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Indeed, every c-lattice in V is an affine scheme. One has V = Spf R where

R = lim
←−

Sym(U∗
α), Uα runs over the set of c-lattices in V .

If X is a reasonable ind-scheme then for x ∈ X(C) the tangent space Θx

of X at x is a Tate vector space: the topology of Θx is defined by tangent

spaces at x of reasonable subschemes of X that contain x. So if H is a

reasonable group ind-scheme then its Lie algebra LieH is a Lie algebra in

the category of Tate vector spaces.

(iii) For V as above denote by Gr(V ) the “space” of c-lattices in V .

More precisely, Gr(V ) is the functor that assigns to a commutative algebra

A the set of c-lattices in V ⊗̂A (in the sense of 4.2.14). Clearly Gr(V )

is an ind-proper formally smooth ind-scheme (indeed, it is a union of the

Grassmannians of U2/U1’s for all pairs of c-lattices U1 ⊂ U2 ⊂ V ).

(iv) Let K be a local field, O ⊂ K the corresponding local ring (so K �
C ((t)), O � C [[t]]). For any “space” Y we have “spaces” Y (O) ⊂ Y (K)

defined as Y (O)(A) := Y (A⊗̂O), Y (K)(A) = Y (A⊗̂K) (here A⊗̂O = A[[t]],

A⊗̂K = A((t))). Assume that Y is an affine scheme. Then Y (O) is also an

affine scheme, and Y (K) is an ind-affine ℵ0-ind-scheme. If Y is of finite type

then Y (K) is reasonable. If Y is smooth then Y (O) and Y (K) are formally

smooth.

Let G be an affine algebraic group, g its Lie algebra. Consider the group

ind-scheme G(K). One has Lie(G(K)) = g(K) = g ⊗ K, Lie(G(O)) =

g(O) = g ⊗ O.

(v) Let G be a reasonable group ind-scheme such that Gred is an affine

group scheme. The functor G �→ (Lie G, Gred) is an equivalence between the

category of G’s as above and the category of Harish-Chandra pairs. For an

ind-scheme X an action of G on X is the same as a (Lie G, Gred)-action on

X. Similarly, a G-module is the same as a (Lie G, Gred)-module, etc.
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7.11.3. There are two different ways to define O-modules in the setting

of ind-schemes; the corresponding objects are called Op-modules and O!-

modules. We start with the more immediate (though less important) notion

of Op-module∗) which makes sense for any ”space” X (see 7.11.1).

An Op-module P on X is a rule that assigns to a commutative algebra A

and a point φ ∈ X(A) an A-module Pφ, and to any morphism of algebras

f : A → B an identification of B-modules fP : B ⊗
f

Pφ
→∼Pfφ in a way

compatible with composition of f ’s. If X = lim
−→

Xα is an ind-scheme then

such P is the same as a collection of (quasi-coherent) O-modules PXα on

Xα together with identifications i∗αβPXβ
= PXα for α ≤ β that satisfy the

obvious transitivity property. We say that P is flat if each Pφ (or each PXα)

is flat. One defines invertible Op-modules on X (alias line bundles) in the

similar way.

We denote the category of Op-modules on X by Mp(X,O). This is a

tensor C-category. The unit object in Mp(X,O) is the ”sheaf” of functions

OX . Note that Mp(X,O) need not be an abelian category. The category

Mp fl(X,O) of flat Op-modules is an exact category (in Quillen’s sense).

For any P, P ′ ∈ Mp(X,O) the vector space Hom(P, P ′) carries the

obvious topology; the composition of morphisms is continuous. In particular

Γ(X, P ) := Hom(OX , P ) is a topological vector space which is a module over

the topological ring Γ(X,OX).

Remarks. (i) The above definitions makes sense if we replace O-modules

by any category fibered over the category of affine schemes. For example, one

can consider left D-modules (alias O-modules with integrable connection);

the corresponding objects over ind-schemes called (left) Dp-modules.

(ii) If X is an ind-affine ℵ0-ind-scheme, X = Spf R = lim
−→

Spec R/Iα (see

7.11.2(i)), then an Op-module on X is the same as a complete and separated

topological R-module P such that the closures of IαP ⊂ P form a basis of

the topology.

∗)Here ”p” stands for ”projective limit”.



HITCHIN’S INTEGRABLE SYSTEM 303

7.11.4. Now let us pass to O!-modules. Here we must assume that our

X is a reasonable ind-scheme. An O!-module M on X is a rule that

assigns to a reasonable subscheme Y ⊂ X a quasi-coherent OY -module M(Y )

together with morphisms M(Y ) → M(Y ′) for Y ⊂ Y ′ which identify M(Y )

with i!Y Y ′M(Y ′) := HomOY ′ (OY , M(Y ′)) and satisfy the obvious transitivity

condition∗). If we write X = lim
−→

Xα where Xα’s are reasonable then it

suffices to consider only Xα’s instead of all reasonable subschemes. O!-

modules on X form an abelian category M(X,O). Note that for any

closed subscheme Y ⊂ X, the category M(Y,O) is a full subcategory of

M(X,O) closed under subquotients, and that for any O!-module M one

has M = lim
−→

M(Xα).

The category M(X,O) is a Module over the tensor category Mp(X,O).

Namely, for M ∈ M(X,O), P ∈ Mp(X,O) their tensor product M ⊗ P ∈
M(X,O) is lim

−→
M(Xα) ⊗

OXα

PXα . The functor ⊗ : M(X,O)×Mp fl(X,O) →

M(X,O) is biexact.

For an O!-module M we define the space of its global sections Γ(X, M)

as lim
−→

Γ(Xα, M(Xα)). The functor Γ(X, ·) is left exact.

Remarks. (i) The categories M(Y,O) together with the functors i!Y Y ′

form a fibered category over the category (ordered set) of reasonable

subschemes of X, and M(X,O) is the category of its Cartesian sections.

(ii) If X = Spf R and the pro-algebra R is a topological algebra (see

7.11.2) then an O!-module on X is the same as a discrete R-module (where

”discrete” means that the R-action is continuous with respect to the discrete

topology on M).

(iii) If P is flat then (M ⊗ P )(Xα) = M(Xα) ⊗ PXα .

7.11.5. Assume that we have a group ind-scheme (or any group ”space”)

K that acts on X. Then for any commutative algebra A the group K(A)

acts on Spec A × X. For M ∈ M(X,O) an action of K on M is defined

∗)We need to consider reasonable subschemes to assure that i! preserves quasi-

coherency.
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by K(A)-actions on OSpec A � M ∈ M(Spec A × X,O) such that for any

morphism A → A′ the corresponding actions are compatible. We denote

the category of K-equivariant O!-modules on X by M(K \
\ X,O). We leave

it to the reader to define K-equivariant Op-modules.

7.11.6. All the basic definitions and results of 7.10 (the definitions of

topology Xcr, D-crystals, crystalline O∗-torsors, twisted D-crystals, basic

functoriality) make obvious sense for any ind-scheme X of ind-finite type.

So, from the D-crystalline point of view, D-module theory generalizes

automatically to the setting of ind-schemes.

What we will discuss in the rest of this section is the conventional

approach to D-modules (rings of differential operators, etc.) which works

when our ind-scheme is formally smooth. The results 7.10.12, 7.10.29,

7.10.32 comparing the D-crystalline and D-module setting remain literally

true for formally smooth ind-schemes.

Below we will no more mention D-crystals. In the main body of this

book we employ conventional D-modules (the ind-schemes we meet are affine

Grassmannians, they are formally smooth). Notice, however, that D-crystal

approach is needed to make obvious the following fact (we use it for Y equal

to a Schubert cell): Let i : Y ↪→ X be a closed embedding of a scheme

Y of finite type into formally smooth X as above. Then the category of

D-modules on X supported (set-theoretically) on Y depends only on Y

(and not on i and X). Indeed, this category identifies canonically with the

category of D-crystals on X.

7.11.7. Let us explain what are differential operators in the setting of ind-

schemes. Assume that our X is an ind-scheme of ind-finite type. For an

O!-module M on X set

Der(OX , M) := lim
−→

Der(OY , M(Y )) = lim
−→

Hom(ΩY , M(Y )).(348)
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Here Y is a closed subscheme of X. We consider Der(OX , M) as an O!-

module on X. Similarly, set

D(M) = Diff(OX , M) := lim
−→

Diff(OY , M(Y )).(349)

We consider the sheaf of differential operators Diff(OY , M(Y )) as a ”differ-

ential OY -bimodule” in the sense of [BB93], i.e., an O-module on Y × Y

supported set-theoretically on the diagonal. So D(M) is an O!-module on

X × X supported set-theoretically on the diagonal. We may consider it

as an O!-module on X with respect to either of the two OX -module struc-

tures. Note that D(M) carries a canonical increasing filtration D·(M) where

Di(M) is the submodule of sections supported on the ith infinitesimal neigh-

bourhood of the diagonal; equivalently, Di(M) = lim
−→

Diffi(OY , M(Y )) is the

submodule of differential operators of order ≤ i. One has D0(M) = M ,⋃
Di(M) = D(M), and the two O!-module structures on gri D(M) coincide.

There is an obvious embedding Der(OX , M) ⊂ D1(M).

Assume now that X is formally smooth. In the next proposition we

consider D(M) as an O!-module on X with respect to the left O-module

structure.

7.11.8. Proposition. (i) The functors Der(OX , ·), D, Di are exact and

commute with direct limits. So there are flat Op-modules ΘX , DX and

a filtration of DX by flat submodules DiX such that

Der(OX , M) = M ⊗ ΘX , D(M) = M ⊗DX , Di(M) = M ⊗DiX .

(ii) There is a canonical identification gr· DX = Sym· ΘX .

Remark. In 7.12.12 we will show that the Op-modules ΘX , DX , and DiX are

Mittag-Leffler modules in the sense of Raynaud-Gruson (see 7.12.1, 7.12.2,

7.12.9). If X is an ℵ0-ind-scheme the restrictions of these Op-modules to

subschemes of X are locally free (see 7.12.13 for a more precise statement).

Proof. (i) Our functors are obviously left exact and commute with direct

limits. The right exactness of Der(OX , ·) follows from formal smoothness of
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X (use the standard interpretation of derivations OX → M as morphisms

Spec(Sym· M/ Sym≥2 M) → X). So we have our ΘX ∈ Mp fl(X,O).

(ii) We define a canonical isomorphism∗)

σ· : gr· D(M)→∼M ⊗ Sym· ΘX .(350)

This clearly implies the proposition.

Notice that for any n ≥ 0 the obvious morphism M ⊗ Θ⊗n
X →

lim
−→

Hom(Ω⊗n
Y , M(Y )) is an isomorphism (use the fact that ΩY are coherent).

Therefore (350) is equivalent to identifications

σn : grn D(M)→∼ lim
−→

Hom(Symn ΩY , M(Y )).(351)

Our σn is the inductive limit of the maps

σnY : grn Diff(OY , M(Y )) → Hom(Symn ΩY , M(Y ))

defined as follows. One has Diffn(OY , M(Y )) = HomOY
(OY ×Y /In+1, M(Y ))

where I ⊂ OY ×Y is the ideal of the diagonal (and we consider the source as

an OY -module via one of the projection maps). Now I/I2 = ΩY hence

In/In+1 is a quotient of Symn ΩY , and our σnY comes from the map

Symn ΩY → In/In+1 ⊂ OY ×Y /In+1.

It remains to show that σn is an isomorphism; we may assume that n ≥ 1.

It is clear that σnY are injective, hence such is σn. To see that σn is surjective

look at the scheme Z := Spec(Sym· ΩY / Sym≥n+1 ΩY ). The embedding of

its subscheme Spec(Sym· ΩY / Sym≥2 ΩY ) = Spec(OY ×Y /I2) ⊂ Y × Y ⊂
Y ×X extends, by formal smoothness of X, to a morphism i : Z → Y ×X

over Y . It is easy to see that i is a closed embedding. There is a closed

subscheme Y ′ ⊂ X such that Y ⊂ Y ′ and Z ⊂ Y × Y ′. Thus Z is a

subscheme of the nth infinitesimal neighbourhood of the diagonal in Y ′×Y ′.

∗)In the general case (when the base field may have non-zero characteristic) one has to

replace Sym· by Γ· where for any flat A-module P we define Γn(P ) as Sn-invariants in

P⊗n. Notice that (since P is inductive limit of projective modules) Γn(P ) is flat and for

any A-module M one has (M ⊗ P⊗n)Sn = M ⊗ Γn(P ).
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Therefore we get embeddings Hom(Symn ΩY , M(Y )) ⊂ HomOY
(OZ , M(Y )) ⊂

Diffn(OY ′ , M(Y ′)). The composition of them with σnY ′ coincides with the

embedding Hom(Symn ΩY , M(Y )) ⊂ Hom(Symn ΩY ′ , M(Y ′)). This implies

surjectivity of σn.

7.11.9. To explain what are D-modules on ind-schemes it is convenient to

use the language of differential bimodules.

Let X be any reasonable ind-scheme. A Diff-bimodule D on X (cf.

[BB93]) is a rule that assigns to any reasonable subscheme Y ⊂ X an O!-

module DY on Y ×X supported set-theoretically on the diagonal Y ⊂ Y ×X;

for Y ⊂ Y ′ one has identifications DY ′ ⊗ OY
→∼DY which are transitive in

the obvious sense.

The category Mdi(X,O) of Diff-bimodules is a monoidal C-category.

Namely, for D, D′ ∈ Mdi(X,O) their tensor product D ⊗ D′ is defined

by (D ⊗ D′)Y := lim
−→

(DY )(Y ×Y ′) ⊗
OY ′

D′
Y ′ . Our OX is the unit object in

Mdi(X,O) (see Remark (i) below). The category M(X,O) is a right

Mdi(X,O)-Module: for an O!-module M one has M ⊗ D = lim
−→

M(Y ) ⊗ DY

where we consider M(Y ) ⊗ DY as an O!-module on X with respect to the

right O!-module structure on DY .

Remarks. (i) An Op-module on X is the same as a differential OX -

bimodule supported scheme-theoretically on the diagonal. So we have a

fully faithful embedding of monoidal categories Mp(X,O) ⊂ Mdi(X,O). It

is compatible with the Actions on M(X,O) from 7.11.4, 7.11.9.

(ii) The forgetful∗) functor Mdi(X,O) → Mp(X,O) is faithful, so one

may consider Diff-bimodules as Op-modules on X equipped with certain

extra structure. We say that a Diff-bimodule is flat if it is flat as an Op-

module. The category of flat Diff-bimodules is an exact category (cf. 7.11.3).

A Diff-algebra on X is a unital associative algebra D in the monoidal

category Mdi(X,O). A D!-module on X is a (necessarily right) D-module

∗)forgetting the right O-module structure
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M in M(X,O). Often we call such M simply a D-module. We denote the

category of D-modules by M(X, D); this is an abelian category.

Remarks. (i) The forgetful functor M(X, D) → M(X,O) admits a left

adjoint functor, namely M �→ M ⊗ D.

(ii) The category Mp(X,O) is a left Mdi(X,O)-module in the obvious

way. So one may consider Dp-modules := left D-modules in Mp(X,O).

For D ∈ Mdi(X,O) set Γ(X, D) := lim
←−

Γ(Y ×X, DY ); this is a topological

vector space. One has an obvious continuous map Γ(X, D) ⊗ Γ(X, D′) →
Γ(X, D ⊗ D′). For M ∈ M(X,O) there is a similar map Γ(X, M) ⊗
Γ(X, D) → Γ(X, M ⊗ D). Therefore for a Diff-algebra D our Γ(X,D) is

a topological ring and for any D-module M the vector space Γ(X, M) is a

discrete Γ(X, D)-module.

Assume that we have a group ind-scheme (or any group ”space”) K that

acts on X. One defines a weak∗) action of K on a Diff-algebra D as follows.

For any commutative algebra A we have the action of the group K(A) on

Spec A × X. Now a weak action of K on D is a rule that assigns to A a

lifting of this action to the Diff-algebra OSpec A � D on SpecA × X. For

any morphism A → A′ the correspondings actions must be compatible in

the obvious way. If M is a D-module then a weak action of K on M is

an action of K on M as on O!-module (see 7.11.4) such that the D-action

morphism M ⊗ D → M is compatible with the K-actions. We denote the

category of weakly K-equivariant D-modules by M(K \
\ X, D).

7.11.10. Here is a more concrete ”sheaf-theoretic” way to look at differen-

tial bimodules and algebras on a reasonable ℵ0-ind-scheme X .∗)We explain

it in two steps.

∗)For strong actions see [BB93].
∗)The ℵ0 assumption enables us to work with topological algebras instead of pro-

algebras; see 7.11.2(i).
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(i) Assume that Xred is a scheme, so X is a formal scheme∗). Then

the underlying topological space of X is well-defined, and OX is a sheaf

of topological algebras. Any Diff-bimodule D yields a sheaf of topological

OX -bimodules lim
←−

DXα which we denote also by D by abuse of notation. It

satisfies the following properties:

- The basis of the topology on D is formed by closures of I·D, where

I ⊂ OX is an open ideal; the topology is complete and separated.

- The quotients D/I·D are O!-modules on X × X supported set-

theoretically at the diagonal.

It is clear that Mdi(X,O) is equivalent to the category of such sheaves

of topological OX -bimodules. Notice that D ⊗ D′ = D ⊗̂
OX

D′. Therefore

a Diff-algebra on X is the same as a sheaf D of topological algebras on X

equipped with a continuous morphism of sheaves of algebras ε : OX → D

such that the OX -bimodule structure on D satisfies the above conditions.

A D-module on X is the same as a sheaf of discrete right D-modules which

is quasi-coherent as an OX -module (i.e., it is an O!-module on X).

(ii) Let X be any reasonable ℵ0-ind-scheme. For a reasonable subscheme

Y ⊂ X denote by Y ∧ the completion of X along Y . This is a formal scheme

as in (i) above. For a Diff-bimodule D on X let DY ∧ be the (Op-module)

pull-back of D to Y ∧. This is a Diff-bimodule on Y ∧, so it may be viewed as

a sheaf of OY ∧-bimodules as in (i) above. If Y ′ ⊂ X is another reasonable

subscheme that contains Y then we have a continuous morphism of sheaves

of OY ′∧-bimodules DY ′∧ → DY ∧ which identifies DY ∧ with the completion

of DY
′∧ with respect to the topology generated by closures of I·DY

′∧ where

I ⊂ OY
′∧ is an open ideal such that Spec(O/I)red = Yred. These morphisms

satisfy the obvious transitivity property. It is clear that Diff-bimodules on

X are the same as such data.

Therefore a Diff-algebra D on X may be viewed as the following data:

∗)See 7.12.22 and 7.12.23 for a description of formally smooth affine ℵ0-formal schemes

of ind-finite type.
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- a collection of sheaves of topological algebras DY ∧ equipped with

morphisms εY ∧ : OY ∧ → DY ∧ defined for any reasonable subscheme Y ⊂ X

that satisfy the conditions of (i) above.

- for Y ⊂ Y ′ we have a continuous morphism rY Y ′ : DY
′∧ → DY ∧ which

identifies DY ∧ with the completion of DY ′∧ as above. We demand the

compatibilities rY Y ′εY
′∧ = εY ∧ , rY Y ′′ = rY Y ′rY ′Y ′′ .

We leave it to the reader to describe D-modules in this language.

Remark. For a Diff-algebra D the topological algebra Γ(X, D) is the

projective limit of topological algebras Γ(Y, DY ∧).

7.11.11. The key example. Assume that our X is a formally smooth ind-

scheme of ind-finite type. Consider the Op-module DX as defined in

7.11.8(i). So for a subscheme Y ⊂ X the OY -module (DX)Y is D(OY ) :=

lim
−→

Diff(OY ′ ,OY ) with its left OY -module structure. Our DX carries

an obvious structure of Diff-bimodule. The composition of differential

operators makes DX a Diff-algebra on X. According to 7.11.8 our DX

carries a canonical ring filtration DiX such that gr· DX = Sym· ΘX . The

topological algebra Γ(X,DX) is called the ring of global differential operators

on X. We denote the category of DX -modules by M(X,D) or simply M(X).

If a group ”space” K acts on X then DX carries a canonical weak K-

action (defined by transport of structure). Thus we have the category

M(K \
\ X,DX) = M(K \

\ X) of weakly K-equivariant D-modules.

