→ X −−−−→ τ≥n(X) −−−−→ T (τ≤n−1(X))

f





y

idX





y





y

T (f)

τ≤m(X)
h

−−−−→ X −−−−→ τ≥m+1(X) −−−−→ T (τ≤m(X))

where the squares in the first column commute, the first row is the distinguished
triangle from the proof of 1.2.12 and the last two rows are truncation distinguished
triangles. This diagram can be completed to an octahedral diagram

τ≤n−1(X)
f

−−−−→ τ≤m(X) −−−−→ τ≥n(τ≤m(X)) −−−−→ T (τ≤n−1(X))

idτ≤n−1(X)





y

g





y





y





y

idT (τ≤n−1(X))

τ≤n−1(X)
h

−−−−→ X −−−−→ τ≥n(X) −−−−→ T (τ≤n−1(X))

f





y

idX





y





y





y

T (f)

τ≤m(X)
h

−−−−→ X −−−−→ τ≥m+1(X) −−−−→ T (τ≤m(X))




y





y





y

idτ≥m+1(X)





y

τ≥n(τ≤m(X)) −−−−→ τ≥n(X) −−−−→ τ≥m+1(X) −−−−→ T (τ≥n(τ≤m(X)))

.

From the top square in the middle row we see that the morphism τ≥n(τ≤m(X)) −→
τ≥n(X) is the composition of φ and the truncation morphism τ≤m(τ≥n(X)) −→
τ≥n(X). Therefore, we have a morphism of distinguished triangles

τ≥n(τ≤m(X)) −−−−→ τ≥n(X) −−−−→ τ≥m+1(X) −−−−→ T (τ≥n(τ≤m(X)))

φ





y

idτ≥n(X)





y





y

idτ≥n(X)





y

T (φ)

τ≤m(τ≥n(X)) −−−−→ τ≥n(X) −−−−→ τ≥m+1(X) −−−−→ T (τ≤m(τ≥n(X)))

where the top row is the last row of the octahedral diagram and the last row is
the distinguished triangle from the proof of 1.2.12. Since two of the vertical arrows
are isomorphisms, the third must be too by 1.4.2 in Ch. 2. Therefore, φ is an
isomorphism. �

Clearly, the isomorphisms φ : τ≥n(τ≤m(X)) −→ τ≤m(τ≥n(X)) define an iso-
morphism of the functor τ≥n ◦ τ≤m into τ≤m ◦ τ≥n.

Therefore, we proved the following result.
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1.2.14. Lemma. Let m,n ∈ Z be such that m ≥ n. Then the functors τ≥n ◦τ≤m
and τ≤m ◦ τ≥n are isomorphic.

We define the functor H0 : D −→ A by

H0(X) = τ≤0(τ≥0(X)) ∼= τ≥0(τ≤0(X)).

By 1.2.9, H0 is an additive functor.
Now we want to prove that A is abelian.
First we want to prove that any morphism in A has a kernel and a cokernel.

1.2.15. Lemma. Let f : X −→ Y be a morphism of two objects X and Y in A.
Consider the distinguished triangle

Z

[1]

����
��

��
��

��

X
f

// Y

ZZ6666666666

where Z is a cone of f . Then Z is in D[−1,0].

Proof. By turning this triangle we get the distinguished triangle

T (X)

[1]

����
��

��
��

��
�

Y // Z

\\:::::::::::

Clearly, Y is in D≤0. Since X is also in D≤0, T (X) is in D≤−1. Since we have
D≤−1 ⊂ D≤0, we conclude that both T (X) and Y are in D≤0. By 1.2.8 it follows
that Z is in D≤0.

On the other hand, X and Y are in D≥0. Therefore, T (X) is in D≥−1. On the
other hand, since D≥−1 ⊃ D≥0, Y is also in D≥−1. It follows that Z is in D≥−1.
Therefore, Z is in D[−1,0]. �

By 1.2.15, it follows that Z[−1] is in D[0,1]. Therefore,

K = H0(Z[−1]) = τ≤0(τ≥0(Z[−1])) = τ≤0(Z[−1])

is in A. Also,

C = H0(Z) = τ≥0(τ≤0(Z)) = τ≥0(Z)

is in A. In addition, we have the natural morphisms

K = τ≤0(Z[−1]) −→ Z[−1] −→ X

which we denote by k; and

Y −→ Z −→ τ≥0(Z) = C

which we denote by c.
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By 1.2.5, we have a distinguished triangle

τ≥1(Z[−1])

[1]

||zz
zz

zz
zz

zz
zz

zz
zz

τ≤0(Z[−1]) // Z[−1]

__@@@@@@@@@@@@@@@

By definition, K = τ≤0(Z[−1]). On the other hand,

τ≥1(Z[−1]) = τ≥0(Z)[−1] = C[−1].

Hence, we have the following statement.

1.2.16. Lemma. We have a distinguished triangle

C[−1]

[1]

����
��

��
��

��
��

�

K // Z[−1]

]]::::::::::::::

where the arrows are given by truncation morphisms.

Analogously, we have a distinguished triangle

τ≥0(Z)

[1]

����
��

��
��

��
��

��

τ≤−1(Z) // Z

[[7777777777777

By definition, C = τ≥0(Z). On the other hand,

τ≤−1(Z) = τ≤0(Z[−1])[1] = K[1].

Hence, we have the following statement.

1.2.17. Lemma. We have a distinguished triangle

C

[1]

��		
		

		
		

		
		

	

K[1] // Z

XX222222222222

where the arrows are given by truncation morphisms.

1.2.18. Lemma. (i) (K, k) is a kernel of f : X −→ Y ;
(ii) (C, c) is a cokernel of f : X −→ Y .
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Proof. (i) By definition, we have the diagram

K −→ Z[−1] −→ X −→ Y

where the composition of the first two arrows is k and the third arrow is f . Since
the composition of two consecutive arrows in a distinguished triangle is 0, this
composition is 0, i.e., f ◦ k = 0.

By 1.2.16, we have a distinguished triangle

C[−1]

[1]

����
��

��
��

��
��

�

K // Z[−1]

]]::::::::::::::

Clearly, C[−1] is in D≥1 and C[−2] is in D≥2. Therefore, for any U in D≤0

Hom(U,C[−1]) = Hom(U,C[−2]) = 0

by 1.2.3. From the long exact sequence 1.4.1 in Ch. 2, we see that

0 = Hom(U,C[−2]) −→ Hom(U,K) −→ Hom(U,Z[−1]) −→ Hom(U,C[−1]) = 0.

Therefore, the natural morphism induced by composition with the truncation mor-
phism K −→ Z[−1] induces an isomorphism Hom(U,K) −→ Hom(U,Z[−1]).

If we consider now the distinguished triangle

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

the corresponding long exact sequence 1.4.1 in Ch. 2 is

· · · → Hom(U, Y [−1]) → Hom(U,Z[−1]) → Hom(U,X)
f∗
−→ Hom(U, Y ) → . . . .

Since U is in D≤0 and Y [−1] is in D≥1, by 1.2.3, we see that Hom(U, Y [−1]) = 0.
Moreover, by the above remark we get the following exact sequence

0 → Hom(U,K)
k∗−→ Hom(U,X)

f∗
−→ Hom(U, Y ).

Assume that A is in A and j : A −→ X is such that f ◦ j = 0. Then, f∗(j) = 0
and from the exactness of the above sequence we see that j = k∗(i) = k ◦ i for some
i : A −→ K. Therefore, the pair (K, k) is a kernel of f .

(ii) By definition, we have the diagram

X −→ Y −→ Z −→ C

where the first arrow is f and the composition of the last two arrows is c. Since
the composition of two consecutive arrows in a distinguished triangle is 0, this
composition is 0, i.e., c ◦ f = 0.
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By 1.2.17, we have a distinguished triangle

C

[1]

��		
		

		
		

		
		

	

K[1] // Z

XX222222222222

Clearly, K[1] is in D≤−1 and K[2] is in D≤−2. Therefore, for any U in D≥0

Hom(K[1], U) = Hom(K[2], U) = 0

by 1.2.3. From the long exact sequence 1.4.1 in Ch. 2, we see that

0 = Hom(K[2], U) −→ Hom(C,U) −→ Hom(Z,U) −→ Hom(K[1], U) = 0.

Therefore, the natural morphism induced by composition with the truncation mor-
phism Z −→ C induces an isomorphism Hom(C,U) −→ Hom(Z,U).

If we consider now the distinguished triangle

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

the corresponding long exact sequence is

· · · → Hom(X [1], U) → Hom(Z,U) → Hom(Y, U)
f∗

−→ Hom(X,U) → . . . .

Since U is in D≥0 and X [1] is in D≤−1, by 1.2.3, we see that Hom(X [1], U) = 0.
Moreover, by the above remark we get the following exact sequence

0 → Hom(C,U)
c∗
−→ Hom(Y, U)

f∗

−→ Hom(X,U).

Assume that A is in A and p : Y −→ A is such that p◦ f = 0. Then, f∗(p) = 0 and
from the exactness of the above sequence we see that p = c∗(q) = q ◦ c for some
q : C −→ A. Therefore, the pair (C, c) is a cokernel of f . �

It remains to construct the canonical decomposition of the morphism f : X −→
Y .

Let J be a cone of the cokernel c : Y −→ C. Then we have the distinguished
triangle

J

[1]

����
��

��
��

��

Y c
// C

ZZ6666666666

and, by 1.2.15, J ∈ D[−1,0]. In particular, J is in D≥−1 = T (D≥0). Hence, there
exists I in D≥0 such that J = T (I).

Consider the natural morphisms

Y
h

−−−−→ Z
q

−−−−→ C,
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their composition is c. Than this leads to the octahedral diagram

Y
g

−−−−→ Z
h

−−−−→ T (X)
−T (f)
−−−−→ T (Y )

idY





y

q





y





y

−T (u)





y

T (idY )

Y
c

−−−−→ C −−−−→ T (I)
T (p)

−−−−→ T (Y )

g





y

idZ





y





y





y

T (f)

Z
q

−−−−→ C −−−−→ T 2(K)
−T (i)
−−−−→ T (Z)





y





y

idT2(K)





y





y

T (h)

T (X)
−T (u)
−−−−→ T (I) −−−−→ T 2(K)

w
−−−−→ T 2(X)

.

Here, the first row is the turned distinguished triangle corresponding to f . The sec-
ond row is the distinguished triangle considered above. The third row is the turned
distinguished triangle from 1.2.17, with the truncation morphism i : K[1] −→ Z.

This implies that the last arrow in the fourth distinguished triangle is

w = −T (h) ◦ T (i) = −T (h ◦ i) = −T 2(k).

By turning the distinguished triangle in the last row three times we get the distin-
guished triangle

T (K)

[1]

T (k)

����
��

��
��

��
�

X u
// I

\\99999999999

Since X and K are in A, X is in D≤0 and T (K) is in D≤−1 ⊂ D≤0. Therefore, by
1.2.8, I is in D≤0. Since we already established that I is in D≥0, we conclude that
I is in A.

By turning this distinguished triangle we get

I

[1]

����
��

��
��

��

K
−k

// X.

u

[[6666666666

Consider the isomorphism of triangles

K
−k

−−−−→ X
u

−−−−→ I
a

−−−−→ T (K)

−idK





y

idX





y





y

idI





y

−idT (K)

K −−−−→
k

X −−−−→
u

I −−−−→
−a

T (K)

;
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it implies that

I

[1]

����
��

��
��

��

K
k

// X.

u

[[6666666666

is a distinguished triangle, i.e., I is a cone of k. By 1.2.18, we see that (I, u) is a
cokernel of k.

Analogously, the distinguished triangle

T (I)

[1]

T (p)

����
��

��
��

��
�

Y c
// C

\\99999999999

implies that (I, p) is the kernel of c.
Moreover, from the commutativity of the last square in the first row of the

octahedral diagram, we conclude that f = p ◦ u.
Therefore , I coim f = im f and f = p ◦u is the canonical decomposition of the

morphism f . This proves that A is abelian. This completes the proof of 1.2.1.

1.2.19. Theorem. The functor H0 : D −→ A is a cohomological functor.

Proof. Clearly, it is enough to show that for any distinguished triangle

Z

[1]
h

����
��

��
��

��
�

X
f

// Y,

g

ZZ6666666666

the sequence

H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−−→ H0(Z)

is exact. We prove this in a number of steps.
(a) First we assume that X , Y and Z are in D≥0. Let U be in A. Then, by

1.4.1 in Ch. 2, we have the exact sequence

Hom(U,Z[−1]) −−−−→ Hom(U,X)
f∗

−−−−→ Hom(U, Y )
g∗

−−−−→ Hom(U,Z) .

Since U is in D≤0 and Z[−1] in D≥1, we see that Hom(U,Z[−1]) = 0. Therefore,
we get the exact sequence

0 −−−−→ Hom(U,X)
f∗

−−−−→ Hom(U, Y )
g∗

−−−−→ Hom(U,Z) .

On the other hand, by 1.2.4, we have

HomA(U,H0(X)) = HomD(U,H0(X)) = HomD(U, τ≤0(X)) = HomD(U,X);

since H0(X) = τ≤0(τ≥0(X)) = τ≤0(X) by 1.2.7. Analogously, we have

HomA(U,H0(Y )) = HomD(U, Y ) and HomA(U,H0(Z)) = HomD(U,Z).
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Hence, we see that

0 −−−−→ Hom(U,H0(X))
H0(f)∗
−−−−−→ Hom(U,H0(Y ))

H0(g)∗
−−−−−→ Hom(U,H0(Z))

is exact. This clearly implies that

0 −−−−→ H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−−→ H0(Z)

is exact.
(b) Now we assume that X , Y and Z are in D≤0. Let U be in A. Then, by

1.4.1 in Ch. 2, we have the exact sequence

Hom(Z,U)
g∗

−−−−→ Hom(Y, U)
f∗

−−−−→ Hom(X,U) −−−−→ Hom(Z[1], U) .

Since U is in D≥0 and Z[1] in D≤−1, we see that Hom(Z[1], U) = 0. Therefore, we
get the exact sequence

Hom(Z,U)
g∗

−−−−→ Hom(Y, U)
f∗

−−−−→ Hom(X,U) −−−−→ 0 .

On the other hand, by 1.2.4, we have

HomA(H0(X), U) = HomD(H0(X), U) = HomD(τ≥0(X), U) = HomD(X,U);

since H0(X) = τ≥0(τ≤0(X)) = τ≥0(X) by 1.2.7. Analogously, we have

HomA(H0(Y ), U) = HomD(Y, U) and HomA(H0(Z), U) = HomD(Z,U).

Hence, we see that

Hom(H0(Z), U)
H0(g)∗

−−−−−→ Hom(H0(Y ), U)
H0(f)∗

−−−−−→ Hom(H0(X), U) −−−−→ 0

is exact. This clearly implies that

H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−−→ H0(Z) −−−−→ 0

is exact.
(c) Consider now only that Z is in D≥0. LetW be in D≤−1. Then Hom(W,Z) =

Hom(W,Z[−1]) = 0 since Z[−1] is in D≥1. Therefore, by 1.4.1 in Ch. 2, we get the
exact sequence

0 = Hom(W,Z[−1]) −−−−→ Hom(W,X)
f∗

−−−−→ Hom(W,Y ) −−−−→ Hom(W,Z) = 0,

i.e., f∗ : Hom(W,X) −→ Hom(W,Y ) is an isomorphism. Consider now the com-
mutative diagram

τ≤−1(X)
τ≤−1(f)
−−−−−→ τ≤−1(Y )





y





y

X −−−−→
f

Y

,

which leads to the commutative diagram

Hom(W, τ≤−1(X))
τ≤−1(f)∗
−−−−−−→ Hom(W, τ≤−1(X))





y





y

Hom(W,X) −−−−→
f∗

Hom(W,Y )

.
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By 1.2.4, the vertical arrows are isomorphisms. Hence, we conclude that all arrows
are isomorphisms. Since W is arbitrary, it follows that τ≤−1(f) : τ≤−1(X) −→
τ≤−1(Y ) is an isomorphism.

Consider now the morphisms

τ≤−1(X)
i

−−−−→ X
f

−−−−→ Y

and their composition c. This leads to an octahedral diagram

τ≤−1(X)
i

−−−−→ X −−−−→ τ≥0(X) −−−−→ T (τ≤−1(X))

idτ≤−1(X)





y

f





y





y





y

idT (τ≤−1(X))

τ≤−1(X)
c

−−−−→ Y −−−−→ τ≥0(Y ) −−−−→ T (τ≤−1(Y ))

i





y

idY





y





y





y

T (i)

X
f

−−−−→ Y
g

−−−−→ Z −−−−→ T (X)




y





y

idZ





y





y

τ≥0(X) −−−−→ τ≥0(Y ) −−−−→ Z −−−−→ T (τ≥0(X))

.

Here the first row is the truncation triangle corresponding to X , and the second row
is the truncation triangle corresponding to Y with τ≤−1(Y ) replaced with τ≤−1(X)
using the above isomorphism. The third row is the distinguished triangle attached
to f .

The distinguished triangle in the last row has the property that all of its vertices
are in D≥0. Therefore, the case (a) applies to this situation. By applying the
functor H0 to the last two rows in the octahedral diagram, we get the following
commutative diagram

H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−−→ H0(Z)





y





y





y

idH0(Z)

0 −−−−→ H0(τ≥0(X)) −−−−−−−→
H0(τ≥0(f))

H0(τ≥0(Y )) −−−−−−−→
H0(τ≥0(g))

H0(Z)

where the first two vertical arrows are induced by the truncation morphisms. Since
H0 = τ≤0 ◦ τ≥0, these arrows are obviously isomorphisms. Hence, we see that

0 −−−−→ H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−−→ H0(Z)

is exact.
(d) Consider now only thatX is in D≤0. LetW be in D≥1. Then Hom(X,W ) =

Hom(X [1],W ) = 0 since X [1] is in D≤−1. Therefore, by 1.4.1 in Ch. 2, we get the
exact sequence

0 = Hom(X [1],W ) −−−−→ Hom(Z,W )
g∗

−−−−→ Hom(Y,W ) −−−−→ Hom(X,W ) = 0,
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i.e., g∗ : Hom(Z,W ) −→ Hom(Y,W ) is an isomorphism. Consider now the com-
mutative diagram

Y
g

−−−−→ Z




y





y

τ≥1(Y ) −−−−→
τ≤1(g)

τ≥1(Z)

,

which leads to the commutative diagram

Hom(τ≥1(Z),W )
τ≥1(g)

∗

−−−−−→ Hom(τ≥1(Y ),W )




y





y

Hom(Z,W ) −−−−→
g∗

Hom(Y,W )

.

By 1.2.4, the vertical arrows are isomorphisms. Hence, we conclude that all arrows
are isomorphisms. Since W is arbitrary, it follows that τ≥1(g) : τ≥1(Y ) −→ τ≥1(Z)
is an isomorphism.

Consider now the morphisms

Y
g

−−−−→ Z
q

−−−−→ τ≥1(Z)

and their composition d. This leads to an octahedral diagram

Y
g

−−−−→ Z
h

−−−−→ T (X)
−T (f)
−−−−→ T (Y )

idY





y

q





y





y

T (u)





y

idT (Y )

Y
d

−−−−→ τ≥1(Z) −−−−→ T (τ≤0(Y ))
−T (i)
−−−−→ T (Y )

g





y

idτ≥1(Z)





y





y

T (v)





y

T (g)

Z
q

−−−−→ τ≥1(Z) −−−−→ T (τ≤0(Z))
−T (j)
−−−−→ T (Z)

h





y





y

idτ≤0(Z)





y





y

T (h)

T (X) −−−−→
T (u)

T (τ≤0(Y )) −−−−→
T (v)

T (τ≤0(Z)) −−−−→
T (w)

T 2(X)

.

Here the first row is the turned distinguished triangle corresponding to f . The sec-
ond row is the turned truncation triangle corresponding to Y with τ≥1(Y ) replaced
with τ≤−1(Z) using the above isomorphism. The third row is turned truncation
triangle attached to Z. The morphisms i : τ≤0(Y ) −→ Y and j : τ≤0(Z) −→ Z are
the canonical truncation morphisms.

By turning the distinguished triangle in the last row three times we get the
distinguished triangle

τ≤0(Z)

[1]

−w

����
��

��
��

��
��

X
−u

// τ≤0(Y )

−v

``AAAAAAAAAAAA
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which has the property that all of its vertices are in D≤0. Therefore, the case (b)
applies to this situation.

