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Indeed, every c-lattice in V' is an affine scheme. One has V = Spf R where
R = {iﬂlSym(Uo"‘[), U, runs over the set of c-lattices in V.

If X is a reasonable ind-scheme then for z € X (C) the tangent space ©,
of X at x is a Tate vector space: the topology of O, is defined by tangent
spaces at = of reasonable subschemes of X that contain x. So if H is a
reasonable group ind-scheme then its Lie algebra Lie H is a Lie algebra in
the category of Tate vector spaces.

(iii) For V' as above denote by Gr(V) the “space” of c-lattices in V.
More precisely, Gr(V) is the functor that assigns to a commutative algebra
A the set of c-lattices in V®A (in the sense of 4.2.14). Clearly Gr(V)
is an ind-proper formally smooth ind-scheme (indeed, it is a union of the
Grassmannians of Uy /U;’s for all pairs of c-lattices Uy C U C V).

(iv) Let K be a local field, O C K the corresponding local ring (so K ~
C((t)), O ~ C][t]]). For any “space” Y we have “spaces” Y (0) C Y (K)
defined as Y (0)(A) := Y(ARO), Y(K)(A) = Y(ARK) (here ARO = A[[t]],
ARK = A((t))). Assume that Y is an affine scheme. Then Y (O) is also an
affine scheme, and Y (K) is an ind-affine Rp-ind-scheme. If Y is of finite type
then Y (K) is reasonable. If Y is smooth then Y (O) and Y (K) are formally
smooth.

Let G be an affine algebraic group, g its Lie algebra. Consider the group
ind-scheme G(K). One has Lie(G(K)) = g(K) = g ® K, Lie(G(O)) =
9(0)=g®O0.

(v) Let G be a reasonable group ind-scheme such that Gyeq is an affine
group scheme. The functor G +— (Lie G, Gycq) is an equivalence between the
category of GG’s as above and the category of Harish-Chandra pairs. For an
ind-scheme X an action of G on X is the same as a (Lie G, G}eq)-action on

X. Similarly, a G-module is the same as a (Lie G, Geq)-module, etc.
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7.11.3. There are two different ways to define O-modules in the setting
of ind-schemes; the corresponding objects are called OP-modules and O'-
modules. We start with the more immediate (though less important) notion
of OP-module®) which makes sense for any ”space” X (see 7.11.1).

An OP-module P on X is a rule that assigns to a commutative algebra A
and a point ¢ € X(A) an A-module Py, and to any morphism of algebras
f + A — B an identification of B-modules fp : B® Py= Py in a way
compatible with composition of f’s. If X = liLnXa isfan ind-scheme then
such P is the same as a collection of (quasi-coherent) O-modules Px,_ on
X, together with identifications izﬁPXﬁ = Px_, for o < 3 that satisfy the
obvious transitivity property. We say that P is flat if each P, (or each Px,)
is flat. Ome defines invertible OP-modules on X (alias line bundles) in the
similar way.

We denote the category of OP-modules on X by MP(X, ). This is a
tensor C-category. The unit object in MP(X, Q) is the "sheaf” of functions
Ox. Note that MP(X, Q) need not be an abelian category. The category
MPTH(X, O) of flat OP-modules is an exact category (in Quillen’s sense).

For any P,P' € MP(X,0) the vector space Hom(P, P’) carries the
obvious topology; the composition of morphisms is continuous. In particular
I'(X, P) := Hom(Ox, P) is a topological vector space which is a module over
the topological ring I'(X, Ox).

Remarks. (i) The above definitions makes sense if we replace O-modules
by any category fibered over the category of affine schemes. For example, one
can consider left D-modules (alias O-modules with integrable connection);
the corresponding objects over ind-schemes called (left) DP-modules.

(ii) If X is an ind-affine Ny-ind-scheme, X = Spf R = liLnSpec R/I, (see
7.11.2(i)), then an OP-module on X is the same as a complete and separated
topological R-module P such that the closures of I,P C P form a basis of

the topology.

*JHere ”p” stands for ”projective limit”.
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7.11.4. Now let us pass to @'-modules. Here we must assume that our
X is a reasonable ind-scheme. An O'-module M on X is a rule that
assigns to a reasonable subscheme ¥ C X a quasi-coherent Oy-module My
together with morphisms My — My for Y C Y’ which identify My
with i!)/YlM(y/) := Homo,,, (Oy, M(y+)) and satisfy the obvious transitivity
condition®). If we write X = li_r)nXa where X,’s are reasonable then it
suffices to consider only X,’s instead of all reasonable subschemes. O'-
modules on X form an abelian category M(X, ). Note that for any
closed subscheme Y C X, the category M(Y, ) is a full subcategory of
M(X,0) closed under subquotients, and that for any O'-module M one
has M = li_n}M(Xa).

The category M(X, O) is a Module over the tensor category MP(X, O).
Namely, for M € M(X,0), P € MP(X, Q) their tensor product M ® P €
M(X,0) is lmMx,) © P, The functor @ M(X, 0) x M (X, 0) -
M(X, O) is biexact.

For an O'-module M we define the space of its global sections I'(X, M)
as liiaI‘(Xa, Mx,))- The functor I'(X,-) is left exact.

Remarks. (i) The categories M(Y,O) together with the functors iy,
form a fibered category over the category (ordered set) of reasonable
subschemes of X, and M (X, Q) is the category of its Cartesian sections.

(ii) If X = Spf R and the pro-algebra R is a topological algebra (see
7.11.2) then an O'-module on X is the same as a discrete R-module (where
”discrete” means that the R-action is continuous with respect to the discrete
topology on M).

(iii) If P is flat then (M ® P)(x,) = M(x,) ® Px,.

7.11.5. Assume that we have a group ind-scheme (or any group ”space”)
K that acts on X. Then for any commutative algebra A the group K(A)
acts on Spec A x X. For M € M(X,0) an action of K on M is defined

. B .
“Y'We need to consider reasonable subschemes to assure that i preserves quasi-

coherency.
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by K(A)-actions on Ogpeca X M € M(Spec A x X, ) such that for any
morphism A — A’ the corresponding actions are compatible. We denote
the category of K-equivariant O'-modules on X by M (K \\ X,0). We leave

it to the reader to define K-equivariant OP-modules.

7.11.6. All the basic definitions and results of 7.10 (the definitions of
topology X.., D-crystals, crystalline O*-torsors, twisted D-crystals, basic
functoriality) make obvious sense for any ind-scheme X of ind-finite type.
So, from the D-crystalline point of view, D-module theory generalizes
automatically to the setting of ind-schemes.

What we will discuss in the rest of this section is the conventional
approach to D-modules (rings of differential operators, etc.) which works
when our ind-scheme is formally smooth. The results 7.10.12, 7.10.29,
7.10.32 comparing the D-crystalline and D-module setting remain literally
true for formally smooth ind-schemes.

Below we will no more mention D-crystals. In the main body of this
book we employ conventional D-modules (the ind-schemes we meet are affine
Grassmannians, they are formally smooth). Notice, however, that D-crystal
approach is needed to make obvious the following fact (we use it for Y equal
to a Schubert cell): Let i : Y — X be a closed embedding of a scheme
Y of finite type into formally smooth X as above. Then the category of
D-modules on X supported (set-theoretically) on Y depends only on Y
(and not on ¢ and X). Indeed, this category identifies canonically with the

category of D-crystals on X.

7.11.7. Let us explain what are differential operators in the setting of ind-
schemes. Assume that our X is an ind-scheme of ind-finite type. For an

O'-module M on X set

(348) Der(Ox, M) := EnDer(Oy,M(y)) = lii{lHom(Qy, Myy).
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Here Y is a closed subscheme of X. We consider Der(Ox, M) as an O'-

module on X. Similarly, set
(349) D(M) =Diff(Ox, M) := @Diﬁ(@y, Myy).

We consider the sheaf of differential operators Diff(Oy, M(y)) as a ”differ-
ential Oy-bimodule” in the sense of [BB93|, i.e., an O-module on ¥ x Y
supported set-theoretically on the diagonal. So D(M) is an O'-module on
X x X supported set-theoretically on the diagonal. We may consider it
as an O'-module on X with respect to either of the two ©x-module struc-
tures. Note that D(M) carries a canonical increasing filtration D.(M) where
D;(M) is the submodule of sections supported on the ¥ infinitesimal neigh-
bourhood of the diagonal; equivalently, D;(M) = liLnDiHi(Oy, Myy) is the
submodule of differential operators of order < i. One has Dy(M) = M,
UD:(M) = D(M), and the two O'-module structures on gr; D(M) coincide.
There is an obvious embedding Der(Ox, M) C Dy (M).

Assume now that X is formally smooth. In the next proposition we
consider D(M) as an O'-module on X with respect to the left O-module

structure.

7.11.8. Proposition. (i) The functors Der(Ox,-), D, D; are exact and
commute with direct limits. So there are flat OP-modules O, Dx and

a filtration of Dx by flat submodules D;x such that
Der(OX,M) =M R 0Ox, D(M) =M ® Dy, DZ(M) =M®7D;x.

(ii) There is a canonical identification gr. Dy = Sym’ Ox.
Remark. In 7.12.12 we will show that the OP-modules © x, Dx, and D;x are
Mittag-Leffler modules in the sense of Raynaud-Gruson (see 7.12.1, 7.12.2,
7.12.9). If X is an Nyp-ind-scheme the restrictions of these OP-modules to

subschemes of X are locally free (see 7.12.13 for a more precise statement).

Proof. (i) Our functors are obviously left exact and commute with direct

limits. The right exactness of Der(Ox, -) follows from formal smoothness of
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X (use the standard interpretation of derivations Ox — M as morphisms
Spec(Sym" M/ Sym=2 M) — X). So we have our Ox € MPF (X, O).

(ii) We define a canonical isomorphism*)
(350) o.:gr.D(M)=M ® Sym’ Ox.

This clearly implies the proposition.
Notice that for any n > 0 the obvious morphism M ® @g?” —
lim Hom (95", M(y)) is an isomorphism (use the fact that Qy are coherent).

Therefore (350) is equivalent to identifications
(351) on i er, D(M)= lim Hom(Sym" Qy, My).
Our o, is the inductive limit of the maps

ony : gr, Diff(Oy, M(yy) — Hom(Sym" Qy, M(y)

defined as follows. One has Diff,,(Oy, M(y)) = Homo,, (Oy sy /I Myy)
where Z C Oy «y is the ideal of the diagonal (and we consider the source as
an Oy-module via one of the projection maps). Now Z/Z? = Qy hence
7" /I is a quotient of Sym™Qy, and our o,y comes from the map
Sym™ Qy — I"/I" C Oy yy /I

It remains to show that o, is an isomorphism; we may assume that n > 1.
It is clear that o,y are injective, hence such is 7,,. To see that o,, is surjective
look at the scheme Z := Spec(Sym’ Qy/Sym="*1Qy). The embedding of
its subscheme Spec(Sym’ Qy/Sym=?Qy) = Spec(Oyxy/I?) C Y xY C
Y x X extends, by formal smoothness of X, to a morphismi: Z — Y x X
over Y. It is easy to see that 7 is a closed embedding. There is a closed
subscheme Y’ C X such that Y € Y/ and Z C Y xY’. Thus Z is a

subscheme of the n*” infinitesimal neighbourhood of the diagonal in Y’ x Y.

“Jn the general case (when the base field may have non-zero characteristic) one has to
replace Sym’ by I'" where for any flat A-module P we define I'"(P) as Sp-invariants in
P®"™_ Notice that (since P is inductive limit of projective modules) I'"(P) is flat and for

any A-module M one has (M ® P®™)5" = M @ I'™(P).
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Therefore we get embeddings Hom(Sym" Qy, M(y)) C Home, (Oz, My)) C
Diff,,(Oy+, M(y+)). The composition of them with o,y coincides with the
embedding Hom(Sym" Qy, M(yy) C Hom(Sym" Qy, M(y+)). This implies

surjectivity of . O

7.11.9. To explain what are D-modules on ind-schemes it is convenient to
use the language of differential bimodules.

Let X be any reasonable ind-scheme. A Diff-bimodule D on X (cf.
[BB93]) is a rule that assigns to any reasonable subscheme Y C X an O'-
module Dy on Y x X supported set-theoretically on the diagonal Y C Y x X;
for Y C Y’ one has identifications Dy ® Oy = Dy which are transitive in
the obvious sense.

The category M%¥(X,0) of Diff-bimodules is a monoidal C-category.
Namely, for D,D’ € M%(X,0) their tensor product D ® D’ is defined
by (D ® D)y := lim( y) Y XY O%/ Dy,,. Our Ox is the unit object in
M¥E(X O) (see Remark (i) below). The category M(X,0) is a right
M (X, O)-Module: for an O'-module M one has M ® D = limMyy ® Dy
where we consider M(y) ® Dy as an O'-module on X with respect to the
right @'-module structure on Dy-.

Remarks. (i) An OP-module on X is the same as a differential Ox-
bimodule supported scheme-theoretically on the diagonal. So we have a
fully faithful embedding of monoidal categories MP(X,0) c M%(X,0). It
is compatible with the Actions on M(X,O) from 7.11.4, 7.11.9.

(ii) The forgetful®) functor M#*(X,0) — MP(X,0) is faithful, so one
may consider Diff-bimodules as OP-modules on X equipped with certain
extra structure. We say that a Diff-bimodule is flat if it is flat as an OP-
module. The category of flat Diff-bimodules is an exact category (cf. 7.11.3).

A Diff-algebra on X is a unital associative algebra D in the monoidal

category M%¥(X,0). A D'-module on X is a (necessarily right) D-module

“forgetting the right @-module structure
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M in M(X,0). Often we call such M simply a D-module. We denote the
category of D-modules by M (X, D); this is an abelian category.

Remarks. (i) The forgetful functor M(X, D) — M(X,O) admits a left
adjoint functor, namely M — M ® D.

(ii) The category MP(X,0) is a left M%(X,0)-module in the obvious
way. So one may consider DP-modules := left D-modules in MP(X, O).

For D € M%(X,0) set T'(X, D) := limI'(Y" x X, Dy); this is a topological
vector space. One has an obvious continuous map I'(X, D) @ I'(X, D’) —
I'X,D ® D). For M € M(X,0) there is a similar map I'(X, M) ®
I'X,D) - I'(X,M ® D). Therefore for a Diff-algebra D our I'(X, D) is
a topological ring and for any D-module M the vector space I'(X, M) is a
discrete I'(X, D)-module.

Assume that we have a group ind-scheme (or any group ”space”) K that
acts on X. One defines a weak® action of K on a Diff-algebra D as follows.
For any commutative algebra A we have the action of the group K(A) on
Spec A x X. Now a weak action of K on D is a rule that assigns to A a
lifting of this action to the Diff-algebra Ospeca M D on Spec A x X. For
any morphism A — A’ the correspondings actions must be compatible in
the obvious way. If M is a D-module then a weak action of K on M is
an action of K on M as on O'-module (see 7.11.4) such that the D-action
morphism M ® D — M is compatible with the K-actions. We denote the

category of weakly K-equivariant D-modules by M (K \\ X, D).

7.11.10. Here is a more concrete ”sheaf-theoretic” way to look at differen-
tial bimodules and algebras on a reasonable Ng-ind-scheme X .*)We explain

it in two steps.

*)For strong actions see [BB93].

“)The Ng assumption enables us to work with topological algebras instead of pro-

algebras; see 7.11.2(1).
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(i) Assume that X,eq is a scheme, so X is a formal scheme®). Then
the underlying topological space of X is well-defined, and Ox is a sheaf
of topological algebras. Any Diff-bimodule D yields a sheaf of topological
Ox-bimodules l(iinD x,, Which we denote also by D by abuse of notation. It
satisfies the following properties:

- The basis of the topology on D is formed by closures of Z-D, where
T C Ox is an open ideal; the topology is complete and separated.

- The quotients D/Z-D are O'-modules on X x X supported set-
theoretically at the diagonal.

It is clear that M% (X, O) is equivalent to the category of such sheaves
of topological Ox-bimodules. Notice that D ® D' = D @ D’. Therefore
a Diff-algebra on X is the same as a sheaf D of topologi(?a)i algebras on X
equipped with a continuous morphism of sheaves of algebras € : Ox — D
such that the Ox-bimodule structure on D satisfies the above conditions.
A D-module on X is the same as a sheaf of discrete right D-modules which
is quasi-coherent as an Ox-module (i.e., it is an O'-module on X).

(ii) Let X be any reasonable Wy-ind-scheme. For a reasonable subscheme
Y C X denote by Y the completion of X along Y. This is a formal scheme
as in (i) above. For a Diff-bimodule D on X let Dyn be the (OP-module)
pull-back of D to Y. This is a Diff-bimodule on Y, so it may be viewed as
a sheaf of Oyn-bimodules as in (i) above. If Y/ C X is another reasonable
subscheme that contains Y then we have a continuous morphism of sheaves
of Oy-bimodules Dy, — Dy which identifies Dy with the completion
of Dy, with respect to the topology generated by closures of Z-Dy, where
T C Oy, is an open ideal such that Spec(O/T)req = Yied- These morphisms
satisfy the obvious transitivity property. It is clear that Diff-bimodules on
X are the same as such data.

Therefore a Diff-algebra D on X may be viewed as the following data:

“)See 7.12.22 and 7.12.23 for a description of formally smooth affine Ro-formal schemes
of ind-finite type.
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- a collection of sheaves of topological algebras Dya equipped with
morphisms eya : Oyan — Dy defined for any reasonable subscheme Y C X
that satisfy the conditions of (i) above.

- for Y C Y’ we have a continuous morphism ryy : Dy, — Dy which
identifies Dy~ with the completion of Dy, as above. We demand the
compatibilities ryyr€y/n = €yn, Tyyr = ryyiryryn.