A twisted version. In the main body of the paper we also need to

consider the rings of twisted differential operators (alias tdo), families of such

rings and modules over them. The corresponding definitions are immediate

modifications of the usual ones in the finite-dimensional setting (see e.g.

[BB93]). Below we describe explicitely particular examples of tdo we need.

Let X be as above, L a line bundle on X (see 7.11.3).

a. The Diff-algebra DL of differential operators acting on L is defined

exactly as DX replacing in (349) D(M) by DL(M) = Diff(L, M ⊗ L) :=
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lim
−→

Diff(LY , M(Y ) ⊗ LY ); proposition 7.11.8 (as well as its proof) remains

true without any changes. Equivalently, DL = L ⊗DX ⊗ L⊗−1.

b. We define a Diff-algebra DLh on X as follows. Let π : X∼ → X be

the Gm-torsor over X that corresponds to L (so X∼ = L\(zero section)).

Consider the Diff-algebra D∼ := π∗DX∼ on X (so for a subscheme Y ⊂ X

one has (D∼)Y := π∗((DX∼)π−1Y )). The weak Gm-action on DX∼ yields a

weak Gm-action on D∼ (with respect to the trivial Gm-action on X). Our

DLh is the subalgebra of Gm-invariants in D∼.

Denote by h the global section of DLh that corresponds to the action of

−t d
dt ∈ Lie Gm. Then DLh is the centralizer of h in D∼. Notice that for any

subscheme Y ⊂ X a trivialization of LY ∧ (which exists locally on Y ) yields

an identification DLhY ∧ →∼DY ∧⊗̂C[h].

Remarks. (i) Consider the Op-module π∗(OX∼) = ⊕L⊗n. It carries the

action of DLh which preserves the grading. The action of DLh on L⊗n

identifies DLh/(h − n)DLh with DL⊗n .

(ii) Let M∼ be a weakly Gm-equivariant D-module on X∼. Set

M := (π∗M∼)Gm ; this is a DLh-module. The functor M(Gm
\
\ X∼) →

M(X,DLh), M∼ �→ M , is an equivalence of categories.

7.11.12. Let us explain the D-Ω complexes interplay in the setting of ind-

schemes. First let us define Ω-complexes. Here we assume that X is any

reasonable ind-scheme.

For any reasonable subschemes Y ⊂ Y ′ one has a surjective morphism of

commutative DG algebras ΩY ′ → ΩY . An Ω!-complex F on X (or simply

an Ω-complex) is a rule that assigns to a reasonable subscheme Y ⊂ X a

DG ΩY -module F[Y ] together with morphisms of ΩY ′-modules F[Y ] → F[Y ′]

for Y ⊂ Y ′ which identify F[Y ] with i!ΩY Y ′F[Y ′] := HomΩY ′ (ΩY , F[Y ′]) and

satisfy the obvious transitivity condition. We assume that F i
[Y ] is quasi-

coherent as an OY -module. As in 7.11.4 it suffice to consider only Xα’s

instead of all reasonable Y ’s. As in Remark in 7.2.1 such an F is the same
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as a complex of O!-modules whose differential is a differential operator of

order ≤ 1. We denote by C(X, Ω) the DG category of Ω!-complexes.

If f : Y → X is a representable quasi-compact morphism of ind-schemes

(so Y = lim
−→

Yα where Yα := f−1(Xα)) then one has a pull-back functor

f ·Ω : C(X, Ω) → C(Y,Ω), f ·Ω(F ) := lim
−→

ΩYα ⊗
f−1ΩXα

Fα. If f is surjective and

formally smooth then f ·Ω satisfies the descent property.

Assume that a group ”space” K acts on X. One defines a K-action on

an Ω-complex F on X as a rule that assigns to any g ∈ K(A) a lifting

of the action of g on SpecA × X to OSpec A ⊗ F ∈ C(Spec A × X, Ω); the

obvious compatibilities should hold. We denote the corresponding category

by C(K \
\ X, Ω).

Remarks. (i) Assume that K is a group ind-scheme, so we have the Lie

algebra Lie K. The definition of KΩ-action on F in terms of operators iξ

from 7.6.4 renders immediately to the present setting. The category of KΩ-

equivariant Ω-complexes is denoted by C(K \ X, Ω).

(ii) If our K is an affine group scheme then a KΩ-equivariant Ω-complex

is the same as an Ω-complex F equipped with an isomorphism m·
ΩF = p·XF

of Ω-complexes on K × X that satisfy the usual condition (see 7.6.5).

7.11.13. Assume that X is a formally smooth ind-scheme of ind-finite

type. Denote by C(X,D) the DG category of complexes of D-modules (D-

complexes for short) on X. We have the DG functor

D : C(X, Ω) → C(X,D)(352)

which sends an Ω-complex F to the D-complex DF with components

(DF )n := D(Fn) = Fn ⊗ DX (see 7.11.8) and the differential defined by

formula d(a) := dF ◦ a (here a ∈ D(Fn) = Diff(OX , Fn)). This functor

admits a right adjoint functor

Ω : C(X,D) → C(X, Ω)(353)
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which may be described explicitely as follows. For a subscheme Y ⊂ X we

have the D-complex DRY := D(ΩY ). It is also a left DG ΩY -module. Now

for a D-complex M one has ΩM = lim
−→

Hom(DRY , M) =
⋃

Hom(DRY , M).

Lemma 7.2.4 remains true as well as its proof. As in 7.2.5 we have the

cohomology functor H·
D : C(X, Ω) → M(X), H·

D(F ) = H·(DF ), and the

corresponding notion of D-quasi-isomorphism. The adjunction morphisms

for D, Ω are quasi-isomorphism and D-quasi-isomorphism∗).

7.11.14. We say that an O!-complex or O!-module has quasi-compact

support if it vanishes on the complement to some closed subscheme. Same

definition applies to D- and Ω-complexes. We mark the corresponding

categories by lower ”c” index. The functors D and Ω preserve the

corresponding full DG subcategories Cc(X, Ω) ⊂ C(X, Ω), Cc(X,D) ⊂
C(X,D).

In order to ensure that our derived categories are the right ones (i.e.,

that they have nice functorial properties) we assume in addition that the

diagonal morphism X → X×X is affine (cf. 7.3.1). For example, it suffices

to assume that X is separated.

Denote by D(X,O) the homotopy category of Cc(X,O) localized with

respect to quasi-isomorphisms; this is a t-category with core Mc(X,O).

We define D(X,D) (assuming that X is formally smooth of ind-finite type)

in the similar way; this is a t-category with core Mc(X). Let D(X, Ω) be

localization of the homotopy category of Cc(X, Ω) by D-quasi-isomorphisms.

The functors D and Ω yield canonical identification of D(X,D) and D(X, Ω),

so, as usual, we denote these categories thus identified simply D(X)∗).

∗)The fact that de Rham complexes of D-modules are not bounded from below does

not spoil the picture.
∗)To get a t-category with core M(X) one may consider complexes which are unions

of subcomplexes with quasi-compact support; however to ensure the good functorial

properties of this category one has to assume that X satisfies certain extra condition

(e.g., that there exists a formally smooth surjective morphism Y → X such that Y is ind-

affine). The category formed by all complexes has unpleasant homological and functorial
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We say that an O!-module F with quasi-compact support is loose if for

any closed subscheme Y ⊂ X such that F is supported on Y ∧ and a flat

Op-module P on Y ∧ one has Ha(X, P ⊗ F ) = 0 for a > 0. An O!- D- or

Ω-complex F is loose if each O!-module F i is loose. One has the following

lemma parallel to 7.3.8:

7.11.15. Lemma. i) For any F ′ ∈ Cc(X, Ω) there exists a D-quasi-

isomorphism F ′ → F such that F is loose and the supports of F, F ′ coincide.

(ii) If f : X → X ′ is a formally smooth affine morphism of ind-schemes

then the functors

f ·Ω : Cc(X ′,Ω) → Cc(X, Ω), f· : Cc(X, Ω) → Cc(X ′,Ω)

send loose complexes to loose ones.

(iii) If F1, F2 are loose complexes on X1, X2 then F1 � F2 is a loose Ω-

complex on X1 × X2.

Proof. Modify the proof of 7.3.8 in the obvious way.

We see that one can define the derived category D(X) using loose

complexes.

7.11.16. Any morphism f : X → Y of ind-schemes yields the push-forward

functor f· : C(X, Ω) → C(Y,Ω) which preserves the subcategories Cc.

We leave it to the reader to check that f· preserves D-quasi-isomorphisms

between loose complexes with quasi-compact support (cf. 7.3.9, 7.3.11(ii)).

Thus the right derived functor Rf· = f∗ : D(X) → D(Y ) is well-defined:

one has f∗F = f·F if F is a loose complex with quasi-compact support.

Since f· sends loose complexes to loose ones we see that f∗ is compatible

with composition of f ’s.

properties. Notice that the usual remedy - to consider only Ω-complexes bounded from

below - does not work here (the de Rham complexes of D-modules do not satisfy this

condition).
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For M ∈ D(X,D) denote by MO ∈ D(X,O) same M considered as a

complex of O!-modules. One has a canonical integration morphism

if : Rf·(MO) → (f∗M)O

in D(Y,O) defined as in 7.2.11. It is compatible with composition of f ’s.

7.11.17. Let us define the Hecke monoidal category H as in 7.6.1. We

start with an ind-affine group ind-scheme G and its affine group subscheme

K ⊂ G. We assume that G/K (the quotient of sheaves with respect to fpqc

topology) is a ind-scheme of ind-finite type; it is automatically formally

smooth and its diagonal morphism is affine. Clearly G is a reasonable ind-

scheme, and K is its reasonable subscheme. Consider the DG category Hc

of (K × K)Ω-equivariant Ω!-complexes on G with quasi-compact support

(see Remark (i) in 7.11.12). By descent such a complex is the same as a

KΩ-equivariant admissible Ω!-complex either on G/K or on K \ G. The

corresponding notions of D-quasi-isomorphism are equivalent. Our H is the

corresponding D-derived category.

The constructions of 7.6.1 make perfect sense in our setting. Thus Hc is

a DG monoidal category, and H is a triangulated monoidal category.

7.11.18. Assume that we have a scheme Y equipped with a G-action such

that there exists an increasing family U0 ⊂ U1 ⊂ ... of open quasi-compact

subschemes of Y =
⋃

Ui with property that for some reasonable group

subscheme Ki ⊂ G the action of Ki on Ui is free and Ki \ Ui is a smooth

scheme (in particular, of finite type). Then the stack B = K \ Y is smooth

(it has a covering by schemes (Ki ∩K) \Ui). The diagonal morphism for B
is affine, so we may use the definition of D(B) from 7.3.12.

To define the H-Action on D(B) you proceed as in 7.6.1 with the

following modifications that arise due to possible non-quasi-compactness

of Y and G. We may assume that the above Ui’s are K-invariant; set

Bi = K \ Ui ⊂ B. Take loose Ω-complexes F = ∪Fn ∈ Ca(K \ G/K, Ω) (so

the supports Sn of Fn are quasi-compact) and T ∈ C(B·,Ω). Let j(n, i) be
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an increasing (with respect to both n and i) sequence such that S−1
n ·Ui ⊂

Uj(n,i). Consider the Ω-complexes (Fn �∗ T )i := m̄Ui·p·UiΩ
(Fn � Tj(n,i))|Bi

and (Fn �∗ T )′i := m̄Ui·p·UiΩ
(Fn � Tj(n+1,i))|Bi on Bi. There are the obvious

morphisms (Fn �∗ T )′i → (Fn+1 �∗ T )i, (Fn �∗ T )′i → (Fn �∗ T )i; the latter is a

quasi-isomorphism. Set (F �∗ T )i := Cone(⊕(Fn �∗ T )i → ⊕(Fn �∗ T )i) where

the arrow is the (componentwise) difference of the above morphisms. These

(F �∗ T )i form in the obvious manner an object F �∗ T ∈ C(B,Ω). We leave

it to the reader to check that F �∗ T as an object of D(B) does not depend

on the choice of the auxiliary data (of Ui and j(n, i)), and that �∗ is an

H-Action on D(B).

7.12. Ind-schemes and Mittag-Leffler modules. Raynaud and Gruson

[RG] introduced a remarkable notion of Mittag-Leffler module. In this

section we show that the notion of flat Mittag-Leffler module is, in some

sense, a linearized version of the notion of formally smooth ind-scheme of

ind-finite type (see 7.12.12, 7.12.14, 7.12.15). Using the fact that countably

generated flat Mittag-Leffler modules are projective we describe formally

smooth affine ℵ0-formal schemes of ind-finite type (see 7.12.22, 7.12.23).

The reader can skip this section because its results are not used in the rest

of this work (we include them only to clarify the notion of formally smooth

ind-scheme).

In 7.11 we assumed that “ind-scheme” means “ind-scheme over C” (this

did not really matter). In this section we prefer to drop this assumption.

7.12.1. Let A be a ring∗). Denote by C the category of A-modules of finite

presentation. According to [RG], p.69 an A-module M is said to be a Mittag-

Leffler module if every morphism f : F → M , F ∈ C, can be decomposed as

F
u→G → M , G ∈ C, so that for every decomposition of f as F

u′
→G′ → M ,

G′ ∈ C, there is a morphism ϕ : G′ → G such that u = ϕu′.

∗)We assume that A is commutative but in 7.12.1–7.12.8 this is not essential (one only

has to insert in the obvious way the words “left” and “right” before the word “module”).
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7.12.2. Suppose that M = lim
−→

Mi, i ∈ I, where I is a directed ordered set

and Mi ∈ C. According to loc.cit, M is a Mittag-Leffler module if and only

if for every i ∈ I there exists j ≥ i such that for every k ≥ i the morphism

uij : Mi → Mj can be decomposed as ϕijkuik for some ϕijk : Fk → Fj . A

similar statement holds if I is a filtered category; if I is the category of all

morphisms from objects of C to M and Fi ∈ C is the source of the morphism

i then the above statement is tautological.

7.12.3. The above property of inductive systems (Mi), Mi ∈ C, makes sense

if C is replaced by any category C′. If C′ is dual to the category of sets, i.e., if

we have a projective system of sets (Ei, uij : Ej → Ei) one gets the Mittag-

Leffler condition from EGA 0III 13.1.2: for every i ∈ I there exists j ≥ i

such that uij(Ej) = uik(Ek) for all k ≥ j.

This condition is satisfied if and only if the projective system (Ei, uij)

is equivalent to a projective system (Ẽα, ũαβ) where the maps ũαβ are

surjective. To prove the “only if” statement it suffices to set Ẽi := uij(Ej)

for j big enough.

7.12.4. Suppose that M = lim
−→

Mi, Mi ∈ C. According to [RG] M is

a Mittag-Leffler module if and only if for any contravariant functor Φ

from C to the category of sets the projective system (Φ(Mi)) satisfies the

Mittag-Leffler condition (to prove the “if” statement consider the functor

Φ(N) = Hom(N,
∏
i

Mi) or Φ̃(N) =
⊔
i

Hom(N, Mi) ).

Assume that M is flat. Set M∗
i = Hom(Mi, A). According to [RG] M is

a Mittag-Leffler module if and only if the projective system (M∗
i ) satisfies

the Mittag-Leffler condition. This is clear if the modules Mi are projective.

The general case follows by Lazard’s lemma (there is an inductive system

equivalent to (Mi) consisting of finitely generated projective modules).

7.12.5. Consider the following two classes of functors from the category of

A-modules to the category of abelian groups:
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1) For an A-module M one has the functor

L �→ L ⊗A M ;(354)

2) For a projective system of A-modules Ni (where i belong to a directed

ordered set) one has the functor

L �→ lim
−→

i

Hom(Ni, L)(355)

7.12.6. Proposition. (i) The functor (354) is isomorphic to a functor of the

form (355) if and only if M is flat.

(ii) The functor (354) is isomorphic to the functor (355) corresponding to

a projective system (Ni) with surjective transition maps Nj → Ni, i ≤ j, if

and only if M is a flat Mittag-Leffler module.

(iii) The functor (355) corresponding to a projective system (Ni) with

surjective transition maps Nj → Ni, i ≤ j, is isomorphic to a functor of the

form (354) if and only if the functor (355) is exact and the modules Ni are

finitely generated.

Proof. If (354) and (355) are isomorphic then (354) is left exact, so M is

flat. If M is flat then by Lazard’s lemma M = lim
−→

Pi where the modules Pi

are projective and finitely generated, so the functor (355) corresponding to

Ni = P ∗
i is isomorphic to (354).

We have proved (i). To deduce (ii) from (i) notice that for Pi as above

the projective system (P ∗
i ) is equivalent to a projective system (Ni) with

surjective transition maps Nj → Ni if and only if (P ∗
i ) satisfies the Mittag-

Leffler condition (see 7.12.3).

To prove (iii) notice that functors of the form (354) are those additive

functors which are right exact and commute with infinite direct sums (then

they commute with inductive limits). A functor of the form (355) is right

exact if and only if it is exact. If the modules Ni are finitely generated then

(355) commutes with infinite direct sums. If the transition maps Nj → Ni
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are surjective and (355) commutes with inductive limits then the modules

Ni are finitely generated.

7.12.7. According to 7.12.6 a flat Mittag-Leffler module is “the same as”

an equivalence class of projective systems (Ni) of finitely generated modules

with surjective transition maps Nj → Ni, i ≤ j, such that the functor (355)

is exact. More precisely, M = lim
−→

i

Hom(Ni, A) (then the functors (354) and

(355) are isomorphic).

7.12.8. Theorem. (Raynaud–Gruson). (What about D.Lazard? according

to [RG], p.73 the idea goes back to Theorems 3.1 and 3.2 from chapter I of

D.Lazard’s thesis in Bull.Soc.Math.France, vol.97 (1969), 81–128; see also

D.Lazard’s work in Bull.Soc.Math.France, vol.95 (1967), 95–108)

The following conditions are equivalent:

(i) M is a flat Mittag-Leffler module;

(ii) every finite or countable subset of M is contained in a countably

generated projective submodule P ⊂ M such that M/P is flat;

(iii) every finite subset of M is contained in a projective submodule P ⊂ M

such that M/P is flat.

In particular, a projective module is Mittag-Leffler and a countably

generated∗) flat Mittag-Leffler module is projective.

The implication (iii)⇒(i) is easy. (It suffices to show that if F and F ′ are

modules of finite presentation and ϕ : F → F ′, ψ : F ′ → M are morphisms

such that ψϕ(F ) ⊂ P then there exists ψ̃ : F ′ → M such that ψ̃(F ′) ⊂ P

and ψ̃ϕ = ψϕ; use the fact that Hom(L, M) → Hom(L, M/P ) is surjective

for every L of finite presentation, in particular for L = Coker ϕ).

The implication (i)⇒(ii) is proved in [RG], p.73–74. The key argument

is as follows. Suppose we have a sequence P1 → P2 → . . . where P1, P2, . . .

are finitely generated projective modules and the projective system (P ∗
i )

∗)The countable generatedness assumption is essential; see 7.12.24.
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satisfies the Mittag-Leffler property. To prove that P := lim
−→

Pi is projective

one has to show that for every exact sequence 0 → N ′ → N → N ′′ → 0 the

map Hom(P, N) → Hom(P, N ′′) is surjective. For each i the sequence

0 → P ∗
i ⊗ N ′ → P ∗

i ⊗ N → P ∗
i ⊗ N ′′ → 0

is exact and the problem is to show that the projective limit of these

sequences is exact. According to EGA 0III 13.2.2 this follows from the

Mittag-Leffler property of the projective system (P ∗
i ⊗ N ′).

Remark. If the set of indices i were uncountable we would not be able∗)

to apply EGA 0III 13.2.2.

Here is another proof of the projectivity of P (in fact, another version

of the same proof). Denote by fi the map Pi → Pi+1. The Mittag-Leffler

property means that after replacing the sequence {Pi} by its subsequence

there exist gi : Pi+1 → Pi such that gi+1fi+1fi = fi. Set P :=
⊕
i

Pi. Denote

by f : P → P and g : P → P the operators induced by the fi and gi. Then

gf2 = f . We have the exact sequence

0 → P 1−f−→P → P → 0

Since P is projective it suffices to show that this sequence splits, i.e., there

is an h : P → P such that h(1 − f) = 1. Indeed, set h = 1 − (1 − g)−1gf

and use the equality gf2 = f .∗)

∗)The argument from EGA 0III 13.2.2 is based on the following fact: if a projective

system of non-empty sets (Yi)i∈I parametrized by a countable set I satisfies the Mittag-

Leffler condition then its projective limit is non-empty. This is wrong in the uncountable

case. For instance, consider an uncountable set S, for every finite F ⊂ A denote by YF

the set of injections F → N; the maps YF ′ → YF , F ′ ⊃ F , are surjective but lim
←−
F

YF = ∅.