Consider the diagram

X
−u

−−−−→ τ≤0(Y )
−v

−−−−→ τ≤0(Z)
−w

−−−−→ T (X)

idX





y

−i





y





y

j





y

idT (X)

X −−−−→
f

Y −−−−→
g

Z −−−−→
h

T (X)

where the top row is the above distinguished triangle and the bottom row is the
distinguished triangle corresponding to f . From the octahedral diagram we see that
this diagram is a morphism of triangles.

By applying the functor H0 to this diagram, we get the following commutative
diagram

H0(X) −−−−→ H0(τ≥0(Y )) −−−−→ H0(τ≥0(Z)) −−−−→ 0

idH0(X)





y





y





y

H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−−→ H0(Z)

where the last two vertical arrows are induced by the truncation morphisms. Since
H0 = τ≥0 ◦ τ≤0, these arrows are obviously isomorphisms. Hence, we see that

H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−−→ H0(Z) −−−−→ 0

is exact.
(e) Now we consider the general case. Consider the morphisms

τ≤0(X)
i

−−−−→ X
f

−−−−→ Y

a nd denote by c their composition. Then we have the corresponding octahedral
diagram

τ≤0(X)
i

−−−−→ X −−−−→ τ≥0(X) −−−−→ T (τ≤0(X))

idτ≤0(X)





y

f





y





y





y

idT(τ≤0(X))

τ≤0(X)
c

−−−−→ Y
u

−−−−→ W −−−−→ T (τ≤0(Y ))

i





y

idY





y





y

v





y

T (i)

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ T (X)




y





y

idZ





y





y

τ≥1(X) −−−−→ W −−−−→ Z −−−−→ T (τ≥1(X))

;

where the first row is the truncation triangle for X , the second row is the dis-
tinguished triangle attached to c and the third row is the distinguished triangle
attached to f .

By (d), from the distinguished triangle in the second row we get the exact
sequence

H0(τ≤0(X))
H0(c)
−−−−→ H0(Y )

H0(u)
−−−−→ H0(W ) −−−−→ 0 .
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Moreover, c = f ◦ i, and H0(i) : H0(τ≤0(X)) −→ H0(X) is an isomorphism.
Therefore, we have the exact sequence

H0(X)
H0(f)
−−−−→ H0(Y )

H0(u)
−−−−→ H0(W ) −−−−→ 0 .

In particular, H0(u) is an epimorphism. On the other hand, by turning the distin-
guished triangle in the last row, we get the distinguished triangle

T (τ≥1(X))

[1]

~~}}
}}

}}
}}

}}
}}

W // Z

``AAAAAAAAAAAA

where T (τ≥1(X)) is in D≥0. By (c), we see that

0 −−−−→ H0(W )
H0(v)
−−−−→ H0(Z) −−−−→ H0(T (τ≥1(X)))

is exact. In particular, H0(u) is a monomorphism. Since from the square in the
middle of the octahedral diagram we see that g = v ◦ u, we conclude that H0(g) =
H0(v) ◦H0(u) and kerH0(g) = kerH0(u). Hence

H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−−→ H0(Z)

is exact. �

1.2.20. Lemma. Let

0 −−−−→ X
f

−−−−→ Y
g

−−−−→ Z −−−−→ 0

be an exact sequence in A. Then a cone of f : X −→ Y is equal to Z, and we have
the distinguished triangle

Z

[1]

����
��

��
��

��

X
f

// Y.

g

[[6666666666

Proof. Consider the distinguished triangle

C

[1]
k

����
��

��
��

��

X
f

// Y.

h

[[6666666666

attached to f . Since f is a monomorphism, ker f is 0 and from the arguments in the
proof of 1.2.18 we see that H−1(C) = 0. Therefore, by 1.2.15, C is in A. Moreover,
the pair (C, h) is a cokernel of f . On the other hand, since the above sequence is
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exact, (Z, g) is a cokernel of f . Therefore, there exists an isomorphism j : Z −→ C
such that h = j ◦ g. It follows that we have the commutative diagram

X
f

−−−−→ Y
g

−−−−→ Z
k◦j

−−−−→ T (X)




y

idX





y

idY j





y





y

idT (X)

X −−−−→
f

Y −−−−→
h

C −−−−→
k

T (X)

where all vertical arrows are isomorphisms. Since the bottom row is a distinguished
triangle, the top row is also a distinguished triangle. �

1.2.21. Lemma. Let X be an object of D and n ∈ Z. Let i : τ≤n(X) −→ X and
q : X −→ τ≥n(X) be the truncation morphisms. Then:

(i) Hp(i) : Hp(τ≤n(X)) −→ Hp(X) is an isomorphism for all p ≤ n and
Hp(τ≤n(X)) = 0 for p > n;

(ii) Hp(q) : Hp(X) −→ Hp(τ≥n(X)) is an isomorphism for all p ≥ n and
Hp(τ≥n(X)) = 0 for p < n.

Proof. First, if p > n, Hp(τ≤n(X)) = τ≤p(τ≥p(τ≤n(X)))[p] = 0 by 1.2.11.
Analogously, if p < n, Hp(τ≥n(X)) = τ≥p(τ≤p(τ≥n(X)))[p] = 0 by 1.2.11.

On the other hand, if p ≤ n, τ≤p(τ≤n(X))
τ≤p(i)
−−−−→ τ≤p(X) is an isomorphism

by 1.2.10. Therefore,

Hp(τ≤n(X)) = τ≥p(τ≤p(τ≤n(X)))[p] −→ τ≥p(τ≤p(X))[p] = Hp(X)

is an isomorphism.

Analogously, if p ≥ n, τ≥p(X)
τ≥p(q)
−−−−→ τ≥p(τ≥n(X)) is an isomorphism by 1.2.10.

Therefore,

Hp(X) = τ≤p(τ≥p(X))[p] −→ τ≤p(τ≥p(τ≥n(X)))[p] = Hp(τ≥n(X))

is an isomorphism. �

1.2.22. Corollary. Let n ∈ Z.

(i) Let X be an object in D≤n. Then, Hp(X) = 0 for p > n.
(ii) Let X be an object in D≥n. Then, Hp(X) = 0 for p < n.

Proof. If X is an object in D≤n, i : τ≤n(X) −→ X is an isomorphism.
Therefore, Hp(i) : Hp(τ≤n(X)) −→ Hp(X) is an isomorphism for all p ∈ Z. On
the other hand, by 1.2.21, Hp(τ≤n(X)) = 0 for p > n.

If X is an object in D≥n, q : X −→ τ≥n(X) is an isomorphism. Therefore,
Hp(q) : Hp(X) −→ Hp(τ≥n(X)) is an isomorphism for all p ∈ Z. On the other
hand, by 1.2.21, Hp(τ≥n(X)) = 0 for p < n. �

1.2.23. Lemma. Let n ∈ Z. Let X be an object of D such that Hp(X) = 0 for
all p ∈ Z. Then:

(i) if X is in D≤n, X is in D≤p for all p ∈ Z;
(ii) if X is in D≥n, X is in D≥p for all p ∈ Z.
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Proof. Assume first that X is in D≤n. If X is also in D≤p for p ≤ n, we can
consider the distinguished triangle

τ≥p(X)

[1]

||zz
zz

zz
zz

zz
zz

z

τ≤p−1(X) // X

]]<<<<<<<<<<<<

of truncations. Since X is in D≤p, by 1.2.7, we know that τ≤p(X) −→ X is an
isomorphism. Therefore,

Hp(X)[p] = τ≥p(τ≤p(X)) −→ τ≥p(X)

is an isomorphism. Hence, we have the distinguished triangle

Hp(X)[p]

[1]

||xxxxxxxxxxxxx

τ≤p−1(X) // X

__>>>>>>>>>>>>

Since Hp(X) = 0, we see that τ≤p−1(X) −→ X is an isomorphism and X is in
D≤p−1. By downward induction in p we conclude that X is in D≤p for all p ∈ Z.

Assume now that X is in D≥n. If X is also in D≥n for some p ≥ n, the
distinguished triangle of truncations

τ≥p+1(X)

[1]

||zz
zz

zz
zz

zz
zz

z

τ≤p(X) // X

__????????????

and the isomorphism

τ≤p(X) −→ τ≤p(τ≥p(X)) = Hp(X)[p]

imply that

τ≥p+1(X)

[1]

||xxxxxxxxxxxxx

Hp(X)[p] // X

__????????????

is a distinguished triangle. Since Hp(X) = 0, we see that X −→ τ≥p+1(X) is an
isomorphism and X is in D≥p+1. By induction in p we conclude that X is in D≥p

for all p ∈ Z. �
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1.3. Nondegenerate and bounded t-structures.

1.3.1. Lemma. Let D be a triangulated category. Let (D≤0,D≥0) be a t-
structure on D. Then the following conditions are equivalent:

(i)
⋂

n∈Z

ObD≤n = {0} and
⋂

n∈Z

ObD≥n = {0}.

(ii) For any X in D, Hp(X) = 0, for all p ∈ Z, implies X = 0.

Proof. (i)⇒(ii) Assume that (i) holds andX is an object of D withHp(X) = 0
for all p ∈ Z. Consider the distinguished triangle of truncations

τ≥1(X)

[1]

~~||
||

||
||

||
||

τ≤0(X) // X

]]<<<<<<<<<<<<

By 1.2.21, we see that Hp(τ≤0(X)) = Hp(τ≥1(X)) = 0 for all p ∈ Z. Hence, by
1.2.23 , τ≤0(X) is in D≤p and τ≥1(X) = 0 is in D≥p for all p ∈ Z. By (i), we see
that τ≤0(X) = τ≥1(X) = 0. By turning the triangle, we see that X is isomorphic
to a cone of the zero morphism 0 −→ 0. By (TR1b), this implies that X = 0.

(ii)⇒(i) Let X be an object of D≤p for all p ∈ Z. Then, by 1.2.7, we have
τ≥p+1(X) = 0 for all p ∈ Z. This implies thatHp+1(X) = τ≤p+1(τ≥p+1(X))[p+1] =
0 for all p ∈ Z. Hence, X = 0 by our assumption. This proves that

⋂

n∈Z
ObD≤n =

{0}.
Let X be an object of D≥p for all p ∈ Z. Then, by 1.2.7, we have τ≤p−1(X) = 0

for all p ∈ Z. This implies that Hp−1(X) = τ≥p−1(τ≤p−1(X))[p − 1] = 0 for all
p ∈ Z. Hence, X = 0 by our assumption. This proves that

⋂

n∈Z
ObD≥n = {0}. �

A t-structure (D≤0,D≥0) on D satisfying the equivalent conditions of the above
lemma is called nondegenerate.

1.3.2. Example. Clearly, the standard t-structures on the derived category
D∗(A) of an abelian category A are nondegenerate.

Let D be a triangulated category. Then ({0},D) is a t-structure on D. Clearly
D≤n = {0} and D≥n = D for all n ∈ Z. Therefore, τ≤n = 0 and τ≥n = id for all
n ∈ Z. Moreover, Hp = 0 for all p ∈ Z.

Analogously, (D, {0}) is a t-structure on D. Clearly D≤n = D and D≥n = {0}
for all n ∈ Z. Therefore, τ≤n = id and τ≥n = 0 for all n ∈ Z. Moreover, Hp = 0
for all p ∈ Z.

The last two t-structures are not nondegenerate.

The relevance of nondegeneracy of a t-structure is visible from the next result.

1.3.3. Theorem. Let D be a triangulated category. Let (D≤0,D≥0) be a non-
degenerate t-structure on D.

(i) A morphism f : X −→ Y in D is an isomorphism if and only if all
Hn(f) : Hn(X) −→ Hn(Y ) are isomorphisms in A.

(ii) For any n ∈ Z, D≤n is the full subcategory of D consisting of all objects
X such that Hp(X) = 0 for p > n.
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(iii) For any n ∈ Z, D≥n is the full subcategory of D consisting of all objects
X such that Hp(X) = 0 for p < n.

Proof. (i) Clearly, if f is an isomorphism, all Hp(f) are isomorphisms.
Assume now that Hp(f) : Hp(X) −→ Hp(Y ) are isomorphisms for all p ∈ Z.

Consider the distinguished triangle

Z

[1]

����
��

��
��

��

X
f

// Y

ZZ6666666666

Its long exact sequence of cohomology is

· · · → Hp(X)
Hp(f)
−−−−→ Hp(Y ) → Hp(Z) → Hp+1(X)

Hp+1(f)
−−−−−→ Hp+1(Y ) → . . . ,

hence our assumption implies that Hp(Z) = 0 for all p ∈ Z. Since the t-structure
is nondegenerate, we have Z = 0. By 1.4.4 in Ch. 2, this implies that f is an
isomorphism.

By 1.2.22, if X is in D≤n, Hp(X) = 0 for p > n.
Conversely, assume that Hp(X) = 0 for p > n. Then, by 1.2.21, Hp(q) :

Hp(X) −→ Hp(τ≥n+1(X)) are isomorphisms for p > n. In particular,Hp(τ≥n+1(X)) =
0 for p > n. On the other hand, by 1.2.21, Hp(τ≥n+1(X)) = 0 for p ≤ n. Hence, we
have Hp(τ≥n+1(X)) = 0 for all p ∈ Z. From the first part of the proof we conclude
that τ≥n+1(X) = 0. From the truncation distinguished triangle

τ≥n+1(X)

[1]

||zz
zz

zz
zz

zz
zz

z

τ≤n(X) // X

__????????????

and 1.4.4 in Ch. 2 we conclude that τ≤n(X) −→ X is an isomorphism. Hence, X
is in D≤n. �

1.3.4. Lemma. Let D be a triangulated category. Let (D≤0,D≥0) be a t-
structure on D. Then the following conditions are equivalent:

(i)
⋃

n∈Z

ObD≤n = ObD and
⋃

n∈Z

ObD≥n = ObD.

(ii) The t-structure is nondegenerate and for any X in D, Hp(X) are nonzero
for finitely many p ∈ Z.

Proof. (i)⇒(ii) Let X be an object in D such that Hp(X) = 0 for all p ∈ Z.
By our assumption, there exist n,m ∈ Z such that X is in D≤n and D≥m. By
1.2.23, it follows that X is in D≤n and D≥n for all n ∈ Z. In particular, X is
in D≤−1 and D≥0. Hence, Hom(X,X) = 0 and X = 0. This proves that the
t-structure is nondegenerate.
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Let X be an arbitrary object in D. Then X is in D≤n and D≥m for some
n,m ∈ Z. By 1.2.22, Hp(X) = 0 for p > n and p < m. Therefore, Hp(X) 6= 0 for
finitely many p ∈ Z.

(ii)⇒(i) Let X be an object in D. By our assumption, there exist n ∈ Z+ such
that Hp(X) = 0 for all |p| > n. By 1.2.21, this implies that Hp(τ≤−n(X)) = 0 and
Hp(τ≥n(X)) = 0 for all p ∈ Z. Since the t-structure is nondegenerate, τ≤−n(X) =
τ≥n(X) = 0. By 1.2.7, X is in D≥−n+1 and D≤n−1. �

A t-structure (D≤0,D≥0) on D satisfying the equivalent conditions of the above
lemma is called bounded.

1.3.5. Example. Let A be an abelian category. Then the standard t-structure
on the bounded derived category Db(A) is bounded. The standard t-structures on
D+(A), D−(A) and D(A) are not bounded.

Let D be a triangulated category with a nondegenerate t-structure(D≤0,D≥0).
Let Db be the full subcategory consisting of all X in D such that Hp(X) 6= 0 for
finitely many p ∈ Z. Clearly, Db is strictly full subcategory. Assume that

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

is a distinguished triangle in D and that two of its vertices are in Db. Then,
from the long exact sequence of cohomology we see that the third vertex is also
in Db. Therefore, Db is a triangulated subcategory. Let X be an object in Db.
Then, by 1.2.21, τ≤n(X) and τ≥n(X) are also in Db for all n ∈ Z. This implies that
(Db∩D≤0,Db∩D≥0) is a t-structure on Db. Clearly, the truncation functors and the
cohomology functor H0 for this t-structure are the restrictions of the corresponding
functors on D. Also, from the above result we see that this t-structure on Db is
bounded. We call Db the subcategory of cohomologically bounded objects in D.

1.4. Left and right t-exact functors. Let C and D be two triangulated
categories with t-structures (C≤0, C≥0) and (D≤0,D≥0). An exact functor F : C −→
D is

(i) left t-exact if F (C≥0) ⊂ D≥0;
(ii) right t-exact if F (C≤0) ⊂ D≤0;
(iii) t-exact if it is both left and right t-exact.

1.4.1. Example. Let A and B be two abelian categories. Let F : A −→ B
be an exact functor. By abuse of notation, let F : D∗(A) −→ D∗(B) denote also
the corresponding exact functor between derived categories. Then F is t-exact for
standard t-structures on D∗(A) and D∗(B).

Assume that A has enough injectives and that F : A −→ B is left exact. Then,
the right derived functor RF : D+(A) −→ D+(B) is exact. Moreover, it is left
t-exact for the standard t-structures on D+(A) and D+(B).

Assume that A has enough projectives and that F : A −→ B is right exact.
Then, the left derived functor LF : D−(A) −→ D−(B) is exact. Moreover, it is
right t-exact for the standard t-structures on D−(A) and D−(B).
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Let A and B be the cores of C and D. Then we can define the functor

pF = H0 ◦ F : A −→ B.

Clearly, pF : A −→ B is an additive functor. Let

0 −−−−→ X
f

−−−−→ Y
g

−−−−→ Z −−−−→ 0

be a short exact sequence in A. Then, by 1.2.20, we have a distinguished triangle

Z

[1]

����
��

��
��

��

X
f

// Y.

g

[[6666666666

Since F is exact, this leads to a distinguished triangle

F (Z)

[1]

����
��

��
��

��
��

F (X)
F (f)

// F (Y )

F (g)

^^>>>>>>>>>>>>

in D. Since H0 is a cohomological functor, it follows that

. . . −−−−→ H0(F (X))
H0(F (f))
−−−−−−→ H0(F (Y ))

H0(F (g))
−−−−−−→ H0(F (Z)) −−−−→ . . .

is exact. In particular, the sequence

pF (X)
pF (f)
−−−−→ pF (Y )

pF (g)
−−−−→ pF (Z)

is exact.

1.4.2. Proposition. Let F : C −→ D be an exact functor between triangulated
categories C and D with t-structures (C≤0, C≥0) and (D≤0,D≥0).

(i) If F is left t-exact, the functor pF : A −→ B is left exact. Moreover,

H0(F (X)) = pF (H0(X))

for any X in C≥0.
(ii) If F is right t-exact, the functor pF : A −→ B is right exact. Moreover,

H0(F (X)) = pF (H0(X))

for any X in C≤0.
(iii) If F is t-exact, pF : A −→ B is exact. Moreover,

pF (X) = F (X)

for all X in A. In addition,

F (Hn(X)) = Hn(F (X))

for all n ∈ Z and X in C.
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Proof. Let

0 −−−−→ X
f

−−−−→ Y
g

−−−−→ Z −−−−→ 0

be a short exact sequence in A. If F is left t-exact, F (Z) is in D≥0. Hence,
H−1(F (Z)) = 0 by 1.2.22. By the above long exact sequence we see that

0 −−−−→ pF (X)
pF (f)
−−−−→ pF (Y )

pF (g)
−−−−→ pF (Z)

is exact. This implies that pF is left exact.
On the other hand, for any X in D≥0 we have the truncation distinguished

triangle

τ≥1(X)

[1]yyttttttttt

τ≤0(X) // X

bbEEEEEEEEE

where τ≤0(X) = τ≤0(τ≥0(X)) = H0(X). By applying F to it, we get the distin-
guished triangle

F (τ≥1(X))

[1]wwppppppppppp

F (H0(X)) // F (X)

eeKKKKKKKKKK

in D. Since F is left t-exact, F (C≥1) ⊂ D≥1. Therefore, by 1.2.22, from the long
exact sequence of cohomology we get that

0 −−−−→ H0(F (H0(X))) −−−−→ H0(F (X)) −−−−→ H0(F (τ≥1(X))) = 0

is exact; i.e.,
pF (H0(X)) = H0(F (H0(X)) = H0(F (X)).