We leave it to the reader to describe D-modules in this language.

Remark. For a Diff-algebra D the topological algebra I'(X, D) is the
projective limit of topological algebras T'(Y, Dyn).

7.11.11. The key example. Assume that our X is a formally smooth ind-
scheme of ind-finite type. Consider the OP-module Dy as defined in
7.11.8(i). So for a subscheme Y C X the Oy-module (Dx)y is D(Oy) :=
@Diﬁ(@y/,@y) with its left Oy-module structure. Our Dy carries
an obvious structure of Diff-bimodule. The composition of differential
operators makes Dx a Diff-algebra on X. According to 7.11.8 our Dx
carries a canonical ring filtration D;x such that gr. Dx = Sym ©x. The
topological algebra I'(X, Dx) is called the ring of global differential operators
on X. We denote the category of Dx-modules by M (X, D) or simply M(X).

If a group "space” K acts on X then Dy carries a canonical weak K-
action (defined by transport of structure). Thus we have the category
M(K \ X,Dx) = M(K \ X) of weakly K-equivariant D-modules.

A twisted version. In the main body of the paper we also need to
consider the rings of twisted differential operators (alias tdo), families of such
rings and modules over them. The corresponding definitions are immediate
modifications of the usual ones in the finite-dimensional setting (see e.g.
[BB93]). Below we describe explicitely particular examples of tdo we need.

Let X be as above, £ a line bundle on X (see 7.11.3).

a. The Diff-algebra D, of differential operators acting on L is defined
exactly as Dy replacing in (349) D(M) by Dp(M) = Diff(L,M ® L) :=
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lingiff(Ey,M(y) ® Ly ); proposition 7.11.8 (as well as its proof) remains
true without any changes. Equivalently, Dy = L @ Dx ® L1,

b. We define a Diff-algebra D,n on X as follows. Let 7 : X~ — X be
the G,,-torsor over X that corresponds to £ (so X~ = L\(zero section)).
Consider the Diff-algebra D~ := m,Dx~ on X (so for a subscheme ¥ C X
one has (D™)y := m.((Dx~)r-1y)). The weak G,,-action on Dx~ yields a
weak Gp,-action on D~ (with respect to the trivial G,,-action on X). Our
D,n is the subalgebra of G,,-invariants in D~.

Denote by h the global section of D,» that corresponds to the action of
—t% € Lie G,,. Then D is the centralizer of h in D~. Notice that for any
subscheme Y C X a trivialization of £y (which exists locally on V') yields
an identification Dnyn = Dyr&CIh].

Remarks. (i) Consider the OP-module 7,(Ox~) = &L®". Tt carries the
action of D,n which preserves the grading. The action of Dpn on L%
identifies Dyn/(h — n)Dpn with Dyen.

(ii) Let M~ be a weakly Gy,-equivariant D-module on X~.  Set
M := (7 M~)®m; this is a Dpr-module. The functor M(Gy, \\ X~) —
M(X,Dgrn), M~ +— M, is an equivalence of categories.

7.11.12. Let us explain the D-) complexes interplay in the setting of ind-
schemes. First let us define Q2-complexes. Here we assume that X is any
reasonable ind-scheme.

For any reasonable subschemes Y C Y’ one has a surjective morphism of
commutative DG algebras Qy+ — Qy. An Q'-complex F on X (or simply
an (-complex) is a rule that assigns to a reasonable subscheme ¥ C X a
DG Qy-module Fjy| together with morphisms of {dy/-modules Fjy| — Fly/
for Y C Y’ which identify Fjy, with i!m,y,F[yf] := Homgq,,, (Qy, Flys) and
satisfy the obvious transitivity condition. We assume that F[iy] is quasi-
coherent as an Oy-module. As in 7.11.4 it suffice to consider only X,’s

instead of all reasonable Y’s. As in Remark in 7.2.1 such an F' is the same
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as a complex of @'-modules whose differential is a differential operator of
order < 1. We denote by C(X,Q) the DG category of Q'-complexes.

If f: Y — X is a representable quasi-compact morphism of ind-schemes
(so Y = liLnYa where Y, := f1(X,)) then one has a pull-back functor
fo: C(X,Q) = CY,Q), fo(F) = limQy, f*%xa F,. If f is surjective and
formally smooth then f, satisfies the descent property.

Assume that a group ”space” K acts on X. One defines a K-action on
an Q-complex F' on X as a rule that assigns to any g € K(A) a lifting
of the action of g on Spec A x X to Ogpeca ® F € C(Spec A x X,); the
obvious compatibilities should hold. We denote the corresponding category
by C(K \ X,Q).

Remarks. (i) Assume that K is a group ind-scheme, so we have the Lie
algebra Lie K. The definition of Kg-action on F' in terms of operators i¢
from 7.6.4 renders immediately to the present setting. The category of Kq-
equivariant Q2-complexes is denoted by C(K \ X, Q).

(ii) If our K is an affine group scheme then a Kq-equivariant {2-complex
is the same as an {)-complex F’ equipped with an isomorphism mgF' = p I

of Q-complexes on K x X that satisfy the usual condition (see 7.6.5).

7.11.13. Assume that X is a formally smooth ind-scheme of ind-finite
type. Denote by C(X, D) the DG category of complexes of D-modules (D-
complexes for short) on X. We have the DG functor

(352) D: C(X,Q) — C(X,D)

which sends an 2-complex F to the D-complex DF with components
(DF)" := D(F") = F™ ® Dx (see 7.11.8) and the differential defined by
formula d(a) := dp o a (here a € D(F™) = Diff(Ox, F™)). This functor

admits a right adjoint functor

(353) Q: O(X,D) — C(X,Q)
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which may be described explicitely as follows. For a subscheme Y C X we
have the D-complex DRy := D(Qy ). It is also a left DG Qy-module. Now
for a D-complex M one has QM = lingom(DRy, M) = |JHom(DRy, M).

Lemma 7.2.4 remains true as well as its proof. As in 7.2.5 we have the
cohomology functor Hy, : C(X,Q) — M(X), Hp(F) = H (DF'), and the
corresponding notion of D-quasi-isomorphism. The adjunction morphisms

for D, Q) are quasi-isomorphism and D—quasi—isomorphism*).

7.11.14. We say that an O'-complex or ©'-module has quasi-compact
support if it vanishes on the complement to some closed subscheme. Same
definition applies to D- and (2-complexes. We mark the corresponding
categories by lower ”¢” index. The functors D and () preserve the
corresponding full DG subcategories C.(X,Q) C C(X,Q), C.(X,D) C
C(X,D).

In order to ensure that our derived categories are the right ones (i.e.,
that they have nice functorial properties) we assume in addition that the
diagonal morphism X — X x X is affine (cf. 7.3.1). For example, it suffices
to assume that X is separated.

Denote by D(X, Q) the homotopy category of C.(X, Q) localized with
respect to quasi-isomorphisms; this is a t-category with core M.(X,O).
We define D(X, D) (assuming that X is formally smooth of ind-finite type)
in the similar way; this is a t-category with core M (X). Let D(X, Q) be
localization of the homotopy category of C.(X, 2) by D-quasi-isomorphisms.
The functors D and (2 yield canonical identification of D(X, D) and D(X, ),

so, as usual, we denote these categories thus identified simply D(X )*).

“)The fact that de Rham complexes of D-modules are not bounded from below does

not spoil the picture.

“)To get a t-category with core M(X) one may consider complexes which are unions
of subcomplexes with quasi-compact support; however to ensure the good functorial
properties of this category one has to assume that X satisfies certain extra condition
(e.g., that there exists a formally smooth surjective morphism Y — X such that Y is ind-

affine). The category formed by all complexes has unpleasant homological and functorial
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We say that an O@'-module F with quasi-compact support is loose if for
any closed subscheme Y C X such that F is supported on Y and a flat
OP-module P on Y one has H*(X,P® F) = 0 for a > 0. An O D- or
Q-complex F is loose if each @'-module F* is loose. One has the following

lemma parallel to 7.3.8:

7.11.15. Lemma. i) For any F' € C.(X,Q) there exists a D-quasi-
isomorphism F’ — F such that F is loose and the supports of F, F’ coincide.
(ii) If f: X — X' is a formally smooth affine morphism of ind-schemes

then the functors
fo: Co(X',Q) = Ce(X,9Q), f.: Co(X,Q) — Co(X', Q)

send loose complexes to loose ones.
(iii) If Fy, Fy are loose complexes on X, X9 then Fy X F» is a loose -

complex on X; x Xo.
Proof. Modify the proof of 7.3.8 in the obvious way. O

We see that one can define the derived category D(X) using loose

complexes.

7.11.16. Any morphism f: X — Y of ind-schemes yields the push-forward
functor f. : C(X,Q) — C(Y,) which preserves the subcategories C..
We leave it to the reader to check that f. preserves D-quasi-isomorphisms
between loose complexes with quasi-compact support (cf. 7.3.9, 7.3.11(ii)).
Thus the right derived functor Rf. = f. : D(X) — D(Y) is well-defined:
one has f,F = f.F if F is a loose complex with quasi-compact support.
Since f. sends loose complexes to loose ones we see that f, is compatible

with composition of f’s.

properties. Notice that the usual remedy - to consider only 2-complexes bounded from
below - does not work here (the de Rham complexes of D-modules do not satisfy this

condition).
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For M € D(X,D) denote by Mo € D(X,0) same M considered as a

complex of @'-modules. One has a canonical integration morphism
iy Rf-(Mo) — (fsM)o
in D(Y, Q) defined as in 7.2.11. It is compatible with composition of f’s.

7.11.17. Let us define the Hecke monoidal category H as in 7.6.1. We
start with an ind-affine group ind-scheme G and its affine group subscheme
K C G. We assume that G/K (the quotient of sheaves with respect to fpqc
topology) is a ind-scheme of ind-finite type; it is automatically formally
smooth and its diagonal morphism is affine. Clearly G is a reasonable ind-
scheme, and K is its reasonable subscheme. Consider the DG category H¢
of (K x K)g-equivariant Q'-complexes on G with quasi-compact support
(see Remark (i) in 7.11.12). By descent such a complex is the same as a
Kq-equivariant admissible Q'-complex either on G/K or on K \ G. The
corresponding notions of D-quasi-isomorphism are equivalent. Our H is the
corresponding D-derived category.

The constructions of 7.6.1 make perfect sense in our setting. Thus H¢ is

a DG monoidal category, and H is a triangulated monoidal category.

7.11.18. Assume that we have a scheme Y equipped with a G-action such
that there exists an increasing family Uy C Uy C ... of open quasi-compact
subschemes of Y = |JU; with property that for some reasonable group
subscheme K; C G the action of K; on U; is free and K; \ U; is a smooth
scheme (in particular, of finite type). Then the stack B = K \ Y is smooth
(it has a covering by schemes (K; N K) \ U;). The diagonal morphism for B
is affine, so we may use the definition of D(B) from 7.3.12.

To define the H-Action on D(B) you proceed as in 7.6.1 with the
following modifications that arise due to possible non-quasi-compactness
of Y and G. We may assume that the above U;’s are K-invariant; set
B; = K\ U; C B. Take loose Q-complexes F' = UF,, € Co(K \ G/K,Q) (so
the supports S, of F,, are quasi-compact) and T' € C(B.,Q). Let j(n,i) be
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an increasing (with respect to both n and i) sequence such that S, 1.U; C
Uj(n,i)- Consider the Q-complexes (F,, ®T); := my,-py.q(Fn X Tji)|s;
and (F, ® T); := my,-py.q(Fn ® Tjmi1,4))s, on B;. There are the obvious
morphisms (F, ®T); — (F41 ®T);i, (F, ®T); — (F, ®T);; the latter is a
quasi-isomorphism. Set (F®T); := Cone(®(F, ®T); — O(F, ®T);) where
the arrow is the (componentwise) difference of the above morphisms. These
(F®T); form in the obvious manner an object F®T € C(B,). We leave
it to the reader to check that FF®T as an object of D(B) does not depend
on the choice of the auxiliary data (of U; and j(n,i)), and that ® is an

H-Action on D(B).

7.12. Ind-schemes and Mittag-Lefler modules. Raynaud and Gruson
[RG] introduced a remarkable notion of Mittag-Leffler module. In this
section we show that the notion of flat Mittag-Leffler module is, in some
sense, a linearized version of the notion of formally smooth ind-scheme of
ind-finite type (see 7.12.12, 7.12.14, 7.12.15). Using the fact that countably
generated flat Mittag-Leffler modules are projective we describe formally
smooth affine Ry-formal schemes of ind-finite type (see 7.12.22, 7.12.23).

The reader can skip this section because its results are not used in the rest
of this work (we include them only to clarify the notion of formally smooth
ind-scheme).

4

In 7.11 we assumed that “ind-scheme” means “ind-scheme over C” (this

did not really matter). In this section we prefer to drop this assumption.

7.12.1. Let A be a ring®). Denote by C the category of A-modules of finite
presentation. According to [RG], p.69 an A-module M is said to be a Mittag-
Leffler module if every morphism f : FF — M, F' € C, can be decomposed as
F5G — M, G € C, so that for every decomposition of f as FgG’ — M,

G’ € C, there is a morphism ¢ : G’ — G such that u = pu'.

“)We assume that A is commutative but in 7.12.1-7.12.8 this is not essential (one only

has to insert in the obvious way the words “left” and “right” before the word “module”).
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7.12.2. Suppose that M = hﬂ)lMi, 1 € I, where [ is a directed ordered set
and M; € C. According to loc.cit, M is a Mittag-Leffler module if and only
if for every ¢ € I there exists j > i such that for every k > i the morphism
uij » M; — M; can be decomposed as @;;pu ), for some @5, @ Ff, — Fj. A
similar statement holds if I is a filtered category; if I is the category of all
morphisms from objects of C to M and F; € C is the source of the morphism

7 then the above statement is tautological.

7.12.3.  The above property of inductive systems (M;), M; € C, makes sense
if C is replaced by any category C'. If C’ is dual to the category of sets, i.e., if
we have a projective system of sets (E;, u;; : E; — E;) one gets the Mittag-
Leffler condition from EGA Oy 13.1.2: for every i € I there exists j > i
such that w;;(E;) = up(Ey) for all k& > j.

This condition is satisfied if and only if the projective system (E;, u;j)
is equivalent to a projective system (Ea,ﬂag) where the maps u,g are
surjective. To prove the “only if” statement it suffices to set E; = ui;j (Ej)

for j big enough.

7.12.4. Suppose that M = liLnMi, M; € C. According to [RG] M is
a Mittag-Leffler module if and only if for any contravariant functor ®
from C to the category of sets the projective system (®(N/;)) satisfies the
Mittag-Leffler condition (to prove the “if” statement consider the functor
®(N) = Hom(N, [] M;) or ®(N) = | JHom(N, M;) ).

Assume that M is flat. Set M :ZHom(Mi,A). According to [RG] M is
a Mittag-Leffler module if and only if the projective system (M) satisfies
the Mittag-Leffler condition. This is clear if the modules M; are projective.
The general case follows by Lazard’s lemma (there is an inductive system

equivalent to (M;) consisting of finitely generated projective modules).

7.12.5. Consider the following two classes of functors from the category of

A-modules to the category of abelian groups:
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1) For an A-module M one has the functor
(354) L— L®s M,

2) For a projective system of A-modules N; (where ¢ belong to a directed

ordered set) one has the functor

(355) L + lim Hom(N;, L)
i

7.12.6. Proposition. (i) The functor (354) is isomorphic to a functor of the
form (355) if and only if M is flat.

(ii) The functor (354) is isomorphic to the functor (355) corresponding to
a projective system (NN;) with surjective transition maps N; — N;, i < j, if
and only if M is a flat Mittag-Leffler module.

(iii) The functor (355) corresponding to a projective system (N;) with
surjective transition maps N; — N;, @ < j, is isomorphic to a functor of the
form (354) if and only if the functor (355) is exact and the modules N; are

finitely generated.

Proof. If (354) and (355) are isomorphic then (354) is left exact, so M is
flat. If M is flat then by Lazard’s lemma M = h_n)lPZ where the modules P;
are projective and finitely generated, so the functor (355) corresponding to
N; = P} is isomorphic to (354).

We have proved (i). To deduce (ii) from (i) notice that for P, as above
the projective system (P;") is equivalent to a projective system (INV;) with
surjective transition maps N; — Nj if and only if (P;) satisfies the Mittag-
Leffler condition (see 7.12.3).

To prove (iii) notice that functors of the form (354) are those additive
functors which are right exact and commute with infinite direct sums (then
they commute with inductive limits). A functor of the form (355) is right

exact if and only if it is exact. If the modules N; are finitely generated then

(355) commutes with infinite direct sums. If the transition maps N; — N;
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are surjective and (355) commutes with inductive limits then the modules

N; are finitely generated. O

7.12.7. According to 7.12.6 a flat Mittag-Leffler module is “the same as”
an equivalence class of projective systems (NN;) of finitely generated modules
with surjective transition maps N; — N;, i < j, such that the functor (355)
is exact. More precisely, M = lim Hom(N;, A) (then the functors (354) and
i

(355) are isomorphic).

7.12.8. Theorem. (Raynaud-Gruson). (What about D.Lazard? according
to [RG], p.73 the idea goes back to Theorems 3.1 and 3.2 from chapter I of
D.Lazard’s thesis in Bull.Soc.Math.France, vol.97 (1969), 81-128; see also
D.Lazard’s work in Bull.Soc.Math.France, vol.95 (1967), 95-108)

The following conditions are equivalent:

(i) M is a flat Mittag-Leffler module;
(ii) every finite or countable subset of M is contained in a countably
generated projective submodule P C M such that M/P is flat;
(iii) every finite subset of M is contained in a projective submodule P C M

such that M/P is flat.