∗)D.Arinkin noticed that it is clear a priori that if f and g are elements of a (non-

commutative) ring R such that gf2 = f and 1 − g has a left inverse then 1 − f has a left

inverse. Indeed, denote by 1 the image of 1 in R/R(1 − f). Then f1 = 1, gf21 = g1, so

g1 = 1 and therefore 1 = 0.
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7.12.9. Proposition. Let B be an A-algebra. If M is a Mittag-Leffler A-

module then B ⊗A M is a Mittag-Leffler B-module. If B is faithfully flat

over A then the converse is true.

This is proved in [RG]. The proof is easy: represent M as an inductive

limit of modules of finite presentation and use 7.12.2.

So the notion of a Mittag-Leffler O-module on a scheme is clear as well

as the notion of Mittag-Leffler Op-module on an ind-scheme.

7.12.10. Proposition. A flat Mittag-Leffler O-module F of countable type

on a noetherian scheme S is locally free. If S is affine and connected, and

F is of infinite type then F is free.

This is an immediate consequence of 7.12.8 and the following result.

7.12.11. Theorem. If R is noetherian and SpecR is connected then every

nonfinitely generated projective R-module is free.

This theorem was proved by Bass (see Corollary 4.5 from [Ba63]).

7.12.12. Proposition. Let X be a formally smooth ind-scheme of ind-finite

type over a field. Then the Op-modules ΘX , DX , DiX (see 7.11.8) are flat

Mittag-Leffler modules.

Proof. Let us prove that the restriction of DX to a closed subscheme Y ⊂ X

is a flat Mittag-Leffler OY -module (the same argument works for ΘX and

DiX). We can assume that Y is affine (otherwise replace X by X \ F for a

suitable closed F ⊂ Y ). According to 7.12.6 it suffices to prove that

(i) The functor L �→ L ⊗ DX defined on the category of OY -modules is

exact,

(ii) it has the form (355) where the OY -modules Ni are coherent.

By definition, L ⊗ DX is the sheaf D(L) defined by (349). So (ii) is clear.

We have proved (i) in 7.11.8.
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7.12.13. Proposition. Let X be a formally smooth ℵ0-ind-scheme of ind-

finite type over a field, Y ⊂ X a locally closed subscheme. Then the

restriction of ΘX to Y is locally free. If Y is affine and connected, and

the restriction of ΘX to Y is of infinite type then it is free.

This follows from 7.12.12 and 7.12.10.

7.12.14. Proposition. Let A be a ring, M an A-module. Define an

“A-space” FM (i.e., a functor from the category of A-algebras to that of

sets) by FM (R) = M ⊗ R. Then FM is an ind-scheme if and only if M is a

flat Mittag-Leffler module. In this case FM is formally smooth over A and

of ind-finite type over A.

Proof. If M is a flat Mittag-Leffler module then by 7.12.6(ii) FM is an ind-

scheme and by 7.12.6(iii) it is of ind-finite type over A. Formal smoothness

follows from the definition. Now suppose that FM is an ind-scheme.

Represent FM as lim
−→

Si where the Si are closed subshemes of FM containing

the zero section 0 ∈ FM (A). Denote by Ni the restriction of the cotangent

sheaf of Si to 0 : SpecA ↪→ Si. Then the functor (355) is isomorphic to

(354), so by 7.12.6(ii) M is a flat Mittag-Leffler module.

Remark. If M is an arbitrary flat A-module then M is an inductive

limit of a directed family of finitely generated projective A-modules Mi,

so FM = lim
−→

FMi is an ind-scheme in the broad sense (the morphisms

FMi → FMj are not necessarily closed embeddings). It is easy to see that if

FM is an ind-scheme in the broad sense then M is flat.

7.12.15. Proposition. Let (Ni)i∈I be a projective system of finitely generated

A-modules parametrized by a directed set I such that all the transition maps

Nj → Ni, j ≥ i, are surjective. Set A(Ni) := Spec Sym(Ni), S := lim
−→

i

A(Ni).

The ind-scheme S is formally smooth over A if and only if S is isomorphic

to the ind-scheme FM from 7.12.14 corresponding to a flat Mittag-Leffler

module M .
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Proof. S is formally smooth if and only if the functor (355) is exact (apply

the definition of formal smoothness to A-algebras of the form A⊕J , A·J ⊂ J ,

J2 = 0). Now use 7.12.6(iii).

7.12.16. Proposition. Let M be a flat Mittag-Leffler module, FM the ind-

scheme from 7.12.14. The following conditions are equivalent:

(i) the pro-algebra corresponding to FM (see 7.11.2(i) ) is a topological

algebra;

(ii) M is a strictly Mittag-Leffler module in the sense of [RG].

According to [RG], p.74 a module M is strictly Mittag-Leffler if for every

f : F → M , F ∈ C, there exists u : F → G, G ∈ C, such that f = gu and

u = hf for some g : G → M , h : M → G (recall that C is the category of

modules of finite presentation). If M = lim
−→

Mi, Mi ∈ C, and uij : Mi → Mj ,

ui : Mi → M are the canonical maps then M is strictly Mittag-Leffler if

and only if for every i there exists j ≥ i such that uij = ϕijuj for some

ϕij : M → Mj . Clearly a projective module is stritly Mittag-Leffler and

a strictly Mittag-Leffler module is Mittag-Leffler. The converse statements

are not true in general (see 7.12.24).

Proof. Represent M as lim
−→

Pi where the modules Pi are finitely generated

and projective. Set Ni := Im(P ∗
j → P ∗

i ) where j is big enough. Consider

the following conditions:

(a) the maps ϕi : lim
←−
r

Sym(Nr) → Sym(Ni) are surjective;

(b) Im ϕi ⊃ Ni for every i;

(c) the map lim
←−
r

Nr → Ni is surjective for every i;

(d) for every i there exists j ≥ i such that the images of Hom(M, A) and

Hom(Pj , A) in Hom(Pi, A) are equal.

Clearly (i)⇔(a)⇔(b)⇔(c)⇔(d). For i ≤ j consider the maps uij : Pi →
Pj and ui : Pi → M . To show that (d)⇔(ii) it suffices to prove that the

images of Hom(M, A) and Hom(Pj , A) in Hom(Pi, A) are equal if and only



324 A. BEILINSON AND V. DRINFELD

if uij = ϕuj for some ϕ : M → Pj . To prove the “only if” statement notice

that the images of Hom(M, Pj) and Hom(Pj , Pj) in Hom(Pi, Pj) are equal

and therefore the image of id ∈ Hom(Pj , Pj) in Hom(Pi, Pj) is the image of

some ϕ ∈ Hom(M, Pj).

7.12.17. Before passing to the structure of formally smooth affine ℵ0-

ind-schemes let us discuss the relation between the definition of formal

scheme from 7.11.1 and Grothendieck’s definition (see EGA I). They are

not equivalent even in the affine case. A formal affine scheme in our sense

is an ind-scheme X that can be represented as lim
−→

Spec Rα where (Rα) is a

projective system of rings such that the maps uαβ : Rβ → Rα, β ≥ α, are

surjective and the elements of Keruαβ are nilpotent. Grothendieck requires

the possibility to represent X as lim
−→

Spec Rα so that the maps

lim
←−
β

Rβ → Rα(356)

are surjective∗) and the ideals Keruαβ are nilpotent. A reasonable

ℵ0-formal scheme in our sense is a formal scheme in the sense of

EGA I. A quasi-compact formal scheme in Grothendieck’s sense having a

fundamental system of “defining ideals (English?)” (“Idéaux de définition”;

see EGA I 10.5.1) is a formal scheme in our sense; in particular, this is true

for noetherian formal schemes in the sense of EGA I.

Since we are mostly interested in affine ℵ0-formal schemes of ind-finite

type over a field the difference between our definition and that of EGA I is

not essential.

7.12.18. Proposition. Let X be a formally smooth ℵ0-ind-scheme of ind-

finite type over A, S ⊂ X a closed subscheme such that S → Spec A is

∗)This is stronger than surjectivity of uαβ ; e.g., if M is a flat Mittag-Leffler A-module

that is not strictly Mittag-Leffler then the arguments from 7.12.6 show that the completion

of FM along the zero section cannot be represented as lim
−→

Spec Rα so that the maps (356)

are surjective.
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an isomorphism. Suppose that Xred = Sred (in particular, X is a formal

scheme). Let M denote the A-module of global sections of the restriction

of the relative tangent sheaf ΘX/A to S. Then M is a countably generated

projective module and (X, S) is isomorphic to the completion F̂M of the

ind-scheme FM (see 7.12.14) along the zero section.

Remark. The Op-module ΘX/A on a formally smooth ind-scheme X of

ind-finite type over A is defined just as in the case A = C (see 7.11.8,

7.11.7).

Proof. Just as in 7.12.12 one shows that M is a flat Mittag-Leffler module.

The ℵ0 assumption implies that M is countably generated. By 7.12.8 M is

projective.

Represent X as lim
−→

Xn, n ∈ N, where the Xn are closed subschemes of

X containing S such that Xn ⊂ Xn+1. Let X(1) be the first infinitesimal

neighbourhood of S in X, i.e., X(1) is the union of the first infinitesimal

neighbourhoods of S in Xn, n ∈ N. Clearly X(1) = F
(1)
M :=the first

infinitesimal neighbourhood of 0 ∈ FM . The embedding X(1) → F̂M can be

extended to a morphism ϕ : X → F̂M (to construct ϕ define ϕn : Xn → F̂M

so that ϕn|Xn−1 = ϕn−1 and the restriction of ϕn to Xn∩X(1) is the canonical

embedding Xn∩X(1) ↪→ F
(1)
M ; this is possible because F̂M is formally smooth

over A). Quite similarly one extends the embedding F
(1)
M = X(1) ↪→ X to

a morphism ψ : F̂M → X. Since ϕ and ψ induce isomorphisms between

F
(1)
M and X(1) we see that ϕ and ψ are ind-closed embeddings and ϕψ is an

isomorphism. So ϕ and ψ are isomorphisms.

7.12.19. Example. We will construct a pair (X, S) satisfying the conditions

of 7.12.18 except the ℵ0 assumption such that (X, S) is not A-isomorphic to

a formal scheme of the form F̂M .

Suppose we have a nontrivial extension of flat Mittag-Leffler modules

0 → N ′ → N → L → 0.(357)
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Such extensions do exist for “most” rings A; see 7.12.24(b, a′′, d). After

tensoring (357) by A[t] we get the extension 0 → N ′[t] → N [t] → L[t] → 0.

Multiplying this extension by t we get 0 → N ′[t] → Q → L[t] → 0. The ind-

scheme FQ is formally smooth over A[t] and therefore over A. Let S ⊂ FQ be

the image of the composition of the zero sections Spec A → Spec A[t] → FQ.

Denote by X the completion of FQ along S.

Before proving the desired property of (X, S) let us describe X more

explicitly. For an A-algebra R an R-point of FQ is a pair consisting of an

A-morphism A[t] → R and an element of Q ⊗A[t] R. In other words, an

R-point of FQ is defined by a triple (n, l, t), n ∈ N ⊗A R, l ∈ L⊗A R, t ∈ R,

such that

π(n) = tl(358)

where π is the projection N ⊗A R → L ⊗A R.

So FQ is a closed ind-subscheme of FN ×FL ×A1 defined by the equation

(358). Therefore X ⊂ F̂N × F̂L × Â1 is defined by the same equation (358)

(here Â1 is the completion of A1 at 0 ∈ A1).

Now suppose that (X, S) is A-isomorphic to F̂M . Then M is the module

of global sections of the restriction of ΘX/A to S. Linearizing (358) we see

that

M = N ′ ⊕ L ⊕ A ⊂ N ⊕ L ⊕ A.(359)

The composition

F̂M
∼−→ X ↪→ F̂N × F̂L × A1(360)

is defined by a “Taylor series”
∑∞

n=1 ϕn where ϕn is a homogeneous

polynomial map M → N ⊕ L ⊕ A of degree n; clearly ϕ1 is the embedding

(359). Set f = prN ◦ϕ2 where prN is the projection N ⊕L⊕A → N . Since

M = N ′ ⊕ L ⊕ A the module of quadratic maps M → N contains as a

direct summand the module of bilinear maps L × A → N , i.e., Hom(L, N).

The image of f in Hom(L, N) defines a splitting of (357) (use the fact that
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the morphism (360) factors through the ind-subscheme X ⊂ F̂N × F̂L × A1

defined by the equation (358)). So we get a contradiction.

7.12.20. Proposition. Let X be a formally smooth ind-scheme over a ring

A. Suppose that one of the following two assumptions holds:

(i) X is ind-affine;

(ii) A is noetherian and X is of ind-finite type over A.

Then X is the union of a directed family of ind-closed ℵ0-ind-schemes

formally smooth over A.

Proof. It suffices to show that for every increasing sequence of closed

subschemes Yn ⊂ X there is an ind-closed ℵ0-ind-scheme Y ⊂ X formally

smooth over A such that Y ⊃ Yn for all n.

Suppose that X is ind-affine. Then each Yn is affine. Represent Yn as

a closed subscheme of a formally smooth scheme Vn over A (e.g., represent

the coordinate ring of Yn as a quotient of a polynomial algebra over A).

Let Y ′
n ⊂ Vn be the first infinitesimal neighbourhood of Yn in Vn. Since

X is formally smooth the morphism Yn ↪→ X extends to a morphism

Y ′
n → Zn ⊂ X for some closed subscheme Zn ⊂ X. Set Y

(2)
n := Z1∪ . . .∪Zn.

Now apply the above construction to (Y (2)
n ) and get a new sequence (Y (3)

n ),

etc. The union of all Y
(k)
n is formally smooth over A.

If X is ind-quasicompact but not ind-affine an obvious modification of the

above construction yields an ind-closed ℵ0-ind-scheme Y ⊂ X containing all

the Yn such that for any affine scheme S over A and any closed subscheme

S0 ⊂ S defined by an Ideal I ⊂ OS with I2 = 0 every A-morphism S0 → Y

extends locally to a morphism S → Y . If assumption (ii) holds then this

implies the existence of a global extension.

7.12.21. We are going to describe formally smooth affine ℵ0-formal schemes

of ind-finite type over a field C (according to 7.12.20 the general case can,

in some sense, be reduced to the ℵ0 case). First of all we have the following

examples.
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(0) Set Rmn := C[x1, . . . , xm][[xm+n, . . . , xm+n]]. Then Spf Rmn is a

formally smooth affine ℵ0-formal scheme over C.

(i) Let I ⊂ Rmn be an ideal, A := Rmn/I. Denote by I the sheaf of ideals

on Spf Rmn corresponding to I. Of course, Spf A is an affine ℵ0-formal

scheme of ind-finite type over C. It is formally smooth if and only if for

every u ∈ Spf A the stalk of I at u is generated by some f1, . . . , fr ∈ I

such that the Jacobi matrix ( ∂fi

∂xj
(u)) has rank r.

(ii) Suppose that A is as in (i) and Spf A is formally smooth. Then

Spf A[[y1, y2, . . . ]] is a formally smooth affine ℵ0-formal scheme of ind-

finite type over C.

In 7.12.22 and 7.12.23 we will show that every connected formally smooth

affine ℵ0-formal scheme of ind-finite type over a field is isomorphic to a

formal scheme from Example (i) or (ii).

7.12.22. Proposition. Let X be a formally smooth affine formal scheme of

ind-finite type over a field C such that ΘX is coherent (i.e., the restriction

of ΘX to every closed subscheme of X is finitely generated). Then X is

isomorphic to a formal scheme from Example 7.12.21(i).

Proof. Represent X as lim
−→

Spec Ai so that for i ≤ j the morphism Aj → Ai

is surjective with nilpotent kernel. The algebras Ai are of finite type.

We can assume that the set of indices i has a smallest element 0. Put

Ii := Ker(Ai → A0).

Lemma. For every k ∈ N there exists i1 such that the morphisms

Ai/Ik
i → Ai1/Ik

i1
are bijective for all i ≥ i1.

Assuming the lemma set A(k) := Ai/Ik
i for i big enough, I(k) :=

Ker(A(k) → A0). Clearly A(1) = A0, A(k) = A(k+1)/Ik
(k+1), I(k) =

I(k+1)/Ik
(k+1). One has X = Spf A, A := lim

←−
A(k). Choose generators

x̄1, . . . , x̄m of the algebra A(1) = A0 and generators x̄m+1, . . . , x̄m+n

of the A0-module I(2). Lift x̄1, . . . , x̄m+n to x̃1, . . . , x̃m+n ∈ A. Set

Rmn := C[x1, . . . , xm][[xm+1, . . . , xm+n]]. There is a unique continuous



HITCHIN’S INTEGRABLE SYSTEM 329

homomorphism f : Rmn → A such that xi �→ x̃i. Clearly f is surjective.

Moreover, f induces surjections ak → Ker(A → A(k)), where a ⊂ Rmn is

the ideal generated by xm+1, . . . , xm+n. So f is an open map. Therefore f

induces a topological isomorphism between A and a quotient of Rmn. The

proposition follows.

It remains to prove the lemma. There exists i0 such that for every i ≥ i0

the morphism SpecAi0 → Spec Ai induces isomorphisms between tangent

spaces (indeed, since the restriction of ΘX to Spec A0 is finitely generated the

functor (355) corresponding to the A0-modules Ni := Ωi⊗AiA0 is isomorphic

to the functor L �→ Hom(Q, L) for some A0-module Q, so there exists i0 such

that Ni = Ni0 for i ≥ i0). We can assume that i0 = 0. Set Yi := SpecAi/Ik
i

(in particular, Y0 = SpecA0). The morphisms Y0 → Yi induce isomorphisms

between tangent spaces.

Represent A0 as C[x1, . . . , xn]/J and set Ỹ0 := SpecC[x1, . . . , xn]/Jk.

Since X is formally smooth the morphism Y0 ↪→ X extends to a morphism

Ỹ0 → X. Its image is contained in Yi1 for some i1. Let us show that

for i ≥ i1 the embedding ν : Yi1 ↪→ Yi is an isomorphism. We have the

morphism f : Ỹ0 → Yi1 . On the other hand, the morphism Y0 ↪→ Ỹ0

extends to g : Yi → Ỹ0. The composition νfg : Yi → Yi induces the

identity on Y0. So νfg is finite and induces isomorphisms between tangent

spaces. Therefore νfg is a closed embedding. Since Yi is noetherian a

closed embedding Yi → Yi is an isomorphism. So νfg is an isomorphism

and therefore ν is an isomorphism.

7.12.23. Proposition. Let X be a connected formally smooth affine ℵ0-

formal scheme of ind-finite type over a field C such that ΘX is not coherent

(i.e., the restriction of ΘX to Xred is of infinite type). Then X is isomorphic

to a formal scheme from Example 7.12.21(ii).

Proof. We will construct a formally smooth morphism

X → Spf C[[y1, y2, . . . ]]
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whose fiber over 0 ∈ Spf C[[y1, y2, . . . ]] is a formal scheme from 7.12.21(i).

Represent X as lim
−→

Spec An, n ∈ N, so that for every n the morphism

An+1 → An is surjective with nilpotent kernel. The algebras An are of finite

type. By 7.12.13 the restriction of ΘX to Spec An is free; it has countable

rank. This means that for every n the projective system (ΩAi⊗Ai An), i ≥ n,

is equivalent to the projective system

. . . → A3
n → A2

n → An

(here the map Ak+1
n → Ak

n is the projection to the first k coordinates). So

after replacing the sequence (An) by its subsequence one gets the diagram

. . . � ΩA3 � F2 � ΩA2 � F1 � ΩA1

where the Fn are finitely generated free An-modules and the An-modules

Gn := Ker(Fn+1 ⊗An+1 An → Fn) are also free. For each n choose a

base en1, . . . , enkn ∈ Gn. Lift eni to ẽni ∈ Ker(ΩAn+2 ⊗An+2 An → Fn) ⊂
Ker(ΩAn+2 ⊗An+2 An → ΩAn) and represent ẽni as dfni, fni ∈ Ker(An+2 →
A2). Finally lift fni to f̃ni ∈ A := lim

←−
m

Am and organize the fni, n ∈ N,

i ≤ kn, into a sequence ϕ1, ϕ2, . . . . This sequence converges to 0, so one has

a continuous morphism C[[y1, y2, . . . ]] → A such that yi �→ ϕi. It induces a

morphism

f : X → Y := Spf C[[y1, y2, . . . ]](361)

It follows from the construction that the differential

df : ΘX → f∗ΘY(362)

is surjective and its kernel is coherent (indeed, it is clear that these properties

hold for the restriction of (362) to SpecA1 ⊂ X, so they hold for the

restriction to SpecAn, n ∈ N).