If F is right t-exact, F (Z) is in D≤0. Hence, H1(F (X)) = 0 by 1.2.22. By the
above long exact sequence we see that

pF (X)
pF (f)
−−−−→ pF (Y )

pF (g)
−−−−→ pF (Z) −−−−→ 0

is exact. This implies that pF is right exact.
On the other hand, for any X in D≤0 we have the truncation distinguished

triangle

τ≥0(X)

[1]yyssss
ssssss

τ≤−1(X) // X

bbEEEEEEEEE

where τ≥0(X) = τ≥0(τ≤0(X)) = H0(X). By applying F to it, we get the distin-
guished triangle

F (H0(X))

[1]wwooooooooooo

F (τ≤−1(X)) // F (X)

eeKKKKKKKKKK
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in D. Since F is right t-exact, F (C≤−1) ⊂ D≤−1. Therefore, by 1.2.22, from the
long exact sequence of cohomology we get that

0 = H0(F (τ≤−1(X))) −−−−→ H0(F (X)) −−−−→ H0(F (H0(X)) −−−−→ 0

is exact; i.e.,
pF (H0(X)) = H0(F (H0(X)) = H0(F (X)).

If F is t-exact, F (A) ⊂ B and pF (X) = F (X) for X in A. Moreover, by the
above arguments pF is exact.

On the other hand, the distinguished triangle

τ≥1(X)

[1]yyttttttttt

τ≤0(X) // X(g)

F

ddHHHHHHHHH

leads to the distinguished triangle

F (τ≥1(X))

[1]wwppppppppppp

F (τ≤0(X)) // F (X)

eeLLLLLLLLLL

and F (τ≤0(X)) is in D≤0 and F (τ≥1(X)) is in D≥1. Therefore, by uniqueness of
truncations, we have

τ≤0(F (X)) = F (τ≤0(X)) and τ≥1(F (X)) = F (τ≥1(X)) .

Since F commutes with translations, it follows that it commutes with all truncation
functors. Therefore,

Hn(F (X)) = τ≤n(τ≥n(F (X)))[n] = F (τ≤n(τ≥n(X))[n]) = F (Hn(X)).

�

1.4.3. Lemma. Let C, D and E be three triangulated categories with t-structures
(C≤0, C≥0), (D≤0,D≥0) and (E≤0, E≥0). Let F : C −→ D and G : D −→ E be two
exact functors.

(i) If F and G are left t-exact, G◦F is also left t-exact and p(G◦F ) = pG◦pF .
(ii) If F and G are right t-exact, G ◦ F is also right t-exact and p(G ◦ F ) =

pG ◦ pF .

Proof. (i) assume that F and G are left t-exact. Then F (C≥0) ⊂ D≥0 and
G(D≥0) ⊂ E≥0. Therefore,

(G ◦ F )(C≥0) = G(F (C≥0)) ⊂ G(D≥0) ⊂ E≥0

and G ◦ F is left t-exact.
Moreover, by 1.4.2, we have

pF (H0(X)) = H0(F (X)), pG(H0(Y )) = H0(F (Y ))

for any X in C≥0 and Y in D≥0. Therefore, it follows that
pG(pF (X)) = pG(H0(F (X))) = H0(G(F (X))) = H0((G ◦ F )(X))

for any X in the core of C. By applying 1.4.2 again, we see that pG(pF (X)) =
p(G ◦ F )(X) for any X in the core of C, i.e., pG ◦ pF = p(G ◦ F ).
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(ii) The proof is analogous. �

1.4.4. Lemma. Let C and D be two triangulated categories with t-structures
(C≤0, C≥0) and (D≤0,D≥0). Let F : C −→ D and G : D −→ C be two exact
functors. Assume that F is a left adjoint of G. Then the following conditions are
equivalent:

(i) F is right t-exact;
(ii) G is left t-exact.

If these conditions are satisfied, pF is a left adjoint of pG.

Proof. Assume that F is right t-exact. Then we have F (C≤−1) ⊂ D≤−1. It
follows that HomD(F (X), Y ) = 0 for any X in C≤−1 and Y in D≥0. By adjointness,
this implies that HomC(X,G(Y )) = 0 for all X in C≤−1 and Y in D≥0. By 1.2.4,
it follows that HomC(X, τ≤−1(G(Y ))) = 0 for all X in C≤−1 and Y in D≥0. This
yields τ≤−1(G(Y )) = 0 for any Y in D≥0. By 1.2.7, G(Y ) is in D≥0 for any Y in
D≥0; i.e., G is left t-exact.

Conversely, assume that G is left t-exact. Then we have G(D≥1) ⊂ C≥1. It
follows that HomC(X,G(Y )) = 0 for any X in C≤0 and Y in D≥1. By adjointness,
this implies that HomD(F (X), Y ) = 0 for all X in C≤0 and Y in D≥1. By 1.2.4, it
follows that HomC(τ≥1(F (X)), Y ) = 0 for all X in C≤0 and Y in D≥1. This yields
τ≥1(F (X)) = 0 for any X in D≥1. By 1.2.7, F (X) is in D≤0 for any X in D≤0; i.e.,
F is right t-exact.

Let A and B be the cores of C and D respectively. Then, by 1.4.2, we have

pF (X) = H0(F (X)) = τ≥0(F (X))

for X in A. Analogously, for Y in B, we have

pG(Y ) = H0(G(Y )) = τ≤0(G(Y )).

Therefore, for any X in A and Y in B, we have

HomB(pF (X), Y ) = HomD(τ≥0(F (X)), Y ) = HomD(F (X), Y )

= HomC(X,G(Y )) = HomC(X, τ≤0(G(Y ))) = HomA(X, pG(Y )).

Therefore, pF is a left adjoint of pG. �

1.5. Induced t-structures. Let D be a triangulated category with t-structure
(D≤0,D≥0). Let C be a full triangulated subcategory of D. Clearly, the inclusion
functor from C to D is exact.

Put

C≤0 = C ∩ D≤0 and C≥0 = C ∩ D≥0.

1.5.1. Lemma. Let D be a triangulated category with t-structure (D≤0,D≥0).
Let C be a full triangulated subcategory of D. Then, the following conditions are
equivalent:

(i) (C≤0, C≥0) is a t-structure on C.
(ii) There exists a truncation functor τ≤0 on D such that τ≤0(C) ⊂ C.
(iii) There exists a truncation functor τ≥0 on D such that τ≥0(C) ⊂ C.

Proof. Clearly, since C is translation invariant, we have

C≥1 = T−1(C≥0) = C ∩ T−1(D≥0) = C ∩ D≥1 ⊂ C ∩ D≥0 = C≥0
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and
C≤1 = T−1(C≤0) = C ∩ T−1(D≤0) = C ∩ D≤1 ⊃ C ∩ D≤0 = C≤0.

Hence, (t1) is satisfied.
The condition (t2) is obviously satisfied.
To establish (t3) we have to show that for anyX in C there exists a distinguished

triangle

B

[1]��~~
~~

~~
~

A // X

``@@@@@@@@

with A in C≤0 and B in C≥1. If τ≤0(X) is in C, we can put A = τ≤0(X). Since C
is triangulated subcategory, there exists B in C such that

B

[1]{{xx
xx

xx
xx

x

τ≤0(X) // X

__????????

is a distinguished. Clearly, τ≤0(X) is in C ∩ D≤0 = C≤0, and B is isomorphic to
τ≥1(X) which is in D≥1. Therefore, B is in C ∩ D≥1 = C≥1.

Analogously, if τ≥0(T (X)) is in C, its translation T−1(τ≥0(T (X))) is in C. We
can put B = T−1(τ≥0(T (X)). Clearly, by 1.2.6, T−1(τ≥0(T (X)) is isomorphic to
τ≥1(X) in D. Hence,

B

[1]{{xx
xx

xx
xx

x

τ≤0(X) // X

__????????

is a distinguished triangle in D. Since C is a triangulated subcategory, there exists
A in C such that

B

[1]��~~
~~

~~
~

A // X

``@@@@@@@@

is a distinguished triangle in C. Clearly, A is isomorphic to τ≤0(X). Hence, it is in
C ∩ D≤0 = C≤0. On the other hand, B is isomorphic to τ≥1(X) which is in D≥1.
Therefore, B is in C ∩ D≥1 = C≥1.

It follows that (ii) and (iii) imply (i). On the other hand, if (C≤0, C≥0) is a
t-structure, by the construction of the truncation functors on D, we can construct
them so that they leave C invariant. �

If (C≤0, C≥0) is a t-structure on C, it is called the induced t-structure on C.
Clearly, if C is equipped with the induced t-structure, the inclusion functor from C
into D is t-exact.

1.5.2. Lemma. Let D be a triangulated category with t-structure (D≤0,D≥0).
Let C be a full triangulated subcategory of D with t-structure Let (C≤0, C≥0) be a
t-structure on C. Then the following conditions are equivalent:

(i) The t-structure (C≤0, C≥0) on C is induced.
(ii) The inclusion functor from C into D is t-exact.
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Proof. We already stated that (i) implies (ii).
Assume that the inclusion functor is t-exact. This implies that C≤0 ⊂ D≤0 and

C≥0 ⊂ D≥0. Therefore we have

C≤0 ⊂ C ∩D≤0 and C≥0 ⊂ C ∩ D≥0.

Let τ̄≤n and τ̄≥n be the truncation functors for C. Let X be an object in C and

τ̄≥1(X)

[1]yyttttttttt

τ̄≤0(X) // X

bbEEEEEEEEE

the truncation distinguished triangle in C. Since the inclusion is t-exact, τ̄≤0(X)
is in D≤0 and τ̄≥1(X) is in D≥1. Therefore, τ̄≤0(X) is isomorphic to τ≤0(X) and
τ̄≥1(X) is isomorphic to τ≥1(X).

Assume that X is in D≤0. Then τ≥1(X) = 0. Hence, τ̄≥1(X) = 0 and X is in
C≤0 by 1.2.7. Therefore, C ∩ D≤0 = C≤0.

Analogously, if X is in D≥0, T−1(X) is in D≥1. Therefore, τ≤0(T
−1(X)) = 0.

Hence, τ̄≤0(T
−1(X)) = 0 and T−1(X) is in C≥1 by 1.2.7. Therefore, X is in C≥0.

Hence, it follows that C ∩ D≥0 = C≥0. �

If the t-structure on C is induced, its core B is a full subcategory of the core A of
D. Moreover, the truncation functors and the cohomology functors are isomorphic
to the restrictions of the corresponding functors for D.

2. Extensions

2.1. Extensions in the core. Let D be a triangulated category with t-
structure (D≤0,D≥0). Let C be the core of D. Then, by 1.2.1, C is an abelian
category.

By definition, for any two objects X and Y in C we have HomC(X,Y ) =
HomD(X,Y ).

If

0 −→ Y −→ Z −→ X −→ 0

is a short exact sequence in C, we say that Z is an extension of Y by X . Two
extensions Z and Z ′ of Y by X are equivalent, if there exists a morphism α : Z −→
Z ′ such that the diagram

0 −−−−→ Y −−−−→ Z −−−−→ X −−−−→ 0
∥

∥

∥

α





y

∥

∥

∥

0 −−−−→ Y −−−−→ Z ′ −−−−→ X −−−−→ 0

is commutative. By the five lemma, α must be an isomorphism. Therefore, equiva-
lence of extensions is an equivalence relation on the set of all extensions. We denote
by ExtC(X,Y ) the set of all equivalence classes of extensions of Y by X .

Let

0 −−−−→ Y
i

−−−−→ Z
p

−−−−→ X −−−−→ 0
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be a short exact sequence in C. Then, by 1.2.20, it defines a distinguished triangle

X

[1]

ϕ

~~~~
~~

~~
~

Y
i

// Z

p
``@@@@@@@

in D. Clearly, Y is in D≤0 and X is in D≥0. Hence, X [−1] is in D≥1. It follows that
Hom(Y,X [−1]) = 0. By 1.4.6 in Ch. 2, the morphism ϕ in the above distinguished
triangle is unique. Let Z ′ be an equivalent extension of Y by X and α : Z −→ Z ′

the corresponding isomorphism. Then we get the distinguished triangle

X

[1]

ϕ′

~~~~
~~

~~
~~

Y
i′

// Z ′

p′
``AAAAAAAA

and a diagram

Y
i

−−−−→ Z
p

−−−−→ X
ϕ

−−−−→ T (Y )

idY





y

α





y





y

idT (Y )

Y −−−−→
i′

Z ′ −−−−→
p′

X −−−−→
ϕ′

T (Y )

where the first square commutes. This diagram can be completed to a morphism
of distinguished triangles

Y
i

−−−−→ Z
p

−−−−→ X
ϕ

−−−−→ T (Y )

idY





y

α





y





y

β





y

idT (Y )

Y −−−−→
i′

Z ′ −−−−→
p′

X −−−−→
ϕ′

T (Y )

,

and we have the commutative diagram

0 −−−−→ Y
i

−−−−→ Z
p

−−−−→ X −−−−→ 0

idY





y

α





y





y

β

0 −−−−→ Y −−−−→
i′

Z ′ −−−−→
p′

X −−−−→ 0

in C. This in turn implies that

β ◦ p = p′ ◦ α = p.

Since p is an epimorphism, β = idX . This immediately implies that ϕ′ = ϕ.
Therefore, ϕ depends only on the equivalence class of the extension of Y by X . It
follows that this defines a map from ExtC(X,Y ) into HomD(X,Y [1]).

We claim that this map is a bijection. First assume that

0 −−−−→ Y
i

−−−−→ Z
p

−−−−→ X −−−−→ 0

and

0 −−−−→ Y
i′

−−−−→ Z ′ p′

−−−−→ X −−−−→ 0
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are two extensions determining the same ϕ : X −→ Y [1]. Then the corresponding
distinguished triangles are

X

[1]

ϕ

~~~~
~~

~~
~

Y
i

// Z

p
``@@@@@@@

and

X

[1]

ϕ

~~~~
~~

~~
~~

Y
i′

// Z ′

p′
``AAAAAAAA

and we have the diagram

Y
i

−−−−→ Z
p

−−−−→ X
ϕ

−−−−→ T (Y )

idY





y





y

idX





y

idT (Y )

Y −−−−→
i′

Z ′ −−−−→
p′

X −−−−→
ϕ

T (Y )

where the last square is commutative. Therefore, it can be completed to a morphism
of distinguished triangles

Y
i

−−−−→ Z
p

−−−−→ X
ϕ

−−−−→ T (Y )

idY





y

α





y





y

idX





y

idT (Y )

Y −−−−→
i′

Z ′ −−−−→
p′

X −−−−→
ϕ

T (Y )

.

It follows that α : Z −→ Z ′ is such that

0 −−−−→ Y −−−−→ Z −−−−→ X −−−−→ 0
∥

∥

∥

α





y

∥

∥

∥

0 −−−−→ Y −−−−→ Z ′ −−−−→ X −−−−→ 0

is commutative, i.e., the extensions are equivalent.
Finally, let ϕ : X −→ Y [1] be a morphism in D. Then, there exists a distin-

guished triangle

U

[1]||yyyyyyyy

X [−1]
−ϕ[−1]

// Y

__????????

where U is a cone of ϕ. By turning this triangle, we get the distinguished triangle

X

[1]