In particular, a projective module is Mittag-Lefler and a countably

generated® flat Mittag-Leffler module is projective.

The implication (iii)=-(i) is easy. (It suffices to show that if F' and F’ are
modules of finite presentation and ¢ : F' — F’, ¢ : F/ — M are morphisms
such that 1(F) C P then there exists ¢ : ' — M such that ¥(F') C P
and 1o = p; use the fact that Hom(L, M) — Hom(L, M/P) is surjective
for every L of finite presentation, in particular for L = Coker ).

The implication (i)=-(ii) is proved in [RG], p.73-74. The key argument
is as follows. Suppose we have a sequence P, — P> — ... where P, Ps, ...

are finitely generated projective modules and the projective system (P})

*)The countable generatedness assumption is essential; see 7.12.24.
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satisfies the Mittag-Leffler property. To prove that P := limP; is projective
one has to show that for every exact sequence 0 — N’ — N — N” — 0 the

map Hom (P, N) — Hom(P, N”) is surjective. For each i the sequence
0—-P 9N —-P'@N—P'@N'"—0

is exact and the problem is to show that the projective limit of these
sequences is exact. According to EGA Oy 13.2.2 this follows from the
Mittag-Leffler property of the projective system (P ® N’).

Remark.  If the set of indices i were uncountable we would not be able*)

to apply EGA Oypp 13.2.2.

Here is another proof of the projectivity of P (in fact, another version
of the same proof). Denote by f; the map P; — P;;1. The Mittag-Leffler
property means that after replacing the sequence {P;} by its subsequence
there exist g; : Pi+1 — P; such that g;11 fi+1fi = fi. Set P := € P;. Denote
by f:P — P and g: P — P the operators induced by the f; ;nd gi;- Then

gf? = f. We have the exact sequence
1-f
0—-P—P—-=P—0

Since P is projective it suffices to show that this sequence splits, i.e., there
is an h : P — P such that h(1 — f) = 1. Indeed, set h =1 — (1 —g)"lgf
and use the equality gf? = f.*)

“)The argument from EGA Orrp 13.2.2 is based on the following fact: if a projective
system of non-empty sets (Y;)ier parametrized by a countable set I satisfies the Mittag-
Leffler condition then its projective limit is non-empty. This is wrong in the uncountable
case. For instance, consider an uncountable set S, for every finite F' C A denote by Yr

the set of injections F' — N; the maps Yz — Yr, F' D F, are surjective but lim Y = 0.
F
“)D.Arinkin noticed that it is clear a priori that if f and g are elements of a (non-

commutative) ring R such that gf> = f and 1 — g has a left inverse then 1 — f has a left
inverse. Indeed, denote by 1 the image of 1 in R/R(1 — f). Then f1 =1, gf*1 = g1, so
gl =1 and therefore 1 = 0.
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7.12.9. Proposition. Let B be an A-algebra. If M is a Mittag-Leffler A-
module then B ® 4 M is a Mittag-Leffler B-module. If B is faithfully flat

over A then the converse is true.

This is proved in [RG]. The proof is easy: represent M as an inductive
limit of modules of finite presentation and use 7.12.2.
So the notion of a Mittag-Leffler O-module on a scheme is clear as well

as the notion of Mittag-Leffler OP-module on an ind-scheme.

7.12.10. Proposition. A flat Mittag-Leffler O-module F of countable type
on a noetherian scheme S is locally free. If S is affine and connected, and
F is of infinite type then F is free.

This is an immediate consequence of 7.12.8 and the following result.

7.12.11. Theorem. If R is noetherian and Spec R is connected then every

nonfinitely generated projective R-module is free.

This theorem was proved by Bass (see Corollary 4.5 from [Ba63]).

7.12.12. Proposition. Let X be a formally smooth ind-scheme of ind-finite
type over a field. Then the OP-modules ©x, Dx, D;x (see 7.11.8) are flat
Mittag-Leffler modules.

Proof. Let us prove that the restriction of Dx to a closed subscheme Y C X
is a flat Mittag-Leffler Oy-module (the same argument works for © x and
D;x). We can assume that Y is affine (otherwise replace X by X \ F for a
suitable closed F' C Y'). According to 7.12.6 it suffices to prove that

(i) The functor L — L ® Dx defined on the category of Oy-modules is
exact,

(ii) it has the form (355) where the Oy-modules N; are coherent.

By definition, L ® Dx is the sheaf D(L) defined by (349). So (ii) is clear.
We have proved (i) in 7.11.8. O
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7.12.13. Proposition. Let X be a formally smooth Ny-ind-scheme of ind-
finite type over a field, ¥ C X a locally closed subscheme. Then the
restriction of O@x to Y is locally free. If Y is affine and connected, and

the restriction of ©x to Y is of infinite type then it is free.
This follows from 7.12.12 and 7.12.10.

7.12.14. Proposition. Let A be a ring, M an A-module. Define an
“A-space” Fyr (i.e., a functor from the category of A-algebras to that of
sets) by Fiyf(R) = M ® R. Then F) is an ind-scheme if and only if M is a
flat Mittag-Lefller module. In this case F)y is formally smooth over A and

of ind-finite type over A.

Proof. If M is a flat Mittag-Leffler module then by 7.12.6(ii) Fjs is an ind-
scheme and by 7.12.6(iii) it is of ind-finite type over A. Formal smoothness
follows from the definition. Now suppose that F)j; is an ind-scheme.
Represent F); as liLnSi where the S; are closed subshemes of Fj; containing
the zero section 0 € Fjs(A). Denote by N; the restriction of the cotangent
sheaf of S; to 0 : Spec A < S;. Then the functor (355) is isomorphic to
(354), so by 7.12.6(ii) M is a flat Mittag-Leffler module. O

Remark. If M is an arbitrary flat A-module then M is an inductive
limit of a directed family of finitely generated projective A-modules M;,
so Fy = hi)nF M, is an ind-scheme in the broad sense (the morphisms
Fp; — F; are not necessarily closed embeddings). It is easy to see that if

Fs is an ind-scheme in the broad sense then M is flat.

7.12.15. Proposition. Let (N;);er be a projective system of finitely generated
A-modules parametrized by a directed set I such that all the transition maps

Nj — N, j > i, are surjective. Set A(N;) := Spec Sym(NN;), S := lim A(N;).
i
The ind-scheme S is formally smooth over A if and only if S is isomorphic

to the ind-scheme Fj; from 7.12.14 corresponding to a flat Mittag-LefHer
module M.
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Proof. S is formally smooth if and only if the functor (355) is exact (apply
the definition of formal smoothness to A-algebras of the form A®J, A-J C J,
J? =0). Now use 7.12.6(iii). O

7.12.16. Proposition. Let M be a flat Mittag-Lefller module, Fj; the ind-

scheme from 7.12.14. The following conditions are equivalent:

(i) the pro-algebra corresponding to Fjs (see 7.11.2(i) ) is a topological
algebra;
(ii) M is a strictly Mittag-Leffler module in the sense of [RG].

According to [RG], p.74 a module M is strictly Mittag-Leffler if for every
f:F — M, F e€C(C, there exists u : F — G, G € C, such that f = gu and
u = hf for some g : G — M, h: M — G (recall that C is the category of
modules of finite presentation). If M = li_n}Mi, M; € C, and u;; : M; — Mj,
u; : M; — M are the canonical maps then M is strictly Mittag-LefHler if
and only if for every i there exists j > ¢ such that u;; = ¢;ju; for some
wij + M — M;. Clearly a projective module is stritly Mittag-Leffler and
a strictly Mittag-Lefller module is Mittag-LefHer. The converse statements

are not true in general (see 7.12.24).

Proof. Represent M as limP; where the modules P; are finitely generated
and projective. Set N; := Im(P} — P;) where j is big enough. Consider
the following conditions:

(a) the maps ¢; : lim Sym(N,) — Sym(N;) are surjective;
T

(b) Imp; D N; for every i;

(¢) the map lim N, — N; is surjective for every i;
T

(d) for every i there exists j > i such that the images of Hom(M, A) and
Hom(Pj, A) in Hom(P;, A) are equal.
Clearly (i)e(a)e(b)e(c)<(d). For i < j consider the maps u;; : P; —
Pj and u; : P, — M. To show that (d)<(ii) it suffices to prove that the
images of Hom(M, A) and Hom(P;, A) in Hom(F;, A) are equal if and only
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if u;; = @u; for some ¢ : M — P;. To prove the “only if” statement notice
that the images of Hom(M, P;) and Hom(P;, Pj) in Hom(F;, Pj) are equal
and therefore the image of id € Hom(P;, P;) in Hom(FP;, P;) is the image of
some ¢ € Hom(M, P;). O

7.12.17. Before passing to the structure of formally smooth affine No-
ind-schemes let us discuss the relation between the definition of formal
scheme from 7.11.1 and Grothendieck’s definition (see EGA I). They are
not equivalent even in the affine case. A formal affine scheme in our sense
is an ind-scheme X that can be represented as hngpec R, where (R,) is a
projective system of rings such that the maps ung : Rg — Ra, 3 > «, are
surjective and the elements of Ker u,g are nilpotent. Grothendieck requires

the possibility to represent X as lim Spec R, so that the maps

(356) @Rg — R,
B

are surjective®) and the ideals Ker uqag are nilpotent. A reasonable
Nop-formal scheme in our sense is a formal scheme in the sense of
EGA 1. A quasi-compact formal scheme in Grothendieck’s sense having a
fundamental system of “defining ideals (English?)” (“Idéaux de définition”;
see EGA 110.5.1) is a formal scheme in our sense; in particular, this is true
for noetherian formal schemes in the sense of EGA 1.

Since we are mostly interested in affine Rg-formal schemes of ind-finite
type over a field the difference between our definition and that of EGA I is

not essential.

7.12.18. Proposition. Let X be a formally smooth Ny-ind-scheme of ind-
finite type over A, S C X a closed subscheme such that S — Spec A is

“)This is stronger than surjectivity of Uag; €.g., if M is a flat Mittag-Leffler A-module
that is not strictly Mittag-Leffler then the arguments from 7.12.6 show that the completion

of Fir along the zero section cannot be represented as lim Spec R, so that the maps (356)

are surjective.
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an isomorphism. Suppose that X;oq = Speq (in particular, X is a formal
scheme). Let M denote the A-module of global sections of the restriction
of the relative tangent sheaf ©x,4 to S. Then M is a countably generated
projective module and (X,S) is isomorphic to the completion F v of the

ind-scheme F; (see 7.12.14) along the zero section.

Remark. ~ The OP-module ©x,/4 on a formally smooth ind-scheme X of
ind-finite type over A is defined just as in the case A = C (see 7.11.8,
7.11.7).

Proof. Just as in 7.12.12 one shows that M is a flat Mittag-Leffler module.
The Ry assumption implies that M is countably generated. By 7.12.8 M is
projective.

Represent X as thX”’ n € N, where the X,, are closed subschemes of
X containing S such that X,, € X, 1. Let X() be the first infinitesimal
neighbourhood of S in X, i.e., X ig the union of the first infinitesimal
neighbourhoods of S in X,, n € N. Clearly X(!) = FJS) :=the first
infinitesimal neighbourhood of 0 € Fj;. The embedding X Ny W can be
extended to a morphism ¢ : X — Fur (to construct ¢ define ¢, : X,, — Fur
so that ¢, |x, , = ¢n—1 and the restriction of ¢,, to X,,NX @ is the canonical
embedding X,N X" <« F ]E/}); this is possible because F v 1s formally smooth
over A). Quite similarly one extends the embedding FJS) = XM < X to
a morphism v : F v — X. Since ¢ and 1 induce isomorphisms between
FJS) and XM we see that ¢ and ¢ are ind-closed embeddings and 1) is an

isomorphism. So ¢ and ¢ are isomorphisms. ]

7.12.19. Ezample. We will construct a pair (X, .S) satisfying the conditions
of 7.12.18 except the Ry assumption such that (X, .S) is not A-isomorphic to
a formal scheme of the form ﬁM.

Suppose we have a nontrivial extension of flat Mittag-Lefller modules

(357) 0—-N —N-—L—0.
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Such extensions do exist for “most” rings A; see 7.12.24(b, a”, d). After
tensoring (357) by A[t] we get the extension 0 — N'[t] — N[t] — L[t] — 0.
Multiplying this extension by ¢ we get 0 — N'[t] — @ — L[t] — 0. The ind-
scheme F is formally smooth over A[t] and therefore over A. Let S C Fg be
the image of the composition of the zero sections Spec A — Spec A[t] — Fg.
Denote by X the completion of Fp along S.

Before proving the desired property of (X,S) let us describe X more
explicitly. For an A-algebra R an R-point of Fg is a pair consisting of an
A-morphism A[t] — R and an element of @ ®4p R. In other words, an
R-point of Fg is defined by a triple (n,l,t),n€e N®aR,l € L®a R, t € R,
such that

(358) w(n) =t

where 7 is the projection N ®4 R — L ®4 R.

So Fg is a closed ind-subscheme of Fiy x Fp, x Al defined by the equation
(358). Therefore X C Fiy x Fy, x Al is defined by the same equation (358)
(here Al is the completion of Al at 0 € Alb).

Now suppose that (X, .S) is A-isomorphic to F - Then M is the module
of global sections of the restriction of © x4 to S. Linearizing (358) we see

that

(359) M=Na&L®ACN®L® A.
The composition

(360) Fu =5 X & Fy x Fp x Al

is defined by a “Taylor series” » >°, ¢, where ¢, is a homogeneous
polynomial map M — N @ L @ A of degree n; clearly ¢ is the embedding
(359). Set f = pry ops where pry is the projection N ® L& A — N. Since
M = N' @& L @ A the module of quadratic maps M — N contains as a
direct summand the module of bilinear maps L x A — N, i.e., Hom(L, N).

The image of f in Hom(L, N) defines a splitting of (357) (use the fact that
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the morphism (360) factors through the ind-subscheme X C Fy x Fj, x Al

defined by the equation (358)). So we get a contradiction.

7.12.20. Proposition. Let X be a formally smooth ind-scheme over a ring
A. Suppose that one of the following two assumptions holds:

(i) X is ind-affine;

(ii) A is noetherian and X is of ind-finite type over A.
Then X is the union of a directed family of ind-closed Ng-ind-schemes

formally smooth over A.

Proof. It suffices to show that for every increasing sequence of closed
subschemes Y,, C X there is an ind-closed Ryp-ind-scheme Y C X formally
smooth over A such that Y D Y, for all n.

Suppose that X is ind-affine. Then each Y, is affine. Represent Y,, as
a closed subscheme of a formally smooth scheme V,, over A (e.g., represent
the coordinate ring of Y,, as a quotient of a polynomial algebra over A).
Let Y, C V,, be the first infinitesimal neighbourhood of Y, in V,,. Since
X is formally smooth the morphism Y,, «— X extends to a morphism
Y/

n

— Z, C X for some closed subscheme Z,, C X. Set Y,§2) = Z1U...UZ,.
Now apply the above construction to (YTEQ)) and get a new sequence (Y,§3)),
etc. The union of all Y,gk) is formally smooth over A.

If X is ind-quasicompact but not ind-affine an obvious modification of the
above construction yields an ind-closed Rgp-ind-scheme Y C X containing all
the Y, such that for any affine scheme S over A and any closed subscheme
So C S defined by an Ideal Z C Og with Z? = 0 every A-morphism Sy — Y
extends locally to a morphism S — Y. If assumption (ii) holds then this

implies the existence of a global extension. O

7.12.21.  We are going to describe formally smooth affine Ry-formal schemes
of ind-finite type over a field C' (according to 7.12.20 the general case can,
in some sense, be reduced to the Xy case). First of all we have the following

examples.
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(0) Set Ry := Clz1,...,zm][[@mtns -« Tmtn)]. Then Spf R, is a
formally smooth affine Ng-formal scheme over C.

(i) Let I C Ry, be an ideal, A := R,,,,/I. Denote by Z the sheaf of ideals
on Spf R, corresponding to I. Of course, Spf A is an affine Ny-formal
scheme of ind-finite type over C. It is formally smooth if and only if for

every u € Spf A the stalk of 7 at u is generated by some fi,..., f, € 1

such that the Jacobi matrix (gf:; (u)) has rank r.
(ii) Suppose that A is as in (i) and SpfA is formally smooth. Then
Spf Al[y1, 92, . ..]] is a formally smooth affine Ry-formal scheme of ind-

finite type over C.

In 7.12.22 and 7.12.23 we will show that every connected formally smooth
affine Ng-formal scheme of ind-finite type over a field is isomorphic to a

formal scheme from Example (i) or (ii).

7.12.22. Proposition. Let X be a formally smooth affine formal scheme of
ind-finite type over a field C such that ©x is coherent (i.e., the restriction
of Ox to every closed subscheme of X is finitely generated). Then X is

isomorphic to a formal scheme from Example 7.12.21(i).

Proof. Represent X as lim Spec A; so that for ¢ < j the morphism A4; — A;
is surjective with nilpotent kernel. The algebras A; are of finite type.
We can assume that the set of indices ¢ has a smallest element 0. Put

Ii = Ker(Ai — AQ)

Lemma. For every k € N there exists ¢; such that the morphisms

A /I — Ail/IZ-”“1 are bijective for all i > i;.

Assuming the lemma set Ay = A;/IF for i big enough, Iy =
Ker(Ayy — Ao). Clearly Aqy = Ao, Agy = A(k+1)/l(]€k+1), Iy =
I(k+1)/l(]“k+1). One has X = SpfA, A := l(iLnA(k). Choose generators
Ty,..., Ty of the algebra Ay = Ap and generators Zyii1,.-. ,Tmin
of the Ag-module [y. Lift Z1,... ,Zpmyn to T1,... ,Tmyn € A Set

Ry = Clx1, ... ,x;][[Tm+1,- -+, Tman]]- There is a unique continuous
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homomorphism f : Ry, — A such that x; — ;. Clearly f is surjective.
Moreover, f induces surjections a* — Ker(A — Ay), where a C Ry, is
the ideal generated by 41, , Tmen- S0 f is an open map. Therefore f
induces a topological isomorphism between A and a quotient of R,,,. The
proposition follows.