Lemma. A morphism f : X → Y of formally smooth ind-schemes of ind-

finite type is formally smooth if and only if its differential (362) is surjective.

In this case ΘX/Y is the kernel of (362).
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Assuming the lemma we see that (361) is formally smooth and ΘX/Y is

coherent. So the fiber X0 of (361) over 0 ∈ Y satisfies the conditions of

Proposition 7.12.22. Therefore X0 is isomorphic to a formal scheme from

Example 7.12.21(i). Let us show that X is isomorphic to X̃ := X0 × Y .

Indeed, since X is formally smooth over Y the embedding X0 ↪→ X extends

to a Y -morphism α : X̃ → X. Since X̃ is formally smooth over Y the

embedding X0 ↪→ X̃ extends to a Y -morphism β : X → X̃. Both α and β

are ind-closed embeddings (if a morphism ν : Y → Z of schemes of finite type

induces an isomorphism Yred → Zred and each geometric fiber of ν is reduced

then ν is a closed embedding). The Y -morphism βα : X0 × Y → X0 × Y

induces the identity over 0 ∈ Y , so βα is an isomorphism. Therefore α and

β are isomorphisms, so we have proved the proposition.

The proof of the lemma is standard. The statement concerning ΘX/Y

follows from the definitions. To prove the first statement take an affine

scheme S with an Ideal I ⊂ OS such that I2 = 0 and let S0 ⊂ S be

the subscheme corresponding to I. For a morphism ψ : S0 → X denote

by EX(S, I, ψ) (resp. EY (S, I, ψ)) the set of extensions of ψ (resp. of

fψ) to a morphism S → X (resp. S → Y ). Formal smoothness of f

means that f∗ : EX(S, I, ψ) → EY (S, I, ψ) is surjective for all S, I, ψ as

above. Since X and Y are formally smooth EX(S, I, ψ) and EY (S, I, ψ)

are non-empty. According to 16.5.14 from [Gr67] they are torsors (i.e., non-

empty affine spaces) over VX(S, I, ψ) := Hom(ψ∗ΩX , I) = Γ(S0, ψ
∗ΘX ⊗I)

and VY (S, I, ψ) = Γ(S0, ψ
∗f∗ΘY ⊗ I). The map f∗ is affine and the

corresponding linear map Γ(S0, ψ
∗ΘX ⊗I) → Γ(S0, ψ

∗f∗ΘY ⊗I) is induced

by (362). So the first statement of the lemma is clear.

7.12.24. Examples of Mittag-Leffler modules.

(a) According to [RG], p.77, 2.4.1 for every noetherian A and projective A-

module P the A-module P ∗ := HomA(P, A) is strictly Mittag-Leffler

and flat. To prove that P ∗ is strictly Mittag-Leffler one can argue

as follows: for any f : F → P ∗ with F of finite type the image of



332 A. BEILINSON AND V. DRINFELD

f∗ : P → F ∗ is generated by some l1, . . . , ln ∈ F ∗; the li define

u : F → An such that f = gu and u = hf for some g : An → P ∗,

h : P ∗ → An.

In particular, if A is noetherian then for every set I the A-module

AI is strictly Mittag-Leffler and flat.

(a′) It is well known that if A is a Dedekind ring and not a field then AI is

not projective for infinite I. Indeed, we can assume that I is countable.

Fix a non-zero prime ideal p ⊂ A and consider the submodule M of

elements a = (ai) ∈ AI such that ai → 0 in the p-adic topology. If AI

were projective the localization Mp would be free. Since M/pM has

countable dimension Mp would have countable rank. But M contains

a submodule isomorphic to AI , so (AI)p would have countable rank.

This is impossible because the dimension of (AI)p/p · (AI)p = (A/p)I

is uncountable.

(a′′) Suppose that A is finitely generated over Z or over a field∗). If A is

not Artinian and I is infinite then AI is not projective: use (a′) and

the existence of a Dedekind ring B finite over A.

(b) If L is a non-projective flat Mittag-Leffler module then there exists a

non-split exact sequence 0 → N ′ → N → L → 0 where N and N ′ are

flat Mittag-Leffler modules. Indeed, if N is a projective module and

N → L is an epimorphism then it does not split and Ker(N → L) is

Mittag-Leffler ([RG], p.71, 2.1.6).

(c) It is noticed in [RG] that if

0 → A
f→M ′ → M → 0(363)

is a non-split exact sequence of A-modules and M is flat and Mittag-

Leffler then M ′ is Mittag-Leffler but not strictly Mittag-Leffler. Indeed,

if M ′ were strictly Mittag-Leffler then there would exist a module G of

finite presentation and a morphism u : A → G such that f = gu and

∗)We do not know whether it suffices to assume A noetherian.
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u = hf for some g : G → M ′, h : M ′ → G. Since M is a direct limit of

finitely generated projective modules one can assume that Im g ⊂ Im f .

Then gh would define a splitting of (363), i.e., one gets a contradiction.

Here is another argument. The fiber of FM ′ over 0 ∈ FM is a closed

subscheme of FM ′ canonically isomorphic to SpecA × A1; if (363) is

non-split then the projection SpecA×A1 → A1 cannot be extended to

a function FM ′ → A1, so by 7.12.16 M ′ is not strictly Mittag-Leffler.

(d) Let A be a Dedekind ring which is neither a field nor a complete local

ring. Then according to [RG], p.76 there is a non-split exact sequence

(363) such that M is a flat strictly Mittag-Leffler A-module. Here

is a construction. Let K denote the field of fractions of A. Fix a

non-zero prime ideal p ⊂ A and consider the completions Âp, K̂p;

then Âp �= A, K̂p �= K. Denote by M the module of sequences (an)

such that an ∈ p−n and (an) converges in K̂p; we have the morphism

lim : M → K̂p. Notice that M is a strictly Mittag-Leffler module∗).

Indeed, according to (a) above
∏∞

n=1 p−n is strictly Mittag-Leffler and

(
∏∞

n=1 p−n)/M is flat, so M is strictly Mittag-Leffler. We claim that

Ext(M, A) �= 0, i.e., the morphism ϕ : Hom(M, K) → Hom(M, K/A)

is not surjective. More precisely, let l : M → K/A be the composition

of lim : M → K̂p and the morphisms K̂p → K̂p/Âp ↪→ K/A. We will

show that l /∈ Im ϕ.

Suppose that l comes from l̃ : M → K. The restriction of l̃ to

p−n ⊂ M defines cn ∈ Hom(p−n, A) = pn. Then l̃ = l̃′ where

l̃′ : M → Kp maps (an) ∈ M to

∞∑
n=1

cnan + lim
n→∞

an .(364)

∗)The fact that M is a Mittag-Leffler module is clear: A is a Dedekind ring, M is

flat, and for every finite-dimensional subspace V ⊂ M ⊗ K the module V ∩ M is finitely

generated



334 A. BEILINSON AND V. DRINFELD

Indeed, l̃′ − l̃ is a morphism M/M0 → Âp where M0 is the set of

(an) ∈ M such that an = 0 for n big enough; on the other hand,

Hom(M/M0, Âp) = 0 because M/M0 is p-divisible (i.e., pM + M0 =

M). Since l̃′ = l̃ the expression (364) belongs to K ⊂ K̂p for every

sequence (an) ∈ M . This is impossible (consider separately the case

where the number of nonzero cn’s is finite and the case where it is

infinite).

Remark. In (d) we had to exclude the case where A is a complete local

ring. The true reason for this is explained by the following results:

1) according to [J] if A is a complete local noetherian ring, M is a flat A-

module, and N is a finitely generated A-module then Ext(M, N) = 0;

2) according to [RG] (p.76, Remark 4 from 2.3.3) if A is a projective limit

of Artinian rings (is this the meaning of the words “linearly compact”

from [RG]?) then every (flat?) Mittag-Leffler A-module is strictly

Mittag-Leffler. (In [RG] there is no flatness assumption, but is their

argument correct without this assumption? e.g., why the Fi from [RG]

are linearly compact?)

7.13. BRST basics. The BRST construction is a refined version of

Hamiltonian reduction; it is especially relevant in the infinite-dimensional

setting. In the main body of this article we invoke BRST twice: first to

define the Feigin-Frenkel isomorphism and then to construct the localization

functor L∆ used in the proof of the Hecke property. In this section we give

a brief account of the general BRST construction; the functor L∆ is studied

in the next section.

The usual mathematical references for BRST are [F84], [FGZ86], [KS],

and [Ak]. We tried to write down an exposition free from redundand

structures (such as Z-grading, normal ordering, etc.).

We start with the finite-dimensional setting. Then, after a digression

about the Tate central extension, we explain the infinite-dimensional version.
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7.13.1. Let F be a finite-dimensional vector space. Denote by Cl· = Cl·F
the Clifford algebra of F ⊕ F ∗ equipped with the grading such that F has

degree -1 and F ∗ has degree 1. We consider Cl· as an algebra in the tensor

category of graded vector spaces∗). Set Cl·i := Λ≤iF ·ΛF ∗ ⊂ Cl·. Then

Cl·0 = Λ·F ∗ ⊂ Cl·1 ⊂ ... is a ring filtration on Cl·. The classical Clifford

algebra Cl· = Cl·F := gr Cl· is commutative (as a graded algebra), so it is

a Poisson algebra in the usual way. Set Cl·i := gri Cl·. The commutative

graded algebra Cl· is freely generated by F = Cl−1
1 and F ∗ = Cl10. The

Poisson bracket {, } vanishes on F and F ∗, and for f ∈ F , f∗ ∈ F ∗ one has

{f, f∗} = f∗(f).

The subspace Cl01 is a Lie subalgebra of Cl; it normalizes F and F ∗ and

the corresponding adjoint action identifies it with EndF and EndF ∗ . Let

ELie = EndLie
F be EndF considered as a Lie algebra. Then E� = End�

F := Cl01

is a central extension of ELie by C.

Remarks. (i) The action of Cl on ΛF ∗ →∼Cl / Cl ·F identifies it with

the algebra of differential operators on the “odd” vector space F odd. The

filtration on Cl is the usual filtration by degree of the differential operator,

so Cl is the Poisson algebra of functions on the cotangent bundle to F odd.

(ii) (valid only in the finite-dimensional setting) The extension End�
F splits

(in a non-unique way). Indeed, we have splittings s′, s” : ELie → E� which

identify ELie with, respectively, F ∗·F and F ·F ∗. Any other splitting equals

sλ = λs′ + (1 − λ)s” for certain λ ∈ C. For example s1/2 is the “unitary”

splitting which may also be defined as follows. Notice that Cl carries a

canonical anti-automorphism (as a graded algebra) which is identity on F

and F ∗. It preserves Cl01, and the “unitary” splitting is the -1 eigenspace.

7.13.2. Here is the “classical” version of the BRST construction. Let n be a

finite-dimensional Lie algebra, R a Poisson algebra, lc : n → R a morphism

of Lie algebras∗). Set Cl· := Cl·n. The adjoint action of n yields a morphism

∗)with the “super” commutativity constraint.

∗)“c” for “classical”.
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of Lie algebras ac : n → Cl01. Set A· := Cl· ⊗ R; this is a Poisson graded

algebra. It also carries an additional grading A·
(i) := Cl·i⊗R compatible with

the product (but not with the Poisson bracket). We have the morphism of

Lie algebras Lie : n → A0, n �→ Lien := ac(n) ⊗ 1 + 1 ⊗ lc(n). Below for

n ∈ n we denote by icn the corresponding element of Cl−1
1 ⊂ A−1

(1). One has

{Lien1 , i
c
n2
} = ic[n1,n2].

The following key lemma, as well as its “quantum” version 7.13.7, is due

essentially to Akman [Ak].

7.13.3. Lemma. There is a unique element Qc = Qc
A ∈ A1 such that for any

n ∈ n one has {Qc, icn} = Lien. In fact, Qc ∈ A1
(≤1). One has {Qc, Qc} = 0.

Proof. Let us consider A as a Λn-module where n ∈ n = Λ1n acts as

Adicn = {icn, ·}. The subspace of elements killed by all Adicn ’s (i.e., the

centralizer of n ⊂ A−1
(1)) equals Λn ⊗ R. This is a subspace of A≤0, so the

unicity of Qc is clear. Our Λn-module is free, so the existence of Qc follows

from the fact that the map n1, n2 �→ {Lien1 , i
c
n2
} is skew-symmetric. Our

Qc belongs to A1
(≤1) since Lien ∈ A0

(≤1). Finally, since {Qc, Qc} ∈ A2,

to check that it vanishes it suffices to show that AdicnAdic
n′ ({Qc, Qc}) = 0

for any n, n′ ∈ n. Indeed, AdicnAdic
n′ ({Qc, Qc}) = 2Adicn({Lien′ , Qc}) =

2{ic[n,n′], Q
c} + 2{Lien′ ,Lien} = 0.

Remark. Denote by n·♥ the Lie graded algebra whose non-zero components

are n
−1
♥ = n, n0

♥ = n, n1
♥ = C = C·Q, the Lie bracket on n0

♥ coincides with

that of n, the adjoint action of n0
♥ on n

−1
♥ is the adjoint action of n, and the

operator AdQ : n
−1
♥ → n0

♥ is idn. So n♥ equipped with the differential AdQ

is a Lie DG algebra∗). Then 7.13.3 says that there is a canonical morphism

of Lie graded algebras Lie : n·♥ → A· whose components are, respectively,

n �→ icn, n �→ Lien, Q �→ Qc.

∗)Notice that n♥/n
1
♥ is the Lie DG algebra nΩ from 7.6.3.
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7.13.4. Set d := AdQc = {Qc, ·}. This is a derivation of A· of degree 1 and

square 0. Thus A is a Poisson DG algebra; it is called the BRST reduction

of R. The morphism Lie : n♥ → A is a morphism of Lie DG algebras.

One says that the BRST reduction is regular if H iA = 0 for i �= 0.

It is easy to see that Qc = Q1 + Q0 where Q1 ∈ A1
(1) = n⊗Λ2n∗ ⊗R and

Q0 ∈ A1
(0) = n∗⊗R are, respectively, the image of 1

2ac ∈ Hom(n, Cl01) = n∗⊗
Cl01 ⊂ A1⊗A0 by the product map, and l ∈ Hom(n,R) = A1

(1). Decomposing

the differential by the bigrading we see that A is the total complex of the

bicomplex with bidifferentials d′ : Ai
(j) → Ai+1

(j) , d′′ : Ai
(j) → Ai+1

(j−1).

The BRST differential preserves the filtration A(≤i). In particular A(0) =

C(n,R) is a DG subalgebra of A, hence one has a canonical morphism of

graded algebras

H·(n,R) → H·A.(365)

Notice that (A·
(−·), d′′) is the Koszul complex P := Λ−·n ⊗ R for

lc : n → R. So A is the Chevalley complex C·(n, P ) of Lie algebra cochains

of n with coefficients in P . The obvious projection P → R/Rlc(n) yields

an isomorphism of DG algebras A/I →∼C(n,R/Rlc(n)) where I ⊂ A is the

DG ideal generated by elements icn, n ∈ n. Passing to cohomology we get a

canonical morphism of graded algebras

H·A → H·(n,R/Rlc(n)).(366)

We say that lc is regular if Hi(P ) = 0 for i �= 0.

7.13.5. Lemma. If lc is regular then (366) is an isomorphism.

Proof. Regularity means that the projection P → R/Rlc(n) is a quasi-

isomorphism. Hence A → C·(n,R/Rlc(n)) is also a quasi-isomorphism.

Thus H iA vanish for negative i and H0A→∼[R/Rlc(n)]n which is the usual

Hamiltonian reduction of R with respect to the Hamiltonian action lc.
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7.13.6. Now let us pass to the “quantum” version of BRST. Let n be a

finite-dimensional Lie algebra. Set Cl· := Cl·n. Denote by n� the central

extension of n by C defined as the pull-back of End�
n by the adjoint action

morphism n → Endn (see the end of 7.13.1 for the notation). In other

words, n� is a central extension of n by C equipped with a Lie algebra map

a : n� → Cl0 such that a(1n�) = 1∗) and the action of n on Cl induced by

the adjoint action on n ⊕ n∗ coincides with the adjoint action by a.

Let R be an associative algebra, l : n� → R a morphism of Lie algebras

such that l(1n�) = −1. Set A· := Cl· ⊗R; this is an associative graded

algebra. We have the morphism of Lie algebras Lie := a + l : n → A0,

n �→ Lien := a(n�) + l(n�) where n� is any lifting of n to n�. Below for

n ∈ n we denote by in the corresponding element of Cl−1
1 ⊂ A−1. One has

[Lien1 , in2 ] = i[n1,n2].

7.13.7. Lemma. There is a unique element Q = QA ∈ A1 such that for any

n ∈ n one has [Q, in] = Lien. In fact, Q ∈ Cl11 ⊗R. One has Q2 = 0.

Proof. Coincides with that of the “classical” version 7.13.3.

Set d := AdQ
∗); this is a derivation of A of degree 1 and square 0. Thus A

is an associative DG algebra called the BRST reduction of R. As in Remark

after 7.13.3 and 7.13.4 we have a canonical morphism of Lie DG algebras

Lie : n♥ → A with components n �→ in, n �→ Lien, Q �→ QA.

One says that the BRST reduction is regular if H iA = 0 for i �= 0.

Denote by C(n, R) the Chevalley DG algebra of Lie algebra cochains of n

with coefficients in R (with respect to the action Adl). As a graded algebra

it equals Λ·n∗ ⊗ R, so it is a subalgebra of A·.

7.13.8. Lemma. The embedding C(n, R) ⊂ A is compatible with the

differentials.

∗)Here 1n� is the generator of C ⊂ n
�.

∗)Of course, we take Ad in the “super” sense, so for v ∈ Aodd one has dv = Qv + vQ.
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Proof. It suuffices to show that on R, n∗ ⊂ A our differential equals,

respectively, the dual to n-action map R → n∗ ⊗ R and the dual to

bracket map n∗ → Λ2n∗. As in the proof of unicity of Q it suffices to

check that [in, [Q, r]] = [l(n), r] and [in1 , [in2 , [Q, n∗]]] = n∗([n1, n2]) for any

n, n1, n2 ∈ n, n∗ ∈ n∗, r ∈ R; this is an immediate computation.

Remark. We see that d preserves the ring filtration Cl· ⊗R. On

Cli ⊗R/ Cli−1 ⊗R = Λ·+in∗ ⊗ Λin ⊗ R = C·+i(n,Λin ⊗ R) it coincides with

the Chevalley differential.

The embedding of DG algebras C(n, R) ⊂ A yields the morphism of

graded algebras

H·(n, R) → H·A.(367)

In particular, since the center z of R lies in Rn, we get the morphism

z → H0A.(368)

7.13.9. Remark. (valid only in the finite-dimensional setting) Let I be the

left DG ideal of A generated by elements in, n ∈ n. The quotient complex

A/I may be computed as follows. Let n ↪→ n� be the splitting defined by

the splitting s′ from Remark (ii) in 7.13.1. Then I is generated as a plain

ideal by elements in and l(n), n ∈ n. Restricting the projection A → A/I to

C(n, R), we get the isomorphism of complexes A/I →∼C(n, R/Rl(n)) which

yields a morphism

H·A → H·(n, R/Rl(n)).(369)

7.13.10. Remark. Let C· be an irreducible graded Cl·-module (such C· is

unique up to isomorphism and shift of the grading). If M = (M ·, dM ) is an

R-complex (:= complex of R-modules) then M ⊗ C := (M · ⊗ C·, d), where

d := dM ⊗ idC +Q·, is an A-complex (i.e., a DG A-module). The functor

· ⊗ C : (R-complexes) → (A-complexes) is an equivalence of categories.
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7.13.11. Let us compare the “quantum” and “classical” settings. Assume

that we are in situation 7.13.6. Let R0 ⊂ R1 ⊂ ... be an increasing ring

filtration on R such that ∪Ri = R and R := grR is commutative. Then R
is a Poisson algebra in the usual way. We endow A with the filtration A·
equal to the tensor product of filtrations Cl· and R·. Then A := grA equals

Cl ⊗R as a Poisson graded algebra. Set Ai := gri A.