ϕ

~~~~
~~

~~
~

Y
f

// U

g
``@@@@@@@



2. EXTENSIONS 181

for some U in D. By 1.2.8, U is in C. By 1.2.17, the morphism f is a monomorphism
and g : U −→ X is its cokernel. Therefore,

0 −−−−→ Y
f

−−−−→ U
g

−−−−→ X −−−−→ 0

is exact and U is an extension of Y by X . Clearly, this extension determines the
morphism ϕ : X −→ Y [1]. It follows that the map from equivalence classes of
extensions of Y by X into HomD(X,Y [1]) is a bijection.

2.1.1. Proposition. The map from ExtC(X,Y ) into HomD(X,Y [1]) is a bi-
jection.

Let X and Y be two objects in C. Let i : Y −→ X⊕Y be the natural inclusion
and p : X⊕Y −→ X the natural projection. Then we have the short exact sequence

0 −−−−→ Y
i

−−−−→ X ⊕ Y
p

−−−−→ X −−−−→ 0.

We say that X ⊕ Y is the trivial extension of Y by X . By 1.4.8, to the equivalence
class of this extension corresponds the zero morphism of X into Y [1].

Since HomD(X,Y [1]) has a natural structure of an abelian group with respect
to the addition of morphisms, the above discussion implies that there is a natural
structure of an abelian group on the set of all equivalence classes of extensions of
Y by X and that the class of the trivial extension corresponds to the zero element.
The binary operation on ExtC(X,Y ) defined in this way is called the Baer sum.

2.2. Cohomological length. Let D be a triangulated category with a bounded
t-structure (D≤0,D≥0). Then, for any object X in D we put

ℓ(X) = Card{p ∈ Z | Hp(X) 6= 0}

and call it the (cohomological) length of X . Clearly, since the t-structure is nonde-
generate, ℓ(X) = 0 implies that X = 0 by 1.3.1.

Assume that ℓ(X) > 0. Then there exists n ∈ Z such that Hn+1(X) 6= 0 and
Hp(X) = 0 for all p > n+ 1. Then, by 1.2.21, Hp(q) : Hp(X) −→ Hp(τ≥n+1(X))
are isomorphisms for p > n, and Hp(τ≥n+1(X)) = 0 for p ≤ n. In particular, we
have

Hp(τ≥n+1(X)) =

{

0 for p 6= n+ 1;

Hn+1(X) for p = n+ 1;

and ℓ(τ≥n+1(X)) = 1. If we put Y = τ≥n+1(X)[n+ 1], we see that

Hp(Y ) = Hp+n+1(τ≥n+1(X)) = 0

for p 6= 0 and Y is in the core C of D. On the other hand, by 1.2.21, the morphism
Hp(i) : Hp(τ≤n(X)) −→ Hp(X) is an isomorphism for p ≤ n, and Hp(τ≤n(X)) = 0
for p > n. Therefore, Hp(τ≤n(X)) 6= 0 implies that p ≤ n and Hp(X) 6= 0. Hence,
ℓ(τ≤n(X)) = ℓ(X) − 1. This proves the following result.

2.2.1. Lemma. Let X be an object with length ℓ(X) > 0. Then there exists
p ∈ Z such that in the truncation distinguished triangle

τ≥p+1(X)

[1]

||zz
zz

zz
zz

zz
zz

z

τ≤p(X) // X

__????????????
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we have ℓ(τ≤p(X)) = ℓ(X) − 1 and ℓ(τ≥p+1(X)) = 1.

2.3. A splitting result. Let D be a triangulated category with a t-structure
(D≤0,D≥0). Let C be its core.

Let X and Y be objects in C. Then X is in D≤0 and Y [−n] is in D≥1 for
any n ∈ N. Therefore, by (t2), we have HomD(X,Y [−n]) = 0 for n ∈ N. Clearly,
HomD(X,Y ) = HomC(X,Y ), and HomD(X,Y [1]) = ExtC(X,Y ). In this section
we shall study the structure of D under the additional assumption that

(i) the t-structure on D is bounded;
(ii) for any two objects X and Y in C, we have HomD(X,Y [n]) = 0 for all

n > 1.

2.3.1. Proposition. Let X be an object in D. Then

X ∼=
⊕

p∈Z

Hp(X)[−p].

Proof. The proof is by induction in the length of the object X . If the length
of the object is either 0 or 1 the statement is obvious.

Assume that the length of the object X is n+ 1. Then, by 2.2.1, there exists p
such that τ≤p(X) is of length n and τ≥p+1(X) is of length 1. It follows that there
exists Y in the core C of D such that τ≥p+1(X) ∼= Y [−p− 1]. This implies that the
morphism h : τ≥p+1(X) −→ τ≤p(X)[1] determines the morphism h[p + 1] : Y −→
τ≤p(X)[p+ 2]. On the other hand,

Hq(τ≤p(X)[p+ 2]) = Hq+p+2(τ≤p(X)) 6= 0

implies that q + p+ 2 ≤ p, i.e., q ≤ −2. By the induction assumption, we have

τ≤p(X)[p+ 2] =
⊕

q≤−2

Hq+p+2(X)[−q] =
⊕

q≥2

H−q+p+2(X)[q].

Therefore,

HomD(Y, τ≤p(X)[p+ 2]) =
⊕

q≥2

HomD(Y,H−q+p+2(X)[q]) = 0.

It follows that h = 0, and by 1.4.9 in Ch. 2, we have

X ∼= τ≤p(X) ⊕ τ≥p+1(X) ∼=
⊕

q∈Z

Hq(X)[−q].

�
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Derived Functors

1. Derived functors

1.1. Lifting of additive functors to homotopic category of complexes.

Let A and B be two additive categories, and F : A −→ B an additive functor. Let
C∗(A) and C∗(B) be the corresponding categories of complexes. We define, for an
object X · in C∗(A), the graded object

C(F )(X ·)p = F (Xp), for any p ∈ Z

with the differential dpC(F )(X·) = F (dpX) : F (Xp) −→ F (Xp+1) for any p ∈ Z. It is

clearly a complex in C∗(B). Moreover, for any morphism f · : X · −→ Y · in C∗(A),
we define a graded morphism C(F )(f ·) : C(F )(X ·) −→ C(F )(Y ·) by

C(F )(f ·)p = F (fp) for any p ∈ Z.

It is clear that C(F )(f ·) is a morphism of complexes in C∗(B). Moreover, C(F ) is
an additive functor from C∗(A) into C∗(B). We call it the lift of F to the category
of complexes.

Let f · : X · −→ Y · and g· : X · −→ Y · be two homotopic morphisms with
homotopy h. Then

F (fp) − F (gp) = dp−1
C(F )(Y ·) ◦ F (hp) + F (hp+1) ◦ dpC(F )(X·)

for any p ∈ Z; i.e., F (hp), p ∈ Z, define a homotopy of C(F )(f ·) and C(F )(g·). It
follows that C(F ) induces a homomorphism of the abelian group HomK∗(A)(X

·, Y ·)
into the abelian group HomK∗(B)(C(F )(X ·), C(F )(Y ·)). If we denote this homo-
morphism by K(F ), and put K(F )(X ·) = C(F )(X ·) for all complexes X ·, we see
that K(F ) is an additive functor from K∗(A) into K∗(B). We call it the lift of F
to the homotopic category of complexes.

Clearly,

K(F ) ◦ T = T ◦K(F );

i.e., K(F ) is a graded functor.
Moreover, let f · : X · −→ Y · be a morphism of complexes. Then, C(F )(f ·) :

C∗(X ·) −→ C∗(Y ·) is a morphism of complexes. In addition, we have

CpC(F )(f) = C(F )(X ·)p+1 ⊕ C(F )(Y ·)p = F (Xp+1) ⊕ F (Y p)

= F (Xp+1 ⊕ Y p) = C(F )(C·
f )
p

for any p ∈ Z. In addition,

dpC(F )(f) =

[

−dp+1
C(F )(X·) 0

C(F )(f)p+1 dpC(F )(Y ·)

]

=

[

−F (dp+1
X· ) 0

F (fp+1) F (dpY ·)

]

= F (dpCf
)

183
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for any p ∈ Z. Therefore, it follows that

C(F )(C·
f ) = C·

C(F )(f).

This implies that C(F ) maps standard triangles into standard triangles.
Let

Z ·

[1]

����
��

��
��

��
�

X ·
f // Y ·

[[88888888888

be a distinguished triangle in K∗(A). Let a· : X · −→ Y · be a morphism of com-
plexes representing f . Then, by 2.1.3 in Ch. 3, we have an isomorphism of triangles

X · f
−−−−→ Y · −−−−→ Z · −−−−→ T (X ·)





y





y





y





y

X · −−−−→
f

Y · −−−−→ C·
a −−−−→ T (X ·)

where the bottom triangle is the image of the standard triangle in K∗(A). By
applying functor K(F ) to this diagram, we get the isomorphism of triangles

K(F )(X ·)
K(F )(f)
−−−−−→ K(F )(Y ·) −−−−→ K(F )(Z ·) −−−−→ T (K(F )(X ·))





y





y





y





y

K(F )(X ·) −−−−−→
K(F )(f)

K(F )(Y ·) −−−−→ K(F )(C·
a) −−−−→ T (K(F )(X ·))

where, by the above discussion, the bottom triangle is the image in K∗(B) of the
standard triangle attached to the morphism C(F )(a·) : C(F )(X ·) −→ C(F )(Y ·).
Therefore, the top triangle is a distinguished triangle in K∗(B). It follows that
K(F ) : K∗(A) −→ K∗(B) is an exact functor.

1.1.1. Proposition. Let F : A −→ B be an additive functor between additive
categories A and B. Then the lift K(F ) : K∗(A) −→ K∗(B) is an exact functor
between triangulated categories K∗(A) and K∗(B).

Let A, B and C be three additive categories and F : A −→ B and G : B −→ C
two additive functors. Then they induce exact functors K(F ) : K∗(A) −→ K∗(B)
andK(G) : K∗(B) −→ K∗(C). Moreover,G◦F : A −→ C is an additive functor and
we have the corresponding lift K(G◦F ) : K∗(A) −→ K∗(C). From its construction,
it is clear that

K(G ◦ F ) = K(G) ◦K(F ).

Let A and B be two additive categories and F : A −→ B and G : B −→ A
two additive functors. Assume that F is a left adjoint of G, i.e., that for any two
objects X in A and Y in B there exists an isomorphism

αX,Y : HomB(F (X), Y ) −→ HomA(X,G(Y ))
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of abelian groups which is natural in X and Y ; i.e., such that for a morphism
f : X −→ X ′ the diagram

HomB(F (X ′), Y )
αX′,Y

−−−−→ HomA(X ′, G(Y ))

−◦F (f)





y





y

−◦f

HomB(F (X), Y ) −−−−→
αX,Y

HomA(X,G(Y ))

is commutative, and for a morphism g : Y −→ Y ′ the diagram

HomB(F (X), Y )
αX,Y

−−−−→ HomA(X,G(Y ))

g◦−





y





y

G(g)◦−

HomB(F (X), Y ′) −−−−→
αX,Y ′

HomA(X,G(Y ′))

is commutative.
LetX · be a complex in C∗(A) and Y · a complex in C∗(B). Let f : C(F )(X ·) −→

Y · be a morphism of complexes. Then fp : F (Xp) −→ Y p are morphisms in B for
all p ∈ Z. Let gp = αXp,Y p(fp). Then gp : Xp −→ G(Y p) are morphisms in A for
all p ∈ Z. Moreover, if we consider the commutative diagram

F (Xp)
fp

−−−−→ Y p

F (dp

X
)





y





y

dp

Y

F (Xp+1) −−−−→
fp+1

Y p+1

we see that

gp+1 ◦ dpX = αXp+1,Y p+1(fp+1) ◦ dpX = αXp,Y p+1(fp+1 ◦ F (dpX))

using the naturality in the first variable. Moreover, we see that

G(dpY ) ◦ gp = G(dpY ) ◦ αXp,Y p(fp) = αXp,Y p+1(dpY ◦ fp)

using the naturality in the second variable. Hence, we have

gp+1 ◦ dpX = G(dpY ) ◦ gp

for all p ∈ Z. It follows that the graded morphism g : X · −→ C(G)(Y ·) is a mor-
phism of complexes. Therefore, we have the map γX,Y : HomC∗(B)(C(F )(X ·), Y ·) −→
HomC∗(A)(X

·, C(G)(Y ·)) defined by

γX,Y (f)p = αXp,Y p(fp)

for all p ∈ Z. Since the αXp,Y p , p ∈ Z, are morphisms of abelian groups, γX,Y is
also a morphism of abelian groups.

If βX,Y : HomA(X,G(Y )) −→ HomB(F (X), Y ) denotes the inverse of αX,Y ,
for any g : X · −→ C(G)(Y ·) we can define fp = βXp,Y p(gp), p ∈ Z. By dualizing
the above argument, we can check that these morphisms define a morphism f :
C(F )(X ·) −→ Y ·. Moreover, the morphism δX,Y : HomC∗(A)(X

·, C(G)(Y ·)) −→
HomC∗(B)(C(F )(X ·), Y ·) defined by

δX,Y (g)p = βXp,Y p(gp)

for all p ∈ Z, is the inverse of γX,Y . Hence, γX,Y : HomC∗(B)(C(F )(X ·), Y ·) −→
HomC∗(A)(X

·, C(G)(Y ·)) is an isomorphism of abelian groups.
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Now we want to check that it is natural in both variables.
Let ϕ : U · −→ V · be a morphism in C∗(A), and Y · an object in C∗(B). Then,

for any morphism f : C(F )(V ·) −→ Y · we have

(γV,Y (f) ◦ ϕ)p = αV p,Y p(fp) ◦ ϕp = αUp,Y p(fp ◦ F (ϕp)) = γU,Y (f ◦ C(F )(ϕ))p

for all p ∈ Z. Hence, the diagram

HomC∗(B)(C(F )(V ·), Y ·)
γV,Y

−−−−→ HomC∗(A)(V
·, C(G)(Y ·))

−◦C(F )(ϕ)





y





y

−◦ϕ

HomB(C(F )(U ·), Y ·) −−−−→
γU,Y

HomC∗(A)(U
·, C(G)(Y ·))

is commutative, and γ is natural in the first variable. If X · is in C∗(A) and
ψ : Y · −→ Z · is a morphism in C∗(B), for any morphism g : C(F )(X ·) −→ Y · we
have

(C(G)(ψ) ◦ γX,Y (g))p = G(ψp) ◦ αXp,Y p(gp) = αXp,Zp(ψp ◦ gp) = γX,Z(ψ ◦ g)p

for all p ∈ Z. Hence, the diagram

HomC∗(B)(C(F )(X ·), Y ·)
γX,Y

−−−−→ HomC∗(A)(X
·, C(G)(Y ·))

ψ◦−





y





y

C(G)(ψ)◦−

HomB(C(F )(X ·), Z ·) −−−−→
γX,Z

HomC∗(A)(X
·, C(G)(Z ·))

is commutative, and γ is natural in the second variable.
This proves the following result.

1.1.2. Lemma. The functor C(F ) : C∗(A) −→ C∗(B) is a left adjoint to C(G) :
C∗(B) −→ C∗(A).

Now we discsuss the analogue of this result for homotopic categories of com-
plexes.

Let X · and Y · be two complexes in C∗(A). Let f be a morphism of C(F )(X ·)
into Y · homotopic to zero. Assume that h is the corresponding homotopy, i.e.,

f = dY ◦ h+ h ◦ C(F )(dX).

Then we have

γX,Y (f)p = αXp,Y p(fp) = αXp,Y p(dp−1
Y ◦ hp) + αXp,Y p(hp+1 ◦ F (dpX)).

Moreover, by naturality of α, we get

γX,Y (f)p = G(dp−1
Y ) ◦ αXp,Y p−1(hp) + αXp+1,Y p(hp+1) ◦ dpX

for any p ∈ Z. Therefore, (αXp,Y p−1(hp); p ∈ Z) defines a homotopy k between X ·

and C(G)(Y ·) which satisfies

γX,Y (f) = G(dY ) ◦ k + k ◦ dX .

i.e., γX,Y (f) is homotopic to zero. This implies that γX,Y induces a morphism of
HomK∗(A)(C(F )(X ·), Y ·) into HomK∗(B)(X

·, C(G)(Y ·)). By dualizing the argu-
ment, we see that this morphism is an isomorphism of abelian groups. Moreover,
its naturality for the category of complexes implies its naturality for the category
of homotopic complexes. Hence we have the following consequence.
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1.1.3. Proposition. The functor K(F ) : K∗(A) −→ K∗(B) is a left adjoint
to K(G) : K∗(B) −→ K∗(A).

1.2. Lifting of exact functors to derived categories. Let A and B be
two abelian categories and F : A −→ B an additive functor. Then, as we have seen
in the preceding section, K(F ) : K∗(A) −→ K∗(B) is an exact functor between
triangulated categories. Therefore, the composition of K(F ) with the exact functor
QB : K∗(B) −→ D∗(B) is an exact functor from the category K∗(A) into D∗(B).

In general, the exact functor QB ◦ K(F ) cannot be factored through D∗(A),
since for a quasiisomorphism s : X · −→ Y ·, the morphismK(F )(s) : K(F )(X ·) −→
K(F )(Y ·) doesn’t have to be a quasiisomorphism.

1.2.1. Lemma. Let F : A −→ B be an exact functor between abelian categories
A and B. Then for any quasiisomorphism s : X · −→ Y · in K∗(A), the morphism
K(F )(s) : K(F )(X ·) −→ K(F )(Y ·) is a quasiisomorphism.

Proof. Let

Z ·

[1]

����
��

��
��

��
�

X · s // Y ·

[[88888888888

be a distinguished triangle based on s. By 3.1.1 in Ch. 3, the complex Z · is acyclic.
Since F is an exact functor, this implies that the complex K(Z ·) is also acyclic.
Since K(F ) is an exact functor between triangulated categories,

K(F )(Z ·)

[1]

����
��

��
��

��
��

��
��

�

K(F )(X ·)
K(F )(s) // K(F )(Y ·)

^^>>>>>>>>>>>>>>>>>

is a distinguished triangle. Applying again 3.1.1 in Ch. 3, we see that K(F )(s) is a
quasiisomorphism. �

By 1.6.2 in Ch. 2, in this situation, there exists a unique functor D(F ) :
D∗(A) −→ D∗(B) such that the diagram of functors

K∗(A)
K(F )

−−−−→ K∗(B)

QA





y





y

QB

D∗(A) −−−−→
D(F )

D∗(B)

commutes.



188 5. DERIVED FUNCTORS

Moreover, for any X · in D∗(A), we have D(F )(X ·) = K(F )(X ·) = C(F )(X ·);
and if ϕ : X · −→ Y · is a morphism in D∗(A) represented by a left roof

Z ·

s
∼

~~||
||

||
|| f

""E
EE

EE
EE

E

X · Y · ;

the morphism D(F )(ϕ) : D(X ·) −→ D(Y ·) is represented by the left roof

K(F )(Z ·)

K(F )(s)

∼

����
��

��
��

��
��

��
��

�

K(F )(f)

  @
@@

@@
@@

@@
@@

@@
@@

@@
@

K(F )(X ·) K(F )(Y ·) .

1.2.2. Theorem. Let F : A −→ B be an exact functor between abelian cate-
gories A and B. Then there exists a unique exact functor D(F ) : D∗(A) −→ D∗(B)
between triangulated categories D∗(A) and D∗(B) such that the diagram

K∗(A)
K(F )

−−−−→ K∗(B)

QA





y





y

QB

D∗(A) −−−−→
D(F )

D∗(B)

commutes. It satisfies

T ◦D(F ) = D(F ) ◦ T.

We say that D(F ) is the lift of F to derived categories.

1.3. Derived functors. Let C and D be two triangulated categories and
F : C −→ D an exact functor. Let S be a localizing class in C compatible with
triangulation.

If F (s) is an isomorphism in D for any s ∈ S, by 1.6.2 in Ch. 2, there exists an
exact functor F̄ : C[S−1] −→ D such that F = F̄ ◦Q.

In general, since F doesn’t have to map morphisms in S into isomorphisms, F
doesn’t define an exact functor F̄ : C[S−1] −→ D such that F = F̄ ◦Q. Still, the we
can consider functors which satisfy the following weaker property. They are useful
and exist in wide variety of situations.

A right derived functor of F is a pair consisting of an exact functor RF :
C[S−1] −→ D and a graded morphism of functors ǫF : F −→ RF ◦ Q with the
following universal property:

(RD1) Let G : C[S−1] −→ D be an exact functor and ǫ : F −→ G ◦Q a graded
morphism of functors. Then there exists a unique graded morphism of
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functors η : RF −→ G such that the diagram

RF ◦Q

η◦Q

��

F

ǫF
;;wwwwwwwww

ǫ
##G

GG
GG

GG
GG

G ◦Q

commutes.

Analogously, we have the notion of a left derived functor.
A left derived functor of F is a pair consisting of an exact functor LF :

C[S−1] −→ D and a graded morphism of functors ǫF : LF ◦ Q −→ F with the
following universal property:

(LD1) Let G : C[S−1] −→ D be an exact functor and ǫ : G ◦Q −→ F a graded
morphism of functors. Then there exists a unique graded morphism of
functors η : G −→ LF such that the diagram

G ◦Q

η◦Q

��

ǫ

##G
GG

GG
GG

GG

F

LF ◦Q

ǫF

;;wwwwwwwww

commutes.

Clearly, if right (or left) derived functors exist they are unique up to a graded
isomorphism of functors.

The notions of right and left derived functors are dual to each other. Let
F : C −→ D be an exact functor. Then F can be also viewed as an additive functor
from Copp into Dopp. Since F is a graded functor, we have T ◦ F ∼= F ◦ T and
T−1◦F ∼= F ◦T−1. Since the translation functors on Copp and Dopp are the inverses
of the translation functors on C and D respectively, we see that F : Copp −→ Dopp

is also a graded functor.
Let

Z

[1]
h

����
��

��
��

��

X
f

// Y

g

ZZ6666666666

be a distinguished triangle in Copp. Then

X

[1]

T (h)

����
��

��
��

��

Z g
// Y

f

[[6666666666
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is a distinguished triangle in C. Hence, since F is exact,