It remains to prove the lemma. There exists ig such that for every ¢ > ig
the morphism Spec A;, — Spec A; induces isomorphisms between tangent
spaces (indeed, since the restriction of © x to Spec Ay is finitely generated the
functor (355) corresponding to the Ag-modules N; := Q;® 4, Ap is isomorphic
to the functor L — Hom(Q), L) for some Ag-module @, so there exists iy such
that N; = N;, for i > ip). We can assume that ig = 0. Set Y; := Spec Ai/Iik
(in particular, Yy = Spec Ag). The morphisms Y, — Y; induce isomorphisms
between tangent spaces.

Represent Ag as Clzy, ... ,z,]/J and set Yy := SpecClay, ... ,zn]/J".
Since X is formally smooth the morphism Yy < X extends to a morphism
}70 — X. Its image is contained in Y;, for some ¢;. Let us show that
for © > i; the embedding v : Y;, — Y, is an isomorphism. We have the
morphism f : }70 — Y;,. On the other hand, the morphism Yy — 370
extends to g : Y, — }70. The composition vfg : Y; — Y; induces the
identity on Yy. So vfg is finite and induces isomorphisms between tangent
spaces. Therefore vfg is a closed embedding. Since Y; is noetherian a
closed embedding Y; — Y; is an isomorphism. So vfg is an isomorphism

and therefore v is an isomorphism. ]

7.12.23. Proposition. Let X be a connected formally smooth affine No-
formal scheme of ind-finite type over a field C' such that © x is not coherent
(i.e., the restriction of Ox to X,eq is of infinite type). Then X is isomorphic

to a formal scheme from Example 7.12.21(ii).

Proof. We will construct a formally smooth morphism

X — Spf Clly1,v2,---]]
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whose fiber over 0 € Spf C[[y1,y2,...]] is a formal scheme from 7.12.21(i).
Represent X as hngpec A,, n € N, so that for every n the morphism
Apt+1 — A, is surjective with nilpotent kernel. The algebras A, are of finite
type. By 7.12.13 the restriction of ©x to Spec A,, is free; it has countable
rank. This means that for every n the projective system (4, ®4,An), i > n,

is equivalent to the projective system
3 2
oA — AL — Ay

(here the map A¥*1 — A is the projection to the first k coordinates). So

after replacing the sequence (A,,) by its subsequence one gets the diagram
o Quy = Fy = Qu, - F1 — Qg

where the F), are finitely generated free A,-modules and the A,-modules
Gpn = Ker(Frq1 ®4,., Ay — F,) are also free. For each n choose a
base en1, ... ,enk, € Gn. Lift ey; to €p; € Ker(Q4,,, ®a,,, An — Fy) C
Ker(Q4,,, ®4,., An — Q4,) and represent €,; as dfy;, fni € Ker(Apqi2 —
As). Finally lift fo; to fi € A = lim A, and organize the fu;, n € N,

m
1 < ky, into a sequence @1, 2, ... . This sequence converges to 0, so one has
a continuous morphism C/[[y1,y2,...]] — A such that y; — ¢;. It induces a
morphism
(361) f:X =Y :=SpfClly1,y2,-..]]

It follows from the construction that the differential
(362) df :9x — Oy

is surjective and its kernel is coherent (indeed, it is clear that these properties
hold for the restriction of (362) to Spec Ay C X, so they hold for the

restriction to Spec 4,,, n € N).

Lemma. A morphism f: X — Y of formally smooth ind-schemes of ind-
finite type is formally smooth if and only if its differential (362) is surjective.
In this case © x/y is the kernel of (362).
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Assuming the lemma we see that (361) is formally smooth and © x/y is
coherent. So the fiber X of (361) over 0 € Y satisfies the conditions of
Proposition 7.12.22. Therefore X is isomorphic to a formal scheme from
Example 7.12.21(i). Let us show that X is isomorphic to X :=XyxY.
Indeed, since X is formally smooth over Y the embedding Xy — X extends
to a Y-morphism « : X — X. Since X is formally smooth over Y the
embedding Xy — X extends to a Y-morphism 3 : X — X. Both « and 16}
are ind-closed embeddings (if a morphism v : Y — Z of schemes of finite type
induces an isomorphism Y;eq — Z;q and each geometric fiber of v is reduced
then v is a closed embedding). The Y-morphism fa : Xg x Y — Xy x Y
induces the identity over 0 € Y, so B« is an isomorphism. Therefore oo and
0 are isomorphisms, so we have proved the proposition.

The proof of the lemma is standard. The statement concerning Oy /y
follows from the definitions. To prove the first statement take an affine
scheme S with an Ideal Z C g such that 72 = 0 and let Sy C S be
the subscheme corresponding to Z. For a morphism v : Sy — X denote
by Ex(S,Z,¢) (resp. Ey(S,Z,)) the set of extensions of 1 (resp. of
fv) to a morphism S — X (resp. S — Y). Formal smoothness of f
means that f, : Ex(S,Z,v) — Ey(S,Z,%) is surjective for all S, Z, ¢ as
above. Since X and Y are formally smooth Ex(S,Z,v) and Ey(S,Z,v)
are non-empty. According to 16.5.14 from [Gr67] they are torsors (i.e., non-
empty affine spaces) over Vx (S,Z, ) := Hom(¢*Qx,Z) = I'(So,v*Ox @ 1)
and Vy(S,Z,¢) = T'(Sp,v*f*Oy ® Z). The map f, is affine and the
corresponding linear map I'(Sp, p*Ox ®Z) — I'(Sp, ¥* f*Oy ®7) is induced
by (362). So the first statement of the lemma is clear. O

7.12.24. Ezamples of Mittag-Leffler modules.

(a) According to [RG], p.77, 2.4.1 for every noetherian A and projective A-
module P the A-module P* := Homy (P, A) is strictly Mittag-Leffler
and flat. To prove that P* is strictly Mittag-Leffler one can argue
as follows: for any f : FF — P* with F of finite type the image of
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f*:+ P — F* is generated by some ly,...,l, € F*; the [; define
u : F — A" such that f = gu and v = hf for some g : A" — P*,
h:P*— A"

In particular, if A is noetherian then for every set I the A-module
A is strictly Mittag-Leffler and flat.
It is well known that if A is a Dedekind ring and not a field then A’ is
not projective for infinite I. Indeed, we can assume that I is countable.
Fix a non-zero prime ideal p C A and consider the submodule M of
elements a = (a;) € A! such that a; — 0 in the p-adic topology. If A’
were projective the localization M, would be free. Since M /pM has
countable dimension M, would have countable rank. But M contains
a submodule isomorphic to A!, so (A”), would have countable rank.
This is impossible because the dimension of (A7), /p - (A7), = (A/p)!
is uncountable.
Suppose that A is finitely generated over Z or over a field®). If A is
not Artinian and I is infinite then A’ is not projective: use (a’) and
the existence of a Dedekind ring B finite over A.
If L is a non-projective flat Mittag-Leffler module then there exists a
non-split exact sequence 0 — N’ — N — L — 0 where N and N’ are
flat Mittag-Leffler modules. Indeed, if N is a projective module and
N — L is an epimorphism then it does not split and Ker(N — L) is
Mittag-Leffler ([RG], p.71, 2.1.6).
It is noticed in [RG] that if

O—>Ai>M/—>M—>O

is a non-split exact sequence of A-modules and M is flat and Mittag-
Leffler then M’ is Mittag-Leffler but not strictly Mittag-Leffler. Indeed,
if M’ were strictly Mittag-Leffler then there would exist a module G of

finite presentation and a morphism u : A — G such that f = gu and

“)We do not know whether it suffices to assume A noetherian.
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u = hf for some g: G — M', h: M" — G. Since M is a direct limit of
finitely generated projective modules one can assume that Im g C Im f.
Then gh would define a splitting of (363), i.e., one gets a contradiction.

Here is another argument. The fiber of Fs over 0 € Fjy is a closed
subscheme of Fj; canonically isomorphic to Spec A x Al; if (363) is
non-split then the projection Spec A x A — A! cannot be extended to
a function Fyy — A', so by 7.12.16 M’ is not strictly Mittag-Leffler.

(d) Let A be a Dedekind ring which is neither a field nor a complete local

ring. Then according to [RG], p.76 there is a non-split exact sequence
(363) such that M is a flat strictly Mittag-Leffler A-module. Here
is a construction. Let K denote the field of fractions of A. Fix a
non-zero prime ideal p C A and consider the completions le\p, I?p;
then A\p #+ A, I?p # K. Denote by M the module of sequences (ay,)
such that a, € p~™ and (a,) converges in I?p; we have the morphism
lim: M — IA(p. Notice that M is a strictly Mittag-Lefler module®).
Indeed, according to (a) above [[.7, p~" is strictly Mittag-Leffler and
(IT,2yp™™) /M is flat, so M is strictly Mittag-Leffler. We claim that
Ext(M,A) # 0, i.e., the morphism ¢ : Hom(M, K) — Hom(M, K/A)
is not surjective. More precisely, let [ : M — K /A be the composition
of lim : M — IA{p and the morphisms I/(\'p — IA(p///l\p — K/A. We will
show that [ ¢ Im ¢.

Suppose that [ comes from I : M — K. The restriction of [ to
p~"™ C M defines ¢, € Hom(p~™, A) = p”. Then I = I’ where
f:M—>Kp maps (a,) € M to

o0
(364) Z CnGn + nhl& Q-

n=1

“)The fact that M is a Mittag-Leffler module is clear: A is a Dedekind ring, M is
flat, and for every finite-dimensional subspace V C M ® K the module V N M is finitely

generated
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Indeed, ' —1is a morphism M /M, — //l\p where My is the set of
(an) € M such that a, = 0 for n big enough; on the other hand,
Hom(M /My, A,) = 0 because M/Mj is p-divisible (i.e., pM + My =
M). Since I = [ the expression (364) belongs to K C I?p for every
sequence (a,) € M. This is impossible (consider separately the case
where the number of nonzero ¢,’s is finite and the case where it is

infinite).

Remark. In (d) we had to exclude the case where A is a complete local

ring. The true reason for this is explained by the following results:

1) according to [J] if A is a complete local noetherian ring, M is a flat A-
module, and N is a finitely generated A-module then Ext(M, N) = 0;
2) according to [RG] (p.76, Remark 4 from 2.3.3) if A is a projective limit
of Artinian rings (is this the meaning of the words “linearly compact”
from [RG|?) then every (flat?) Mittag-Leffler A-module is strictly
Mittag-Leffler. (In [RG] there is no flatness assumption, but is their
argument correct without this assumption? e.g., why the F; from [RG]

are linearly compact?)

7.13. BRST basics. The BRST construction is a refined version of
Hamiltonian reduction; it is especially relevant in the infinite-dimensional
setting. In the main body of this article we invoke BRST twice: first to
define the Feigin-Frenkel isomorphism and then to construct the localization
functor LA used in the proof of the Hecke property. In this section we give
a brief account of the general BRST construction; the functor LA is studied
in the next section.

The usual mathematical references for BRST are [F84], [FGZ86], [KS],
and [Ak]. We tried to write down an exposition free from redundand
structures (such as Z-grading, normal ordering, etc.).

We start with the finite-dimensional setting. Then, after a digression

about the Tate central extension, we explain the infinite-dimensional version.
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7.13.1. Let F be a finite-dimensional vector space. Denote by Cl" = Clp
the Clifford algebra of F' @ F* equipped with the grading such that F' has
degree -1 and F* has degree 1. We consider Cl" as an algebra in the tensor
category of graded vector spaces®. Set Cl; := AS'F-AF* C CI'. Then
Cly = A'F* C Cl} C ... is a ring filtration on Cl'. The classical Clifford
algebra Cl" = Cl} := grCl' is commutative (as a graded algebra), so it is
a Poisson algebra in the usual way. Set Cl; := gr; ClI'. The commutative
graded algebra Cl" is freely generated by F = Cll_1 and F* = CI}. The
Poisson bracket {, } vanishes on F' and F*, and for f € F, f* € F* one has
{17} = £ ().

The subspace Cl? is a Lie subalgebra of Cl; it normalizes F' and F* and
the corresponding adjoint action identifies it with Endp and Endg+. Let
EMe = End%® be End considered as a Lie algebra. Then E” = End := CIY
is a central extension of E™€ by C.

Remarks. (i) The action of Cl on AF*=Cl/Cl-F identifies it with
the algebra of differential operators on the “odd” vector space F°%. The
filtration on Cl is the usual filtration by degree of the differential operator,
so Cl is the Poisson algebra of functions on the cotangent bundle to F°4,

(i) (valid only in the finite-dimensional setting) The extension End}. splits
(in a non-unique way). Indeed, we have splittings s’,s” : EM¢ — E’ which
identify E™¢ with, respectively, F*-F and F-F*. Any other splitting equals
sy = As' 4+ (1 — \)s” for certain A € C. For example sy, is the “unitary”
splitting which may also be defined as follows. Notice that Cl carries a
canonical anti-automorphism (as a graded algebra) which is identity on F

)

and F*. It preserves Cl(l], and the “unitary” splitting is the -1 eigenspace.

7.13.2. Here is the “classical” version of the BRST construction. Let n be a
finite-dimensional Lie algebra, R a Poisson algebra, ¢ : n — R a morphism
of Lie algebras®. Set Cl' := Cl,. The adjoint action of n yields a morphism

“)with the “super” commutativity constraint.

*)4e” for “classical”.
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of Lie algebras a¢ : n — CIY. Set A" := Cl' ® R; this is a Poisson graded
algebra. It also carries an additional grading A'(i) := Cl; ®R compatible with
the product (but not with the Poisson bracket). We have the morphism of
Lie algebras Lie : n — A% n — Lie, := a‘(n) ® 1 + 1 ® [(n). Below for
n € n we denote by ¢ the corresponding element of Cll_1 C .A(_ﬁ One has
{Lien,,i5,} = i[cnhm].

The following key lemma, as well as its “quantum” version 7.13.7, is due

essentially to Akman [AK].

7.13.3. Lemma. There is a unique element Q¢ = Q% € A! such that for any
n € n one has {Q°,i¢} = Lie,. In fact, Q° € A%g). One has {Q°, Q°} = 0.

Proof. Let us consider A as a An-module where n € n = A'n acts as
Adie = {if,,-}. The subspace of elements killed by all Ad;:’s (i.e., the
centralizer of n C “4(_1%) equals An ® R. This is a subspace of A=, so the
unicity of Q¢ is clear. Our An-module is free, so the existence of Q¢ follows
from the fact that the map ni,no — {Liey,, i, } is skew-symmetric. Our
Q° belongs to A%gl) since Lie, € ‘A?Sl)’ Finally, since {Q¢ Q°} € A%
to check that it vanishes it suffices to show that Ad; Adic, ({Q°, Q°}) = 0
for any n,n’ € n. Indeed, Adi; Adie,({Q%,Q°}) = 2A4d;s ({Lien, Q}) =
2{if, 1, Q°} + 2{Liey, Lien} = 0. O

c
[n,n’

Remark. Denote by ny, the Lie graded algebra whose non-zero components
are n{,l =n, n% =n, né = C = C-Q, the Lie bracket on n% coincides with
that of n, the adjoint action of n% on ngl is the adjoint action of n, and the
operator Adg : n(;l — n% is idn. So ng equipped with the differential Adg
is a Lie DG algebra®. Then 7.13.3 says that there is a canonical morphism
of Lie graded algebras Lie : ne, — A" whose components are, respectively,

n — i, n— Lie,, Q— Q°.

“)Notice that no /nb is the Lie DG algebra ng from 7.6.3.
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7.13.4. Set d:= Adge = {Q¢,-}. This is a derivation of A" of degree 1 and
square 0. Thus A is a Poisson DG algebra; it is called the BRST reduction
of R. The morphism Lie : no — A is a morphism of Lie DG algebras.

One says that the BRST reduction is reqular if H*A = 0 for i # 0.

It is easy to see that Q¢ = Q1 + Q¢ where Q)1 € A%l) =n®A’n* @R and
Qo € ‘A%o) = n*®R are, respectively, the image of %ac € Hom(n,ClY) =n*®
ClY ¢ A'®.AY by the product map, and [ € Hom(n, R) = .A%l). Decomposing
the differential by the bigrading we see that A is the total complex of the
bicomplex with bidifferentials d’ : Aé H .A’J)l, d": .Al(' H Aéﬁl).

The BRST differential preserves the filtration A(<;). In particular A =
C(n,R) is a DG subalgebra of A, hence one has a canonical morphism of

graded algebras
(365) H (n,R)— H A.

Notice that (Ai_.), d") is the Koszul complex P := A"n ® R for
I°: n— R. So A is the Chevalley complex C"(n, P) of Lie algebra cochains
of n with coefficients in P. The obvious projection P — R/RI(n) yields
an isomorphism of DG algebras A/Z = C(n, R/RI°(n)) where T C A is the
DG ideal generated by elements i, n € n. Passing to cohomology we get a

canonical morphism of graded algebras
(366) H A — H (n,R/RI(n)).
We say that [¢ is regular if H;(P) =0 for i # 0.