Assume that l(n�) ⊂ R1; let lc be the corresponding morphism n → R1.

Then (R, lc) are data to define the “classical” BRST construction from

7.13.2. By 7.13.3 we have the corresponding “classical” BRST element Qc.

It is easy to see that Q ∈ A1 and Qc equals to the image of Q in A1.

Therefore the filtration A· is stable with respect to the differential, and grA

coincides with the corresponding “classical” A as a Poisson DG algebra.

Hence we have the spectral sequence converging to H·A with the first term

Ep,q
1 = Hp+qA−p.

7.13.12. Lemma. (i) Assume that lc is regular. Then H iA = 0 for i < 0 and

grH0A ⊂ [R/Rlc(n)]n.

(ii) If, in addition, H i(n,R/Rlc(n)) = 0 for i > 0 then H iA = 0 for i �= 0

and grH0A→∼[R/Rlc(n)]n.

Proof. Look at the spectral sequence and 7.13.5.

7.13.13. One may compute the algebra H0A explicitely in the following

situation. Assume we are in situation 7.13.11 and l : n� → R1 is injective.

Denote by b′ the normalizer of l(n�) in R1. So b′ is a Lie algebra which

contains n�, and we have the embedding of Lie algebras lb : b′ → R1 which

extends l. Set b := b′/C, so b′ is a central extension of b by C. The

adjoint action of b yields a morphism of Lie algebras b → Endn; denote by

b� the pull-back of the central extension End� (see 7.13.1). Then n� is a Lie

subalgebra of b�, and we have the morphism of Lie algebras ab : b� → Cl01

which extends a.
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Let b	 be the Baer sum of extensions b′ and b�. By construction we have

a canonical splitting s : n → b	. It is invariant with respect to the adjoint

action of b, so s(n) is an ideal in b	. Set h	 := b	/s(n); this is a central

extension of h := b/n by C.

Set Lieb := ab ⊗ 1 + 1 ⊗ lb : b	 → A0
1. This is a morphism of Lie

algebras which equals idC on C ⊂ b	. Its image commutes with Q (since

all our constructions were natural), i.e., it belongs to Ker d. One has

Lieb ◦s = Lie = d ◦ i : n → A0, so Lieb yields a canonical morphism

Lieh : h	 → H0A. Let U 	h be the twisted enveloping algebra of h that

corresponds to h	. Our Lieh yields a canonical morphism of associative

algebras

h : U 	h → H0A.(370)

This morphism has the obvious “classical” version hc : Sym h → H0A.

Its composition with the projection H0A → [R/lc(n)R]n (see (366)) is

the obvious morphism Sym h → [R/lc(n)R]n whose restriction to h is the

composition of lb with the projection R1 → R1/R0.

7.13.14. Lemma. Assume that lc is regular and the morphism Sym h →
[R/lc(n)R]n is an isomorphism. Then (370) is an isomorphism.

Proof. Use 7.13.12(i).

7.13.15. Examples. (cf. [Ko78]) (i) We use notation of 7.13.13. Let g be

a (finite-dimensional) semi-simple Lie algebra, b ⊂ g a Borel subalgebra,

n := [b, b]. Set R := Ug and let R· be the standard filtration on R, so

R = Sym g. The extension n� trivializes canonically since the adjoint action

of n is nilpotent. Let l : n → g ⊂ R be the obvious embedding. Then b′ is

equal to b⊕C, so this extension is trivialized. Let us trivialize the extension

b� by means of the splitting s′ from Remark (ii) from 7.13.1. Therefore we

split the extension b	, hence U 	h = Sym h.
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The conditions of 7.13.14 are valid. Indeed, lc is clearly regular, and

the obvious embedding ic : Sym h ↪→ [Sym(g/n)]n is an isomorphism since n

acts simply transitively along the generic fiber of the projection (g/n)∗ → h∗.

Therefore h : Sym h→∼H0A.

Let us show that the canonical morphism (368) z → H0A = Sym h

is the usual Harish-Chandra morphism. The obvious embedding i :

Sym h→∼[R/Rl(n)]n is an isomorphism, and, by definition, the Harish-

Chandra morphism is composition of the embedding z ↪→ Rn and the inverse

to this isomorphism. Consider the map p : H0A → [R/Rl(n)]n from (369).

As follows from the definition of p one has ph = i which implies our assertion.

(ii) Let now ψ : n → C be a non-degenerate character of n (we use notation

of 7.13.15 (i)). Set Rt := R[t], lt := l + tψ : n → Rt.

7.13.16. Let us pass to the infinite-dimensional setting. We need to fix

some Clifford algebra notation. Let F be a Tate vector space, so we have the

ind-scheme Gr(F ) (see 7.11.2(iii)). The ind-scheme Gr(F ) × Gr(F ) carries

a canonical line bundle λ of “relative determinants”. This is a graded line

bundle equipped with canonical isomorphisms

λ(P,P ′′) = λ(P,P ′) ⊗ λ(P ′,P ′′)(371)

and identifications λ(P,P ′) = det(P/P ′) for P ′ ⊂ P that satisfy the obvious

compatibilities; here we assume that det(P/P ′) sits in degree −dim(P/P ′).

Consider the Tate vector space F ⊕ F ∗ equipped with the standard

symmetric form and the Clifford algebra Cl = ClF := Cl(F ⊕ F ∗). Let

C be an irreducible discrete Cl-module∗). Since C is unique up to tensoring

by a one-dimensional vector space∗), the corresponding projective space P

is canonically defined (this is an ind-scheme). For any c-lattice P ⊂ F ⊗̂A

∗)Here “discrete” means that annihilator of any element of C is an open subspace of

F ⊕ F ∗.
∗)C is isomorphic to the fermionic Fock space lim

−→U

∧
(F/U) ⊗ det(P/U)∗ (cf. (182)),

where P is a c-lattice in F and U belongs to the set of all c-sublattices of P .
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denote by λC
P the set of elements of C ⊗A annihilated by Clifford operators

from P and P⊥ ⊂ F ∗⊗̂A. The A-submodule λC
P ⊂ C ⊗A is a “line” (i.e., a

direct summand of rank 1), so λC is a line subbundle of C⊗OGr(F ). It defines

a canonical embedding Gr(F ) ↪→ P. There is a canonical identification

λ(P,P ′) = λC
P ⊗ (λC

P ′)∗(372)

compatible with (371): if P ′ ⊂ P the isomorphism λ(P,P ′) ⊗ λC
P ′ →∼λC

P is

induced by the obvious map λ(P,P ′) = det(P/P ′) → ClF / ClF ·P ′.

The algebra Cl carries a canonical grading such that F ⊂ Cl−1, F ∗ ⊂ Cl1.

Let C· be a grading on C compatible with the grading on ClF ; it is unique

up to a shift. Then λC is a homogenuous line, and (372) is an isomorphism

of graded line bundles.

7.13.17. Denote by Cl· = Cl·F the completion of Cl· (as a graded algebra)

with respect to the topology generated by left ideals Cl ·U where U ⊂ F⊕F ∗

is an open subspace. Thus C is a discrete Cl-module. The action of Cl yields

an isomorphism of topological graded algebras Cl·→∼End·C C.

The graded algebra Cl· has a canonical filtration Cl·0 = Λ·F ∗ ⊂ Cl·1 ⊂ ...

(see 7.13.1). We define the filtration Cl·i on Cl· as the closure of Cl·i. As

in 7.13.1 the classical Clifford algebra Cl
· := grCl· is a Poisson graded

topological algebra. It carries an additional grading Cl
·
i := gri Cl·; one has

Cl
a
i = lim

←−U,V
Λi(F/U)⊗Λa+i(F ∗/V ) where U, V are, respectively, c-lattices

in F, F ∗.

Denote by E = EF the associative algebra of endomorphisms of F . Let

ELie be E considered as a Lie algebra. Notice that Cl
0
1 is a Lie subalgebra of

Cl which normalizes Cl
−1
1 . The adjoint action of Cl

0
1 on Cl

−1
1 = F identifies

Cl
0
1 with ELie∗). Set E� := Cl01; this is a Lie subalgebra of Cl which is a

central extension of Cl
0
1 = ELie by C.

We see that E� acts on C in a way compatible with the Clifford action;

this action preserves the grading on C.

∗)Use the above explicit description of Cl
0
1.
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The next few sections 7.13.18 - 7.13.22 provide a convenient description of

E� and some of its subalgebras. The reader may skip them and pass directly

to 7.13.23.

7.13.18. Here is an explicit description of the central extension E� of ELie

due essentially to Tate [T].

Let E+ ⊂ E be the (two-sided) ideal of bounded operators (:= operators

with bounded image), E− ⊂ E that of discrete operators (:= operators

with open kernel). One has E+ + E− = E; set Etr := E+ ∩ E−. For any

A ∈ Etr its trace trA is well-defined (if U ′ ⊂ U ⊂ F are c-lattices such that

A(F ) ⊂ U , A(U ′) = 0 then we have A∼ : U/U ′ → U/U ′ and trA := trA∼).

The functional tr : Etr → C is invariant with respect to the adjoint action

of ELie; it also vanishes on [E+, E−] ⊂ Etr.

Our extension E� is equipped with canonical splittings s+ : E+ → E�,

s− : E− → E�. Namely, for A ∈ E+ its lifting s+(A) is characterised

by the property that s+(A) kills any element in C annihilated by all

Clifford operators from ImA ⊂ g. Similarly, s−(A) is the unique lifting

of A ∈ E− that kills any element in C annihilated by all Clifford operators

from (KerA)⊥ ⊂ F ∗. The sections s± commute with the adjoint action of

E, and for A ∈ Etr one has s−(A)−s+(A) = trA ∈ C ⊂ E�. It is easy to see

that the data (E�, s±) with these properties are uniquely defined. Indeed,

consider the exact sequence of E-bimodules

0 −→ Etr
(−,+)−→E+ ⊕ E−

(+,+)−→E −→ 0.(373)

Now s = (s+, s−) identifies E� with the push-forward of the extension (373)

by tr : Etr → C. The adjoint action of ELie on E� comes from the adjoint

action on the E-bimodule E+ ⊕ E−.

Remarks. (i) The vector space F ⊗ F ∗ carries 4 natural topologies with

bases of open subspaces formed, respectively, by U ⊗ V , U ⊗ F ∗, F ⊗ V ,

and U ⊗ F ∗ + F ⊗ V , where U ⊂ F , V ⊂ F ∗ are open subspaces. The

corresponding completions are equal, respectively, to Etr, E+, E−, and E.
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The trace functional is the continuous extension of the canonical pairing

F ⊗ F ∗ → C.

(ii) Set (E−/Etr)� := E−/ Ker tr; this is a central extension of (E−/Etr)Lie

by C. Note that E−/Etr
→∼E/E+, so we have the projection π− : ELie →

(E−/Etr)Lie. It lifts canonically to a morphism of extensions π�
− : E� →

(E−/Etr)� with kernel s+(E+). In other words, E� is the pull-back of

(E−/Etr)� by π−. Same for ± interchanged.

(iii) Let F i be a finite filtration of F by closed subspaces; denote by

B ⊂ EF the subalgebra of endomorphisms that preserve the filtration. We

have the induced central extension B� of BLie. On the other hand, we have

the obvious projections gri : B → Egri F ; let B�i be the pull-back of the

extension E�
gri F

of ELie
gri F

. Denote by B�′ the Baer sum of the extensions B�i.

Then there is a canonical (and unique) isomorphism of extensions B�′ →∼B�.

Indeed, B�′ coincides with the extension defined by the exact subsequence

0 → B ∩ Etr → (B ∩ E+) ⊕ (B ∩ E−) → B → 0

of (373) (notice that for e ∈ B∩Etr one has tr(e) = Σtr(grie)). In particular

we see that B� splits canonically over the Lie subalgebra Ker gr·.

7.13.19. Set K = C((t)), O := C[[t]]. Let F be a finite-dimensional K-

vector space equipped with the usual topology; this is a Tate C-vector space.

Let i : D ↪→ E be the agebra of K-differential operators acting on F , so

we have the induced central extension D� of the Lie algebra DLie. Let us

rephrase (following [BS]2.4) the Tate description of D� in geometric terms.

Set F ′ := HomK(F, K), F ◦ := F ′⊗
K

ωK . Clearly F ◦ coincides with the

Tate dual F ∗ (use the pairing f◦, f �→< f◦, f >:= Res(f◦, f)). Our F is

a left D-module, and F ◦ carries a unique structure of right D-module such

that <, > is a D-invariant pairing; notice that D acts on F ◦ by differential

operators, and this is the usual geometric ”adjoint” action. Let K⊗̂K be the

completion of K ⊗K with respect to the topology with basis (tnO)⊗ (tnO),

i.e. K⊗̂K := C[[t1, t2]][t−1
1 ][t−1

2 ]. Let F ⊗̂F ◦ be the similar completion of
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F ⊗ F ◦; this is a finite-dimensional K⊗̂K-module. Denote by F ⊗̂F ◦(∞∆)

the localization of F ⊗̂F ◦ by (t1−t2)−1, i.e., by the equation of the diagonal.

Consider the standard exact sequence

0 −→ F ⊗̂F ◦ −→ F ⊗̂F ◦(∞∆) r−→D −→ 0(374)

where the projection r sends a ”kernel” k = k(t1, t2)dt2 ∈ F ⊗̂F ◦(∞∆) to

the differential operator r(k) : F → F , f(t) �→ Rest2=t(k(t, t2), f(t2))dt2.

Note that F ⊗̂F ◦ is a D-bimodule in the obvious way. This biaction extends

in a unique way to the D-biaction on F ⊗̂F ◦(∞∆) compatible with the K-

bimodule structure. It is easy to see that (374) is an exact sequence of

D-bimodules. Let tr : F ◦⊗̂F → C be the morphism f ⊗ f◦ �→< f◦, f >

(i.e., it is the residue of the restriction to the diagonal). It is invariant with

respect to the adjoint action of DLie. Denote by D�′ the push-forward of

(374) by tr. The adjoint action of on F ⊗̂F ◦(∞∆) yields a DLie-module

structure on D�′ . For l�1, l
�
2 ∈ D�′ set [l�1, l

�
2] := l1(l�2) where l1 is the image of

l�1 in DLie.

7.13.20. Lemma. The bracket [, ] is skew-symmetric, so it makes D�′ a

central extension of DLie by C. There is a unique isomorphism of central

extensions

D�′ →∼D�.

Proof. It suffices to establish an isomorphism of DLie-module extensions

D�′ →∼D�. It comes from a canonical embedding i∼ : (374) ↪→ (373)

of exact sequences of D-bimodules defined as follows. The morphism

D ↪→ E is our standard embedding i, and i∼ : F ⊗̂F ◦ = F ⊗̂F ∗ →∼Etr

is the obvious isomorphism (see Remark (i) in 7.13.18). The map i∼ =

(i∼+, i∼−) : F ⊗̂F ◦(∞∆) → E+ ⊕ E− sends the “kernel” k to the operators

i∼−(k) equal to f �→ −Rest2=0(k(t, t2), f(t2))dt2 and i∼+(k) equal to f �→
(Rest2=t + Rest2=0)(k(t, t2), f(t2))dt2. Here f ∈ F and (k(t, t2), f(t2))dt2 ∈
F ((t2))dt2. We leave it to the reader to check that the operators i∼±(k)
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belong to E±∗). Since i∼ identifies the trace functionals it yields the desired

isomorphism of DLie-modules D�′ →∼D�.

Remark. Let Di ⊂ D be the subspace of differential operators of degree

≤ i. The extension D�
i carries a natural topology induced by the embedding

D�
i ⊂ ClF . This is a Tate topology; the quotient topology on Di coincides

with its natural topology of a finite-dimensional K-vector space.

7.13.21. Example. Set E := EndK F = D0 ⊂ D, so we have the central

extension E� of ELie. Let L ⊂ DLie be the normaliser of E ; it acts on E� by

the adjoint action. We will describe the extension E� as an L-module∗).

It is easy to see that L coincides with the Lie algebra of differential

operators of order ≤ 1 whose symbol belongs to DerK · idF . In other words,

L consists of pairs (τ, τ∼) where τ ∈ Der K and τ∼ is an action of τ on F ,

i.e., L is the Lie algebra of infinitesimal symmetries of (K, F ).

As above, set E◦ := E ⊗
K

ωK . We identify E◦ with the Tate vector space

dual E∗ using the pairing <, >: E◦ × E → C, < a, b >:= Res trK(ab). The

adjoint action of L on E◦ is (τ, τ∼)(e⊗ν) = [τ∼, e]⊗ν+e⊗Lieτν. Let ω
⊗1/2
K

be a sheaf of half-forms on SpecK. It carries an L-action ((τ, τ∼) acts by

Lieτ ), so L acts on ⊗ω
⊗1/2
K . Consider the set Conn(F⊗ω

⊗1/2
K ) of connections

on F ⊗ω
⊗1/2
K

∗). Since EndK F = EndK(F ⊗ω
⊗1/2
K ) our Conn(F ⊗ω

⊗1/2
K ) is

an E◦-torsor; L acts on it in the obvious way.

7.13.22. Lemma. There is a unique L- and E◦-invariant pairing

<, >: Conn(F ⊗ ω
⊗1/2
K ) × E� → C

such that < ∇, 1E� >= 1 for any ∇ ∈ Conn(F ⊗ ω
⊗1/2
K ).

∗)This is clear for i∼−(k). To check that i∼+(k) ∈ E+ one may use Parshin’s residue

formula ([Pa76], §1, Proposition 7) applied to 2-forms (k(t1, t2), g(t1)f(t2))dt1 ∧dt2 where

g belongs to a sufficiently small c-lattice in F ∗.
∗)Since E ⊂ L we describe in particular the adjoint action of E which amounts to the

Lie bracket on E�.

∗)It does not depend on the choice of ω
⊗1/2
K .
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Remarks.(i) An element λ ∈ E◦ acts on Conn(F ⊗ω
⊗1/2
K ) and E� according

to formulas ∇ �→ ∇+λ and e� �→ e�+ < λ, e > (here e := e� mod CE◦ = E).

So E◦-invariance of <, > means that < ∇ + λ, e� >=< ∇, e� > − < λ, e >.

(ii) Clearly <, > identifies E� with the L-module of continuous affine

functionals on Conn(F ⊗ ω
⊗1/2
K ). This is the promised description of E�.

Proof. The unicity of <, > follows since Conn(F ⊗ω
⊗1/2
K ) has no L-invariant

elements.

To define < ∇, e� > let us choose connections ∇F on F and ∇ω on ωK

such that ∇ = ∇F + 1
2∇ω.

a. The connection ∇F identifies the restrictions of F ⊗ K and K ⊗ F

to the formal neighbourhood of the diagonal, i.e., it yields an isomorphism

of K⊗̂K-modules ε(∇F ) : F ⊗̂K →∼K⊗̂F . Let ε(∇F ) : F ⊗̂F ◦ → K⊗̂ωK be

the composition of ε(∇F )⊗ idF ◦ and the obvious morphism K⊗̂(F ⊗F ◦) →
K⊗̂ωK defined by the pairing F ⊗ F ◦ → ωK . Localizing ε(∇F ) by the

equation of the diagonal we get the morphism F ⊗̂F ◦(∞∆) → K⊗̂ωK(∞∆).

Applying it to e� we get a 1-form ε(∇F , e�) ∈ K⊗̂ωK(∆) well-defined up to

the subspace of those forms φ(t1, t2)dt2 ∈ K⊗̂ωK that Res0 φ(t, t)dt = 0.