F (X)

[1]

T (F (h))

����
��

��
��

��
��

F (Z)
F (g)

// F (Y )

F (f)

^^>>>>>>>>>>>>

is a distinguished triangle in D, and

F (Z)

[1]

F (h)

����
��

��
��

��
��

F (X)
F (f)

// F (Y )

F (g)

^^>>>>>>>>>>>>

is distinguished triangle in Dopp. Therefore, F : Copp −→ Dopp is also an exact
functor.

By 1.6.3 in Ch. 2, we have Copp[S−1] = C[S−1]opp. Since the arrows in opposite
categories switch directions, the right derived functor RF : C[S−1] −→ D, which
can be viewed as an exact functor from Copp[S−1] into Dopp, is a left derived functor
of F : Copp −→ Dopp.

Therefore, in our discussion, it is enough to consider right derived functors.

1.3.1. Example. Assume that F : C −→ D has the property that F (s) is an
isomorphism for any s ∈ S. Then, as we already remarked, there exists functor
F̄ : C[S−1] −→ D such that F = F̄ ◦Q. We claim that F̄ is a right derived functor
of F and ǫF : F −→ F̄ ◦Q is the identity morphism of functors.

Let G : C[S−1] −→ D be an exact functor and ǫ : F −→ G ◦ Q a graded
morphism of functors. Then ǫ is a graded morphism of F̄ ◦Q into G ◦Q. We claim
that ǫ induces a graded morphism of F̄ into G. Let X and Y be two objects in C
and ϕ : X −→ Y a morphism in C[S−1]. Then ϕ is represented by a left roof

L
s

∼
��~~

~~
~~

~
f

��@
@@

@@
@@

X Y

.

Clearly, ϕ = Q(f) ◦Q(s)−1 and

F̄ (ϕ) = F̄ (Q(f)) ◦ F̄ (Q(s))−1 = F (f) ◦ F (s)−1

and
G(ϕ) = G(Q(f)) ◦G(Q(s))−1.

On the other hand, since ǫ is a morphism of functors we have the commutative
diagrams

F (L)
F (s)

−−−−→ F (X)

ǫL





y





y

ǫX

G(L) −−−−−→
G(Q(s))

G(X)
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and

F (L)
F (f)

−−−−→ F (Y )

ǫL





y





y

ǫY

G(L) −−−−−→
G(Q(f))

G(Y )

.

Hence,

G(ϕ) ◦ ǫX = G(Q(f)) ◦G(Q(s))−1 ◦ ǫX = G(Q(f)) ◦ ǫL ◦ F (s)−1

= ǫY ◦ F (f) ◦ F (s)−1 = ǫY ◦ F̄ (ϕ),

i.e., the diagram

F (X)
F̄ (ϕ)

−−−−→ F (Y )

ǫX





y





y

ǫY

G(X) −−−−−→
G(Q(ϕ))

G(Y )

is commutative. Hence, the family of morphisms ǫX , X ∈ Ob(C[S−1]), defines a
morphism of functors η : F̄ −→ G, such that η ◦Q = ǫ. We claim that η is a graded
morphism of functors. Let ωF be the isomorphism of F ◦ T into T ◦ F and ωG the
isomorphism of T ◦G into G ◦ T . Then for any X in C, the diagram

F (T (X))
ωF,X

−−−−→ T (F (X))

ǫT(X)





y





y

T (ǫX )

F (T (X)) −−−−→
ωG,X

T (F (X))

is commutative, since ǫ is a graded morphism of functors. On the other hand, this
also implies that η is graded.

Dually, we also see that F̄ is also a left derived functor of F with ǫF : F̄◦Q −→ F
equal to the identity morphism.

This shows that derived functors are a generalization of the quotient functor
construction.

Now we are going to discuss a sufficient condition for the existence of derived
functors. We formulate it for right derived functors.

A full triangulated subcategory E of C is called right adapted for F , if

(RA1) SE = S ∩ Mor(E) is a localizing class in E ;
(RA2) for any X in C there exist M in E and s : X −→M in S;
(RA3) for any s in SE , the morphism F (s) is an isomorphism in D.

1.3.2. Theorem. Let C and D be two triangulated categories. Let S be a
localizing class compatible with triangulation in C. Let F : C −→ D be an exact
functor.

Assume that there exists a right adapted subcategory E of C for F . Then there
exist a right derived functor (RF, ǫF ) of F from C[S−1] into D.

By (RA1), SE is a localizing class in E . By 1.7.2 in Ch. 2, it is compatible
with triangulation. By the same result and (RA2), E [S−1

E ] is a full triangulated

subcategory of C[S−1]. Moreover, by (RA2), the inclusion functor Ψ : E [S−1
E ] −→
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C[S−1] is essentially onto, i.e., it is an equivalence of categories. Let Φ : C[S−1] −→
E [S−1

E ] be a quasiinverse of Ψ. Then Φ is an additive functor. Moreover, we can

pick Φ such that Φ restricted to E [S−1
E ] is the identity functor, i.e., Φ ◦ Ψ = id.

This implies that

Φ ◦ T ∼= Φ ◦ T ◦ Ψ ◦ Φ = Φ ◦ Ψ ◦ T ◦ Φ = T ◦ Φ,

i.e., Φ is a graded functor.
Let X be an object in C[S−1]. The isomorphism of functors β : id −→ Ψ ◦ Φ

induces an isomorphism βX : X −→ Ψ(Φ(X)) = Φ(X) in C[S−1]. From the above
calculation, we see that the family of morphisms κX = Φ(T (βX)) : Φ(T (X)) −→
Φ(T (Φ(X)) = T (Φ(X)) defines the isomorphism of Φ ◦ T into T ◦Φ, i.e., it defines
a grading of Φ.

On the other hand, since Φ is the identity on E [S−1
E ], we see that βY = idY for

any Y in E [S−1
E ]. Therefore, since β is a morphism of the identity functor into Φ,

we have the following commutative diagram

T (X)
T (βX)
−−−−→ T (Φ(X))

βT(X)





y





y

idT (Φ(X))

Φ(T (X)) −−−−−−→
Φ(T (βX ))

T (Φ(X))

,

i.e., κX ◦ βT (X) = T (βX).
Let

Z

[1]

����
��

��
��

��

X // Y

ZZ6666666666

be a distinguished triangle in C[S−1].
Then we have the commutative diagram

X −−−−→ Y −−−−→ Z −−−−→ T (X)

βX





y

βY





y





y

βZ





y

βT(X)

Φ(X) −−−−→ Φ(Y ) −−−−→ Φ(Z) −−−−→ Φ(T (X))

.

By the above discussion, the diagram

T (X)
idT (X)
−−−−→ T (X)

βT (X)





y





y

T (βX)

Φ(T (X)) −−−−→
κX

T (Φ(X))

is commutative. Therefore, adding it to the above diagram and collapsing the last
two squares into one, we get an isomorphism of triangles

X −−−−→ Y −−−−→ Z −−−−→ T (X)

βX





y

βY





y





y

βZ





y

T (βX)

Φ(X) −−−−→ Φ(Y ) −−−−→ Φ(Z) −−−−→ T (Φ(X))

.
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It follows that the bottom triangle is distinguished in C[S−1]. Since E [S−1
E ] is a full

triangulated subcategory, it is also distinguished in it. Hence, Φ is an exact functor
from C[S−1] into E [S−1

E ].

By (RA3) and 1.6.2 in Ch. 2, F induces an exact functor F̄ from E [S−1
E ] into

D, such that the restriction of F to E agrees with F̄ ◦Q. We define RF = F̄ ◦ Φ.
Let ωF be the isomorphism of F ◦ T into T ◦ F which is the grading of F . Then
we have the isomorphisms ωRF,X : RF (T (X)) −→ T (RF (X)) given by

RF (T (X)) = F (Φ(T (X)))
F̄ (κX )
−−−−→ F (T (Φ(X)))

ωF,Φ(X)
−−−−−→ T (F (Φ(X))) = T (RF (X))

which define the isomorphism RF ◦ T into T ◦ RF which is the grading of RF .
Clearly, RF is an exact functor from C[S−1] into D.

Now we want to construct the morphism of functors ǫF : F −→ RF ◦Q. Let
X be an object in C. The isomorphism βX : X −→ Φ(X) is represented by a right
roof

K

X

f
??~~~~~~~~

Φ(X)

s
∼

bbEEEEEEEE

where K is in C and s ∈ S. By (AR2) there exists a morphism u : K −→ M in S
such that M is in E . Therefore, we can consider the commutative diagram

K

u

��
X

f
>>~~~~~~~~

u◦f   @
@@

@@
@@

@ M Φ(X)

s
∼

bbEEEEEEEE

u◦s

∼

||yy
yy

yy
yy

M

idM

OO

which implies that we can represent βX by the lower right roof. Hence, after
relabeling, we can assume that βX is represented by

K

X

f
??~~~~~~~~

Φ(X)

s
∼

bbEEEEEEEE

where K is in E . Since s is now in SE , F (s) is an isomorphism. Therefore, to this
roof we can attach the morphism F (s)−1 ◦ F (f) : F (X) −→ F (Φ(X)). We claim
that this morphism is independent of the choice of the right roof.

Assume that

L

X

g
??��������

Φ(X)

t
∼

aaDDDDDDDD
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is another right roof representing βX such that L is in E . Then we have the
commutative diagram

K

u

��
X

f
>>~~~~~~~~

g
  @

@@
@@

@@
@ M Φ(X)

s
∼

bbEEEEEEEE

t

∼

||yy
yy

yy
yy

y

L

v

OO

with M in C and such that u ◦ s = t ◦ v ∈ S. By (AR2), there exists w : M −→ N
in S such that N is in E . Therefore the above diagram implies that the diagram

K

w◦u

��
X

f
??~~~~~~~~

g
��@

@@
@@

@@
@ N Φ(X)

s
∼

bbEEEEEEEE

t

∼

||yy
yyy

yy
y

L

w◦v

OO

is commutative. Hence, after relabeling, we can assume that in the preceding
diagram the object M is in E . This implies that u◦s and t◦v are in SE . Therefore,
F (u ◦ s) = F (u) ◦F (s) is an isomorphism in D. Since F (s) is an isomorphism, this
implies that F (u) is an isomorphism. Analogously, F (v) is an isomorphism.

This implies that

F (s)−1 ◦ F (f) = F (s)−1 ◦ F (u)−1 ◦ F (u) ◦ F (f)

= (F (u) ◦ F (s))−1 ◦ F (u) ◦ F (f) = F (u ◦ s)−1 ◦ F (u ◦ f)

= F (v ◦ t)−1 ◦ F (v ◦ g) = (F (v) ◦ F (t))−1 ◦ F (v) ◦ F (g)

= F (t)−1 ◦ F (v)−1 ◦ F (v) ◦ F (g) = F (t)−1 ◦ F (g),

as we claimed before. Therefore, F (s)−1 ◦ F (f) : F (X) −→ F (Φ(X)) doesn’t
depend on the representation of βX and we can denote it by ρX .

Let ϕ : X −→ Y be a morphism in C. We want to prove that the diagram

F (X)
F (ϕ)

−−−−→ F (Y )

ρX





y





y

ρY

F (Φ(X)) −−−−−→
F̄ (Φ(ϕ))

F (Φ(Y ))

is commutative.
The isomorphism of functors β implies that the diagram

X
ϕ

−−−−→ Y

βX





y





y

βY

Φ(X) −−−−→
Φ(ϕ)

Φ(Y )
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is commutative in C[S−1]. Assume that βX : X −→ Φ(X) is represented by the
right roof

K

X

f
??~~~~~~~~

Φ(X)

s
∼

bbEEEEEEEE

and βY : Y −→ Φ(Y ) is represented by the right roof

L

Y

g
??��������

Φ(Y )

t
∼

aaDDDDDDDD

where K and L are in E . In addition, Φ(ϕ) is a morphism in E [S−1
E ] and it can be

represented by the right roof

U

Φ(X)

h

<<zzzzzzzz
Φ(Y )

r
∼

aaDDDDDDDD

with U in E . Therefore, the composition βY ◦ ϕ is represented by the diagram

L

Y

g
??~~~~~~~

L

idL

∼

__@@@@@@@

X

ϕ
??��������

Y

idY

∼

__????????

g
??��������

Φ(Y )

t
∼

aaDDDDDDDD

.

Analogously, the composition Φ(ϕ) ◦ βX is represented by a diagram

V

K

a

<<

U

p

∼

bb

X

f
??~~~~~~~~

Φ(X)

s
∼

bbEEEEEEEE
h

<<zzzzzzzz
Φ(Y )

r
∼

aaDDDDDDDD

which can be completed using (LC3). Using (AR2), as before, we can replace V
with an object in E . Therefore, after relabeling we can assume that V is in E .
Since the above diagram is commutative, there exists N in C and the morphisms
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u : V −→ N and v : L −→ N such that the diagram

L

v

��
X

g◦ϕ
??~~~~~~~~

a◦f ��@
@@

@@
@@

@ N Φ(Y )

t
∼

bbDDDDDDDD

p◦r

∼

||zz
zz

zz
zz

V

u

OO

is commutative and u ◦ p ◦ r = v ◦ t is in S. Using (AR2) again, we can replace
N with an object in E . Hence, u ◦ p ◦ r = v ◦ t is in SE . This implies that
F (u ◦ p ◦ r) = F (u) ◦ F (p) ◦ F (r) is an isomorphism in D. Since p and r are
in SE , F (p) and F (r) are isomorphisms in D. This implies that F (u) is also an
isomorphism in D. Analogously, F (v) is an isomorphism in D.

Now we can prove our statement. By definition, we have

ρY ◦ F (ϕ) = F (t)−1 ◦ F (g) ◦ F (ϕ)

and

F̄ (Φ(ϕ)) ◦ ρX = F (r)−1 ◦ F (h) ◦ F (s)−1 ◦ F (f).

Moreover, we have

F (t)−1 ◦ F (g) ◦ F (ϕ) = F (t)−1 ◦ F (v)−1 ◦ F (v) ◦ F (g) ◦ F (ϕ)

= (F (v) ◦ F (t))−1 ◦ F (v ◦ g ◦ ϕ) = F (v ◦ t)−1 ◦ F (v ◦ g ◦ ϕ)

= F (u ◦ p ◦ r)−1 ◦ F (u ◦ a ◦ f) = (F (u) ◦ F (p) ◦ F (r))−1 ◦ F (u) ◦ F (a) ◦ F (f)

= F (r)−1 ◦F (p)−1 ◦F (u)−1◦F (u)◦F (a)◦F (f) = F (r)−1 ◦F (p)−1 ◦F (a)◦F (f).

Also, since p ◦ h = a ◦ s, we have F (p) ◦ F (h) = F (a) ◦ F (s). Since s and p are in
SE , F (p) and F (s) are isomorphisms in D. Therefore, it follows that

F (p)−1 ◦ F (a) = F (h) ◦ F (s)−1.

This finally gives

F (t)−1◦F (g)◦F (ϕ) = F (r)−1◦F (p)−1◦F (a)◦F (f) = F (r)−1◦F (h)◦F (s)−1◦F (f),

what establishes our claim.
It follows that the family of morphisms ρX , for X ∈ Ob(C), determines a

morphism of functors ǫF : F −→ RF ◦Q.
Now we want to show that this morphism of functors is graded. Let X be an

object in C. Assume that βX : X −→ Φ(X) is represented by the right roof

K

X

f
??~~~~~~~~

Φ(X)

s
∼

bbEEEEEEEE
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with K in E . Then we have the commutative diagram

F (T (X))
ωF,X

−−−−→ T (F (X))

F (T (f))





y





y

T (F (f))

F (T (K)) −−−−→
ωF,K

T (F (K))

.

Analogously, we have the commutative diagram

F (T (Φ(X)))
ωF,Φ(X)
−−−−−→ T (F (Φ(X)))

F (T (s))





y





y

T (F (s))

F (T (K)) −−−−→
ωF,K

T (F (K))

,

which implies that

T (F (s))−1 ◦ ωF,K = ωF,Φ(X) ◦ F (T (s))−1 .

Hence, we have

T (ρX) ◦ ωF,X = T (F (s)−1 ◦ F (f)) ◦ ωF,X = T (F (s))−1 ◦ T (F (f)) ◦ ωF,X

= T (F (s))−1 ◦ ωF,K ◦ F (T (f)) = ωF,Φ(X) ◦ F (T (s))−1 ◦ F (T (f)).

Since β is a morphism of functor id into Φ, we have the commutative diagram

T (X)
Q(T (f))
−−−−−→ T (X)

βT(X)





y





y
id

Φ(T (X)) −−−−−−−→
Φ(Q(T (f)))

T (K)

,

i.e.,

Φ(Q(T (f))) ◦ βT (X) = Q(T (f)).

Assume that the right roof

M

T (X)

g
<<yyyyyyyy

Φ(T (X))

t
∼

ddIIIIIIIII

,

with M in E , represents βT (X). Let

N

Φ(T (X))

h

::vvvvvvvvv
T (K)

p

∼

bbEEEEEEEE

,

with N in E , be a right roof which represents Φ(Q(T (f))). Then, t : Φ(T (X)) −→
M is in SE and h : Φ(T (X)) −→ N is a morphism in E . Since SE is a localizing
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class, there exists P in E and morphisms k : M −→ P in E and q : N −→ P in SE ,
such that the diagram

P

M

k

>>

N

q

∼

__

T (X)

g

AA�����������
Φ(T (X))

t
∼

__????????????

h

??������������
T (K)

p
∼

]]:::::::::::

commutes, and the roof

P

T (X)

k◦g

<<zzzzzzzz
T (K)

q◦p

∼

bbDDDDDDDD

represents the composition of βT (X) and Φ(T (f)), i.e., it representsQ(T (f)). There-
fore, there exists U in E , such that the diagram

P

a

��
T (X)

k◦g

<<yyyyyyyy

T (f) ""E
EE

EE
EE

E
U T (K)

q◦p

∼

bbEEEEEEEE

id

∼

||yy
yy

yy
yy

N

b

OO

commutes, and a ◦ q ◦ p = b is in SE . It follows that F (a) ◦ F (q) ◦ F (p) = F (b) is
an isomorphism in D. This in turn implies that F (a) is an isomorphism in D. In
addition, from the above diagram we see that

F (a) ◦ F (k) ◦ F (g) = F (b) ◦ F (T (f)) = F (a) ◦ F (q) ◦ F (p) ◦ F (T (f)),

i.e., we have

F (k) ◦ F (g) = F (q) ◦ F (p) ◦ F (T (f)).

On the other hand, k ◦ t = q ◦ h implies that F (k) ◦ F (t) = F (q) ◦ F (h) and

F (q)−1 ◦ F (k) = F (h) ◦ F (t)−1.

It follows that we have

F (T (f)) = F (p)−1 ◦ F (q)−1 ◦ F (k) ◦ F (g)

= F (p)−1 ◦ F (h) ◦ F (t)−1 ◦ F (g) = F̄ (Φ(Q(T (f)))) ◦ ρT (X).

Combining this with a previous formula, we get

T (ρX) ◦ ωF,X = ωF,Φ(X) ◦ F (T (s))−1 ◦ F̄ (Φ(Q(T (f)))) ◦ ρT (X).

On the other hand, we have

κX = Φ(T (βX)) = Φ(Q(T (s))−1 ◦Q(T (f))) = Q(T (s))−1 ◦ Φ(Q(T (f)))
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and

F̄ (κX) = F (T (s))−1 ◦ F̄ (Φ(Q(T (f)))).

It follows that

T (ρX) ◦ ωF,X = ωF,Φ(X) ◦ F̄ (κX) ◦ ρT (X) = ωRF,X ◦ ρT (X),

i.e., ǫF is a graded morphism of functors.
Therefore, we constructed the pair (RF, ǫF ). It remains to establish its univer-

sal property.
Let G : C[S−1] −→ D be an exact functor and ǫ : F −→ G ◦Q a morphism of

functors. Let X be an object in C. Consider the morphism βX : X −→ Φ(X) and
represent it again with a right roof

K

X

f
??~~~~~~~~

Φ(X)

s

∼

bbEEEEEEEE

with K in E . Since ǫ is a morphism of functors, we have the following commutative
diagrams

F (X)
F (f)

−−−−→ F (K)

ǫX





y





y

ǫK

G(X) −−−−−→
G(Q(f))

G(K)

and

F (Φ(X))
F (s)

−−−−→ F (K)

ǫΦ(X)





y





y

ǫK

G(Φ(X)) −−−−−→
G(Q(s))

G(K)

.

Since t is in SE , F (s) and G(Q(t)) are isomorphisms. Hence, from the above
commutative diagram we get

G(Q(s))−1 ◦ ǫK = ǫΦ(X) ◦ F (s)−1.

Since G(βX) = G(Q(s))−1 ◦G(Q(f)) and ρX = F (s)−1 ◦ F (f), we have

G(βX) ◦ ǫX = G(Q(s))−1 ◦G(Q(f)) ◦ ǫX = G(Q(s))−1 ◦ ǫK ◦ F (f)

= ǫΦ(X) ◦ F (s)−1 ◦ F (f) = ǫΦ(X) ◦ ρX ,

i.e., the diagram

F (X)
ρX

−−−−→ F (Φ(X))

ǫX





y





y

ǫΦ(X)

G(X) −−−−→
G(βX)

G(Φ(X))

is commutative in D. Since βX is an isomorphism in C[S−1], G(βX) is an isomor-
phism in D. Hence, we can define ηX = G(βX)−1 ◦ ǫΦ(X). Then, ηX : F (Φ(X)) −→
G(X) is a morphism in D which satisfies

ηX ◦ ρX = G(βX)−1 ◦ ǫΦ(X) ◦ ρX = ǫX .
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It remains to show that η is a morphism of functors.
First, if we restrict the functors F and G ◦Q to E , the morphism of functors ǫ

can be viewed as a morphism of the functor F̄ ◦Q into G ◦Q. Let U and V be two
objects in E and α : U −→ V a morphism in E [S−1

E ]. Then α can be represented
by a right roof

K

U

a

>>~~~~~~~
V

u
∼

``AAAAAAA

where K is in E . Since ǫ is a morphism of functors, we have the commutative
diagrams

F (U)
F (a)

−−−−→ F (K)

ǫU





y





y

ǫK

G(U) −−−−−→
G(Q(a))

G(K)

and

F (V )
F (u)

−−−−→ F (K)

ǫV





y





y

ǫK

G(V ) −−−−−→
G(Q(u))

G(K)

.

Since u is in SE , F (u) and G(u) are isomorphisms, so the last diagram implies that

G(u)−1 ◦ ǫK = ǫV ◦ F (u)−1.

Therefore, we have

ǫV ◦ F̄ (α) = ǫV ◦ F (u)−1 ◦ F (a) = G(Q(u))−1 ◦ ǫK ◦ F (a)

= G(Q(u))−1 ◦G(Q(a)) ◦ ǫU = G(α) ◦ ǫU ;

i.e., the diagram

F (U)
F̄ (α)

−−−−→ F (V )

ǫU





y





y

ǫV

G(U) −−−−→
G(α)

G(V )

is commutative. Hence, the family ǫV , V ∈ Ob(E), defines a morphism of functor
F̄ : E [S−1

E ] −→ D into G : E [S−1
E ] −→ D.

Let X and Y be two objects in C[S−1] and ψ : X −→ Y a morphism in C[S−1].
Then we have the commutative diagram

X
ψ

−−−−→ Y

βX





y





y

βY

Φ(X) −−−−→
Φ(ψ)

Φ(Y )

.
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By applying G to this diagram we get the commutative diagram

G(X)
G(ψ)

−−−−→ G(Y )

G(βX)





y





y

G(βY )

G(Φ(X)) −−−−−→
G(Φ(ψ))

G(Φ(Y ))

.

since βX and βY are isomorphisms in C[S−1], G(βX) and G(βY ) are isomorphisms
in D. Hence, we see that