7.13.5. Lemma. If [¢ is regular then (366) is an isomorphism.

Proof. Regularity means that the projection P — R/RI(n) is a quasi-

isomorphism. Hence A — C"(n, R/RI°(n)) is also a quasi-isomorphism. [

Thus H'A vanish for negative i and H° A =[R/RI¢(n)]" which is the usual

Hamiltonian reduction of R with respect to the Hamiltonian action [°.
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7.13.6. Now let us pass to the “quantum” version of BRST. Let n be a
finite-dimensional Lie algebra. Set Cl' := Cl,. Denote by n’ the central
extension of n by C defined as the pull-back of End?1 by the adjoint action
morphism n — End, (see the end of 7.13.1 for the notation). In other
words, n” is a central extension of n by C equipped with a Lie algebra map
a: n’ — ClY such that a(1,) = 1*) and the action of n on CI induced by
the adjoint action on n @ n* coincides with the adjoint action by a.

Let R be an associative algebra, [ : n” — R a morphism of Lie algebras
such that I(1,) = —1. Set A" := Cl ®R; this is an associative graded
algebra. We have the morphism of Lie algebras Lie := a +1 : n — A°,

> is any lifting of n to n’. Below for

n — Lie, = a(n”) + I(n") where n
n € n we denote by %, the corresponding element of lel c A~L. One has

[Lien1 s ing] = i[n1,n2] :

7.13.7. Lemma. There is a unique element Q = Q4 € A' such that for any
n € n one has [Q,i,] = Lie,. In fact, Q@ € Cli ®R. One has Q? = 0.

Proof. Coincides with that of the “classical” version 7.13.3. O

Set d := AdQ*); this is a derivation of A of degree 1 and square 0. Thus A
is an associative DG algebra called the BRST reduction of R. As in Remark
after 7.13.3 and 7.13.4 we have a canonical morphism of Lie DG algebras
Lie : no — A with components n +— i,, n — Lie,, Q — Q4.

One says that the BRST reduction is regular if H'A = 0 for i # 0.

Denote by C'(n, R) the Chevalley DG algebra of Lie algebra cochains of n
with coefficients in R (with respect to the action Ad;). As a graded algebra
it equals A'n* ® R, so it is a subalgebra of A".

7.13.8. Lemma. The embedding C(n,R) C A is compatible with the

differentials.

“'Here 1, is the generator of C C n’.

*)Of course, we take Ad in the “super” sense, so for v € A°? one has dv = Qu + vQ.
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Proof. It suuffices to show that on R,n* C A our differential equals,
respectively, the dual to n-action map R — n* ® R and the dual to
bracket map n* — A?n*. As in the proof of unicity of Q it suffices to
check that [iy, [@,7]] = [I(n),r] and [in,, [in,, [@,n*]]] = n*([n1,n2]) for any

n,ni,ng € n,n* € n*,r € R; this is an immediate computation. O

Remark. We see that d preserves the ring filtration ClL. @ R. On
CL®R/CL_1®R=A"n* @ An®@ R = C"(n,A'n ® R) it coincides with
the Chevalley differential.

The embedding of DG algebras C'(n, R) C A yields the morphism of
graded algebras

(367) H (n,R) — H A.
In particular, since the center 3 of R lies in R", we get the morphism
(368) 3 — HYA.

7.13.9. Remark. (valid only in the finite-dimensional setting) Let I be the
left DG ideal of A generated by elements i,, n € n. The quotient complex
A/I may be computed as follows. Let n — n” be the splitting defined by
the splitting s’ from Remark (ii) in 7.13.1. Then I is generated as a plain
ideal by elements i,, and [(n), n € n. Restricting the projection A — A/I to
C(n, R), we get the isomorphism of complexes A/I = C(n, R/RI(n)) which

yields a morphism
(369) H A — H'(n,R/RI(n)).

7.13.10. Remark. Let C" be an irreducible graded Cl'-module (such C" is
unique up to isomorphism and shift of the grading). If M = (M",dy,) is an
R-complex (:= complex of R-modules) then M @ C := (M " ® C",d), where
d = dy ® idg +@Q-, is an A-complex (i.e., a DG A-module). The functor

-® C': (R-complexes) — (A-complexes) is an equivalence of categories.
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7.13.11. Let us compare the “quantum” and “classical” settings. Assume
that we are in situation 7.13.6. Let Rp C R; C ... be an increasing ring
filtration on R such that UR; = R and R := gr R is commutative. Then R
is a Poisson algebra in the usual way. We endow A with the filtration A.
equal to the tensor product of filtrations Cl. and R.. Then A := gr A equals
Cl ® R as a Poisson graded algebra. Set A; := gr; A.

Assume that I(n?) C Ry; let I° be the corresponding morphism n — R;.
Then (R,I¢) are data to define the “classical” BRST construction from
7.13.2. By 7.13.3 we have the corresponding “classical” BRST element Q°.
It is easy to see that Q € A; and Q° equals to the image of @ in A;.
Therefore the filtration A. is stable with respect to the differential, and gr A
coincides with the corresponding “classical” A as a Poisson DG algebra.
Hence we have the spectral sequence converging to H' A with the first term

EPY = HPTIA

7.13.12. Lemma. (i) Assume that [€ is regular. Then H'A = 0 for i < 0 and
gr HOA C [R/RI¢(n)]™

(ii) If, in addition, H'(n,R/RI¢(n)) = 0 for i > 0 then H'A = 0 for i # 0
and gr HYA=[R/RI¢(n)]™.

Proof. Look at the spectral sequence and 7.13.5. ]

7.13.13. One may compute the algebra H’A explicitely in the following
situation. Assume we are in situation 7.13.11 and [ : n” — R; is injective.
Denote by b’ the normalizer of [(n”) in R;. So b’ is a Lie algebra which

> and we have the embedding of Lie algebras {* : &' — R; which

contains n
extends [. Set b := b'/C, so b’ is a central extension of b by C. The
adjoint action of b yields a morphism of Lie algebras b — End,; denote by
b” the pull-back of the central extension End® (see 7.13.1). Then 1’ is a Lie
subalgebra of b°, and we have the morphism of Lie algebras a® : b° — Cl?

which extends a.
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Let b? be the Baer sum of extensions b’ and b°. By construction we have
a canonical splitting s : n — b It is invariant with respect to the adjoint
action of b, so s(n) is an ideal in b%. Set h? := b%/s(n); this is a central
extension of h := b/n by C.

Set Lie® := a® @1 +1®1° : b% — AY. This is a morphism of Lie
algebras which equals ide on C C b% Its image commutes with Q (since
all our constructions were natural), i.e., it belongs to Kerd. One has
Lie®os = Lie = doi : n — AY so Lie® yields a canonical morphism
Lie" : h* — HYA. Let U% be the twisted enveloping algebra of h that
corresponds to h%. Our Lie" yields a canonical morphism of associative

algebras
(370) h:U% — HYA.

This morphism has the obvious “classical” version h¢ : Symbh — HOA.
Its composition with the projection H'A — [R/I¢(n)R]" (see (366)) is
the obvious morphism Symbh — [R/I°(n)R]" whose restriction to b is the

composition of {® with the projection Ry — R1/Ry.

7.13.14. Lemma. Assume that [° is regular and the morphism Symbp —

[R/1°(n)R]" is an isomorphism. Then (370) is an isomorphism.

Proof. Use 7.13.12(i). O

7.13.15. Ezamples. (cf. [Ko78]) (i) We use notation of 7.13.13. Let g be
a (finite-dimensional) semi-simple Lie algebra, b C g a Borel subalgebra,
n := [b,b]. Set R := Ug and let R. be the standard filtration on R, so
R = Symg. The extension n’ trivializes canonically since the adjoint action
of n is nilpotent. Let [ : n — g C R be the obvious embedding. Then b’ is
equal to b C, so this extension is trivialized. Let us trivialize the extension
6° by means of the splitting s’ from Remark (ii) from 7.13.1. Therefore we
split the extension b?, hence U%h = Sym b.
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The conditions of 7.13.14 are valid. Indeed, [¢ is clearly regular, and
the obvious embedding i€ : Sym b < [Sym(g/n)]" is an isomorphism since n
acts simply transitively along the generic fiber of the projection (g/n)* — h*.
Therefore h : Sym b~ HCA.

Let us show that the canonical morphism (368) 3 — HYA = Sym}
is the usual Harish-Chandra morphism. The obvious embedding 4
Symbh=[R/RIl(n)]" is an isomorphism, and, by definition, the Harish-
Chandra morphism is composition of the embedding 3 <— R" and the inverse
to this isomorphism. Consider the map p : HA — [R/RI(n)]" from (369).
As follows from the definition of p one has ph = ¢ which implies our assertion.

(i) Let now ¢ : n — C be a non-degenerate character of n (we use notation

of 7.13.15 (i)). Set Ry := R[t], [ := 1+t : n — R,.

7.13.16. Let us pass to the infinite-dimensional setting. We need to fix
some Clifford algebra notation. Let F' be a Tate vector space, so we have the
ind-scheme Gr(F') (see 7.11.2(iii)). The ind-scheme Gr(F) x Gr(F) carries
a canonical line bundle A of “relative determinants”. This is a graded line

bundle equipped with canonical isomorphisms

(371) )‘(P,P”) = )\(RP/) (9 )‘(P’,P”)

and identifications \(p pry = det(P/P’) for P’ C P that satisfy the obvious
compatibilities; here we assume that det(P/P’) sits in degree — dim(P/P’).

Consider the Tate vector space F' & F* equipped with the standard
symmetric form and the Clifford algebra Cl = Clp := CI(F & F*). Let
C be an irreducible discrete Cl-module®. Since C' is unique up to tensoring
by a one-dimensional vector space®), the corresponding projective space P

is canonically defined (this is an ind-scheme). For any c-lattice P C F®A

“JHere “discrete” means that annihilator of any element of C is an open subspace of
FeF”.
“)(C is isomorphic to the fermionic Fock space lim A(F/U) ® det(P/U)* (cf. (182)),
—uU

where P is a c-lattice in F' and U belongs to the set of all c-sublattices of P.
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denote by /\g the set of elements of C'® A annihilated by Clifford operators
from P and P+ C F*®A. The A-submodule \§ C C'® A is a “line” (ie., a
direct summand of rank 1), so A® is a line subbundle of C ®@Oq(r)- It defines

a canonical embedding Gr(F') < P. There is a canonical identification
(372) Ay =Ap ® (A\p)*

compatible with (371): if P’ C P the isomorphism Appy ® 26 =G s
induced by the obvious map \(p pry = det(P/P’) — Clp / Clp -P'.

The algebra Cl carries a canonical grading such that F ¢ C171, F* ¢ ClI'.
Let C" be a grading on C' compatible with the grading on Clp; it is unique
up to a shift. Then A® is a homogenuous line, and (372) is an isomorphism

of graded line bundles.

7.13.17. Denote by CI = Cly the completion of Cl' (as a graded algebra)
with respect to the topology generated by left ideals Cl-U where U C FF@ F™*
is an open subspace. Thus C is a discrete Cl-module. The action of CI yields
an isomorphism of topological graded algebras Cl = End¢ C.

The graded algebra Cl" has a canonical filtration Cl, = A"F* C Cl} C ...
(see 7.13.1). We define the filtration CI; on CI as the closure of Cl;. As
in 7.13.1 the classical Clifford algebra CI := grCl is a Poisson graded
topological algebra. It carries an additional grading @ = gr, CI ; one has
Cli = {iLnUV AY(F/U) @ AT (F*/V) where U,V are, respectively, c-lattices
in F, F*.

Denote by E = Ep the associative algebra of endomorphisms of F. Let
EY€ be E considered as a Lie algebra. Notice that @ﬁ’ is a Lie subalgebra of
Cl which normalizes Cl; . The adjoint action of Cl; on Cl; ' = F identifies
aﬁ’ with ELe*). Set E° := ﬁ?; this is a Lie subalgebra of Cl which is a
central extension of a? = Ele by C.

We see that E” acts on C' in a way compatible with the Clifford action;

this action preserves the grading on C.

*)Use the above explicit description of a?.
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The next few sections 7.13.18 - 7.13.22 provide a convenient description of
E’ and some of its subalgebras. The reader may skip them and pass directly

to 7.13.23.

7.13.18. Here is an explicit description of the central extension E° of ELe
due essentially to Tate [T].

Let E; C E be the (two-sided) ideal of bounded operators (:= operators
with bounded image), E_ C E that of discrete operators (:= operators
with open kernel). One has £, + F_ = FE; set Ey. := E, N E_. For any
A € Ey, its trace trA is well-defined (if U’ C U C F are c-lattices such that
A(F) Cc U, A(U") =0 then we have A~ : U/U" — U/U’ and trA := trA~).
The functional ¢r : Fy. — C is invariant with respect to the adjoint action
of E€; it also vanishes on [Ey, E_] C Ey,.

Our extension E” is equipped with canonical splittings s, : Fy — E”,
s : E_ — E’. Namely, for A € E, its lifting s, (A) is characterised
by the property that s;(A) kills any element in C' annihilated by all
Clifford operators from Im A C g. Similarly, s_(A) is the unique lifting
of A € E_ that kills any element in C' annihilated by all Clifford operators
from (Ker A)t C F*. The sections s+ commute with the adjoint action of
E,and for A € Ey;, one has s_(A)— s, (A) =trA e C C E. It is easy to see
that the data (Eb, s+ ) with these properties are uniquely defined. Indeed,

consider the exact sequence of F-bimodules

(373) 0— B, Ve, o8 TEp 0

Now s = (s4,s_) identifies E* with the push-forward of the extension (373)
by tr : Ey — C. The adjoint action of EX€ on E” comes from the adjoint
action on the F-bimodule F. & E_.

Remarks. (i) The vector space F' ® F* carries 4 natural topologies with
bases of open subspaces formed, respectively, by UV, U ® F*, F® V,
and U ® F*+ F ® V, where U C F, V C F* are open subspaces. The

corresponding completions are equal, respectively, to Fy., £+, F_, and F.



HITCHIN’S INTEGRABLE SYSTEM 345

The trace functional is the continuous extension of the canonical pairing
F®F*—C.

(ii) Set (E_/E4.)’ := E_/Kertr; this is a central extension of (E_ /Ey,.)He
by C. Note that E_/E;, = E/E,, so we have the projection 7_ : EM¢ —
(E_/Ey, )" e. 1t lifts canonically to a morphism of extensions 7° : E* —
(E_/E)" with kernel s, (E,). In other words, E° is the pull-back of
(E_/E,)" by m_. Same for + interchanged.

(iii) Let F' be a finite filtration of F' by closed subspaces; denote by
B C FEr the subalgebra of endomorphisms that preserve the filtration. We
have the induced central extension B® of B¥€. On the other hand, we have
the obvious projections gr’ : B — Egip; let B’ be the pull-back of the
extension Egri pof Eérif - Denote by B the Baer sum of the extensions B”.
Then there is a canonical (and unique) isomorphism of extensions B” = B’.

Indeed, B” coincides with the extension defined by the exact subsequence
0—-BNE, —-(BNE;)®(BNE_-)—-B—0

of (373) (notice that for e € BN Ey, one has tr(e) = Str(grie)). In particular

we see that B’ splits canonically over the Lie subalgebra Ker gr.

7.13.19. Set K = C((t)), O := CJ[t]]. Let F be a finite-dimensional K-
vector space equipped with the usual topology; this is a Tate C-vector space.
Let i : D — E be the agebra of K-differential operators acting on F', so
we have the induced central extension D° of the Lie algebra DY€. Let us
rephrase (following [BS]2.4) the Tate description of D” in geometric terms.

Set F' := Homg (F,K), F° := F’%wK. Clearly F° coincides with the
Tate dual F* (use the pairing f°, f —< f° f >:= Res(f°, f)). Our F is
a left D-module, and F° carries a unique structure of right D-module such
that <,> is a D-invariant pairing; notice that D acts on F° by differential
operators, and this is the usual geometric ”adjoint” action. Let KQK be the
completion of K ® K with respect to the topology with basis (1"O) ® (t"O),
ie. K®K := C[[t1,t2])[t; ][t "] Let F®F° be the similar completion of
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F ® F°; this is a finite-dimensional K®K-module. Denote by F&F°(coA)
the localization of F®F° by (t; —t2)~!, i.e., by the equation of the diagonal.

Consider the standard exact sequence
(374) 0 — FRF° — FRF°(c0A)——D — 0

where the projection 7 sends a “kernel” k = k(ty,t3)dts € FRF°(c0A) to
the differential operator (k) : F' — F, f(t) — Resy,—(k(t,t2), f(t2))dts.
Note that FQF° is a D-bimodule in the obvious way. This biaction extends
in a unique way to the D-biaction on F®F°(coA) compatible with the K-
bimodule structure. It is easy to see that (374) is an exact sequence of
D-bimodules. Let tr : F°®F — C be the morphism f ® f° —< f°, f >
(i.e., it is the residue of the restriction to the diagonal). It is invariant with
respect to the adjoint action of DM¢. Denote by D" the push-forward of
(374) by tr. The adjoint action of on F&F°(coA) yields a DMe-module
structure on D”. For 15,15 € D" set [I5,15] := 1 (I5) where I; is the image of

I in DU,

7.13.20. Lemma. The bracket [,] is skew-symmetric, so it makes D" a
central extension of D™ by C. There is a unique isomorphism of central

extensions
D” = DP

Proof. It suffices to establish an isomorphism of D“¢-module extensions
D" =D’ Tt comes from a canonical embedding i~ : (374) — (373)
of exact sequences of D-bimodules defined as follows. The morphism
D < E is our standard embedding i, and i~ : FRF° = FRF*= E,,
is the obvious isomorphism (see Remark (i) in 7.13.18). The map i~ =
(i7,i>) : FRF°(c0A) — E4 @ E_ sends the “kernel” k to the operators
i~ (k) equal to f +— —Resy,—o(k(t,t2), f(t2))dt2 and i} (k) equal to f —
(Resy,=t + Resg,—0) (k(t,t2), f(t2))dta. Here f € F and (k(t,t2), f(t2))dts €
F((t2))dta. We leave it to the reader to check that the operators i (k)
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belong to E+*). Since i™ identifies the trace functionals it yields the desired

isomorphism of D™¢-modules D" = DP. ]

Remark. Let D; C D be the subspace of differential operators of degree
< 1. The extension DE carries a natural topology induced by the embedding
DE C Clp. This is a Tate topology; the quotient topology on D; coincides

with its natural topology of a finite-dimensional K-vector space.