Notice that for λ ∈ E◦ one has ε(∇F + λ, e�) = ε(∇F , e�) − trK(λ·e) (here

trK(λ·e) ∈ ωK = K⊗̂ωK/(t1 − t2)K⊗̂ωK).

b. Let ν ∈ ωK⊗̂K(∆) be a form with residue 1 at the diagonal

(i.e., ν equals dt1
t1−t2

modulo ωK⊗̂K). Let ψ(∇ω) be a similar form such

that ψ(∇ω)⊗2 = −∇(1)
ω ν∗). Notice that ψ(∇ω) is well-defined modulo

(t1 − t2)ωK⊗̂K. For l ∈ ωK one has ψ(∇ω + l) = ψ(∇ω) − l (here we

consider l as an element in ωK⊗̂K/(t1 − t2)ωK⊗̂K).

c. Consider the 2 form ε(∇F , e�) ∧ ν. Set

< ∇, e� >:= Res0 Res∆(ε∇(e�) ∧ ν)

∗)here ∇(1)
ω is the covariant derivative along the first variable.
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Then < ∇, e� > is well-defined (i.e., it does not depend on the auxiliary

choices) and <, > is E◦-invariant. Since all the constructions where natural

it is also L-invariant.

Remarks. (i) Let eα be an F -basis of F , e′α the dual basis of F ′, and

∇ the connection such that e′α·(dt)−1/2 are horisontal sections. Denote by

(eα·e′β)� ∈ E� the image of eα ⊗ e′β
dt2

t2−t1
. Then < ∇, (eα·eβ)� >= δα,β .

(ii) The above lemma is a particular case of the local Riemann-Roch

formula; see, e.g., Appendix in [BS].

7.13.23. Now let n be a Lie algebra in the Tate setting, i.e., a Tate vector

space equipped with a continuous Lie bracket [ , ]. The following lemma

may help the reader to feel more comfortable.

Lemma. n admits a base of neighbourhoods of 0 that consists of Lie

subalgebras of n.

Proof. Take any c-lattice P ⊂ n. We want to find an open Lie algebra k ⊂ P .

Note that

nP := {α ∈ n : [α, P ] ⊂ P}(375)

is an open Lie subalgebra. Set k := P ∩ nP .

7.13.24. We use the notation of 7.13.17 for F = n. So we have the Clifford

graded topological algebra Cl· = Cl·n, the corresponding classical Clifford

algebra Cl
· = grCl· (which is a Poisson graded topological algebra), the

central extension E� of the Lie algebra ELie of endomorphisms of the Tate

vector space n and the embedding E� ↪→ Cl0. The adjoint action defines a

morphism n → ELie; denote by n� the pull-back of the extension E� to n. So

n� is a central extension of n by C. We equip n� with the weakest topology

such that the projection n� → n and the morphism n� → Cl0 are continuous.

Then n� is a Tate space and the map n�/C → n is a homeomorphism∗).

∗)Indeed, the extension n
� has a canonical continuous splitting over any subalgebra of

the form (375) (its image consists of operators annihilating λP ).
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7.13.25. Now we are ready to render the BRST construction to the infinite-

dimensional setting. Let us start with the ”classical” version. Let R be a

topological Poisson algebra. We assume that R is complete and separated

and topology.

7.13.26. Denote by M(g)� the category of discrete g�-modules V such that

1 ∈ C ⊂ g� acts as − idV . For such V , the g�-actions on C· and V yield a g-

module structure on C· ⊗V . It is also a Clg-module in the obvious manner,

and the g -action is compatible with the Clifford action. For α ∈ g we denote

its action on C· ⊗V by Lieα, and the Clifford operator C· ⊗V → C·−1 ⊗V

by iα.

It is convenient to rewrite the operators acting on C· ⊗ V as follows (cf.

7.7.5). Let Ωg be the DG algebra of continuous Lie algebra cochains of

g. The corresponding plane graded algebra Ω·
g is the completed exterior

algebra of g∗. We identify it with the closed subalgebra of the completed

Clifford algebra Clg generated by g∗ ⊂ Clg, so Ω·
g acts on C· ⊗V by Clifford

operators. Now let gΩ be a DG Lie algebra defined as follows. The only

non-zero components are g0
Ω = g

−1
Ω = g, the differential g

−1
Ω → g0

Ω is idg, the

bracket on g0
Ω is the bracket of g. Recall that gΩ acts on Ωg (namely, g0

Ω

acts in coadjoint way, and g
−1
Ω acts by ”constant” derivations). The graded

Lie algebra g·Ω acts on C· ⊗ V via the operators Lieα and iα. So C· ⊗ V is

a graded (Ω·
g, g

·
Ω) -module.

7.13.27. Proposition. There is a unique linear map d : C· ⊗ V → C·+1 ⊗ V

such that for any α ∈ g one has Lieα = diα + iαd. One has d2 = 0, and

Cg(V ) := (C· ⊗ V, d) is a DG (Ωg, gΩ) -module.

Proof. Uniqueness. The difference of two such d’s is an operator that

commutes with any iα. It is easy to see that the algebra of all such operators

coincides with the closed subalgebra generated by g
−1
Ω and EndV . Since it

has no operators of positive degree we are done.
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A similar argument shows that the action of (Ωg, gΩ) is compatible with

the differentials and that d2 = 0 (first you prove that [d, Lieα] = 0, then the

rest of properties).

Existence. We write d explicitely. Let ei, i ∈ I, be a topological basis of

g (see 4.2.13), e∗i the dual basis of g∗. For a semi-infinite (with respect to g)

subset A ⊂ I denote by λA ⊂ C· the homogenuous line λC that corresponds

to the c-lattice generated by ea, a ∈ A (see 7.13.16). In other words λA

is the subspace of vectors killed by the Clifford operators ea, e∗b for a ∈ A,

b ∈ I \ A. Our C· is the direct sum of λA’s. Note that for a, b as above one

has e∗a(λA) = λA\a, eb(λA) = λA∪b.

Set VA := λA ⊗ V ; then C· ⊗ V is direct sum of VA’s. For c ∈ I set

Lc := Lieec , ic := iec ; for semi-infinite A, A′, we denote by LA,A′
c , iA,A′

c the

A, A′-components VA → VA′ of these operators.

Let A, B be semi-infinite subsets such that |A|−|B| = 1 (here |A|−|B| :=

|A\ (A∩B)|− |B \ (A∩B)|). Choose any a = aA,B ∈ A\ (A∩B) (this set is

not empty). Denote by dA,B the composition VA → VB∪a → VB where the

first arrow is LA,B∪a
a , the second one is the Clifford operator e∗a. It is easy

to see that the operator d : C· ⊗ V → C·+1 ⊗ V with components dA,B is

correctly defined (use the fact that for any v ∈ V and there is only finitely

many a ∈ A such that La(λA ⊗ v) is non-zero).

It remains to show that our d satisfies the condition of the Proposition,

i.e., that for any c ∈ I one has [d, ic] = Lc. One checks this fact by a direct

computation; the key point is the skew-symmetry of [La, ib] with respect to

a, b. We leave the details for the reader.

7.13.28. If V is a complex in M(g)� then we denote by Cg(V ) the total

complex for the bicomplex C(V ·). This is a discrete DG (Ωg, gΩ)-module

(an (Ωg, gΩ)-complex for short). The functor Cg is an equivalence between

the DG category C(g)� of complexes in M(g)� (we call them g�-complexes)

and the DG category C(Ωg, gΩ) of (Ωg, gΩ)-complexes. The inverse functor

assigns to F ∈ C(Ωg, gΩ) the complex HomClg(C
·, F ).
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7.13.29. Let k ⊂ g be an open bounded Lie subalgebra. For a ≥ 0 denote

by C·
a ⊂ C· the subspace of elements killed by product of any a + 1

Clifford operators from k⊥ ⊂ g∗. Then 0 = C·
−1 ⊂ C·

0 ⊂ C·
1 ⊂ ... is an

increasing filtration on C· = ∪C·
a. Any Clifford operator ν ∈ g∗ preserves

our filtration; if ν belongs to k⊥ then it sends C·
a to C·+1

a−1. Any Clifford

operator from g sends C·
a to C·−1

a+1; if it belongs to k then it preserves the

filtration. Thus gr∗C· is a module over the Clifford algebra Clg:k of the vector

space (g/k)⊕(g/k)∗⊕k⊕k∗ (equipped with the standard ”hyperbolic” form).

This is an irreducible Clg:k-module; and C·
0 is an irreducible module over

the subalgebra Clk ⊂ Clg,k. The homogenuous line λk = λ
(C)
k

(see 7.13.16)

sits in C·
0, and gr∗C· is a free module over the subalgebra Λ(g/k)⊗Λk∗ ⊂ Clg:k

generated by this line. If λk ⊂ C0 (we may assume this shifting the · filtration

if necessary) then graC
b = Λa(g/k) ⊗ Λb+ak∗ ⊗ λk.

Let k� ⊂ g� be the preimage of k. This is a central extension of k by C

which splits canonically: the image of the splitting k → k� consists of those

elements that kill λk (we consider the Lie algebra action of k� on C·).
For V ∈ C(g)� the subspaces C·

a ⊗ V are subcomplexes of Cg(V ); denote

them by Cg(V )a. We get a filtration on Cg(V ) preserved by the Clifford

operators from g∗ and k; the successive quotients gra Cg(V ) are (Ωk, kΩ)-

complexes. For a k-complex P denote by Ck(P ) the Chevalley complex of Lie

algebra cochains of k with coefficients in P ; this is an (Ωk, kΩ)-complex. The

identification gra Cg(V )· = Λ·+ak∗ ⊗ (V · ⊗ Λa(g/k) ⊗ λk) is an isomorphism

of (Ωk, kΩ)-complexes

gra Cg(V )→∼Ck(V ⊗ Λa(g/k) ⊗ λk)[a](376)

Here k acts on Λa(g/k) according to the adjoint action. The correspond-

ing spectral sequence converges to H·Cg(V ); its first term is Ep,q
1 =

Hp+q gr−p Cg(V ) = Hq(k,Λ−p(g/k) ⊗ V ⊗ λk).
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7.13.30. Remark. Assume that we have a k�-subcomplex T ⊂ V such that

V is induced from T , i.e., V = U(g�) ⊗
U(k�)

T . Then the composition of

embeddings Ck(T ⊗ λk) ⊂ Cg(V )0 ⊂ Cg(V ) is a quasi-isomorphism.

7.14. Localization functor in the infinite-dimensional setting. Now

we may explain the parts (c), (d) of the ”Hecke pattern” from 7.1.1 in the

present infinite-dimensional setting.

7.14.1. Let G, K be as in 7.11.17 and G′ be a central extension of G by Gm

equipped with a splitting K → G′ (cf. 7.8.1). Then g, g′ are Lie algebras

in Tate’s setting, and k = LieK is an open bounded Lie subalgebra of g, g′.

All the categories from 7.8.1 make obvious sense in the present setting.

One defines the Hecke Action on the category D(g, K)′ as in 7.8.2. Now

the line bundle LG is an Op-module on G, and VG is a complex of left

Dp-modules (see 7.11.3). All the constructions of 7.8.2 pass to our situation

word-by-word, as well as 7.8.4-7.8.5 (in 7.8.4 we should take for U ′, as usual,

the completed twisted enveloping algebra).

7.14.2. To define the localization functor L∆ we need some preliminaries.

Let Y be a scheme, F a Tate vector space. A ClF -module on Y is a Z-graded

O-module C· on Y equipped with a continuous action of the graded Clifford

algebra Cl·F (see 7.13.16). For any c-lattice P ⊂ F denote by λP (C·) the

graded O-submodule of C· that consists of local sections killed by Clifford

operators from P ⊂ F and P⊥ ⊂ F ∗. The functor λP : C(Y ) → { the

category of graded O-modules on Y } is an equivalence of categories∗). For

two c-lattices P1, P2 there is a canonical isomorphism

λP1(C
·)→∼λ(P1,P2) ⊗ λP2(C

·)(377)

that satisfies the obvious transitivity property (see 7.13.16). Same is true

for Y -families of c-lattices (see loc. cit.).

∗)The inverse functor is tensoring by an appropriate irreducible graded Clifford module

over C.
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7.14.3. Now assume we are in situation 7.11.18. Then Y carries a canonical

Clg-module C·
Y defined as follows. Let K ⊂ G be a reasonable group

subscheme, k := LieK. Denote by ω(K\Y ) the pull-back of the canonical

bundle ωK\Y = det ΩK\Y by the projection Y → K \Y (recall that K \Y is

a smooth stack). This is a graded line bundle that sits in degree dimK \Y .

If K1, K2 ⊂ G are two reasonable group subschemes as above, then there is

a canonical isomorphism

ω(K1\Y ) = λ(k1,k2) ⊗ ω(K2\Y )(378)

which satisfies the obvious transitivity property. Indeed, to define (378)

it suffices to consider the case K2 ⊂ K1. The pull-back to Y of the

relative tangent bundle for the smooth projection K2 \ Y → K1 \ Y equals

(k1/k2) ⊗OY , which yields (378). The transitivity property is clear.

Now our C·
Y ∈ C(Y ) is a Clifford module together with data of

isomorphisms λk(C·
Y )→∼ω(K\Y ) for any reasonable subgroup K ⊂ G that

are compatible with (377) and (378). Such C·
Y exists and unique (up to a

unique isomorphism).

The action of G on Y lifts canonically to a G-action on C·
Y compatible

with adjoint action of G on the Clifford operators g⊕ g∗. Indeed, G(C) acts

on all the objects our C·
Y is cooked up with, so it acts on C·

Y . To define the

action of A-points G(A) on C·
Y ⊗ A one has to spell out the characteristic

property of the Clifford module C·
Y ⊗ A on Y × Spec A using A-families of

reasonable group subschemes of G. We leave it to the reader.

Remark. Take any y ∈ Y . The fiber C·
y of C·

y at y is an irreducible graded

Cl·g-module which may be described as follows. Consider the ”action” map

g → Θy. Its kernel gy (the stabilizer of y) is a d-lattice in g. The cokernel T

is a finite-dimensional vector space. Let C·
ygy

be the graded vector space of

gy-coinvariants in C·
y (with respect to the Clifford action of gy). Now there

is a canonical identification Cdim T
ygy

→∼det(T ∗), and C·
y is uniquely determined

by this normalization.
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7.14.4. Let L = LY be a line bundle on Y equipped with a G′-action that

lifts the G-action on Y ; we assume that Gm ⊂ G acts on L by the character

opposite to the standard.

Take V ∈ M(g)′, so V is a discrete g′-module on which C ⊂ g′ acts by the

standard character. Then the tensor product L⊗V is a g-module, as well as

C·
Y ⊗L⊗V (i.e., the g-action on Y lifts to a continuous g-action on these O-

modules). We denote the action of α ∈ g on C·
Y ⊗L⊗V by Lieα. Note that

C·
Y ⊗L⊗ V is also a Clifford module, and the above g-action is compatible

with the Clifford operators. As usual we denote the Clifford action of α ∈ g

by iα. So, as in 7.13.26, our C·
Y ⊗ L⊗ V is a graded (Ω·

g, g
·
Ω)-module.

The following proposition is similar to 7.13.27, as well as its proof which

we leave to the reader.

7.14.5. Proposition. There is a unique morphism of sheaves

d : C·
Y ⊗ L⊗ V → C·+1

Y ⊗ L⊗ V

such that for any α ∈ g one has Lieα = diα + iαd. This d is a differential

operator of first order, d2 = 0, and CL(V ) := (C·
Y ⊗ L ⊗ V, d) is a DG

(Ωg, gΩ)-module.

Remark. One may deduce 7.14.5 directly from 7.13.27. Namely, pick any

K as in 7.14.3. Then C·
Y ⊗ ω∗

(K\Y ) is a ”constant” Clifford module: it is

canonically isomorphic to C· ⊗ OY for some irreducible Clifford module

C·. The g�-action on C· and the g-action on C·
Y yield a g�-action on

ω(K\Y ) = Hom(C·
Y , C· ⊗ OY ) which lifts the g-action on Y . Thus g�-acts

on ω(K\Y ) ⊗ L ⊗ V , and d from 7.14.5 coincides with d from 7.13.27 for

C· ⊗ (ω(K\Y ) ⊗ L⊗ V ).

7.14.6. So we defined an Ω-complex CL(V ) on Y . One extends this

definition to the case when V is a complex in M(g)′ in the obvious manner.

Now assume we have K as in 7.14.1. For a Harish-Chandra complex

V ∈ C(kΩ × g, K)′ the Ω-complex CL(V ) is KΩ-equivariant. Indeed, K acts

on CL(V ) according to the K-actions on C·
Y , L, and V , and the operators
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iξ, ξ ∈ k, are sums of the corresponding Clifford operators for C·
Y and the

operators for the k
−1
Ω -action on V .

Set ∆ΩL(V ) := CL(V )[dim(K \ Y )]. We have defined a DG functor

∆Ω = ∆ΩL : C(kΩ × g, K)′ −→ C(K \ Y,Ω)(379)

7.14.7. Remark. The Ω-complex ∆Ω(V ) carries a canonical filtrartion

∆Ω(V )· where ∆Ω(V )a consists of sections killed by product of any a + 1

Clifford operators from k⊥ ⊂ g∗ (see 7.13.29). By (376) one has a canonical

isomorphism of KΩ-equivariant Ω-complexes

gra∆Ω(V )→∼Ck(ω(K\Y ) ⊗ L⊗ V ⊗ Λa(g/k))[a](380)

7.14.8. Lemma. (i) The functor ∆Ω sends quasi-isomorphisms to D-quasi-

isomorphisms, so it yields a triangulated functor

L∆ = L∆L : D(g, K)′ → D(K \ Y )(381)

(ii) The functor L∆ is right t-exact, and the corresponding right exact

functor ∆ = ∆L : M((g, K)′ → M�(K \ Y ) is

∆L(V )Y = (DY ⊗ L) ⊗̂
U(g)

V = L∗ ⊗DY,L ⊗̂
U(g′)

V(382)

Here DY is the topological algebra of differential operators on Y (see 1.2.6),

DY,L := L ⊗DY ⊗ L∗ is the corresponding L-twisted algebra.

Proof. (i) Our statement is local, so, shrinking K if necessary, we may

assume that the K-action on Y is free. Let us consider ∆Ω(V ) as a filtered

Ω-complex on K \ Y . For a K-module P denote by P∼ the Y -twist of

P which is an O-module on K \ Y . The projection Ck → Ck/C≥1
k

yields,

according to (380), a canonical isomorphism

gra∆Ω(V )K\Y = ωK\Y ⊗ LK\Y ⊗ V ∼ ⊗ Λa(g/k)∼[a](383)

The r.h.s. is an O-complex, so a quasi-isomorphism between V ’s defines a

(filtered) D-quasi-isomorphism of ∆Ω(V )’s.
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(ii) As above we may assume that the K-action is free. For V ∈ M(g, K)′

we can rewrite (383) as an isomorphism ∆Ω(V )a
K\Y = ωK\Y ⊗ LK\Y ⊗

V ∼ ⊗ Λ−a(g/k)∼. This shows that ∆Ω is right t-exact. One describes the

differential in ∆Ω(V )K\Y as follows. The g-action on Y defines on (g/k)∼

the structure of Lie algebroid on K \ Y . The g-action on LY ⊗ V defines on

LK\Y ⊗V ∼ the structure of a left (g/k)∼-module, hence ωK\Y ⊗LK\Y ⊗V ∼ is

a right (g/k)∼-module. Now ∆Ω(V )K\Y is the Chevalley homology complex

of (g/k)∼ with coefficients in ωK\Y ⊗ LK\Y ⊗ V ∼. The right D-module

H0
D(L∆(V )) on K\Y is (ωK\Y ⊗LK\Y ⊗V ∼) ⊗

(g/k)∼
DK\Y ; the corresponding

left D-module is DK\Y ⊗
(g/k)∼

(LK\Y ⊗ V ∼). Lifting this isomorphism to Y

we get (382).

7.14.9. Example. Let us compute L∆(V ac′). The embedding C → V ac′

yields an embedding of Ω-complexes on Y Ck(ω(K\Y ) ⊗LY ) → ∆ΩL(V ac′)0.

We leave it to the reader to check that the corresponding morphism

Ck(ω(K\Y ) ⊗ LY ) → ∆ΩL(V ac′)

of KΩ-equivariant Ω-complexes is a D-quasi-isomorphism. Now the l.h.s. is

the Ω-complex Ω(DK\Y ⊗LK\Y on K \ Y (see 7.3.3). Therefore if K \ Y is

a good stack then

L∆(V ac′) = ∆(V ac′) = DK\Y ⊗ LK\Y .