G(βY )−1 ◦G(Φ(ψ)) = G(ψ) ◦G(βX)−1.

On the other hand, since Φ(X) and Φ(Y ) are in E , the above remark implies that

F (Φ(X))
F̄ (Φ(ψ))
−−−−−→ F (Φ(Y ))

ǫΦ(X)





y





y

ǫΦ(Y )

G(Φ(X)) −−−−−→
G(Φ(ψ))

G(Φ(Y ))

is commutative. Hence, we have

ηY ◦RF (ψ) = G(βY )−1 ◦ ǫΦ(Y ) ◦ F̄ (Φ(ψ)) = G(βY )−1 ◦G(Φ(ψ)) ◦ ǫΦ(X)

= G(ψ) ◦G(βX)−1 ◦ ǫΦ(X) = G(ψ) ◦ ηX

i.e., the diagram

RF (X)
RF (ψ)
−−−−→ RF (Y )

ηX





y





y

ηY

G(X) −−−−→
G(ψ)

G(Y )

is commutative. This implies that η is a morphism of the functor RF into the
functor G.

It remains to show that η is a graded morphism of functors, i.e., that the
diagram

RF (T (X))
ωRF,X

−−−−→ T (RF (X))

ηT (X)





y





y

T (ηX )

G(T (X)) −−−−→
ωG,X

T (G(X))

commutes for any X in C. By the definition, we have

T (ηX) ◦ ωRF,X = T (G(βX)−1 ◦ ǫΦ(X)) ◦ ωF,Φ(X) ◦ F̄ (κX)

= T (G(βX))−1 ◦ T (ǫΦ(X)) ◦ ωF,Φ(X) ◦ F̄ (κX).

Since ǫ is a graded morphism of functors, we have the commutative diagram

F (T (Φ(X)))
ωF,Φ(X)
−−−−−→ T (F (Φ(X)))

ǫT (Φ(X))





y





y

T (ǫΦ(X))

G(T (Φ(X))) −−−−−→
ωG,Φ(X)

T (F (Φ(X)))
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and
T (ηX) ◦ ωRF,X = T (G(βX))−1 ◦ ωG,Φ(X) ◦ ǫT (Φ(X)) ◦ F̄ (κX).

Since ωG is an isomorphism of functors, we have the commutative diagram

G(T (X))
ωG,X

−−−−→ T (G(X))

G(T (βX))





y





y

T (G(βX))

G(T (Φ(X))) −−−−−→
ωG,Φ(X)

T (G(Φ(X)))

.

Since βX is an isomorphism in C[S−1], T (G(βX)) and G(T (βX)) are isomorphisms
in D. Hence, we have

ωG,X ◦G(T (βX))−1 = T (G(βX))−1 ◦ ωG,Φ(X)

and
T (ηX) ◦ ωRF,X = ωG,X ◦G(T (βX))−1 ◦ ǫT (Φ(X)) ◦ F̄ (κX).

Consider now the isomorphism Φ(T (βX)) : Φ(T (X)) −→ T (φ(X)) in E [S−1]. As
we established before, it induces a cummutative diagram

F (Φ(T (X)))
F̄ (Φ(T (βX )))
−−−−−−−−→ F (T (Φ(X)))

ǫΦ(T(X))





y





y

ǫT(Φ(X))

G(Φ(T (X)))
G(Φ(T (βX)))
−−−−−−−−→ G(T (Φ(X)))

.

This implies that

ǫT (Φ(X)) ◦ F̄ (κX) = G(Φ(T (βX))) ◦ ǫΦ(T (X))

and
T (ηX) ◦ ωRF,X = ωG,X ◦G(T (βX))−1 ◦G(Φ(T (βX))) ◦ ǫΦ(T (X)).

Since Φ(T (βX)) ◦ βT (X) = T (βX), we see that

G(Φ(T (βX))) ◦G(βT (X)) = G(T (βX))

and
G(T (βX))−1 ◦G(Φ(T (βX))) = G(βT (X))

−1.

This implies that

T (ηX) ◦ ωRF,X = ωG,X ◦G(βT (X))
−1 ◦ ǫΦ(T (X)) = ωG,X ◦ ηT (X),

what establishes our claim.
Finally, we have to show that η : RF −→ G is unique. Let ζ : RF −→ G be

another graded morphism of functors such that ζ ◦ ǫF = ǫ.
Assume first that X is in E . Then βX : X −→ Φ(X) is the identity. Then

ρX : F (X) −→ F (X) is also the identity. Hence, ηX ◦ ρX = ǫX = ζX ◦ ρX implies
that ηX = ζX .

Let X in C be arbitrary. Then, by (AR2), there exists Y in E and s : X −→ Y
in S, i.e., Q(s) is an isomorphism. This implies that in the commutative diagrams

RF (X)
RF (Q(s))
−−−−−−→ RF (Y )

ηX





y





y

ηY

G(X) −−−−−→
G(Q(s))

G(Y )
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and

RF (X)
RF (Q(s))
−−−−−−→ RF (Y )

ζX





y





y

ζY

G(X) −−−−−→
G(Q(s))

G(Y )

the horizontal arrows are isomorphisms. Moreover, as we already remarked, we
have ζY = ηY . This implies that

ζX = G(Q(s))−1 ◦ ζY ◦RF (Q(s)) = G(Q(s))−1 ◦ ηY ◦RF (Q(s)) = ηX .

Hence, η is unique. This completes the proof of 1.3.2.

1.4. Existence of derived functors. As we have seen in the last section,
the derived functors do not have to exist in general. In this section we discuss a
conidition on the triangulated category C and the localizing class S which garantees
the existence of derived functors.

Let C be a triangulated category and S a localizing class in C compatible with
translation. We say that C has enough S-injective objects if for any object X in C,
there exists an S-injective object I and a morphism s : X −→ I in S.

Analogously, we say that C has enough S-projective objects if for any object X
in C, there exists an S-projective object P and a morphism s : P −→ X in S.

Clearly, the category C has enough S-injective objects if and only if the opposite
category Copp has enough S-projective objects. This allows again to restrict our
discussion to S-injective objects.

Assume that the category C has enough of S-injective objects. First, by the
discussion in Sect. 1.8 in Ch. 2, it follows that the natural inclusion of I into
C[S−1] is an equivalence of categories. Moreover, the full triangulated category I
of all S-injective objects satisfies the condition (RA1) by 1.8.3 in Ch. 2, (RA2) is
automatic, and (RA3) follows from 1.8.2 in Ch. 2. Hence, I is right adapted for
any exact functor F . Therefore we have the following result.

1.4.1. Theorem. Let C and D be two triangulated categories. Let S be a
localizing class compatible with triangulation in C. Assume that C has enough S-
injective objects.

Let F : C −→ D be an exact functor. Then there exist a right derived functor
(RF, ǫF ) of F from C[S−1] into D.

An analogous result holds for left derived functors.

1.4.2. Theorem. Let C and D be two triangulated categories. Let S be a
localizing class compatible with triangulation in C. Assume that C has enough S-
projective objects.

Let F : C −→ D be an exact functor. Then there exist a left derived functor
(LF, ǫF ) of F from C[S−1] into D.

1.5. Derived functors between derived categories. Now we specialize
the results from the preceding section to exact functors between homotopic cate-
gories of complexes. Let A and B be two abelian categories and K∗(A) and K∗(B)
the corresponding homotopic categories of complexes.

Let F : A −→ B be an additive functor. Then, as explained in 1.1, F induces
an exact functor K(F ) : K∗(A) −→ K∗(B). We can consider the corresponding
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derived categories D∗(A) and D∗(B) and the quotient functors QA : K∗(A) −→
D∗(A) and QB : K∗(B) −→ D∗(B).

A right derived functor of F is a right derived functor of QB◦K(F ) : K∗(A) −→
D∗(B) in the sense of preceding section, i.e., it is a pair consisting of an exact functor
RF : D∗(A) −→ D∗(B) and a graded morphism of functors ǫF : QB ◦ K(F ) −→
RF ◦QA with the following universal property:

(RD1) Let G : D∗(A) −→ D∗(B) be an exact functor and ǫ : QB ◦ K(F ) −→
G◦QA a graded morphism of functors. Then there exists a unique graded
morphism of functors η : RF −→ G such that the diagram

RF ◦QA

η◦QA

��

QB ◦K(F )

ǫF

88ppppppppppp

ǫ
&&NNNNNNNNNNN

G ◦QA

commutes.

Analogously, we have the notion of a left derived functor.
A left derived functor of F is a pair consisting of an exact functor LF :

D∗(A) −→ D∗(B) and a graded morphism of functors ǫF : LF ◦QA −→ QB ◦K(F )
with the following universal property:

(LD1) Let G : D∗(A) −→ D∗(B) be an exact functor and ǫ : G ◦ QA −→
QB ◦ K(F ) a graded morphism of functors. Then there exists a unique
graded morphism of functors η : G −→ LF such that the diagram

G ◦QA

η◦QA

��

ǫ

&&NNNNNNNNNNN

QB ◦K(F )

LF ◦QA

ǫF

88ppppppppppp

commutes.

Clearly, if right (or left) derived functors exist they are unique up to an iso-
morphism of of functors.

As we discussed in Ch. 3, the opposite category of K(A) (resp. K+(A), K−(A)
and Kb(A)) is K(Aopp) (resp. K−(Aopp), K+(Aopp), and Kb(Aopp)). Moreover,
we have the analogous isomorphisms for derived categories. Therefore, from the
discussion in the preceding section, we see that the right derived functor RF :
D(A) −→ D(B) (resp. RF : D+(A) −→ D+(B), RF : D−(A) −→ D−(B) andRF :
Db(A) −→ Db(B)) of F : A −→ B is the left derived functor LF : D(Aopp) −→
D(Bopp) (resp. LF : D−(Aopp) −→ D−(Bopp), LF : D+(Aopp) −→ D+(Bopp) and
LF : Db(Aopp) −→ Db(Bopp)) of F : Aopp −→ Bopp.

Therefore, it is enough to discuss right derived functors.

1.5.1. Example. Let F : A −→ B be an exact functor between abelian cate-
gories. Consider the corresponding exact functorD(F ) : D∗(A) −→ D∗(B) between
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derived categories constructed in 1.2.2. Then, as we explained in 1.3.1, the functor
D(F ) is a right derived and the left derived functor of F .

Now we can specialize the sufficient condition for the existence of derived func-
tors from 1.3.2 in this setting.

Let D be a full triangulated subcategory in K∗(A) and S the localizing class
of all quasiisomorphisms in K∗(A). Then we have the following result.

1.5.2. Lemma. The class SD = S ∩ Mor(D) of all quasiisomorphisms in D is
a localizing class compatible with triangulation.

Proof. By inspection of the proof of 3.1.2 in Ch. 3, we see that it applies
without any changes in this situation. �

Therefore, we can specialize the definition from the preceding section.
A full triangulated subcategory D of K∗(A) is called right adapted for F , if

(R1) for any X · in K∗(A) there exist M · in D and a quasiisomorphism s :
X · −→M ·;

(R2) for any acyclic complex M · in in D, the complex K(F )(M ·) is acyclic in
K∗(B).

Since K(F ) is an exact functor, by 3.1.1 in Ch. 3, it follows that the second
condition implies that for any quasiisomorphism s in D, the morphism K(F )(s) is
also a quasiisomorphism. Hence, by 1.3.2, we see that the following result holds.

1.5.3. Theorem. Let A and B be two abelian categories. Let F : A −→ B be
an additive functor.

Assume that there exists a right adapted subcategory of K∗(A) for F . Then
there exist a right derived functor (RF, ǫF ) of F from D∗(A) into D∗(B).

1.6. Composition of derived functors. Let A, B and C be three abelian
categories. Let F : A −→ B and G : B −→ C be two additive functors. Then
their composition G ◦ F : A −→ B is an additive functor. Moreover, we have
K(G ◦ F ) = K(G) ◦K(F ).

Assume that these three functors have right derived functors RF : D∗(A) −→
D∗(B), RG : D∗(B) −→ D∗(C) and R(G ◦ F ) : D∗(A) −→ D∗(C). This implies
that we have the graded morphisms of functors ǫF : QB ◦K(F ) −→ RF ◦QA and
ǫG : QC ◦K(G) −→ RG ◦QB. By composing the second one with K(F ), we get the
graded morphism of functors ǫG◦K(F ) : QC◦K(G)◦K(F ) −→ RG◦QB◦K(F ). On
the other hand, by composing the first one with RG, we get the graded morphism
of functors RG◦ ǫF : RG◦QB ◦K(F ) −→ RG◦RF ◦QA. The composition of these
two morphisms of functors is a graded morphism

κ : QC ◦K(G ◦ F ) −→ RG ◦RF ◦QA.



206 5. DERIVED FUNCTORS

By the universal property of R(G ◦ F ) there exists a graded morphism of functors
η : R(G ◦ F ) −→ RG ◦RF such that the diagram of functors

R(G ◦ F ) ◦QA

η◦QA

��

QC ◦K(G ◦ F )

ǫG◦F

66mmmmmmmmmmmmm

κ
((RRRRRRRRRRRRR

RG ◦RF ◦QA

commutes.
The morphism of functors η is not an isomorphism in general. On the other

hand, under certain restrictive assumptions, it is an isomorphism.
Assume that K∗(A) contains a full triangulated subcategory D which is right

adapted for F . Also, assume that that K∗(B) contains a full triangulated sub-
category E which is right adapted for G. Then, by 1.5.3, the derived functors
RF : D∗(A) −→ D∗(B) and RG : D∗(B) −→ D∗(C) exist.

1.6.1. Theorem. Assume that

(GS) for any complex M · in D, the complex K(F )(M ·) is in E.

Then:

(i) The full triangulated subcategory D of K∗(A) is right adapted for G ◦ F ,
and the right derived functor R(G◦F ) : D∗(A) −→ D∗(C) of G◦F exists.

(ii) The morphism of functors

η : R(G ◦ F ) −→ RG ◦RF

is an isomorphism.

Proof. (i) Let M · be an acyclic complex in D. Then, since D is right adapted
for F , the complex K(F )(M ·) is acyclic. Moreover, by (GS), it is in E . Therefore,
since E is right adapted for G, the complex K(G ◦ F )(M ·) = K(G)(K(F )(M ·)) is
also acyclic. This implies that D is right adapted for G ◦ F . By 1.5.3, the right
derived functor of G ◦ F exists.

(ii) Since the derived functors are unique up to an isomorphism, we can assume
that they are the ones constructed in 1.3.2. Let M · be in D. Then, by the con-
struction of the functor RF , the morphism ǫF,M · : K(F )(M ·) −→ RF (M ·) is an
isomorphism in D∗(B). Therefore, RG(ǫF,M ·) : RG(K(F )(M ·)) −→ RG(RF (M ·))
is an isomorphism in D∗(C). Analogously, since K(F )(M ·) is in E , the morphism
ǫG,K(F )(M ·) : K(G)(K(F )(M ·)) −→ RG(K(F )(M ·)) is an isomorphism in D∗(C).
By the construction, this implies that κM · : K(G)(K(F )(M ·)) −→ RG(RF (M ·))
is an isomorphism in D∗(C). Since ǫG◦F,M · : K(G ◦ F )(M ·) −→ R(G ◦ F )(M ·) is
an isomorphism in D∗(C), it follows that ηM · : R(G ◦ F )(M ·) −→ RG(RF (M ·)) is
also an isomorphism in D∗(C).
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Assume now that X · in K ·(A) is an arbitrary complex. Then there exists M ·

in D and a quasiisomorphism s : X · −→M ·. This leads to a commutative diagram

R(G ◦ F )(X ·)
R(G◦F )(QA(s))
−−−−−−−−−−→ R(G ◦ F )(M ·)

ηX·





y





y

ηM·

(RG ◦RF )(X ·) −−−−−−−−−−−→
(RG◦RF )(QA(s))

(RG ◦RF )(M ·)

where the horizontal arrows are isomorphisms, since QA(s) is an isomorphism.
Since ηM · is an isomorphism by the first part of the proof, it follows that ηX· is
also an isomorphism. Therefore, η is an isomorphism of functors. �

1.7. Adjointness of derived functors. Let A and B be two abelian cate-
gories, and F : A −→ B and G : B −→ A two additive functors. Assume that
F is a left adjoint of G. Then, F is a right exact functor and G is a left exact
functor. Moreover, by 1.1.3, the functor K(F ) : K∗(A) −→ K∗(B) is a left adjoint
of K(G) : K∗(B) −→ K∗(A).

Assume that C is a full triangulated subcategory of K∗(A) which is left adapted
for F and that D is a full triangulated subcategory of K∗(B) right adapted sub-
category for G. Then, by 1.5.3, the derived functors LF : D∗(A) −→ D∗(B) and
RG : D∗(B) −→ D∗(A) exist.

1.7.1. Theorem. The functor LF : D∗(A) −→ D∗(B) is a left adjoint of the
functor RG : D∗(B) −→ D∗(A).

Proof. Since the derived functors are unique up to an isomorphism, we can
assume that they are the ones constructed in 1.3.2.

Let X · and Y · be two complexes in D∗(A) and D∗(A) respectively. We have
to establish a natural isomorphism

ηX,Y : HomD∗(B)(LF (X ·), Y ·) −→ HomD∗(A)(X
·, RG(Y ·)).

We assume first that X · is in C and Y · is in D. In this case, by our construction
of derived functors, we have LF (X ·) = K(F )(X ·) and RG(Y ·) = K(G)(Y ·).

Let φ : K(F )(X ·) −→ Y · be a morphism in D∗(B). Then it is represented by
a right roof

U ·

K(F )(X ·)

f

::ttttttttt

Y ·

s

∼

``AAAAAAAA

where f : K(F )(X ·) −→ U · is a morphism and s is a quasiisomorphism in K ·(B).
By the assumption, we can find a complex V · in D and a quasiisomorphism w :
U · −→ V ·. This leads to a commutative diagram

U ·

w

��
K(F )(X ·)

f

::ttttttttt

w◦f
$$J

JJJJJJ
JJJ

V · Y ·

s
∼

``AAAAAAAA

w◦s

∼

~~}}
}}

}}
}}

V

idV

OO
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where w ◦s is a quasiisomorphism. It follows that the above right roof is equivalent
to the right roof

V ·

K(F )(X ·)

w◦f

::ttttttttt

Y ·

w◦s

∼

``AAAAAAAA

.

Therefore, we can assume from the beginning that U · is in D.
Now, by the adjointness of K(F ) and K(G), f : K(F )(X ·) −→ U · determines

a morphism a = γX,Y (f) : X · −→ K(G)(U ·) in K∗(A). In addition, since Y · and
U · are in D and s is a quasiisomorphism, we see that K(G)(s) : K(G)(Y ·) −→
K(G)(U ·) is also a quasiisomorphism in K∗(A). Therefore, we have a right roof

K(G)(U ·)

X ·

a

::uuuuuuuuuu
K(G)(Y ·).

K(G)(s)

∼

ffNNNNNNNNNNN

We claim that the equivalence class of this roof doesn’t depend on the choice of the
representative of ϕ.

Let

V ·

K(F )(X ·)

g

::ttttttttt

Y ·

t
∼

``AAAAAAAA

be another right roof representing ϕ with V · in D. Then there exists a complex W ·

in K∗(B) and morphisms q : U · −→W · and r : V · −→W · such that the diagram

U ·

q

��
K(F )(X ·)

f

>>||||||||||||

g

  B
BB

BB
BB

BB
BB

B
W · Y ·

s
∼

[[88888888888

t
∼

����
��

��
��

��
�

V

r

OO

commutes, and q ◦ s = r ◦ t is a quasiisomorphism. Arguing like before, we can in
addition assume that W · is in D. Moreover, since

Hp(q) ◦Hp(s) = Hp(q ◦ s) = Hp(r ◦ t) = Hp(r) ◦Hp(t)

are isomorphisms for all p ∈ Z, q and r have to be quasiisomorphisms. Let b =
γX,V (g) : X · −→ K(G)(V ·). Then, by the naturality of γ in the second variable,
we see that

γX,W (q ◦ f) = K(G)(q) ◦ γX,V (f) = K(G)(q) ◦ a

and

γX,W (r ◦ g) = K(G)(r) ◦ γX,V (g) = K(G)(r) ◦ b.
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Hence, the diagram

K(G)(U ·)

K(G)(q)∼

��
X ·

a

AA��������������

b

��<
<<

<<
<<

<<
<<

<<
< K(G)(W ·) K(G)(Y ·)

K(G)(s)

∼

aaCCCCCCCCCCCCCCCC

K(G)(t)

∼

}}{{
{{

{{
{{

{{
{{

{{
{{

K(G)(V ·)

K(G)(r)∼

OO

commutes, and K(G)(q) ◦ K(G)(s) = K(G)(r) ◦ K(G)(t) is a quasiisomorphism.
This implies that the right roof attached to the second representative of ϕ is equiv-
alent to the first right roof. Hence, we constructed a well-defined map ηX,Y :
HomD(A)(K(F )(X ·), Y ·) −→ HomD(B)(X

·,K(G)(Y ·))
Now we show that the mapping ηX,Y is additive. Let ϕ and ψ be two elements

in HomD∗(B)(K(F )(X ·), Y ·). By 1.3.5, we can represent them by right roofs

U ·

K(F )(X ·)

f

::ttttttttt

Y ·

s
∼

``AAAAAAAA

and U ·

K(F )(X ·)

g

::ttttttttt

Y ·

s
∼

``AAAAAAAA

.

Moreover, as above, we can assume that U · is in D. Then the sum ϕ + ψ is
represented by the right roof

U ·

K(F )(X ·)

f+g

::ttttttttt