7.13.21. Ezample. Set £ := Endg F' = Do C D, so we have the central
extension £” of M€, Let £ ¢ D¢ be the normaliser of &£; it acts on &’ by
the adjoint action. We will describe the extension £” as an £-module®.

It is easy to see that L coincides with the Lie algebra of differential
operators of order < 1 whose symbol belongs to Derg -idp. In other words,
L consists of pairs (7,77) where 7 € Der K and 77 is an action of 7 on F,
i.e., £ is the Lie algebra of infinitesimal symmetries of (K, F').

As above, set £° := £ Qwg. We identify £° with the Tate vector space
dual £* using the pairingK<, >: E°xE — C, < a,b>:=Restrg(ab). The
adjoint action of £ on £° is (1, 77)(e®@v) = [77,e]@v+e® Lie;v. Let wgl/z
be a sheaf of half-forms on Spec K. It carries an L-action ((7,7") acts by
Lie,), so L acts on ®w§1/ ®. Consider the set Conn(F ®w§1/ 2) of connections

on F ®w}8;1/2*). Since Endg F' = Endg (F ®w§1/2) our Conn(F ®w§1/2) is

an £°-torsor; L acts on it in the obvious way.
7.13.22. Lemma. There is a unique £- and £°-invariant pairing

<, >t COHH(F@(»}%I/?) x & = C

such that < V,1g, >=1 for any V € Conn(F ® wﬁlp).

“This is clear for i~ (k). To check that i} (k) € E4 one may use Parshin’s residue

formula ([Pa76], §1, Proposition 7) applied to 2-forms (k(t1,t2), g(t1)f(t2))dt1 Adts where

g belongs to a sufficiently small c-lattice in F™*.

“)Since £ C £ we describe in particular the adjoint action of & which amounts to the

Lie bracket on &°.

“JTt does not depend on the choice of w?}l/z.
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Remarks.(i) An element A € £° acts on Conn(F ®w§1/ 2) and &° according

to formulas V — V+ X and ¢® — ¢+ < X, e > (here ¢ := ¢ mod Cgo = &).
So &£°-invariance of <, > means that < V + X, e’ >=< V,e’ > — < \,e >.
(ii) Clearly <,> identifies £ with the L-module of continuous affine

functionals on Conn(F ® w}e}l/ 2). This is the promised description of &£°.

Proof. The unicity of <, > follows since Conn(F' ®w§1/ 2) has no L-invariant
elements.

To define < V, ¢’ > let us choose connections Vz on F and V,, on wg
such that V = Vp + 5V,

a. The connection Vg identifies the restrictions of F ® K and K ® F
to the formal neighbourhood of the diagonal, i.e., it yields an isomorphism
of K®K-modules €(Vp) : FRK = KQF. Let (V) : FRF® — KQuwyg be
the composition of €(V ) ®idpe and the obvious morphism K®(F ® F°) —
K®wyg defined by the pairing F ® F° — wg. Localizing (V) by the
equation of the diagonal we get the morphism F®F°(00A) — KQuwg (c0A).
Applying it to €” we get a 1-form &(Vp, e”) € K&wg (A) well-defined up to
the subspace of those forms ¢(t1,t2)dts € K@wy that Resg(t,t)dt = 0.
Notice that for A € £° one has (Vg + )\, ¢’) = £(Vr,€’) — tri(\-e) (here
tr(Me) € wg = KQwg /(t1 — t2) KBwi ).

b. Let v € wg®K(A) be a form with residue 1 at the diagonal

(i.e., v equals tldfth modulo wxg®K). Let ¢(V,) be a similar form such
that ¥(V,)®? = ~vWu. Notice that (V) is well-defined modulo
(t] — t2)wg®K. For | € wyg one has (V, + 1) = (V) — I (here we
consider [ as an element in wr®K/(t] — to)wrgRK).

c. Consider the 2 form e(Vp,e”) Av. Set

< V,e” >:= Resg ResA(sv(eb) A V)

“Jhere VS) is the covariant derivative along the first variable.
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Then < V,e” > is well-defined (i.e., it does not depend on the auxiliary
choices) and <, > is £°-invariant. Since all the constructions where natural

it is also L-invariant. O

Remarks. (i) Let e, be an F-basis of F, €], the dual basis of F’, and

V the connection such that ¢/ -(dt)~*/? are horisontal sections. Denote by

dto

- Then <V, (ea-ep)’ >= ba.5.

(ea-el)h € £’ the image of e, ® e
(ii) The above lemma is a particular case of the local Riemann-Roch

formula; see, e.g., Appendix in [BS].

7.13.23. Now let n be a Lie algebra in the Tate setting, i.e., a Tate vector
space equipped with a continuous Lie bracket [ , |. The following lemma
may help the reader to feel more comfortable.

Lemma. n admits a base of neighbourhoods of 0 that consists of Lie

subalgebras of n.

Proof. Take any c-lattice P C n. We want to find an open Lie algebra ¢ C P.

Note that
(375) np:={a€n: [o,P] C P}
is an open Lie subalgebra. Set & := P Nnp. U

7.13.24.  We use the notation of 7.13.17 for F' = n. So we have the Clifford
graded topological algebra ClI = ﬁ;, the corresponding classical Clifford
algebra Cl = grCl (which is a Poisson graded topological algebra), the
central extension E” of the Lie algebra EM€ of endomorphisms of the Tate
vector space n and the embedding E° < C1’. The adjoint action defines a
morphism n — EM¢: denote by n” the pull-back of the extension E° to n. So

> is a central extension of n by C. We equip n’ with the weakest topology

b

n
. . . —0 .
such that the projection n® — n and the morphism n’ — CI are continuous.
Then n’ is a Tate space and the map n’ /C—nisa homeomorphism™).
“)Indeed, the extension n” has a canonical continuous splitting over any subalgebra of

the form (375) (its image consists of operators annihilating Ap).
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7.13.25. Now we are ready to render the BRST construction to the infinite-
dimensional setting. Let us start with the ”classical” version. Let R be a
topological Poisson algebra. We assume that R is complete and separated

and topology.

7.13.26. Denote by /\/l(g)b the category of discrete g’-modules V such that
1 eC C ¢ acts as —idy. For such V, the g’-actions on C" and V yield a g-
module structure on C* ® V. It is also a Clg-module in the obvious manner,
and the g -action is compatible with the Clifford action. For o € g we denote
its action on C" ® V by Lie,, and the Clifford operator C'®@V — C" 1@V
by iq.

It is convenient to rewrite the operators acting on C" ® V' as follows (cf.
7.7.5). Let Qg be the DG algebra of continuous Lie algebra cochains of
g. The corresponding plane graded algebra {1 is the completed exterior
algebra of g*. We identify it with the closed subalgebra of the completed
Clifford algebra C—lg generated by g* C Clg, so Q; acts on C" @V by Clifford
operators. Now let go be a DG Lie algebra defined as follows. The only
non-zero components are g?z = 951 = g, the differential g51 — g% is idg, the
bracket on g% is the bracket of g. Recall that go acts on €13 (namely, g%
acts in coadjoint way, and 951 acts by ”constant” derivations). The graded
Lie algebra g, acts on C° ® V' via the operators Lie, and i,. So C" @V is
a graded (£, gg) -module.

7.13.27. Proposition. There is a unique linear map d: C'®V - C'H oV
such that for any a € g one has Lie, = diq + iad. One has d?> = 0, and
Cy(V) == (C"®V,d) is a DG (£, go) -module.

Proof. Uniqueness. The difference of two such d’s is an operator that
commutes with any i,. It is easy to see that the algebra of all such operators
coincides with the closed subalgebra generated by 951 and End V. Since it

has no operators of positive degree we are done.
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A similar argument shows that the action of (€4, gn) is compatible with
the differentials and that d? = 0 (first you prove that [d, Lie,] = 0, then the
rest of properties).

Existence. We write d explicitely. Let e;, i € I, be a topological basis of
g (see 4.2.13), ef the dual basis of g*. For a semi-infinite (with respect to g)
subset A C I denote by A4 C C" the homogenuous line A® that corresponds
to the c-lattice generated by ey, a € A (see 7.13.16). In other words Ag
is the subspace of vectors killed by the Clifford operators e,, e; for a € A,
be I\ A Our C" is the direct sum of A4’s. Note that for a,b as above one
has €5 (Aa) = Aa\a, e6(Aa) = Aave-

Set Va4 := A4 ® V; then C" ® V is direct sum of V4’s. For ¢ € I set
L. := Lie,_,i. := i.,; for semi-infinite A, A, we denote by L?’A/, A4 the
A, A'-components V4 — V4 of these operators.

Let A, B be semi-infinite subsets such that |A|—|B| =1 (here |A|—|B| :=
|A\ (ANB)|—|B\ (ANB)|). Choose any a = as p € A\ (ANB) (this set is
not empty). Denote by d4# the composition V4 — Vg, — Vi where the
first arrow is LE?’BU“, the second one is the Clifford operator e}. It is easy
to see that the operator d : C° @V — C"t! @ V with components d* is
correctly defined (use the fact that for any v € V' and there is only finitely
many a € A such that L,(As ® v) is non-zero).

It remains to show that our d satisfies the condition of the Proposition,
i.e., that for any ¢ € I one has [d,i.] = L.. One checks this fact by a direct
computation; the key point is the skew-symmetry of [L,, ip] with respect to

a,b. We leave the details for the reader. ]

7.13.28. If V is a complex in M(g)” then we denote by Cy(V) the total
complex for the bicomplex C(V"). This is a discrete DG (£2g, go)-module
(an (£2g, go)-complex for short). The functor Cy is an equivalence between
the DG category C(g)” of complexes in M(g)” (we call them g’-complexes)
and the DG category C(£2g, ga) of (Qg, go)-complexes. The inverse functor
assigns to I € C(Qg, gq) the complex Homcy, (C”, F).
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7.13.29. Let € C g be an open bounded Lie subalgebra. For a > 0 denote
by C, C C" the subspace of elements killed by product of any a + 1
Clifford operators from ¢+ C g*. Then 0 = C"; € C; C C; C ... is an
increasing filtration on C* = UC,,. Any Clifford operator v € g* preserves
our filtration; if v belongs to £~ then it sends C; to C.7j. Any Clifford
operator from g sends C, to C;_‘Fll; if it belongs to £ then it preserves the
filtration. Thus gr.C" is a module over the Clifford algebra Clg.¢ of the vector
space (g/t) @ (g/t)* ©tDE* (equipped with the standard ”hyperbolic” form).

This is an irreducible Clg.e-module; and C is an irreducible module over
the subalgebra Cly C Clgg. The homogenuous line \¢ = )\gc) (see 7.13.16)
sits in C, and gr.C" is a free module over the subalgebra A(g/¢)®At* C Clg.
generated by this line. If \e C C° (we may assume this shifting the - filtration
if necessary) then gr,C® = A%(g/€) ® APTo8* @ ;.

Let £ C ¢” be the preimage of ¢. This is a central extension of ¢ by C
which splits canonically: the image of the splitting ¢ — £ consists of those
elements that kill X\ (we consider the Lie algebra action of £ on C").

For V € C(g)’ the subspaces C;, ® V are subcomplexes of Cy(V); denote
them by Cy(V),. We get a filtration on Cy(V') preserved by the Clifford
operators from g* and €; the successive quotients gr, Cyq(V) are (Qg, tq)-
complexes. For a t-complex P denote by C¢(P) the Chevalley complex of Lie
algebra cochains of € with coefficients in P; this is an (€, £n)-complex. The
identification gr, Cg(V) = AT¢* @ (V' ® A%(g/€) ® A¢) is an isomorphism

of (s, q)-complexes
(376) gr, Cg(V) = Ce(V @ A%(g/t) @ Ae)[a]
Here ¢ acts on A%(g/¢) according to the adjoint action. The correspond-

ing spectral sequence converges to H Cgy(V); its first term is EP? =

HPFagr_ Co(V) = HI(E,A"P(g/t) @ V @ Ae).
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7.13.30. Remark. Assume that we have a €-subcomplex T' C V such that
V is induced from T, ie., V = U(g’) ® T. Then the composition of
U®)

embeddings Ce(T ® A¢) C Cg(V)o C Cy(V) is a quasi-isomorphism.

7.14. Localization functor in the infinite-dimensional setting. Now
we may explain the parts (c), (d) of the "Hecke pattern” from 7.1.1 in the

present infinite-dimensional setting.

7.14.1. Let G, K be asin 7.11.17 and G’ be a central extension of G by G,,
equipped with a splitting K — G’ (cf. 7.8.1). Then g, g’ are Lie algebras
in Tate’s setting, and € = LieK is an open bounded Lie subalgebra of g, g’.
All the categories from 7.8.1 make obvious sense in the present setting.
One defines the Hecke Action on the category D(g, K)" as in 7.8.2. Now
the line bundle L5 is an OP-module on G, and Vg is a complex of left
DP-modules (see 7.11.3). All the constructions of 7.8.2 pass to our situation
word-by-word, as well as 7.8.4-7.8.5 (in 7.8.4 we should take for U’, as usual,

the completed twisted enveloping algebra).

7.14.2. To define the localization functor LA we need some preliminaries.
Let Y be a scheme, F' a Tate vector space. A Clgp-module on Y is a Z-graded
O-module C" on Y equipped with a continuous action of the graded Clifford
algebra Cly (see 7.13.16). For any c-lattice P C F denote by Ap(C") the
graded O-submodule of C* that consists of local sections killed by Clifford
operators from P C F and P+ C F*. The functor Ap : C(Y) — { the
category of graded O-modules on Y} is an equivalence of categories®). For

two c-lattices P;, P> there is a canonical isomorphism
(377) )\pl(C")z)\(phpQ)@)\pQ(C')

that satisfies the obvious transitivity property (see 7.13.16). Same is true

for Y-families of c-lattices (see loc. cit.).

*)The inverse functor is tensoring by an appropriate irreducible graded Clifford module

over C.
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7.14.3. Now assume we are in situation 7.11.18. Then Y carries a canonical
Clg-module Cy defined as follows. Let K C G be a reasonable group
subscheme, ¢ := Lie K. Denote by w(x\y) the pull-back of the canonical
bundle wp\y = det Qp\y by the projection Y — K\ 'Y (recall that K\ Y is
a smooth stack). This is a graded line bundle that sits in degree dim K\ Y.
If K1, Ko C G are two reasonable group subschemes as above, then there is

a canonical isomorphism

(378) WEL\Y) = Aty t) @ W(K2\Y)

which satisfies the obvious transitivity property. Indeed, to define (378)
it suffices to consider the case Ko C K;. The pull-back to Y of the
relative tangent bundle for the smooth projection Ko\ Y — K \ Y equals
(81/€2) ® Oy, which yields (378). The transitivity property is clear.

Now our Cy € C(Y) is a Clifford module together with data of
isomorphisms A¢(Cy ) ® w(g\y) for any reasonable subgroup K C G that
are compatible with (377) and (378). Such Cy exists and unique (up to a
unique isomorphism).

The action of G on Y lifts canonically to a G-action on Cy- compatible
with adjoint action of G on the Clifford operators g @ g*. Indeed, G(C) acts
on all the objects our (- is cooked up with, so it acts on Cj.. To define the
action of A-points G(A) on Cy ® A one has to spell out the characteristic
property of the Clifford module Cy. ® A on Y x Spec A using A-families of
reasonable group subschemes of G. We leave it to the reader.

Remark. Take any y € Y. The fiber C,, of Cy at y is an irreducible graded
Clj-module which may be described as follows. Consider the ”action” map
g — O,. Its kernel g, (the stabilizer of y) is a d-lattice in g. The cokernel T
is a finite-dimensional vector space. Let Cg}gy be the graded vector space of
gy-coinvariants in C; (with respect to the Clifford action of g,). Now there
is a canonical identification C’gg;T ~det(7T™), and Cy is uniquely determined

by this normalization.



HITCHIN’S INTEGRABLE SYSTEM 355

7.14.4. Let £ = Ly be a line bundle on Y equipped with a G’-action that
lifts the G-action on Y'; we assume that G,, C G acts on L by the character
opposite to the standard.

Take V € M(g)’, so V is a discrete g’-module on which C C g’ acts by the
standard character. Then the tensor product L&V is a g-module, as well as
Cy ®LR®V (ie., the g-action on Y lifts to a continuous g-action on these O-
modules). We denote the action of & € gon Cy, ® L&V by Lie,. Note that
Oy ® L®V is also a Clifford module, and the above g-action is compatible
with the Clifford operators. As usual we denote the Clifford action of o € g
by ia. So, as in 7.13.26, our Oy ® L® V is a graded (€2, go)-module.

The following proposition is similar to 7.13.27, as well as its proof which

we leave to the reader.
7.14.5. Proposition. There is a unique morphism of sheaves
d: Cy LRV - Oyl eLeV

such that for any a € g one has Lie, = diq + iod. This d is a differential
operator of first order, d> = 0, and Cz(V) = (Cy, @ L ® V,d) is a DG
(Qg, go)-module.

Remark. One may deduce 7.14.5 directly from 7.13.27. Namely, pick any
K as in 7.14.3. Then (5 ® wE“K\Y) is a ”"constant” Clifford module: it is
canonically isomorphic to C" ® Oy for some irreducible Clifford module
C". The g’-action on C° and the g-action on Cy yield a g’-action on
wik\y) = Hom(Cy,C" ® Oy) which lifts the g-action on Y. Thus g’-acts
on w\y) ® LRV, and d from 7.14.5 coincides with d from 7.13.27 for

C' @ (W) ®LBV).