Remark. Since EndV ac′ is anti-isomorphic to the algebra D′
(g,K) from

1.2.5 (cf. also 1.2.2) we have a right action of D′
(g,K) on ∆(V ac′) =

DK\Y ⊗LK\Y , i.e., a homomorphism from D′
(g,K) to the twisted differential

operator ring Γ(K \ Y, D′
K\Y ). This is the homomorphism h from 1.2.5 (cf.

also 1.2.3 and 1.2.4).

7.14.10. Proposition. The functor L∆ : D(g, K)′ → D(K\Y ) is a Morphism

of H-Modules.

Proof. The constructions and arguments of 7.8.8 render to our infinite-

dimensional setting in the obvious manner.
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The infinite-dimensional versions of 7.9 are straightforward.

7.15. Affine flag spaces are D-affine. In this section we show that

representations of affine Lie algebras of less than critical level are related to

D-modules on affine flag spaces just as they do in the usual finite-dimensional

situation.

7.15.1. Below as usual K = C((t)), O = C[[t]]. Let g be a simple (finite-

dimensional) Lie algebra∗), G the corresponding simply connected simple

group. We have the group ind-scheme G(K) and its group subscheme

G(O) (see 7.11.2(iv)). The adjoint action of G(K) on the Tate vector space

Lie G(K) = g(K) yields the central extension G(K)� of G(K) by Gm (see

??). Its Lie algebra is the central extension g(K)� of g(K) defined by cocycle

φ, ψ �→ Res(dφ, ψ) where (a, b) := Tr(ada · adb) (see ??). Let G(O)� ⊂ G(K)�

be the preimage of G(O). The adjoint action of G(O) preserves the c-lattice

g(O) ⊂ g(K), so we have a canonical identification s : G(O)� →∼G(O)×Gm
∗).

Let N ⊂ B ⊂ G be a Borel subgroup and its radical, so H = B/N

is the Cartan group of G. Let N+, B+ be the preimages of N, B by the

obvious projection G(O) → G, so B+/N+ = H, G(O)/B+ = G/B. Let

B† ⊂ G(K)� be the preimage of B+. There is a unique section N+ → G(K);

set H� := B†/N+, h� = Lie H�. The section s yields an isomorphism

B+ × Gm
→∼B†, hence isomorphisms H × Gm

→∼H�, h × C →∼ h�.

Set X := G(K)/B+ = G(K)�/B† (the quotient of sheaves with respect

to either flat or Zariski topology - the result is the same, as follows from

4.5.1). One calls X the affine flag space. This is a reduced connected ind-

projective formally smooth ind-scheme∗). Set X† := G(K)�/N+: this is a

left H�-torsor over X (the action is h�·x† = x†h�−1). It carries the obvious

action of G(K)�. Denote the projection X† → X by p.

∗)A generalization to the case when g is any reductive Lie algebra is immediate.

∗)Since G is simple the splitting G(O) → G(O)� is unique.

∗)X is smoothly fibered over the affine Grassmannian G(K)/G(O), see 4.5.1.
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7.15.2. Let M†(X) be the category of weakly H�-equivariant D-modules

on X† (see 7.11.11). This is an abelian category. For M ∈ M†(X) set

MX := (p·M)H� ∈ M(X,O). The functor M†(X) → M(X,O), M �→ MX ,

is exact and faithful.

Set D† := (p·DX†)H�
. This is a Diff-algebra on X. The map

h� → Γ(X,D†) = Γ(X†,DX†)H�
(384)

equal to minus the left action along the fibers of p takes values in the center

of D†. In fact, D† is a Sym(h�)-family of tdo (see 7.11.11(b)).

Notice that D† acts (from the right) on any MX as above in the obvious

manner, so we have a functor

M†(X) → M(X,D†).(385)

One has (see Remark (ii) in 7.11.11):

7.15.3. Lemma. The functor (385) is an equivalence of categories. �

7.15.4. For χ = (χ0, c) ∈ h�∗ = h∗ × C we denote by Dχ the corresponding

tdo from our family D†. Thus D(0,0) = DX . Set Mχ(X) := M(X,Dχ) ⊂
M(X,D†). Consider the topological algebra ΓDχ = Γ(X,Dχ) (see 7.11.9,

7.11.10). We have the functor

Γ : Mχ(X) → Mr(ΓDχ)(386)

where Mr(ΓDχ) is the category of discrete right ΓDχ-modules and ΓM :=

Γ(X, M).

The action of g(K)� on X† yields a continuous morphism g(K)� →
Γ(X,D†). The corresponding morphism g(K)� → ΓDχ sends 1� ∈ g(K)�

to −c.

7.15.5. We say that χ is anti-dominant if the Verma g(K)�-module M(χ)

is irreducible. As follows from [KK] 3.1 this amounts to the following three

conditions:

(i) One has c �= −1/2.
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(ii) For any positive coroot hα ∈ h of g one has (χ0 + ρ0)(hα) �= 1, 2, ..

(iii) For any hα as above and any integer n > 0 one has

±(χ0 + ρ0)(hα) + 2n
c + 1/2
(α, α)

�= 1, 2, ..

Here ρ0 ∈ h∗ is the half sum of the positive roots of g and (, ) is the scalar

product on h∗ that corresponds to (, ) on h (see 7.15.1).

Remark. To deduce the above statement from [KK] 3.1 it suffices to notice

that the “real” positive coroots of g(K)� are hα and ±hα + 2n(α, α)−1·1�

for hα, n as above, and that the weight ρ from [KK] is given by the next

formula.

Set ρ := (ρ0, 1/2) ∈ h�∗. We say that χ is regular if the stabilizer of χ + ρ

in the affine Weyl group Waff is trivial∗).

7.15.6. Theorem. Assume that χ is anti-dominant and regular. Then (386)

is an equivalence of categories.

We prove 7.15.6 in 7.15.8-?? below.

7.15.7. Remarks. (i) Let Mc(g(K)) be the category of discrete g(K)�-

modules on which 1� acts as multiplication by c. Let

Γ : Mχ(X) → Mc(g(K))(387)

be the composition of (386) and the obvious “restriction” functor Mr(ΓDχ) →
Mc(g(K)). According to 7.15.6 this functor is exact and faithful.

(ii) One may hope that g(K)� generates a dense subalgebra in ΓDχ∗). In

other words, ΓDχ◦ is a completion of the enveloping algebra Ū c = Ū cg(K)

of level c by certain topology. Can one determine this topology explicitely?

Notice that in the finite-dimensional setting (see [BB81] or [Kas]) one

usually deduces the corresponding statement from its ”classical“ version

(using Kostant’s normality theorem). This ”classical“ statement (which says

∗)Remind that the action of Waff on h
�∗ comes from the adjoint action of G(K) on

g(K)�.
∗)This amounts to the property that for M ∈ Mχ(X) any g(K)�-submodule of ΓM

comes from a Dχ-submodule of M .



HITCHIN’S INTEGRABLE SYSTEM 361

that g(K) ↪→ Γ(X, ΘX) generates a dense subalgebra in ⊕
n≥0

Γ(X, Θ⊗n
X )) is

false for the affine flags (e.g., the map g(K) ↪→ Γ(X, ΘX) is not surjective).

As in [BB81] or [Kas] it is easy to see that 7.15.6 follows from the next

statement:

7.15.8. Theorem. (i) If χ is anti-dominant then for any M ∈ Mχ(X) one

has Hr(X, M) = 0 for any r > 0∗).

(ii) If, in addition, χ is regular and M �= 0 then ΓM �= 0.

Remark. The proof of 7.15.8(i) is very similar to the proof of the

corresponding finite-dimensional statement (see [BB81] or [Kas]). It would

be nice to find a proof of 7.15.8(ii) similar to that in [BB81] (using translation

functors) for it could be of use for understanding 7.15.7(ii).

7.15.9. Let us begin the proof of 7.15.8(i). Let ψ = (ψ0, b) be a character

of H� and L = Lψ the corresponding G(K)�-equivariant line bundle on X

(defined by X†). Assume that L is ample. This amounts∗) to the following

property of ψ: for any positive coroot hα of g one has 2b
(α,α) < ψ0(hα) < 0.

Denote by V be the dual to the pro-finite dimensional vector space

Γ(X,L). This is a G(K)�-module in the obvious way, hence an integrable

g(K)�-module∗) of level −b. Consider the canonical section of V ⊗̂L; this is

a G(K)�-equivariant morphism OX → V ⊗̂L of Op-modules. Tensoring it by

M we get a morphism of O!-modules

i : M → V ⊗ L⊗ M(388)

that commutes with the action of g(K)�.

7.15.10. Below we will consider !-sheaves of vector spaces on X. Such

object F is a rule that assigns to a closed subscheme Y ⊂ X a sheaf F(Y ) on

∗)Here Hr(X, M) := lim
−→

Hr(Y, M(Y )); we use notation of 7.11.4.

∗)See Remark in 7.15.5.
∗)According to a variant of Borel-Weil theorem (see, e.g., [?]) V is an irreducible g(K)�-

module.
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the Zariski topology of Y together with identifications i!Y Y ′F(Y ′) = F(Y )
∗)

for Y ⊂ Y ′ that satisfy the obvious transitivity property (cf. Remark (i)

in 7.11.4). Notice that !-sheaves form an abelian category. It contains the

categories of sheaves on Y ’s as full subcategories closed under subquotients

and extensions. Any O!-module M on X yields a !-sheaf lim
−→

M(Y ) on X

(so the corresponding sheaf on Y is M(Y ∧))∗); we denote it by M by abuse

of notation. We will also consider !-sheaves of g(K)�-modules which are !-

sheaves of vector spaces equipped with g(K)�-action such that the action on

each F(Y ) is discrete in the obvious sense. Any O!-module equipped with

g(K)�-action may be considered as a !-sheaf of g(K)�-modules.

7.15.11. Proposition. Considered as a morphism of !-sheaves of g(K)�-

modules, (388) is a direct summand embedding.

7.15.12. Proof of 7.15.8(i). Take any α ∈ Hr(X, M) = lim
−→

Hr(X(Y ), M(Y )).

It comes from certain closed subscheme Y ⊂ X and an O-coherent

submodule F ⊂ M(Y ). Choose an ample L as above such that Hr(Y,L ⊗
F ) = 0. Since i(α) belongs to the image of Hr(Y, V ⊗ L ⊗ F ) it vanishes.

We are done by 7.15.11. �

7.15.13. Proof of 7.15.11. We are going to define an endomorphism A of

V ⊗ L⊗ M such that

Ker A = M, V ⊗ L⊗ M = KerA ⊕ Im A.(389)

This settles 7.15.11.

Let Ū := Ūg(K)� be the usual completed enveloping algebra of g(K)�.

Consider the Sugawara element L̃0 ∈ Ū defined by formula (85). For any

ftr ∈ g((t)) ⊂ Ū we have [L̃0, ftr] = (1� + 1/2)rftr (see (87)). For any

N ∈ Me(g(K)) where e �= −1/2 consider the operator ∆N := (e+1/2)−1L̃0

∗)Here i!Y Y ′F(Y ′) := the subsheaf of sections supported (set-theoretically) on Y .

∗)See 7.11.4 for notation.
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acting on N . If also e − b �= −1/2 we set

AV,N := ∆V ⊗N − ∆V ⊗ idN − idV ⊗∆N ∈ End(V ⊗ N).(390)

This operator commutes with the action of g(K)�.

Let us apply this construction to the !-sheaf of g(K)�-modules N := L⊗M

(so e = b + c and the condition on levels is satisfied). Set

A := AV,L⊗M ∈ End(V ⊗ L⊗ M).(391)

Let us show that A satisfies (389). �

7.15.14. Now let us turn to 7.15.8(ii). It is an immediate consequence of

the following proposition which shows, in particular, how to compute fibers

of M in terms of ΓM . We start with notation.

Consider the stratification of X by N+-orbits (Schubert cells). The cells

are labeled by elements of the affine Weyl group Waff . For w ∈ Waff the

corresponding cell is iw : Yw ↪→ X; it has dimension l(w). The restriction

to Yw of the H�-torsor X† is trivial∗). Since any invertible function on Yw is

constant, the trivialization is unique up to a constant shift. Therefore the

pull-back of the tdo Dχ to Yw is canonically trivialized.

Let M be any object of the derived category D(X,Dχ)∗). For any w ∈
Waff we have (untwisted, as we just explained) D-complexes i!wM ∈ D(Yw).

We want to compute Lie algebra (continuous) cohomology Ha(n+,ΓM)

(notice that, because of 7.15.8(i), Γ = RΓ). Since h� = b†/n+ these are

h�-modules. We assume that χ is regular.

7.15.15. Proposition. There is a canonical isomorphism

Ha(n+,ΓM) →∼ ⊕
w∈Waff

H
a−l(w)
DR (Yw, i!wM).

such that h� acts on the w-summand as multiplication by w(χ)∗).

∗)A section is provided by any N+-orbit in X† over Yw.

∗)Its definition is similar to one given in 7.11.14 in the untwisted situation.

∗)Remind that the adjoint action of G(K) on g(K)� yields the Waff -action on h
�.
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7.15.16. Proof of 7.15.8(ii). Since Γ is exact we may assume that M is

compactly supported and finitely generated. Let Y ⊂ X be a smooth Zariski

open subset of the (reduced) support of M . Then M(Y ) is a coherent D-

module on a smooth scheme Y . So, shrinking Y farther, we may assume

that M(Y ) is a free OY -module. Now for any x ∈ Y one has H·i!xM �= 0.

Translating M we may assume that x = Y1. By 7.15.15 H·(n+,ΓM) �= 0,

hence ΓM �= 0. �

7.15.17. Proof of 7.15.15. We may assume that M = iw∗N for certain

N ∈ D(Yw). Indeed, any M ∈ D(X,Dχ) carries a canonical filtration with

gri M = ⊕
l(w)=i

iw∗i!wM . Now the isomorphism 7.15.15 for M comes from

the corresponding isomorphisms for iw∗i!wM ’s together with the spectral

decomposition for the action of h�. Here we use the assumption of regularity

of χ; for the rest of the argument one needs only anti-dominance of χ.

Consider first the case M = δ, so Γδ is the Verma module from 7.15.5

(see 7.15.7(iii)). This Verma module is cofree N+-module of rank 1 (it

is cofreely generated by any functional ν which does not kill the vacuum

vector)∗). Thus H·(n+
x ,Γδ) = H0(n+

x ,Γδ)χ = C·vac. Since also H·i!xδ =

H0i!xδ = C·vac, we get the desired isomorphism.

∗)The kernel of ν contains no non-trivial n
+-submodule (otherwise, since n

+ is nilpotent,

it would contain n
+-invariant vectors which contradicts 7.15.5(i)). So the morphism

defined by ν from Γδ to the cofree N+-module is injective. Then it is an isomorphism by

dimensional reasons.
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8. To be inserted into 5.x

8.1.

8.1.1. Choose L ∈ Z torsθ(O). Recall that λL denotes the corresponding

local Pfaffian bundle on GR = G(K)/G(O) (see 4.6.2). We are going to

prove the following statement, which is weaker than 5.2.14 and will be used

in the proof of Theorem 5.2.14 itself.

8.1.2. Proposition. For any χ ∈ P+(LG) and i ∈ Z the U
′-module

H i(GR, Iχλ−1
L ) is isomorphic to a direct sum of copies of V ac′.

At this stage we do not claim that the number of copies is finite.

Proposition 8.1.2 is an immediate consequence of Theorems 8.1.4 and

8.1.6 formulated below (the first theorem is geometric while the second one

is representation-theoretic).

8.1.3. For any D-module M on GR the renormalized universal enveloping

algebra U 	 acts on the sheaf Mλ−1
L (see ???). So the canonical morphism

Der O → U 	 from 5.6.9 yields an action of DerO on Mλ−1
L . According to

??? this action is induced by the action of DerO on the sheaf M (DerO

is mapped to the algebra of vector fields on GR, which acts on M) and

the action of DerO on λL (see 4.6.7). The action of Der O on the sheaf Iχ

integrates to the action of AutO. The action of DerO on λL comes from

the action of AutZ O on λL (see 4.6.7). Therefore the action of Der O on

Iχλ−1
L integrates to the action of Aut2 O. So the action of L0 ∈ Der O on

H i(GR, Iχλ−1
L ) is diagonalizable and its spectrum is contained in 1

2Z (in

fact, it is contained in Z or 1
2 + Z depending on the parity of Orbχ).

8.1.4. Theorem. The eigenvalues of L0 on H i(GR, Iχλ−1
L ) are ≥ −d(χ)/2

where d(χ) = dim Orbχ.

The proof will be given in 9.1; we will also obtain the following description

of the eigenspace corresponding to −d(χ)/2. Set Fχ := Orbχ \ Orbχ,

Uχ := GR\Fχ. The restriction of Iχ to Uχ is the direct image of the (right)
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D-module ωOrbχ . It contains the sheaf-theoretic direct image of ωOrbχ , so

H0(Uχ, Iχλ−1
L ) ⊃ H0(Orbχ, ωOrbχ ⊗λ−1

L,χ) where λL,χ is the restriction of λL

to Orbχ. Therefore (241) yields an embedding

dL,χ ↪→ H0(Uχ, Iχλ−1
L )(392)

where dL,χ is the 1-dimensional representation of Aut0Z O constructed in

4.6.14. According to 4.6.15 L0 acts on dL,χ as multiplication by −d(χ)/2.

8.1.5. Proposition. The image of (392) is contained in H0(GR, Iχλ−1
L ).

It equals the eigenspace of L0 on H0(GR, Iχλ−1
L ) corresponding to the

eigenvalue −d(χ)/2.

The proof is contained in 9.1.

Remark. The natural map ϕ : H0(GR, Iχλ−1
L ) → H0(Uχ, Iχλ−1

L ) is

injective because Iχ is irreducible and therefore the morphism f : Iχ →
R0j∗j∗Iχ is injective, where j denotes the immersion Uχ ↪→ GR. In fact,

the semisimplicity theorem 5.3.3(i) implies that f is an isomorphism and

therefore ϕ is an isomorphism. So the first statement of Proposition 8.1.5 is

obvious modulo the highly nontrivial theorem by Lusztig used in the proof

of 5.3.3.

Proposition 8.1.2 is a consequence of Theorem 8.1.4 and the following

statement, which will be proved in 6.2.

8.1.6. Theorem. Let V be a discrete U 	-module such that

1) the representation of g⊗O ⊂ U 	 in V is integrable (i.e., it comes from

a representation of G(O)),

2) the action of L0 ∈ Der O ⊂ U 	 on V is diagonalizable and the

intersection of its spectrum with c+Z is bounded from below for every

c ∈ C.

Then V considered as a U
′-module is isomorphic to a direct sum of copies

of Vac′ (i.e., to Vac′⊗W for some vector space W ).
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Remark. Suppose that V is a discrete U 	-module such that V is isomorphic

to Vac′⊗W as a U
′-module. Write V more intrinsically as Vac′⊗zN ,

z := zg(O), N := Hom
U

′(Vac′, V ) = V g⊗O. According to 5.6.8 N is a

module over the Lie algebroid I/I2. The U 	-module V can be reconstructed

from the (I/I2)-module N as follows: V is the quotient of U 	 ⊗z N by the

closed U 	-submodule generated by u ⊗ n − 1 ⊗ an where n ∈ N , u ∈ U �
1,

a ∈ I/I2, and the images of u and a in U �
1/U �

0 coincide (see 5.6.7).
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9. To be inserted into Section 6

9.1. Proof of Theorem 8.1.4 and Proposition 8.1.5. We keep the

notation of 5.2.13, 8.1.1, and 8.1.4. Theorem 8.1.4 and Proposition 8.1.5

can be easily deduced from the following statement.

9.1.1. Theorem. The eigenvalues of L0 on H i(Uχ, Iχλ−1
L ) are ≥ −d(χ)/2. If

i > 0 they are > −d(χ)/2. If i = 0 the eigenvalue −d(χ)/2 occurs with

multiplicity 1 and the corresponding eigenspace is the image of (392).