Y ·

s
∼

``AAAAAAAA

.

Hence, if we put a = γX,U (f) and b = γX,U (g), we see that ηX,Y (ϕ) and ηX,Y (ψ)
are represented by the right roofs

K(G)(U ·)

X ·

a

::uuuuuuuuuu
K(G)(Y ·)

K(G)(s)

∼

ffNNNNNNNNNN

and K(G)(U ·)

X ·

b

::uuuuuuuuuu
K(G)(Y ·)

K(G)(s)

∼

ffNNNNNNNNNN

and their sum is represented by

K(G)(U ·)

X ·

a+b
::uuuuuuuuuu

K(G)(Y ·)

K(G)(s)

∼

ffNNNNNNNNNN

.

This implies that ηX,Y (ϕ+ ψ) = ηX,Y (ϕ) + ηX,Y (ψ), i.e., ηX,Y is additive.
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Now we show that ηX,Y is injective. Assume that ηX,Y (ϕ) = 0 and ϕ is
represented by the right roof

U ·

K(F )(X ·)

f

::ttttttttt

Y ·

s
∼

``AAAAAAAA

with U ·. Then, if a = γX,U (f), the morphism ηX,Y (ϕ) is represented by the right
roof

K(G)(U ·)

X ·

a

::uuuuuuuuuu
K(G)(Y ·)

K(G)(s)

∼

ffNNNNNNNNNN

which has to represent the zero morphism. By 2.1.4 in Ch. 1, it follows that there
exists a quasiisomorphism t : V · −→ X · such that a ◦ t = 0 in K∗(A). Moreover,
since C is left adapted, we can assume that V · is in C. Therefore, by using the
naturality of γ in the first variable we get

0 = a ◦ t = γX,U (f) ◦ t = γV,U (f ◦K(F )(t)).

This in turn implies that f ◦K(F )(t) = 0. Since K(F )(t) is a quasiisomorphism,
by 2.1.4 in Ch. 1, the morphism ϕ is zero.

Now we prove that ηX,Y is surjective. Let ψ : X · −→ K(G)(Y ·) be a morphism
in D∗(A). Then it is represented by a left roof

V ·

t
∼

~~}}
}}

}}
}} g

$$J
JJJJJJJJ

X · K(G)(Y ·)

.

Since C is left adapted, we can assume that V · is in C. Let a = δV,Y (g) :
K(F )(V ·) −→ Y ·. Since quasiisomorphisms are a localizing class, we can construct
the commutative diagram

W · K(F )(X ·)
boo

Y ·

r ∼

OO

K(F )(V ·)
a

oo

K(F )(t)∼

OO

where r is a quasiisomorphism; and since D is right adapted, we can also assume
that W · is in D. Let ϕ : K(F )(X ·) −→ Y · be the morphism in D∗(B) represented
by the right roof

W ·

K(F )(X ·)

b

99ttttttttt

Y ·

r
∼

``BBBBBBBB

.
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Then, ηX,Y (ϕ) is represented by the right roof

K(G)(W ·)

X ·

f
::uuuuuuuuuu

K(G)(Y ·)

K(G)(r)

∼

ffNNNNNNNNNNN

where f = γX,W (b). By naturality, we have

f ◦ t = γX,W (b) ◦ t = γV,W (b ◦K(F )(t))

= γV,W (r ◦ a) = K(G)(r) ◦ γV,Y (a) = K(G)(r) ◦ g.

This implies that

ηX,Y (ϕ) = Q(K(G)(r))−1 ◦Q(f) = Q(g) ◦Q(t)−1 = ψ,

and ηX,Y is surjective. It follows that ηX,Y is an isomorphism.
Now we have to define the map ηX,Y for arbitrary X · and Y ·. By the construc-

tion of the derived functors, we have natural isomorphisms βA,X : ΦA(X ·) −→ X ·

and βB,Y : Y · −→ ΦB(Y ·) such that LF (X ·) = K(F )(ΦA(X ·)) and RG(Y ·) =
K(G)(ΦB(Y ·)). Therefore, we have a natural isomorphisms

HomD∗(B)(LF (X ·), Y ·)
βB,Y ◦−
−−−−−→ HomD∗(B)(K(F )(ΦA(X ·)),ΦB(Y ·))

and

HomD∗(A)(X
·, RG(Y ·))

−◦βA,X

−−−−−→ HomD∗(A)(ΦA(X ·),K(G)(ΦB(Y ·))).

Hence, we define

ηX,Y (ϕ) = ηΦA(X),ΦB(Y )(βB,Y ◦ ϕ) ◦ β−1
A,X

for any ϕ in HomD∗(B)(LF (X ·), Y ·). Clearly, it is an isomorphism of abelian groups.
It remains to check that such η is natural. Let α : U · −→ X · be a morphism

in D∗(A). Assume first that U · and X · are in C and Y · in D.
First, let α = QA(a) for a morphism a in K∗(A). Then, for a morphism

ϕ : K(F )(X ·) −→ Y · represented by a right roof

V ·

K(F )(X ·)

f

::ttttttttt

Y ·

s
∼

``AAAAAAAA

we have, by the naturality of γ that

γU,V (f ◦K(F )(a)) = γX,V (f) ◦ a.

Therefore, it follows that

ηX,Y (ϕ) ◦ α = QA(K(G)(s))−1 ◦QA(γX,V (f)) ◦QA(a)

= QA(K(G)(s))−1 ◦QA(γU,V (f ◦K(F )(a))) = ηU,Y (ϕ ◦QB(K(F )(a)))

= ηU,Y (ϕ ◦K(F )(QA(a))) = ηU,Y (ϕ ◦K(F )(α)).
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Assume that α = QA(s) for a quasiisomorphism s. Then α is an isomorphism,

K(F )(α) = QB(K(F )(s)) is an isomorphism and K(F )(α)−1 = K(F )(α−1). By

replacing ϕ by ψ ◦K(F )(α)−1, we get

ηU,Y (ψ ◦K(F )(α)−1) = ηX,Y (ψ) ◦ α−1.

Now we consider an arbitrary morphism α : U · −→ X · in D∗(A). Since the
full category of D∗(A) with objects Ob(C) is the localization of C with respect to
quasiisomorphisms, α = QA(g) ◦ QA(t)−1 for some morphism g : W · −→ X · and
quasiisomorphism t : W · −→ U · in C. From the above relations we immediately see
that

ηX,Y (ϕ) ◦ α = ηX,Y (ϕ) ◦QA(g) ◦QA(t)−1 = ηW,Y (ϕ ◦K(F )(QA(g))) ◦QA(t)−1

= ηU,Y (ϕ ◦K(F )(QA(g)) ◦K(F )(QA(t))−1) = ηU,Y (ϕ ◦K(F )(α)).

Assume now that U ·, X · and Y · are arbitrary. The morphism of functors βA
leads to commutative diagram

ΦA(U ·)
βA,U

−−−−→ U ·

ΦA(α)





y





y

α

ΦA(X ·)
βA,X

−−−−→ X ·

.

It implies that

β−1
A,X ◦ α = ΦA(α) ◦ β−1

A,U .

Hence, we have

ηX,Y (ϕ) ◦ α = ηΦA(X),ΦB(Y )(βB,Y ◦ ϕ) ◦ β−1
A,X ◦ α

= ηΦA(X),ΦB(Y )(βB,Y ◦ ϕ) ◦ ΦA(α) ◦ β−1
A,U

= ηΦA(U),ΦB(Y )(βB,Y ◦ ϕ ◦K(F )(ΦA(α))) ◦ β−1
A,U

= ηΦA(U),ΦB(Y )(βB,Y ◦ (ϕ ◦ LF (α))) ◦ β−1
A,U = ηU,Y (ϕ ◦ LF (α))

i.e., η is natural in the first variable.
Now, let δ : Y · −→ Z · be a morphism in D∗(B). Assume first that X · is in C

and Y · and Z · in D.
First, let δ = QB(d) for some morphism d in K∗(B). Consider a morphism

ϕ : K(F )(X ·) −→ Y · represented by a right roof

V ·

K(F )(X ·)

f

::ttttttttt

Y ·

s
∼

``AAAAAAAA

.

Since quasiisomorphisms are a localizing class and D is right adapted, we can
construct a commutative diagram

V ·
g // W ·

K(F )(X ·)

f

::ttttttttt

Y ·

s
∼

``BBBBBBBB

d
// Z ·

t
∼

``
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where W · is in D. Then the composition δ ◦ ϕ is represented by the right roof

W ·

K(F )(X ·)

g◦f
99ttttttttt

Z ·

t
∼

``BBBBBBBB

.

Moreover, we have
g ◦ s = t ◦ d

and
K(G)(g) ◦K(G)(s) = K(G)(t) ◦K(G)(d).

Since s and t are quasiisomorphisms between objects in D, it follows that K(G)(s)
and K(G)(t) are quasiisomorphisms in K∗(A) and

QA(K(G)(t))−1 ◦QA(K(G)(g)) = QA(K(G)(d)) ◦QA(K(G)(s))−1.

Hence, by naturality of γ, we have

ηX,Z(δ ◦ ϕ) = QA(K(G)(t))−1 ◦ γX,W (g ◦ f)

= QA(K(G)(t))−1 ◦QA(K(G)(g)) ◦ γX,V (f)

= QA(K(G)(d)) ◦QA(K(G)(s))−1 ◦ γX,V (f) = K(G)(δ) ◦ ηX,Y (ϕ).

Assume that δ = QA(r) for a quasiisomorphism r. Then δ is an isomorphism,

K(F )(δ) = QB(K(F )(r)) is an isomorphism and K(F )(δ)−1 = K(F )(δ−1). By
replacing ϕ by δ−1 ◦ ψ, we get

ηX,Y (δ−1 ◦ ψ) = K(G)(δ)−1 ◦ ηX,Z(ψ).

Now we consider an arbitrary morphism δ : Y · −→ Z · in D. Since the full
category of D∗(B) with objects Ob(D) is the localization of D with respect to
quasiisomorphisms, δ = QB(h) ◦ QB(r)−1 for some morphism h : T · −→ Z · and
quasiisomorphism t : T · −→ Y · in D. From the above relations we immediately see
that

ηX,Z(δ ◦ ϕ) = ηX,Z(QB(h) ◦QB(r)−1 ◦ ϕ) = K(G)(QB(h)) ◦ ηX,T (QB(r)−1 ◦ ϕ)

= K(G)(QB(h)) ◦K(G)(QA(r))−1 ◦ ηX,Y (ϕ) = K(G)(δ) ◦ ηX,Y (ϕ).

Assume now that X ·, Y · and Z · are arbitrary. The morphism of functors βB
leads to commutative diagram

Y · βB,Y

−−−−→ ΦA(Y ·)

δ





y





y

ΦB(δ)

Z · βB,Z

−−−−→ ΦB(Z ·)

.

Hence, we have

ηX,Z(δ ◦ ϕ) = ηΦA(X),ΦB(Z)(βB,Z ◦ δ ◦ ϕ) ◦ β−1
A,X

= ηΦA(X),ΦB(Z)(ΦB(δ) ◦ βB,Y ◦ ϕ) ◦ β−1
A,X

= K(G)(ΦB(δ)) ◦ ηΦA(X),ΦB(Y )(βB,Y ◦ ϕ) ◦ β−1
A,X

= RG(δ) ◦ ηX,Y (ϕ),

and η is natural in the second variable too. �
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2. Resolutions

2.1. Resolutions of complexes.

2.1.1. Theorem. Let A be an abelian category and B its full subcategory which
contains 0 and such that for any X in A there exist M in B and a monomorphism
i : X −→ M .

Let X · be a complex in C+(A) such that Xn = 0 for n < 0. Then there exist
a complex M · in C+(B) such that Mn = 0 for n < 0 and a quasiisomorphism
s : X · −→M ·.

Proof. �

2.2. Complexes of injective objects. Let A be an abelian category. Denote
by I the full subcategory of A consisting of all injective objects in A. Since the
sum of two injective objects is injective, A is a full additive subcategory of A. Let
K+(A) be the homotopic category of A-complexes bounded from below. LetK+(I)
the homotopic category of of I-complexes. We can view it as a full subcategory of
K+(A). Since the direct sum of injective objects is injective, for any two complexes
I · and J · in K+(I), the cone of a morphism f : I · −→ J · in C∗(A) is in K+(I).
This implies that K+(I) is a full triangulated subcategory of K+(A).

2.2.1. Lemma. Let I · be a complex in K+(I) and X · a complex in K+(A). Let
s : I · −→ X · be a quasiisomorphism. Then there exists a morphism t : X · −→ I ·

in K+(A) such that t ◦ s = idI , i.e., t ◦ s is homotopic to identity on I ·.

This result is a consequence of the following lemma.

2.2.2. Lemma. Let I · be a complex in K+(I) and X · a complex in K+(A).
Assume that X · is acyclic. Then any morphism f : X · −→ I · is homotopic to zero.

Proof. Since both complexes are bounded from below, after translation if
necessary, we can consider the commutative diagram

. . . // 0 // X0

h0

��

//

f0

��

X1

h1

}}

//

f1

��

X2

h2

}}

//

f2

��

. . .

. . . // 0 // I0 // I1 // I2 // . . .

where we want to construct the morphisms hp : Xp −→ Ip−1 which define a
graded morphism of degree −1 such that h ◦ dX + dI ◦ h = f . Clearly, hp = 0
for p ≤ 0. We proceed inductively. Clearly, by the definition of injective objects,
there exists h1 : X1 −→ I0 such that h1 ◦ d0

X = f0. Therefore, since h0 = 0, we

have d−1
I ◦ h0 + h1 ◦ d0

X = f0.
Assume that we constructed hi, i ≤ n. Then we have the commutative diagram

Xn−2 //

��

Xn−1

hn−1

zzuuu
uu

uu
uu

//

fn−1

��

Xn

hn

{{xx
xx

xx
xx

x
//

fn

��

Xn+1

hn+1

{{
fn+1

��
In−2 // In−1 // In // In+1

.

Consider the morphism ϕ = fn − dn−1
I ◦ hn : Xn −→ In. Then, we have

ϕ◦dn−1
X = fn◦dn−1

X −dn−1
I ◦hn◦dn−1

X = dn−1
I ◦(fn−1−hn◦dn−1

X −dn−2
I ◦hn−1) = 0
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and ϕ factors through cokerdn−1
X . SinceX · is acyclic, cokerdn−1

X = coim dnX . There-
fore, there exists a morphism ψ : coimdnX −→ In such that the diagram

Xn

��

ϕ // In

coimdnX

ψ

;;vvvvvvvvv

commutes. The differential dnX induces a monomorphism coimdnX −→ Xn+1, and
since In is injective, we get a morphism hn+1 : Xn+1 −→ In such that the diagram

Xn

��

dn
X

%%KKK
KKKKKK

K

0 // coim dnX

ψ

��

// Xn+1

hn+1

yyssssssssss

In

commutes. Therefore, we have ϕ = hn+1 ◦ dnX , i.e.,

fn − dn−1
I ◦ hn = hn+1 ◦ dnX .

This establishes the induction step. �

Now we can prove 2.2.1. For the purpose of the proof we consider s as a
morphism of complexes in C+(A). Consider the standard triangle

C·
s

[1]

p

����
��

��
��

��

I · s
// X ·

[[88888888888

in K+(A). Since s is a quasiisomorphism, C·
s is acyclic by 3.1.1 in Ch. 3. Therefore,

p : C·
s −→ I · is homotopic to zero by 2.2.2. Let h be the corresponding homotopy.

Then hn : Cns −→ T (I)n−1 = In is a morphism in A for any n ∈ Z. Since
Cns = In+1 ⊕Xn, for any n ∈ Z, the morphism hn is represented by a matrix

hn =
[

kn+1 tn
]

,

where kn+1 : In+1 −→ In and tn : Xn −→ In are morphisms in A.
For any n ∈ Z, the equality p = h ◦ dCs

+ dT (I·) ◦ h implies that

[

idIn+1 0
]

= pn =
[

kn+2 tn+1
]

[

−dn+1
I 0

sn+1 dnX

]

+
[

−dnI
] [

kn+1 tn
]

=
[

−kn+2 ◦ dn+1
I − dnI ◦ kn+1 + tn+1 ◦ sn+1 tn+1 ◦ dnX − dnI ◦ tn

]

.

Hence, we have

tn+1 ◦ dnX = dnI ◦ tn
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for any n ∈ Z. This implies that t : X · −→ I · is a morphism of complexes.
Moreover, kn, n ∈ Z, define a graded morphism of degree −1 of graded module I ·,
which satisfies

k ◦ dI + dI ◦ k = t ◦ s− idI ,

i.e., t ◦ s is homotopic to the identity. This proves 2.2.1.

2.2.3. Proposition. Let I · and J · be two complexes in K+(I). Let s : I · −→
J · be a quasiisomorphism. Then s is an isomorphism in K+(I).

Proof. By 2.2.1, there exists a morphism t : J · −→ I · such that t ◦ s = idI .
This in turn implies that Hp(t) ◦ Hp(s) = Hp(idI) = idHp(I·) for any p ∈ Z.
Since Hp(s) are isomorphisms by our assumption, it follows that Hp(t), p ∈ Z,
are isomorphisms. Hence, t is also a quasiisomorphism. By 2.2.1, there exists
u : I · −→ J · such that u ◦ t = idJ . Therefore, u = u ◦ t ◦ s = s and s has an inverse.
Hence, s is an isomorphism in K+(A). �

This result implies that the class of quasiisomorphisms in K+(I) is identical
with the class of all isomorphisms. Let Q : K+(A) −→ D+(A) be the quotient
functor. Then, by restricting to K+(I) it defines an exact functor K+(I) −→
D+(A).

2.2.4. Theorem. The natural functor K+(I) −→ D+(A) is fully faithful.

Proof. Let S be the class of all quasiisomorphisms in K+(A). Then, by 2.2.3,
S ∩ Mor(K+(I)) consists of isomorphisms in K+(I). Therefore, it is a localizing
class in K+(I).

Let s : I · −→ X · be a quasiisomorphism with I · in K+(A) and X · in K+(A).
Then, by 2.2.1, there exists t : X · −→ I · such that t◦s = idI in K+(A). Therefore,
the conditions of 1.4.2 in Ch.1 are satisfied and K+(I) −→ D+(A) is fully faithful.

�

Let A be an abelian category and I the subcategory of all injective objects. We
say that A has enough injectives if for any object M in A there exists an injective
object I and a monomorphism s : M −→ I.

2.2.5. Corollary. Let A be an abelian category which has enough injectives.
Then the natural morphism K+(I) −→ D+(A) is an equivalence of categories.

Proof. By 2.2.4, the functor is fully faithful. By 2.1.1, for any complex X · in
K+(A) there exists a complex I · in K+(I) and a quasiisomorphism s : X · −→ I ·.
Therefore, Q(s) is an isomorphism in D+(A) and the functor is essentially onto.
Hence, it is an equivalence of categories. �

3. Derived functors revisited

3.1. Existence of derived functors. Let A and B be two abelian categories
and F : A −→ B an additive functor.

A full subcategory R of A is right adapted for F if it satisfies the following
properties:

(AR1) the zero object 0 is in R;
(AR2) if M and N are in R then M ⊕N is in R;
(AR3) for any object M in A there exists R in R and a monomorphism i : M −→

R;
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(AR4) if R· is an acyclic complex in K+(R), then K(F )(R·) is also acyclic.

Clearly, the first two conditions imply that R is a full additive subcategory of
A. Moreover, we can view K+(R) as a full subcategory of K+(A). By (AR2), for
any morphism of complexes f : R· −→ S· for R· and S· in K+(R), the cone C·

f is

in K+(R). Therefore, K+(R) is a full triangulated subcategory of K+(A).
The next result is a slight variation of 1.5.3.

3.1.1. Theorem. Let F : A −→ B be an additive functor. Assume that there
exists a subcategory R of A which is right adapted for F . Then there exists a derived
functor RF : D+(A) −→ D+(B) of F .

Proof. By 2.1.1, for any X · in K+(A) there exist R· in K+(R) and a quasi-
isomorphism s : X · −→ R·. Hence, K+(R) satisfies the condition (R1) from 1.5.
Hence, the statement follows from 1.5.3. �

Let I be the full subcategory consisting of all injective objects in A. Then it
obviously satisfies (AR1) and (AR2). The next lemma states that it also satisfies
(AR4).

3.1.2. Lemma. Let I · be an acyclic complex in K+(I). Then K(F )(I ·) is
acyclic.

Proof. By 2.2.2, the identity morphism idI : I · −→ I · is homotopic to zero.
Therefore, there exists a homotopy h such that dI ◦ h + h ◦ dI = idI . Hence, I ·

is isomorphic to 0 in K+(A). This implies that K(F )(I ·) is isomorphic to zero in
K+(B). �

Assume that the category A has enough injectives. Then it also satisfies (AR3).
Hence, by 3.1.1, we have the following result.

3.1.3. Theorem. Let A be an abelian category which has enough injectives.
Then any additive functor F : A −→ B has a right derived functor RF : D+(A) −→
D+(B).

3.2. Basic properties of derived functors. Let A and B be two abelian
categories and F : A −→ B an additive functor. Let R be a right adapted sub-
category for F . For any n ∈ Z, we define the additive functors RnF : A −→ B
by

RnF = Hn ◦RF ◦D for any n ∈ Z.

Since ǫF is a morphism of functors, we have a natural morphism ǫF,D(M) :

K(F )(D(M)) −→ RF (D(M)). Taking H0 of this morphism we get a natural
transformation H0(ǫF ) : F −→ R0F .

The functors RnF have the following properties.

3.2.1. Lemma. (i) RnF = 0 for n < 0.
(ii) R0F is a left exact functor.
(iii) the natural transformation H0(ǫF ) : F −→ R0F is an isomorphism of

functors if and only if F is left exact.
(iv) Let

0 −−−−→ L
f

−−−−→ M
g

−−−−→ N −−−−→ 0
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be an exact sequence in A. Then we have an exact sequence

0 → R0F (L)
R0F (f)
−−−−−→ R0F (M)

R0F (g)
−−−−−→ R0F (N) → R1F (L) → . . .

· · · → Rn−1F (N) → RnF (L)
RnF (f)
−−−−−→ RnF (M)

RnF (g)
−−−−−→

RnF (N) → Rn+1F (L) → . . . .

(v) Let M be an object in A and

0 −→M −→ R0 −→ R1 −→ R2 −→ . . .

an exact sequence with Rn in R for all n ∈ Z. Let R· be the complex

. . . −→ 0 −→ R0 −→ R1 −→ R2 −→ . . . .

Then

(RnF )(M) ∼= Hn(C(F )(R·)) for all n ∈ Z+.

Proof. Let

0 −−−−→ L
f

−−−−→ M
g

−−−−→ N −−−−→ 0

be a short exact sequence in A. Then, by 3.7.1 in Ch. 3, we have the distinguished
triangle

D(N)

[1]

����
��

��
��

��
��

D(M)
D(f)

// D(N)

D(g)

__????????????

in D+(A). Since RF is an exact functor, this implies that the triangle

RF (D(N))

[1]