7.14.6. So we defined an Q-complex Cr(V) on Y. One extends this
definition to the case when V' is a complex in M(g)’ in the obvious manner.

Now assume we have K as in 7.14.1. For a Harish-Chandra complex
Ve C(tq x g, K)' the Q-complex C (V) is Kg-equivariant. Indeed, K acts
on Cg(V) according to the K-actions on Cy,, £, and V, and the operators
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i¢, £ € £, are sums of the corresponding Clifford operators for Cy, and the
operators for the Eél—action onV.

Set Aqr(V) :=Cpr(V)[dim(K \ Y)]. We have defined a DG functor
(379) Aq = Aqr : C(EQXg,K)/%C(K\Y,Q)

7.14.7. Remark. The Q-complex Agq(V) carries a canonical filtrartion
Aq(V). where Aq(V), consists of sections killed by product of any a + 1
Clifford operators from £+ C g* (see 7.13.29). By (376) one has a canonical

isomorphism of Kg-equivariant {2-complexes
(380) grala(V) = Ce(wim\y) @ L@V @ A%(g/t))|a]

7.14.8. Lemma. (i) The functor Ag sends quasi-isomorphisms to D-quasi-

isomorphisms, so it yields a triangulated functor
(381) LA =LA;: D(g,K) — D(K\Y)

(ii) The functor LA is right t-exact, and the corresponding right exact
functor A = Az : M((g, K) — MYK\Y) is
(382) Ar(V)y =Dy ®L) & V=L®@Dyr @ V

U(e) U(e')
Here Dy is the topological algebra of differential operators on Y (see 1.2.6),
Dy, := L ® Dy ® L* is the corresponding L-twisted algebra.

Proof. (i) Our statement is local, so, shrinking K if necessary, we may
assume that the K-action on Y is free. Let us consider Aq (V) as a filtered
Q-complex on K \ Y. For a K-module P denote by P~ the Y-twist of
P which is an O-module on K \ Y. The projection C¢ — C¢/ C’El yields,

according to (380), a canonical isomorphism
(383) gralo(V)ky =wi\y @ Ly @ V™ @ A%(g/€)™ [a]

The r.h.s. is an O-complex, so a quasi-isomorphism between V’s defines a

(filtered) D-quasi-isomorphism of Aqg(V)’s.
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(ii) As above we may assume that the K-action is free. For V- € M(g, K)’
we can rewrite (383) as an isomorphism AQ(V)?(\Y = wi\yy ® Ly @
V™~ ® A~%(g/t)~. This shows that Aq is right t-exact. One describes the
differential in Aq(V)g\y as follows. The g-action on Y defines on (g/€)~
the structure of Lie algebroid on K \'Y. The g-action on £y ® V defines on
Ly ®V"™ the structure of a left (g/€)~-module, hence wi\y @ Ly @V is
a right (g/€)~-module. Now Aq(V)f\y is the Chevalley homology complex
of (g/€)~ with coefficients in wg\y ® Lg\y ® V™. The right D-module
HY(LA(V))on K\Y is (Wr\y @Lg\y ®V™) (g/%~ Dp\y; the corresponding
left D-module is Dg\y (g(/%~<£K\Y ® V™). Lifting this isomorphism to Y
we get (382). O

7.14.9. Ezample. Let us compute LA(Vac). The embedding C — Vac
yields an embedding of Q-complexes on Y Ce(w(r\y) @ Ly) — Aqc(Vac)o.

We leave it to the reader to check that the corresponding morphism
CE(W(K\Y) X ﬁy) — AQE(V@CI)

of Kg-equivariant 2-complexes is a D-quasi-isomorphism. Now the lLh.s. is
the Q-complex Q(Dg\y ® Ly on K\ Y (see 7.3.3). Therefore if K \'Y is
a good stack then

LA(Vad) = A(Vad) = Dy ® Li\y-

Remark. Since End Vac is anti-isomorphic to the algebra DE oK) from
1.2.5 (cf. also 1.2.2) we have a right action of ng,K) on A(Vad) =
Di\y @ Li\y, 1.e., a homomorphism from DEg,K) to the twisted differential
operator ring I'(K \ Y, D’.\+,). This is the homomorphism A from 1.2.5 (cf.

K\Y
also 1.2.3 and 1.2.4).

7.14.10. Proposition. The functor LA : D(g, K)' — D(K\Y) is a Morphism
of H-Modules.

Proof. The constructions and arguments of 7.8.8 render to our infinite-

dimensional setting in the obvious manner. ]
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The infinite-dimensional versions of 7.9 are straightforward.

7.15. Affine flag spaces are D-affine. In this section we show that
representations of affine Lie algebras of less than critical level are related to
D-modules on affine flag spaces just as they do in the usual finite-dimensional

situation.

7.15.1. Below as usual K = C((t)), O = C[[t]]. Let g be a simple (finite-
dimensional) Lie algebra®), G the corresponding simply connected simple
group. We have the group ind-scheme G(K) and its group subscheme
G(O) (see 7.11.2(iv)). The adjoint action of G(K') on the Tate vector space
Lie G(K) = g(K) yields the central extension G(K)’ of G(K) by Gy, (see
?77). Its Lie algebra is the central extension g(K)® of g(K) defined by cocycle
¢, — Res(do, 1) where (a,b) := Tr(ad, - ady) (see ?2). Let G(O)’ € G(K)"
be the preimage of G(O). The adjoint action of G(O) preserves the c-lattice
9(0) C g(K), so we have a canonical identification s : G(O)’ = G(0) x G, *).

Let N C B C G be a Borel subgroup and its radical, so H = B/N
is the Cartan group of G. Let N*, BT be the preimages of N, B by the
obvious projection G(O) — G, so BY /Nt = H, G(O)/BT = G/B. Let
Bt ¢ G(K)" be the preimage of BT. There is a unique section Nt — G(K);
set H’ = BT/N+, h* = Lie H°. The section s yields an isomorphism
Bt x G,, = BT, hence isomorphisms H x G,, =~ H’, h x C= K.

Set X := G(K)/Bt = G(K)’/B' (the quotient of sheaves with respect
to either flat or Zariski topology - the result is the same, as follows from
4.5.1). One calls X the affine flag space. This is a reduced connected ind-
projective formally smooth ind-scheme®). Set XT := G(K)’/N*: this is a
left H’-torsor over X (the action is h’-zt = zTh"=1). Tt carries the obvious

action of G(K)°. Denote the projection XT — X by p.

“) A generalization to the case when g is any reductive Lie algebra is immediate.
“)Since G is simple the splitting G(O) — G(O)” is unique.
*) X is smoothly fibered over the affine Grassmannian G(K)/G(O), see 4.5.1.
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7.15.2. Let MT(X) be the category of weakly H’-equivariant D-modules
on X' (see 7.11.11). This is an abelian category. For M € MT(X) set
My = (p.M)#" € M(X,0). The functor MT(X) — M(X,0), M — My,
is exact and faithful.

Set DI := (p.DXf)Hb. This is a Diff-algebra on X. The map
(384) b’ — I(X, D) = 1(xX!, D)

equal to minus the left action along the fibers of p takes values in the center
of DI. In fact, DI is a Sym(h®)-family of tdo (see 7.11.11(b)).
Notice that DT acts (from the right) on any My as above in the obvious

manner, so we have a functor

(385) MI(X) — M(X,D").

One has (see Remark (ii) in 7.11.11):

7.15.3. Lemma. The functor (385) is an equivalence of categories. g

7.15.4. For x = (xo,¢) € B = h* x C we denote by DX the corresponding
tdo from our family Df. Thus D0 = Dy. Set MX(X) := M(X,DX) C
M(X, D). Consider the topological algebra I'DX = I'(X, DX) (see 7.11.9,
7.11.10). We have the functor

(386) @ MX(X) — M (IDX)

where M"(I'DX) is the category of discrete right I'DX-modules and I'M :=
(X, M).
The action of g(K)” on X' yields a continuous morphism g(K)’

I'(X,D"). The corresponding morphism g(K)” — I'DX sends 1° € g(K)

—

to —c.

7.15.5. We say that x is anti-dominant if the Verma g(K)’-module M ()
is irreducible. As follows from [KK] 3.1 this amounts to the following three

conditions:

(i) One has ¢ # —1/2.
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(ii) For any positive coroot h, € h of g one has (xo + po)(ha) # 1,2, ..
(iii) For any h, as above and any integer n > 0 one has

c+1/2

+(x0 + po)(ha) + 21 (a0

41,2, ..

Here pp € b* is the half sum of the positive roots of g and (, ) is the scalar
product on h* that corresponds to (,) on b (see 7.15.1).

Remark. To deduce the above statement from [KK] 3.1 it suffices to notice
that the “real” positive coroots of g(K)” are hq and +hy + 2n(a, o)~ 11
for hy, n as above, and that the weight p from [KK] is given by the next
formula.

Set p := (po, 1/2) € h*. We say that x is regular if the stabilizer of x + p
in the affine Weyl group W is trivial®.

7.15.6. Theorem. Assume that x is anti-dominant and regular. Then (386)
is an equivalence of categories.

We prove 7.15.6 in 7.15.8-77 below.

7.15.7. Remarks. (i) Let M¢(g(K)) be the category of discrete g(K)’-

modules on which 1° acts as multiplication by ¢. Let
(387) ' MX(X) — M(g(K))

be the composition of (386) and the obvious “restriction” functor M"(I'DX) —
M(g(K)). According to 7.15.6 this functor is exact and faithful.

(ii) One may hope that g(K)” generates a dense subalgebra in I'DX*). In
other words, I'DX° is a completion of the enveloping algebra U¢ = U¢g(K)
of level ¢ by certain topology. Can one determine this topology explicitely?

Notice that in the finite-dimensional setting (see [BB81] or [Kas]) one
usually deduces the corresponding statement from its ”classical“ version
(using Kostant’s normality theorem). This ”classical “ statement (which says

“'Remind that the action of Wag on h* comes from the adjoint action of G(K) on

9(K)".
“)This amounts to the property that for M € MX(X) any g(K)b—submodule of TM

comes from a DX-submodule of M.
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that g(K) — I'(X,©x) generates a dense subalgebra in @ I'(X,0%")) is
n>0

false for the affine flags (e.g., the map g(K) — I'(X, ©x) is not surjective).

As in [BB81] or [Kas] it is easy to see that 7.15.6 follows from the next

statement:

7.15.8. Theorem. (i) If x is anti-dominant then for any M € MX(X) one
has H" (X, M) = 0 for any 7 > 0.

(ii) If, in addition, x is regular and M # 0 then ' M # 0.

Remark. The proof of 7.15.8(i) is very similar to the proof of the
corresponding finite-dimensional statement (see [BB81] or [Kas]). It would
be nice to find a proof of 7.15.8(ii) similar to that in [BB81] (using translation

functors) for it could be of use for understanding 7.15.7(ii).

7.15.9. Let us begin the proof of 7.15.8(i). Let ¢ = (¢9,b) be a character
of H” and £ = LY the corresponding G(K)’-equivariant line bundle on X
(defined by XT). Assume that £ is ample. This amounts*) to the following
property of : for any positive coroot h, of g one has % < o(ha) <0.
Denote by V' be the dual to the pro-finite dimensional vector space
I'(X,L). This is a G(K)’-module in the obvious way, hence an integrable
g(K)’-module®) of level —b. Consider the canonical section of V&L; this is
a G(K)"-equivariant morphism Ox — V&L of OP-modules. Tensoring it by

M we get a morphism of @'-modules
(388) i M—-VLM
that commutes with the action of g(K).

7.15.10. Below we will consider /-sheaves of vector spaces on X. Such

object F'is a rule that assigns to a closed subscheme Y C X a sheaf F(y on

“Here H"(X, M) := limH" (Y, M(y)); we use notation of 7.11.4.

“)See Remark in 7.15.5.
*) According to a variant of Borel-Weil theorem (see, e.g., [?]) V is an irreducible g(K)’-

module.
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the Zariski topology of Y together with identifications z'!YY/F(y/) = F(y)*)
for Y C Y’ that satisfy the obvious transitivity property (cf. Remark (i)
in 7.11.4). Notice that !-sheaves form an abelian category. It contains the
categories of sheaves on Y’s as full subcategories closed under subquotients
and extensions. Any O'-module M on X yields a !-sheaf @M(y) on X
(so the corresponding sheaf on Y is M(Y/\)>*); we denote it by M by abuse
of notation. We will also consider !-sheaves of g(K)’-modules which are !-
sheaves of vector spaces equipped with g(K )b—action such that the action on
each Flyy is discrete in the obvious sense. Any O'-module equipped with

g(K)’-action may be considered as a !-sheaf of g(K)’-modules.

7.15.11. Proposition. Considered as a morphism of !-sheaves of g(K)’-

modules, (388) is a direct summand embedding.

7.15.12. Proof of 7.15.8(1). Take any « € H" (X, M) = EnHT(X(y),M(y)).
It comes from certain closed subscheme Y C X and an O-coherent
submodule F' C My). Choose an ample L as above such that H"(Y,L ®
F) = 0. Since i(«) belongs to the image of H"(Y,V ® L ® F) it vanishes.
We are done by 7.15.11. U

7.15.13. Proof of 7.15.11. We are going to define an endomorphism A of
V ® L ® M such that

(389) KerA=M, VRL®M =Ker A® Im A.

This settles 7.15.11.

Let U := Ug(K)" be the usual completed enveloping algebra of g(K)’.
Consider the Sugawara element €0 € U defined by formula (85). For any
ft € g((t)) € U we have [€o, ft'] = (1” + 1/2)rft" (see (87)). For any

N € M¢(g(K)) where e # —1/2 consider the operator Ay := (e+1/2)"1&,

*)Here i3y Fiyr := the subsheaf of sections supported (set-theoretically) on Y.

*)See 7.11.4 for notation.
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acting on N. If also e — b # —1/2 we set
(390) AV,N = AV®N—Av®idN—idv®ANEEHd(V@N).

This operator commutes with the action of g(K)".
Let us apply this construction to the -sheaf of g(K)’-modules N := L& M

(so e = b+ ¢ and the condition on levels is satisfied). Set
(391) A= AV,L@M EEHd(V@ﬁ@M).
Let us show that A satisfies (389). O

7.15.14. Now let us turn to 7.15.8(ii). It is an immediate consequence of
the following proposition which shows, in particular, how to compute fibers
of M in terms of 'M. We start with notation.

Consider the stratification of X by N*t-orbits (Schubert cells). The cells
are labeled by elements of the affine Weyl group W,og. For w € W,g the
corresponding cell is iy, : Yy, — X; it has dimension [(w). The restriction
to Yy, of the H-torsor XT is trivial*). Since any invertible function on Yy, is
constant, the trivialization is unique up to a constant shift. Therefore the
pull-back of the tdo DX to Y,, is canonically trivialized.

Let M be any object of the derived category D(X,DX)*). For any w €
Wag we have (untwisted, as we just explained) D-complexes i\, M € D(Ys,).

We want to compute Lie algebra (continuous) cohomology H®(n™,T'M)
(notice that, because of 7.15.8(1), I' = RI'). Since K> = bf/nt these are

h’-modules. We assume that y is regular.

7.15.15. Proposition. There is a canonical isomorphism

H'w', TM) = @ Hy ™ (Y, i, M).
weWLg

such that §” acts on the w-summand as multiplication by w(x)*.
“)A section is provided by any N*-orbit in XT over Y.

“)ts definition is similar to one given in 7.11.14 in the untwisted situation.

“'Remind that the adjoint action of G(K) on g(K)® yields the Wag-action on b”.
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7.15.16. Proof of 7.15.8(ii). Since I' is exact we may assume that M is
compactly supported and finitely generated. Let Y C X be a smooth Zariski
open subset of the (reduced) support of M. Then My is a coherent D-
module on a smooth scheme Y. So, shrinking Y farther, we may assume
that My is a free Oy-module. Now for any x € Y one has H'i', M # 0.
Translating M we may assume that z = Y;. By 7.15.15 H (n™,TM) # 0,
hence I'M # 0. O

7.15.17. Proof of 7.15.15. We may assume that M = i,./N for certain
N € D(Yy). Indeed, any M € D(X,DX) carries a canonical filtration with

gr; M = @ i, M. Now the isomorphism 7.15.15 for M comes from
l(w)=t

the corresponding isomorphisms for zw*z'wM 's together with the spectral
decomposition for the action of §>. Here we use the assumption of regularity
of x; for the rest of the argument one needs only anti-dominance of .
Consider first the case M = §, so I'§ is the Verma module from 7.15.5
(see 7.15.7(iii)). This Verma module is cofree NT-module of rank 1 (it
is cofreely generated by any functional v which does not kill the vacuum
vector)*). Thus H' (n},T9) = H(n},10)X = Cwac. Since also H'i,d =

H 01'5,55 = C-vac, we get the desired isomorphism.

+

*)The kernel of v contains no non-trivial n*-submodule (otherwise, since n™ is nilpotent,

*.invariant vectors which contradicts 7.15.5(i)). So the morphism

it would contain n
defined by v from I'§ to the cofree NT-module is injective. Then it is an isomorphism by

dimensional reasons.
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8. To be inserted into 5.x
8.1.

8.1.1. Choose L € Ztorsy(O). Recall that Az denotes the corresponding
local Pfaffian bundle on GR = G(K)/G(O) (see 4.6.2). We are going to
prove the following statement, which is weaker than 5.2.14 and will be used

in the proof of Theorem 5.2.14 itself.

8.1.2. Proposition. For any x € P.(’G) and i € Z the U'-module
HY(GR, IX)\ZI) is isomorphic to a direct sum of copies of Vac'.
At this stage we do not claim that the number of copies is finite.
Proposition 8.1.2 is an immediate consequence of Theorems 8.1.4 and
8.1.6 formulated below (the first theorem is geometric while the second one

is representation-theoretic).