Let us start to prove the theorem. Denote by IU
χ the restriction of Iχ to

Uχ, i.e., IU
χ is the direct image of the right D-module ωOrbχ with respect

to the closed embedding Orbχ ↪→ Uχ. Consider the O-module filtration

on IU
χ λ−1

L whose k-th term is formed by sections supported on the k-th

infinitesimal neighbourhood of Orbχ. The filtration is Aut02 O-invariant

and grj(IU
χ λ−1

L ) = ωOrbχ ⊗ λ−1
L ⊗ Symj Nχ where Nχ is the normal sheaf

of Orbχ ⊂ Uχ. Using (241) we get an Aut02 O-equivariant isomorphism

grj(IU
χ λ−1

L ) = dL,χ ⊗ Symj Nχ. By 4.6.15 L0 acts on dL,χ as multiplication

by −d(χ)/2. So it remains to prove the following.

9.1.2. Proposition. i) The eigenvalues of L0 on H i(Orbχ,Symj Nχ) are non-

negative.

ii) They are positive if i > 0 or j > 0. There are no L0-invariant regular

functions on Orbχ except constants.

Remark. The eigenvalues of L0 on H i(Orbχ,Symj Nχ) are integer because

Nχ is an Aut0 O-equivariant sheaf.

Before proving the proposition we need some lemmas.

9.1.3. Let us introduce some notation. Recall that χ is a dominant coweight

of G. Fix a Cartan subgroup H ⊂ G and a Borel subgroup B ⊂ G

containing H. We will understand “coweight” as “coweight of H” and

“dominant” as “dominant with respect to B”. Let tχ ∈ H(K) denote

the image of t ∈ C((t))∗ = K∗ by χ : Gm → H. Recall that Orbχ is
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the G(O)-orbit of [χ], where [χ] is the image of tχ in GR = G(K)/G(O).

Denote by orbχ the G-orbit of [χ] and by P−
χ the stabilizer of [χ] in G, i.e.,

P−
χ = {g ∈ G|t−χgtχ ∈ G(O)}. P−

χ is the parabolic subgroup of G such

that LieP−
χ is the sum of Lie H and the root spaces corresponding to roots

α with (α, χ) ≤ 0 (in particular P−
χ contains the Borel subgroup B− ⊃ H

opposite to B). So orbχ = G/P−
χ is a projective variety. Clearly the action

of Aut0 O on orbχ is trivial.

9.1.4. Endomorphisms of O form an affine semigroup scheme End0 O (for a

C-algebra R an R-point of End0 O is an R-morphism f : R[[t]] → R[[t]] such

that f(t) ∈ tR[[t]] ). Aut0 O is dense in End0 O. Let 0 ∈ End0 O denote the

endomorphism of O = C[[t]] such that t �→ 0.

9.1.5. Lemma. i) The action of Aut0 O on Orbχ extends to an action of

End0 O on Orbχ.

ii) Let ϕ be the endomorphism of Orbχ corresponding to 0 ∈ End0 O.

Then ϕ2 = ϕ and the scheme of fixed points of ϕ equals orbχ.

iii) The morphism p : Orbχ → orbχ induced by ϕ is affine. Its fibers are

isomorphic to an affine space.

Proof. i)Orbχ = G(O)/S where S is the stabilizer of [χ] in G(O). The action

of Aut0 O on G(O) extends to an action of End0 O. Since S is Aut0 O-

invariant it is End0 O-invariant.

ii) The morphism f : G(O) → G(O) corresponding to 0 ∈ End0 O is

the composition G(O) → G ↪→ G(O). So ϕ(Orbχ) ⊂ orbχ. Clearly the

restriction of ϕ to orbχ equals id.

iii) G(O) = G · U where U := Ker(G(O) → G). One has f(S) ⊂ S,

so S = SG · SU , SG := S ∩ G, SU := S ∩ U . p is the natural morphism

G(O)/S → G(O)/(SG · U) = G/SG = orbχ. Since U is prounipotent

(SG · U)/S = U/SU is isomorphic to an affine space.

9.1.6. Remark. It follows from 9.1.5(ii) that the scheme of fixed points of

L0 on Orbχ equals orbχ.
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9.1.7. Since p : Orbχ → orbχ is affine

H i(Orbχ,Symj Nχ) = H i(orbχ, p∗ Symj Nχ).

p is Aut0 O-equivariant, so Aut0 O and therefore L0 acts on p∗ Symj Nχ. To

prove Proposition 9.1.2 it suffices to show the following.

9.1.8. Lemma. The eigenvalues of L0 on p∗ Symj Nχ are non-negative. If

j > 0 they are positive. If j = 0 the zero eigensheaf of L0 equals the

structure sheaf of orbχ.

Proof. Denote by OOrb and Oorb the structure sheaves of Orbχ and orbχ. It

follows from 9.1.5(i) that the eigenvalues of L0 on p∗OOrb are non-negative.

9.1.5(ii) or 9.1.6 implies that the cokernel of L0 : p∗OOrb → p∗OOrb equals

Oorb.

The obvious morphism OOrb ⊗ (g ⊗ K/g ⊗ O) → Nχ is surjective

and Aut0 O-equivariant. It induces an Aut0 O-equivariant epimorphism

p∗OOrb ⊗ Symj(g ⊗ (K/O)) → p∗ Symj Nχ. Since the eigenvalues of L0

on K/O are positive we are done.

9.1.9. So we have proved 9.1.2 and therefore 8.1.4, 8.1.5. Now we are

going to compute the canonical bundle of Orbχ in terms of the morphism

p : Orbχ → orbχ. The answer (see 9.1.12, 9.1.13) will be used in 10.1.7.

9.1.10. Orbχ is a homogeneous space of G(O), while orbχ is a homogeneous

space of G. Using the projection G(O) → G(O/tO) = G we get an action

of G(O) on orbχ. The morphism p : Orbχ → orbχ is G(O)-equivariant.∗)

9.1.11. Proposition. The functor p∗ induces an equivalence between the

groupoid of G-equivariant line bundles on orbχ and the groupoid of G(O)-

equivariant line bundles on Orbχ.

∗)Of course the embedding orbχ ↪→ Orbχ is not G(O)-equivariant. DO WE NEED

THIS FOOTNOTE?
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Proof. One has Orbχ = G(O)/S, orbχ = G/SG where S is the stabilizer

of [χ] in G(O) and SG = S ∩ G. In fact, SG is the image of S in G and

p : G(O)/S → G/SG is induced by the projection G(O) → G (see the proof

of 9.1.5(iii) ). We have to show that the morphism π : S → SG induces

an isomorphism Hom(SG, Gm) → Hom(S, Gm). This is clear because

Kerπ ⊂ Ker(G(O) → G) is prounipotent.

Remark. We formulated the proposition for equivariant bundles because

we will use it in this form. Of course the statement still holds if one drops

the word “equivariant” (indeed, p is a locally trivial fibration whose fibers

are isomorphic to an affine space). Besides, if G is simply connected then a

line bundle on orbχ has a unique G-equivariant structure (because by 9.1.3

orbχ = G/P−
χ and P−

χ is parabolic).

9.1.12. The canonical sheaf ωOrbχ is a G(O)-equivariant line bundle on

Orbχ. By 9.1.11 it comes from a unique G-equivariant line bundle Mχ on

orbχ. Since orbχ = G/P−
χ (see 9.1.3) isomorphism classes of G-equivariant

line bundles on orbχ are parametrized by Hom(P−
χ , Gm). The embedding

H ↪→ P−
χ induces an embedding Hom(P−

χ , Gm) ↪→ Hom(H, Gm). So Mχ

defines a weight of H, which can be considered as an element lχ ∈ h∗.

9.1.13. Proposition. lχ = Bχ where χ ∈ Hom(Gm, H) is identified in the

usual way with an element of h and B : h → h∗ is the linear operator

corresponding to the scalar product (18).

Proof. The tangent space to Orbχ at [χ] equals

(g ⊗ O)/((g ⊗ O) ∩ tχ(g ⊗ O)t−χ).(393)

The action of H on (393) comes from the adjoint action of H on g ⊗ O.

So the weights of H occuring in (393) are positive roots, and for a positive

root α its multiplicity in (393) equals (χ, α). Therefore the weight of h
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corresponding to the determinant of the vector space dual to (393) equals

−
∑
α>0

(χ, α) · α = −1
2

∑
α

(χ, α) · α = Bχ.

Note for the authors: the notation U := Ker(G(O) → G) is not quite

compatible with the notation Uχ. Is this OK ???
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10. To be inserted into Section 6, too

10.1. Delta-functions. Is the title of the section OK ???

10.1.1. According to 8.1.5 we have the canonical embedding dL,χ ↪→
Γ(GR, Iχλ−1

L ). Its image is contained in Γ(GR, Iχλ−1
L )G(O). The Lie

algebroid I/I2 acts on Γ(GR, Iχλ−1
L )G(O) (see ??? and 5.6.8). Using (81) we

identify I/I2 with the Lie algenroid aLg from 3.5.11, where Lg := Lie LG

and LG is understood in the sense of 5.3.22 (in particular, Lg has a

distinguished∗) Borel subalgebra Lb and a distinguished Cartan subalgebra
Lh ⊂ Lb; we set Ln := [Lb, Lb]). By 3.5.16 we have the Lie subalgebroids

aLn ⊂ aLb ⊂ aLg and a canonical isomorphism of ALg(O)-modules aLb/aLn =

ALg(O) ⊗ Lh. In particular Lh ⊂ aLb/aLn.

10.1.2. Theorem. i) aLn annihilates dL,χ, so aδ makes sense for a ∈ Lh,

δ ∈ dL,χ .

ii) aδ = χ(a)δ for a ∈ Lh, δ ∈ dL,χ.

Remark. We identify χ ∈ P+(LG) with a linear functional on Lh, so χ(a)

makes sense.

Statement (i) is easy. Indeed, Der O acts on Γ(GR, Iχλ−1
L )G(O) (see 5.6.10)

and the action of aLg on Γ(GR, Iχλ−1
L )G(O) is compatible with the actions of

Der O on aLg and Γ(GR, Iχλ−1
L )G(O) (use the Der O-equivariance of (81) and

the Remark at the end of 3.6.16).∗) So statement (i) follows from Theorem

8.1.4, Proposition 8.1.5, and (77). In a similar way one proves using (78)

that adL,χ ⊂ dL,χ for a ∈ Lh, which is weaker than (ii). We will prove (ii)

∗)In §3 (where we worked with G-opers rather than LG-opers) we assumed that a Borel

subgroup B ⊂ G is fixed (see 3.1.1), so we are pleased to have a distinguished L
b ⊂ L

g.

But in fact this is not essential here: one could rewrite §3 without fixing B; in this case

we would have the Lie algebroids ab and an without having concrete b, n ⊂ g.
∗)In fact, a stronger statement is true: the action of Der O on Γ(GR, Iχλ−1

L )G(O)

coincides with the one coming from the morphism Der O → aLg defined in 3.5.11 and

the action of aLg on Γ(GR, Iχλ−1
L )G(O) (this follows from 3.6.17).
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in 10.1.3 – 10.1.7. In this proof we fix∗) L ∈ Z torsθ(O) and write λ instead

of λL, dχ instead of dL,χ, etc.

10.1.3. By 3.6.11 we can reformulate 10.1.2(ii) as follows:

aδ = −(d(a), Bχ) · δ for a ∈ I≤0, δ ∈ dχ(394)

where d : I≤0 → h is the map (83), χ is considered as an element of h (see

the Remark from 10.1.2) and B : h → h∗ corresponds to the scalar product

(18).

Remark. The “critical” scalar product (18) appears in the r.h.s. of (394)

because the definition of the l.h.s. involves the map (291), which depends

on the choice of the scalar product on g (see 5.6.11).

10.1.4. The method of the proof of (394) will be described in 10.1.5.

Let us explain the difficulty we have to overcome. The action of I/I2

on Γ(GR, Iχλ−1)G(O) comes from the action of the renormalized universal

enveloping algebra U 	 on Γ(GR, Iχλ−1), which is defined by deforming the

critical level (see ???). So the naive idea would be to deform Iχ, i.e., to

try to construct a family of λh-twisted D-modules M?
h, h ∈ C, such that

M?
0 = Iχ. But this turns out to be impossible (at least globally) because

λh-twisted D-modules on Orbχ that are invertible O-modules exist only for

a discrete set of values of h. Therefore we have to modify the naive idea

(see 10.1.5 and 10.1.7).

10.1.5. We are going to use the notion of Dλh-module from 7.11.11 (so

h ∈ C[h] is a parameter). In 10.1.7 we will construct a Dλh-module M on

Uχ and an embedding

dχ ↪→ Γ(Uχ, Mλ−1)(395)

such that

∗)By the way, all objects of Z torsθ(O) are isomorphic.
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(i) M is a flat C[h]-module∗);

(ii) There is a D-module morphism M0 := M/hM → IU
χ := Iχ|Uχ such

that the composition

dχ ↪→ Γ(Uχ, Mλ−1) → Γ(Uχ, M0λ
−1) → Γ(Uχ, IU

χ λ−1)

equals (392);

(iii) The image of (395) is annihilated by g ⊗ m where m is the maximal

ideal of O;

(iv) for c ∈ C := the center of Ug and δ ∈ dχ one has

cδh = ϕ(c)δh(396)

where δh ∈ Γ(Uχ, Mλ−1) is the image of δ under (395), ϕ : C → C[h] is the

character corresponding to the Verma module with highest weight −hBχ,

and B : h → h∗ is the scalar product (18).

Remarks. 1) Mλ−1 is a Dλh+1-module.

2) Of course, Dλh+1 := Dλs ⊗C[s] C[h] where the morphism C[s] → C[h] is

defined by s �→ h + 1. Quite simialrly one defines, e.g., Dλ−h (this notation

will be used in 10.1.7).

10.1.6. Let us deduce (394) from (i) – (iv). By 5.6.7 – 5.6.8 the l.h.s. of

(394) equals a�δ where a� ∈ U �
1 and a ∈ I≤0 have the same image in U �

1/U �
0.

To construct a� we can lift a to an element ã ∈ A := the completed universal

enveloping algebra of g̃ ⊗ K so that ã belongs to the ideal of A topologically

generated by g⊗O; then h−1ã belongs to the algebra A	 from 5.6.1 and we

can set a� := the image of h−1ã in U 	.

We will show that for a suitable choice∗) of ã

a�δ0 = −(d(a), Bχ) · δ0(397)

∗)So for each a ∈ C we have the module Ma := M/(h− a)M over Dλa := Dλh/(h− a),

and M is, so to say, a flat family formed by Ma, a ∈ C.
∗)a�δ does not depend on the choice of ã while a�δ0 does (because δ0 is annihilated by

g ⊗ m, but not by g ⊗O).
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where δ0 is the image of δh in Γ(Uχ, M0λ
−1) and d, B have the same meaning

as in (394). By 10.1.5(ii) the equality (397) implies (394).

Let us describe our choice of ã. We can write a ∈ I≤0 as c + a′ where

c ∈ C and a′ belongs to the left ideal of U
′ topologically generated by g⊗m

(in terms of 3.6.8 – 3.6.9 c = π(a)). We choose ã ∈ A so that ã �→ a and

ã − c belongs to the left ideal of A topologically generated by g ⊗ m. Then

(397) holds.

Indeed, Mλ−1 is a Dλh+1-module. Therefore by ??? A	 acts on

Γ(Uχ, Mλ−1) (can we write simply Mλ−1 ???) so that h := 1−1 ∈ g̃ ⊗ K ⊂
A	 acts as multiplication by h (is this expression OK ???). We can rewrite

(397) as

h−1ã · δh ≡ −(d(a), Bχ) · δh mod h .(398)

By 10.1.5(iii) and 10.1.5(iv) we have ãδh = cδh = ϕ(c)δh. On the other hand,

ϕ(c) ∈ C[h] is congruent to −(d(a), Bχ)h modulo h2 (see the definition of ϕ

from 10.1.5 and the definition of d from 3.6.10). So we get (398).

10.1.7. Let us construct the Dλh-module M and the morphism (395)

satisfying 10.1.5(i) – 10.1.5(iv).

We have the G(O)-equivariant line bundle λ = λL on GR. Denote by

λχ its restriction to Orbχ. Let orbχ and p : Orbχ → orbχ have the

same meaning as in 9.1.3 and 9.1.5. Recall that G(O) acts on orbχ via

G(O/tO) = G and p is G(O)-equivariant. By 9.1.11 there is a unique G-

equivariant line bundle λχ on orbχ such that λχ = p∗λχ.

On orbχ we have the sheaf of twisted differential operators Dλh
χ
. Set

N := p†Dλ−h
χ

where Dλ−h
χ

is considered as a left Dλ−h
χ

-module and p† is the

usual pullback functor. N is a left Dλ−h
χ

-module on Orbχ equipped with a

canonical section 1I := p†(1) ∈ Γ(Orbχ, N). Clearly ωOrbχ ⊗O N is a right
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Dλh
χ
-module∗) on Orbχ. The section 1I induces an O-module morphism

ωOrbχ → ωOrbχ ⊗O N .(399)

We define M to be the direct image of ωOrbχ ⊗O N under the closed

embedding Orbχ ↪→ Uχ. The morphism (395) is defined to be the

composition

dχ ↪→ Γ(Orbχ, ωOrbχ ⊗ λ−1
χ ) ↪→ Γ(Orbχ, (ωOrbχ ⊗O N)λ−1

χ ) ↪→ Γ(Uχ, Mλ−1)

where the first morphism is induced by (241) and the second one is induced

by (399).

The property 10.1.5(i) is clear. The property 10.1.5(ii) is also clear: the

morphism M0 → IU
χ comes from the D-module morphism N0 = p†Dorbχ →

OOrbχ such that 1I �→ 1 (is it OK to write 1I instead of 1I mod h, or 1I0, etc.

???). Notice that 10.1.5(iii) and 10.1.5(iv) are properties of the action of

g⊗O on the image of (395). This image is contained in the g⊗O-invariant

subspace (or C[h]-submodule ???)

Γ(Orbχ, (ωOrbχ ⊗O N)λ−1
χ ) = Γ(Orbχ, λ−1

χ ωOrbχ ⊗O N) .(400)

So to prove 10.1.5(iii) and 10.1.5(iv) it suffices to work on Orbχ. Using (241)

we identify (400) with

dχ ⊗ Γ(Orbχ, N) .(401)

The isomorphism between (400) and (401) is g⊗O-equivariant (the action of

g⊗O on dχ is trivial), because the isomorphism (241) is g⊗O-equivariant.

So 10.1.5(iii) and 10.1.5(iv) are equivalent to the following properties of

∗)By the way, ωOrbχ ⊗O N is canonically isomorphic to the pullback of the right Dλh
χ
-

module ωorbχ ⊗O Dλh
χ
. Indeed, the image of ωorbχ ⊗O Dλh

χ
under the usual functor

M �→ M ⊗O ω−1
orbχ

transforming right Dλh
χ
-modules into left D

λ−h
χ

-modules is freely

generated by 1 ∈ Γ(orbχ, ωorbχ ⊗O Dλh
χ
⊗O ω−1

orbχ
) and therefore is canonically isomorphic

to D
λ−h

χ
.
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1I ∈ Γ(Orbχ, N):

(g ⊗ m)1I = 0 ,(402)

c1I = ϕ(c)1I for c ∈ C .(403)

Recall that C :=the center of Ug, ϕ : C → C[h] denotes the character

corresponding to the Verma module with highest weight −hBχ, and B :

h → h∗ is the scalar product (18).

So it remains to prove (402) and (403). Recall that N := p†Dλ−h
χ

,

1I := p†(1), and p : Orbχ → orbχ is G(O)-equivariant. Therefore (402)

is clear (because the action of g ⊗ m on (orbχ, λχ) is trivial) and (403) is

equivalent to the commutativity of the diagram

C ↪−→ Ug�ϕ �
C[h] ↪−→ Γ(orbχ,Dλ−h

χ
)

(404)

Recall that λχ is the G-equivariant line bundle on orbχ such that λχ =

p∗λχ. Since orbχ = G/P−
χ (see 9.1.3) the isomorphism class of λχ is defined

by some l ∈ Hom(P−
χ , Gm) ⊂ Hom(H, Gm) ⊂ h∗. In fact,

l = Bχ .(405)

Indeed, there is a G(O)-equivariant isomorphism λχ = ωOrbχ (see (241)), so

λχ is G-isomorphic to the line bundle Mχ from 9.1.12 and (405) is equivalent

to Proposition 9.1.13. The commutativity of (404) follows from (405) (see

???). So we are done.
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[Del70] P. Deligne. Équations différentielles à points singuliers réguliers. Lecture Notes

in Math, vol. 163. Springer-Verlag, 1970.
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