~~~~
~~

~~
~~

~~
~~

~~
~~

~~

RF (D(M))
RF (D(f))

// RF (D(N))

RF (D(g))

``@@@@@@@@@@@@@@@@@@

is distinguished. Since H0 is a cohomological functor, this leads to a long exact
sequence

· · · → Rp−1F (N) → RpF (L)
Rp(f)
−−−−→ RpF (M)

Rp(g)
−−−−→ RpF (N) → Rp+1F (L) → . . . .

To establish (v), observe that we have an obvious quasiisomorphism D(M) −→
R·. Therefore, RF (D(M)) ∼= RF (R·). On the other hand, we have RF (R·) =

K(F )(R·) = K(F )(R·).
(i) follows immediately from (v). Also, (i) and the above long exact sequence

imply (iv). (iv) in turn implies that (ii).

Assume that F is left exact. Then we have ǫF,D(M) : K(F )(D(M)) −→

RF (D(M)) ∼= K(F )(R·). Then the exactness of

0 −→M −→ R0 −→ R1
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implies that
0 −→ F (M) −→ F (R0) −→ F (R1)

is exact. Hence, we have H0(ǫF,D(M)) : F (M) −→ R0F (M) ∼= H0(K(F )(R·)) =
F (M) is an isomorphism, and (ii) follows. �

3.3. F -acyclic objects. Assume now that F : A −→ B is a left exact functor.
Let R be a right adapted subcategory for F . An object M in A is F -acyclic if
RnF (M) = 0 for n > 0. Clearly, from 3.2.1.(v), it follows that any object R in R
is F -acyclic. Let Z be the full subcategory of all F -acyclic objects in A. Then, we
have R ⊂ Z.

3.3.1. Proposition. (i) The subcategory Z is right adapted for F .
(ii) The subcategory Z is the largest right adapted subcategory for F .
(iii) All injective objects in A are in Z.

Proof. Clearly, 0 is in Z and (AR1) holds. Moreover, if M and N are in Z,

RnF (M ⊕N) = RnF (M) ⊕RnF (N) = 0

for all n > 0. Hence, M⊕N is in Z and (AR2) holds. Therefore, Z is a full additive
subcategory of A. Since R ⊂ Z, (AR3) also holds.

Let Z · be an acyclic complex in K+(Z). By translation, we can assume that
Z · is equal to

. . . −→ 0 −→ Z0 −→ Z1 −→ . . . .

This implies that
0 −→ Z0 −→ Z1 −→ im d0 −→ 0

is a short exact sequence. Since F is left exact, by 3.2.1 we have R0F ∼= F .
Moreover, since Z0 is in Z, we have RnF (Z0) = 0 for n > 0. Therefore, from the
long exact sequence in 3.2.1 we conclude that

0 −→ F (Z0) −→ F (Z1) −→ F (im d0) −→ 0

is exact and RnF (Z1) ∼= RnF (im d0) for all n > 0. Since Z1 is also in Z, it follows
that RnF (im d0) = 0 for n > 0 and im d0 is in Z. Since Z · is acyclic, ker d1 = im d0

and ker d1 is also in Z.
Now we prove that im dn−1 ∼= ker dn are in Z by induction in n. We already

established this for n = 1. Clearly, for any n, we have the short exact sequence

0 −→ ker dn −→ Zn −→ im dn −→ 0 .

Since Zn are in Z, this implies that Rp−1F (im dn) ∼= RpF (ker dn) for p > 1.
Assume that im dn is in Z. Then, by acyclicity, kerdn+1 is in Z, and the above
relation implies that im dn+1 is in Z. Hence, our statement follows by induction.

It follows that, by applying F to the above short exact sequences, we get the
following short exact sequences:

0 −→ F (Z0) −→ F (Z1) −→ F (im d0) −→ 0

and
0 −→ F (ker dn) −→ F (Zn) −→ F (im dn) −→ 0

for all n ∈ N. Let dn : Zn
αn−−→ im dn

βn
−−→ Zn+1 be the factorization of dn in a

composition of an epimorphism and a monomorphism. Then, F (dn) = F (βn) ◦
F (αn) and, by the above short exact sequences, F (αn) is an epimorphism and
F (βn) is a monomorphism. Therefore, kerF (dn) = kerF (αn) = F (ker dn) and
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imF (dn) = imF (βn) = F (im dn). Hence, imF (dn) = kerF (dn+1) for all n ∈ Z,
and C(F )(Z ·) is acyclic and (AR4) holds.

(ii) follows immediately from (i).
(iii) Let I be an injective object in A. Then there exist an object R in R and

a monomorphism i : I −→ R. Since I is injective, we see that R ∼= I ⊕M for some
M in A. Hence, by 3.2.1, we have

0 = RnF (R) ∼= RnF (I) ⊕RnF (M)

for n > 0, and RnF (I) = 0 for n > 0. It follows that I is in Z. �

3.4. Functors of finite cohomological dimension. Let A and B be two
abelian categories and F : A −→ B a left exact functor. Let R be a right adapted
subcategory for F . Therefore, the right derived functor RF : D+(A) −→ D+(B)
exists.

If the set {n ∈ Z+ | RnF 6= 0} is unbounded, we say that the right cohomological
dimension of F is infinite. Otherwise, we say that the right cohomological dimension
of F is finite. More precisely, if d ∈ Z+, we say that the right cohomological
dimension of F is ≤ d if RnF = 0 for n > d.

Let Z be the full subcategory of A consisting of F -acyclic objects. Then, by
3.3.1, Z is a full additive subcategory of A. Consider K∗(Z) as a full subcategory
of K∗(A). Then, K∗(Z) is a full triangulated subcategory of K∗(A).

3.4.1. Lemma. Let F : A −→ B be a left exact functor of finite right cohomo-
logical dimension. Then, for any complex X · in K∗(A), there exist a complex Z ·

in K∗(Z) and a quasiisomorphism s : X · −→ Z ·.

Proof. For each n ∈ Z, either Xn = 0 or Xn 6= 0. In the first case, we put
Rn = 0. In the second case, by our assumption, there exists a monomorphism fn :
Xn −→ Rn with Rn in R. This gives a graded object R·. We put Mn = Rn⊕Rn+1,
and define dn : Mn −→Mn+1 by

dn =

[

0 idRn+1

0 0

]

.

Then d2 = 0 and M · is a complex in K∗(R). By 3.3.1, M · is in K∗(Z). Moreover,
for n ∈ Z, we define tn : Xn −→Mn by

tn =

[

fn

fn+1 ◦ dnX

]

.

Then we have

dnM ◦ tn =

[

0 idRn+1

0 0

] [

fn

fn+1 ◦ dnX

]

=

[

fn+1 ◦ dnX
0

]

=

[

fn+1

fn+2 ◦ dn+1
X

]

[

dnX
]

= tn+1 ◦ dnX .

Hence, t : X · −→M · is a morphism of complexes. Moreover, it is a monomorphism
in C∗(A). Therefore, we can consider the exact sequence

0 −→ X · t
−−−−→ M · f

−−−−→ Q· −→ 0.
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Consider the cone C·
f of f . Then, Cnf = Mn+1 ⊕ Qn for any n ∈ Z. If we define

the graded morphism v : X · −→ Cf [−1]· by

vn =

[

tn

0

]

for all n ∈ Z,

then v : X · −→ Cf [−1]· is a morphism of complexes and a quasisomorphism by
3.5.3 in Ch. 3.

Since, for any n ∈ Z,

0 −→ Xn −→Mn −→ Qn −→ 0

is exact, we have the long exact sequence

· · · → RpF (Mn) → RpF (Qn) → Rp+1F (Xn) → Rp+1F (Mn) → . . . .

Since Rn are F -acyclic, Mn are also F -acyclic and RpF (Mn) = 0 for p > 0.
Therefore, RpF (Qn) ∼= Rp+1F (Xn) for p ≥ 1 and all n ∈ Z. Since F has finite
right cohomological dimension, the number

d(X) = min{p ∈ Z+ | RqF (Xn) = 0 for all q > p and n ∈ Z}

exists. Moreover, if d(X) > 0, we see that d(Q) = d(X) − 1.
Now we can prove our statement by induction in d(X). If d(X) = 0, all Xn,

n ∈ Z, are F -acyclic, and therefore X · is in K∗(Z). Hence, the identity morphism
X · −→ X · satisfies our condition.

If d(X) > 0, then v : X · −→ Cf [−1]· is a quasiisomorphism and d(Cf [−1]) =
d(Q) = d(X) − 1. By the induction assumption, there exists a complex Z · in
K∗(Z) and a quasiisomorphism w : Cf [−1]· −→ Z ·. Hence, w ◦ v : X · −→ Z · is a
quasiisomorphism. �

3.4.2. Lemma. Let F : A −→ B be a left exact functor of finite right cohomo-
logical dimension. Let Z · be an acyclic complex in K∗(Z). Then K(F )(Z ·) is also
acyclic.

Proof. Put M = cokerd−2
Z . Then we have an exact sequence

0 −→M −→ Z0 −→ Z1 −→ . . . .

Let U · be the complex

. . . −→ 0 −→ Z0 −→ Z1 −→ . . . .

Then, by 3.2.1, RpF (M) = Hp(C(F )(U ·)) for all p ∈ Z. Since the right cohomo-
logical dimension of F is finite, there exists d ∈ Z+ such that RpF (M) = 0 for
p > d. This in turn implies that

F (Up−1) −→ F (Up) −→ F (Up+1)

is exact, i.e.,

F (Zp−1) −→ F (Zp) −→ F (Zp+1)

is exact for p > d. It follows that Hp((C(F )(Z ·)) = 0 for p > d.
Since K∗(Z) is invariant under the translation functor, by applying the above

argument to T q(Z ·), we see that we see that

0 = Hp(C(F )(T q(Z ·))) = Hp+q(C(F )(Z ·))

for any p > d and any q ∈ Z. This clearly implies that Z · is acyclic. �
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Therefore, if the functor F is of finite right cohomological dimension, the full
triangulated subcategory K∗(Z) of K∗(A) satisfies the conditions (R1) and (R2)
from Sec. 1.5. Hence, K∗(Z) is right adapted subcategory in K∗(A) for F . By
1.5.3, we have the following result.

3.4.3. Theorem. Let F : A −→ B be a left exact functor of finite right coho-
mological dimension. Then the right derived functors RF : D∗(A) −→ D∗(B) exist
for ∗ = ∅,+,−, b.

Now we want to show that RF is of amplitude ≤ n. First we need a slight
strenghtening of 3.4.1.

3.4.4. Lemma. Let X · be a complex in K(A) such that Xp = 0 for p > p0.
Then there exists a complex Z · in K(Z) such that Zp = 0 for p > p0 + n and a
quasiisomorphism s : X · −→ Z ·.

Proof. By 3.4.1, we know that there exists a a complex Z · of in K(Z) and a
quasiisomorphism s : X · −→ Z ·. Since Xq = 0 for q > p0, we have τ≤p(X

·) = X ·

for p ≥ p0. Therefore, for p ≥ p0, we have the quasiisomorphism τ≤p(s) : X · −→
τ≤p(Z

·). To establish our claim, it is enough to show that τ≤p0+n(Z
·) is in K(Z).

Hence, we have to show that ker dp0+n is in Z. To prove this, we first remark that,
by 3.4.2 in Ch. 3, τ≥q+1(Z

·) is an acyclic complex for any q ≥ p0. Hence, we have
the exact sequence

. . . −→ 0 −→ cokerdq −→ Zq+1 −→ Zq+2 −→ . . . .

This in turn implies that the sequence

. . . −→ 0 −→ im dq−1 −→ Zq −→ Zq+1 −→ . . .

is exact. Let U · be the complex

. . . −→ 0 −→ Zq −→ Zq+1 −→ . . .

with Zq in degree 0. By 3.2.1, we see that RsF (im dq−1) = Hs(K(F )(U ·)) for
all s ∈ Z+. Since the right cohomological dimension of F is ≤ n, by applying
this formula to im dp0−1 we conclude that Hq(K(F )(Z ·)) = 0 for q > p0 + n.
Moreover, by applying this to the same formula for im dp0+n−1 we conclude that
RqF (im dp0+n−1) = 0 for q ≥ 1, i.e., im dp0+n−1 is in Z. Since Hp0+n(Z ·) = 0, we
have im dp0+n−1 = ker dp0+n. This establishes our claim. �

3.4.5. Proposition. Let Let F : A −→ B be a left exact functor of finite right
cohomological dimension. Then the following conditions are equivalent:

(i) the right cohomological dimension of F is ≤ n;
(ii) the amplitude of the right derived functor RF : D(A) −→ D(B) is ≤ n.

Proof. Clearly, (ii) implies (i).
Assume that (i) holds. Let X · be a complex such that Hp(X ·) = 0 for p < p0.

Then, by 3.4.2 in Ch. 3, by truncation we can construct a complex Y · isomorphic
to X · such that Y p = 0 for p < p0. Therefore, by 2.1.1, there exists a complex
R· in K+(R) and a quasiisomorphism s : Y · −→ R· such that Rp = 0 for p < p0.
Now RF (X ·) ∼= RF (Y ·) ∼= RF (R·) = K(F )(R·), what yields Hp(RF (X ·)) =
Hp(F (R·)) = 0 for p < p0.

On the other hand, if X · be a complex such that Hp(X ·) = 0 for p > p0, by
3.4.1 in Ch. 3, we can construct a complex Y · isomorphic to X · such that Y p = 0
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for p > p0. By 3.4.4, there exists a complex Z · in K(Z) such that Zp = 0 for
p > p0 + n and a quasiisomorphism s : Y · −→ Z ·. It follows that X · ∼= Z · and
RF (X ·) ∼= RF (Z ·) = K(F )(Z ·), what yields Hp(RF (X ·)) = Hp(K(F )(Z ·)) = 0
for p > p0 + n. This implies that the amplitude of RF is ≤ n. �

Now we want to compare the derived functors RF : D∗(A) −→ D∗(B) for
∗ = b,+,−, ∅, for a left exact functor F : A −→ B of finite right cohomological
dimension. For the purpose of this discussion, we denote by R∗F the derivedfunctor
between D∗(A) and D∗(B).

Consider first the diagram

K∗(A)
i

−−−−→ K(A)
K(F )

−−−−→ K(B)

Q∗
A





y

QA





y





y

QB

D∗(A) −−−−→
D(i)

D(A) −−−−→
RF

D(B)

.

By our assumptions, K∗(Z) is a right adapted subcategory for the functor Ψ :
K∗(A) −→ D(B) which is the composition of the inclusion K∗(A) −→ K(A),
K(F ) : K(A) −→ K(B) and the quotient functor Q : K(B) −→ D(B). Therefore,
by 1.3.2, there exists a right derived functor RΨ : D∗(A) −→ D(B) of Ψ. Since RF
is a derived functor, we have a graded morphism of functorsQB◦K(F ) −→ RF ◦QA.
From the above diagram, we see that it leads to a graded morphism of functors
QB ◦K(F ) ◦ i −→ RF ◦D(i) ◦Q∗

A. Hence, by the universal property of RΦ we see
that there is a graded morphism of functors µ : RΦ −→ RF ◦D(i) which induces
this morphism. On the other hand, for any Z · in K∗(Z) we have

RΦ(Z ·) = Φ(Z ·) = K(F )(Z ·) = RF (Z ·)

and µZ· is an isomorphism. Let X · be an arbitrary object in D∗(A). Then there
exists Z · in K∗(Z) and a quasiisomorphism s : X · −→ Z ·. Hence we have the
commutative diagram

RΦ(X ·)
RΦ(Q∗

A(s))
−−−−−−−→ RΦ(Z ·)

µX





y





y

µZ

RF (X ·) −−−−−−−→
RF (QA(s))

RF (Z ·)

and we see that µX is an isomorphism. Therefore, µ is a graded isomorphism of
functors. Analogously, we can consider the diagram

K∗(A)
K∗(F )
−−−−→ K∗(B)

j
−−−−→ K(B)

Q∗
A





y

Q∗
B





y





y

QB

D∗(A) −−−−→
R∗F

D∗(B) −−−−→
D(j)

D(B)

.

Clearly, the composition of K∗(F ), j and QB is equal to Ψ. Hence, as in the above
argument, we see that there exists a graded morphism of functors QB◦j◦K∗(F ) −→
D(j) ◦ R∗F ◦ Q∗

A. Hence, by the universal property of RΦ we see that there is a
graded morphism of functors ν : RΦ −→ D(j) ◦R∗F which induces this morphism.
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As above, then we show that ν is a graded isomorphism of functors. This implies
that the diagram of functors

D∗(A)
R∗F

−−−−→ D∗(B)

D(i)





y





y

D(j)

D(A) −−−−→
RF

D(B)

commutes up to a graded isomorphism.

3.4.6. Theorem. Let F : A −→ B be a left exact functor of finite cohomological
dimension. Then the diagram of exact functors

D∗(A)
R∗F

−−−−→ D∗(B)




y





y

D(A) −−−−→
RF

D(B)

commutes up to a graded isomorphism.

Hence, the functor R∗F : D∗(A) −→ D∗(B) can be viewed as a restriction of
the functor RF : D(A) −→ D(B).