8.1.3. For any D-module M on GR the renormalized universal enveloping
algebra U? acts on the sheaf MA;' (see ???). So the canonical morphism
Der O — U from 5.6.9 yields an action of Der O on M )\Zl. According to
777 this action is induced by the action of Der O on the sheaf M (Der O
is mapped to the algebra of vector fields on GR, which acts on M) and
the action of Der O on . (see 4.6.7). The action of Der O on the sheaf I,
integrates to the action of Aut O. The action of Der O on Az comes from
the action of Autz O on Az (see 4.6.7). Therefore the action of Der O on
IX)\ZI integrates to the action of Auty O. So the action of Ly € Der O on
H'(GR,I,\;') is diagonalizable and its spectrum is contained in 17 (in

fact, it is contained in Z or % + 7 depending on the parity of Orb,).

8.1.4. Theorem. The eigenvalues of Ly on H'(GR, [, A;') are > —d(x)/2
where d(x) = dim Orb,,.

The proof will be given in 9.1; we will also obtain the following description
of the eigenspace corresponding to —d(x)/2. Set F, := Orb, \ Orb,,
Uy := GR\F). The restriction of I, to U, is the direct image of the (right)
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D-module woyp, - It contains the sheaf-theoretic direct image of woyp, , S0
HO(U,, IX)\Zl) > H°(Orby, worh, ®)\Z}X) where A, is the restriction of Az
to Orb,. Therefore (241) yields an embedding

(392) Ogx — HO(UXJX)‘El)

where 0., is the 1-dimensional representation of Aut%O constructed in

4.6.14. According to 4.6.15 Lg acts on 3¢, as multiplication by —d(x)/2.

8.1.5. Proposition. The image of (392) is contained in H°(GR,IL,A:").
It equals the eigenspace of Ly on HY(GR, IX)\Zl) corresponding to the
eigenvalue —d(x)/2.

The proof is contained in 9.1.

Remartk. The natural map ¢ : H(GR, IX)\Zl) — HO(UX,IX)\ZI) is
injective because I, is irreducible and therefore the morphism f : I, —
Roj*j*IX is injective, where j denotes the immersion U, — GR. In fact,
the semisimplicity theorem 5.3.3(i) implies that f is an isomorphism and
therefore ¢ is an isomorphism. So the first statement of Proposition 8.1.5 is

obvious modulo the highly nontrivial theorem by Lusztig used in the proof

of 5.3.3.

Proposition 8.1.2 is a consequence of Theorem 8.1.4 and the following

statement, which will be proved in 6.2.

8.1.6. Theorem. Let V be a discrete Uf-module such that

1) the representation of g® O C U? in V is integrable (i.e., it comes from
a representation of G(O)),

2) the action of Ly € DerO C U" on V is diagonalizable and the
intersection of its spectrum with c+7Z is bounded from below for every

ceC.

Then V considered as a U -module is isomorphic to a direct sum of copies

of Vad (i.e., to Vad @W for some vector space W).
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Remark. Suppose that V is a discrete U%-module such that V is isomorphic
to Vac @W as a U -module. Write V more intrinsically as Vad @;N,
3 := 33(0), N := Homy(Vac,V) = V8©. According to 5.6.8 N is a
module over the Lie algebroid I/I2. The U’-module V' can be reconstructed
from the (1/1%)-module N as follows: V is the quotient of U* ®, N by the
closed Uf-submodule generated by © ® n — 1 ® an where n € N, u € Ulb,
a € I/I?, and the images of u and a in U} /U] coincide (see 5.6.7).
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9. To be inserted into Section 6

9.1. Proof of Theorem 8.1.4 and Proposition 8.1.5. We keep the
notation of 5.2.13, 8.1.1, and 8.1.4. Theorem &8.1.4 and Proposition 8.1.5

can be easily deduced from the following statement.

9.1.1. Theorem. The eigenvalues of Lo on H*(Uy, ,A;') are > —d(x)/2. If
i > 0 they are > —d(x)/2. If i = 0 the eigenvalue —d(x)/2 occurs with
multiplicity 1 and the corresponding eigenspace is the image of (392).

Let us start to prove the theorem. Denote by I;] the restriction of I, to
Uy, ie., Ig is the direct image of the right D-module wo,, with respect
to the closed embedding Orb, < U,. Consider the O-module filtration
on Ii] )\Zl whose k-th term is formed by sections supported on the k-th
infinitesimal neighbourhood of Orb,. The filtration is Aut) O-invariant
and grj(Ig)\Zl) = worb, ® Az' ® Sym? Ny where N, is the normal sheaf
of Orb, C U,. Using (241) we get an Aut) O-equivariant isomorphism
grj(Ig)\Zl) =0z, ® Sym’ N.. By 4.6.15 Lo acts on 0., as multiplication
by —d(x)/2. So it remains to prove the following.

9.1.2. Proposition. i) The eigenvalues of Ly on H!(Orb,, Sym’ N, ) are non-
negative.
ii) They are positive if ¢ > 0 or j > 0. There are no Ly-invariant regular

functions on Orb, except constants.

Remark. The eigenvalues of Lo on H i(OrbX, Sym’ Ny) are integer because

Ny is an Aut® O-equivariant sheaf.

Before proving the proposition we need some lemmas.

9.1.3. Let us introduce some notation. Recall that x is a dominant coweight
of G. Fix a Cartan subgroup H C G and a Borel subgroup B C G
containing H. We will understand “coweight” as “coweight of H” and
“dominant” as “dominant with respect to B”. Let tX € H(K) denote
the image of t € C((t))* = K* by x : G, — H. Recall that Orb, is
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the G(O)-orbit of x|, where [x] is the image of tX in GR = G(K)/G(O).
Denote by orb, the G-orbit of [x] and by P, the stabilizer of [x] in G, i.e.,
Py = {g € G[t7Xgt* € G(O)}. P_ is the parabolic subgroup of G such
that Lie P~ is the sum of Lie H and the root spaces corresponding to roots
a with (a,x) < 0 (in particular P contains the Borel subgroup B~ > H
opposite to B). So orb, = G/ P, is a projective variety. Clearly the action

of Aut® O on orb, is trivial.

9.1.4. Endomorphisms of O form an affine semigroup scheme End® O (for a
C-algebra R an R-point of End® O is an R-morphism f : R[[t]] — R[[t]] such
that f(t) € tR[[t]] ). Aut®O is dense in End® O. Let 0 € End® O denote the
endomorphism of O = C[[t]] such that ¢ — 0.

9.1.5. Lemma. i) The action of Aut’O on Orb, extends to an action of
End’ O on Orby,.

ii) Let ¢ be the endomorphism of Orb, corresponding to 0 € End’ O.
Then ¢? = ¢ and the scheme of fixed points of ¢ equals orb,.

iii) The morphism p : Orb, — orb, induced by ¢ is affine. Its fibers are

isomorphic to an affine space.

Proof. 1)Orb, = G(O)/S where S is the stabilizer of [x] in G(O). The action
of Aut®O on G(O) extends to an action of End’O. Since S is Aut® O-
invariant it is End® O-invariant.

ii) The morphism f : G(O) — G(O) corresponding to 0 € End’O is
the composition G(O) — G — G(O). So ¢(Orb,) C orby. Clearly the
restriction of ¢ to orb, equals id.

iii) G(O) = G - U where U := Ker(G(O) — G). One has f(S) C S,
so S = 8g-Sy, S¢g . =SNG, Sy :=8NU. pis the natural morphism
G(0)/S — G(O)/(Sq -U) = G/Sg = orb,. Since U is prounipotent
(Sg -U)/S = U/Sy is isomorphic to an affine space. O

9.1.6. Remark. It follows from 9.1.5(ii) that the scheme of fixed points of

Ly on Orb, equals orb,.
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9.1.7. Since p : Orb, — orb, is affine
H'(Orb,, Sym? Ny) = H'(orby, p. Sym’ ).

p is Aut® O-equivariant, so Aut® O and therefore Ly acts on p, Sym’ Ny. To

prove Proposition 9.1.2 it suffices to show the following.

9.1.8. Lemma. The eigenvalues of Ly on p, Sym’ N, are non-negative. If
j > 0 they are positive. If j = 0 the zero eigensheaf of Ly equals the

structure sheaf of orb,.

Proof. Denote by Oqy1, and Oy, the structure sheaves of Orb, and orb,.. It
follows from 9.1.5(i) that the eigenvalues of Ly on p.Opyp are non-negative.
9.1.5(ii) or 9.1.6 implies that the cokernel of Ly : p«Oowp — p«Oorp equals
Oorb-

The obvious morphism O, ® (g ® K/g ® O) — N, is surjective
and Aut® O-equivariant. It induces an Aut’ O-equivariant epimorphism
p«Oom ® Sym? (g ® (K/O)) — pxSym? Ny. Since the eigenvalues of Lo

on K /O are positive we are done. O

9.1.9. So we have proved 9.1.2 and therefore 8.1.4, 8.1.5. Now we are
going to compute the canonical bundle of Orb, in terms of the morphism

p : Orby, — orb,. The answer (see 9.1.12, 9.1.13) will be used in 10.1.7.

9.1.10. Orb, is a homogeneous space of G(O), while orb, is a homogeneous
space of G. Using the projection G(O) — G(O/tO) = G we get an action
of G(0O) on orb,,. The morphism p : Orb, — orb, is G(O)-equivariant.*)

9.1.11. Proposition. The functor p* induces an equivalence between the
groupoid of G-equivariant line bundles on orb, and the groupoid of G(O)-

equivariant line bundles on Orb,,.

“JOf course the embedding orb, < Orb, is not G(O)-equivariant. DO WE NEED
THIS FOOTNOTE?
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Proof. One has Orb, = G(0)/S, orb, = G/Sg where S is the stabilizer
of [x] in G(O) and S = SN G. In fact, Sg is the image of S in G and
p:G(O)/S — G/S¢ is induced by the projection G(O) — G (see the proof
of 9.1.5(iii) ). We have to show that the morphism 7 : S — Sg induces
an isomorphism Hom(Sg,G,,) — Hom(S,G,,). This is clear because

Kerm C Ker(G(O) — Q) is prounipotent. O

Remark. We formulated the proposition for equivariant bundles because
we will use it in this form. Of course the statement still holds if one drops
the word “equivariant” (indeed, p is a locally trivial fibration whose fibers
are isomorphic to an affine space). Besides, if G is simply connected then a
line bundle on orb,, has a unique G-equivariant structure (because by 9.1.3

orby, = G/P_ and Py is parabolic).

9.1.12. The canonical sheaf wo.p,, is a G(O)-equivariant line bundle on
Orby. By 9.1.11 it comes from a unique G-equivariant line bundle M, on
orby. Since orb, = G/P_ (see 9.1.3) isomorphism classes of G-equivariant
line bundles on orby are parametrized by Hom(P_,G,,). The embedding
H — P_ induces an embedding Hom(P_ ,G,,) — Hom(H,G,). So M,

defines a weight of H, which can be considered as an element [, € h*.

9.1.13. Proposition. I, = Bx where x € Hom(G,,, H) is identified in the
usual way with an element of h and B : h — h* is the linear operator

corresponding to the scalar product (18).

Proof. The tangent space to Orb, at [x] equals
(393) (82 0)/((g®0)Nt* (g O)t™).

The action of H on (393) comes from the adjoint action of H on g ® O.
So the weights of H occuring in (393) are positive roots, and for a positive

root « its multiplicity in (393) equals (x,«). Therefore the weight of b
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corresponding to the determinant of the vector space dual to (393) equals

*Z(X,a)'a:*%Z(X,O&)'O&:BX.

a>0 «

O

Note for the authors: the notation U := Ker(G(O) — @) is not quite
compatible with the notation U,. Is this OK 777
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10. To be inserted into Section 6, too

10.1. Delta-functions. Is the title of the section OK 777

10.1.1. According to 8.1.5 we have the canonical embedding v, —
T(GR,I,\;Y). Tts image is contained in I'(GR,LA;1)%(©. The Lie
algebroid I/I? acts on I'(GR, L, A;1)%(©) (see 777 and 5.6.8). Using (81) we
identify I/I? with the Lie algenroid arg from 3.5.11, where Lg := LietG
and G is understood in the sense of 5.3.22 (in particular, g has a
distinguished® Borel subalgebra b and a distinguished Cartan subalgebra
Ly c Lb; we set n := [Lb,Lb]). By 3.5.16 we have the Lie subalgebroids
ar, C ar, C arg and a canonical isomorphism of ALy (O)-modules ary/ar, =

Arg(0) ® Fp. In particular “h C ary/ac,.

10.1.2. Theorem. i) ar, annihilates ., so ad makes sense for a € Ly,
dEVz,y -

ii) ad = x(a)d for a € ', § € 0.
Remark. We identify x € Py (“G) with a linear functional on “h, so x(a)

makes sense.

Statement (i) is easy. Indeed, Der O acts on I'(GR, IX)\Zl)G(O) (see 5.6.10)
and the action of ary on I'(GR, IX)\Zl)G(O) is compatible with the actions of
Der O on ary and I'(GR, IX)\Zl)G(O) (use the Der O-equivariance of (81) and
the Remark at the end of 3.6.16).") So statement (i) follows from Theorem
8.1.4, Proposition 8.1.5, and (77). In a similar way one proves using (78)

that adg, C 0z, for a € b, which is weaker than (ii). We will prove (ii)

“n §3 (where we worked with G-opers rather than “G-opers) we assumed that a Borel
subgroup B C G is fixed (see 3.1.1), so we are pleased to have a distinguished “b C g.
But in fact this is not essential here: one could rewrite §3 without fixing B; in this case

we would have the Lie algebroids a, and a, without having concrete b,n C g.
“1In fact, a stronger statement is true: the action of DerO on D(GR, I, A;)¢(@)

coincides with the one coming from the morphism Der O — a., defined in 3.5.11 and

the action of ar, on T'(GR, LZHE) (this follows from 3.6.17).
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in 10.1.3 — 10.1.7. In this proof we fix*) £ € Z torsy(O) and write A instead

of Az, 0, instead of 0., etc.
10.1.3. By 3.6.11 we can reformulate 10.1.2(ii) as follows:

(394) ad = —(d(a), Bx) -6 for a € I=%, § € v,

where d : T=0

— b is the map (83), x is considered as an element of h (see
the Remark from 10.1.2) and B : h — h* corresponds to the scalar product
(18).

Remark. The “critical” scalar product (18) appears in the r.h.s. of (394)
because the definition of the Lh.s. involves the map (291), which depends

on the choice of the scalar product on g (see 5.6.11).

10.1.4. The method of the proof of (394) will be described in 10.1.5.
Let us explain the difficulty we have to overcome. The action of I/I?
on T(GR, [LA~1)F(©) comes from the action of the renormalized universal
enveloping algebra U on T(GR, IL,A™1), which is defined by deforming the
critical level (see 777). So the naive idea would be to deform I, i.e., to
try to construct a family of \'-twisted D-modules M, ,Z, h € C, such that
M = I,,. But this turns out to be impossible (at least globally) because
N'-twisted D-modules on Orb, that are invertible O-modules exist only for
a discrete set of values of h. Therefore we have to modify the naive idea

(see 10.1.5 and 10.1.7).

10.1.5. We are going to use the notion of Dys-module from 7.11.11 (so
h € C[h] is a parameter). In 10.1.7 we will construct a Dys-module M on

U, and an embedding
(395) 0y — DU, MA™Y)
such that

“)By the way, all objects of Z torsy(O) are isomorphic.
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(i) M is a flat C[h]-module®;
(ii) There is a D-module morphism My := M/hAM — Ig := I |y, such

that the composition
oy = T(Uy, MA™!) = T(Uy, MoA ™) = T(Uy, IV

equals (392);
(iii) The image of (395) is annihilated by g ® m where m is the maximal
ideal of O;

(iv) for ¢ € C := the center of Ug and ¢ € 0, one has
(396) con = ¢(c)dn

where 05, € I'(Uy,, MA™!) is the image of § under (395), ¢ : C — CIh] is the
character corresponding to the Verma module with highest weight —h By,
and B : h — b* is the scalar product (18).

Remarks. 1) MA™! is a D,ns+1-module.

2) Of course, Dyn+1 := Dys @c|s) C[h] where the morphism C[s] — C[A] is
defined by s +— h + 1. Quite simialrly one defines, e.g., Dy—» (this notation
will be used in 10.1.7).

10.1.6. Let us deduce (394) from (i) — (iv). By 5.6.7 — 5.6.8 the L.h.s. of
(394) equals a’6 where a® € U and a € I=° have the same image in U} /U}.
To construct a” we can lift a to an element @ € A := the completed universal
enveloping algebra of 9/(_87( so that a belongs to the ideal of A topologically
generated by g ® O; then h~'a belongs to the algebra A% from 5.6.1 and we
can set @’ := the image of h~'a in U,

We will show that for a suitable choice®) of a
(397) a’8y = —(d(a), BY) - &

*)So for each a € C we have the module M, := M/(h —a)M over Dya := Dyu /(h — a),
and M is, so to say, a flat family formed by M,, a € C.

*)a§ does not depend on the choice of & while abéo does (because dy is annihilated by

g ® m, but not by g ® O).



376 A. BEILINSON AND V. DRINFELD

where Jy is the image of &, in I'(U,, MO)\_I) and d, B have the same meaning
as in (394). By 10.1.5(ii) the equality (397) implies (394).

Let us describe our choice of @. We can write a € I=Y as ¢ + a/ where
c € C and a’ belongs to the left ideal of U topologically generated by g®@m
(in terms of 3.6.8 — 3.6.9 ¢ = w(a)). We choose a € A so that a — a and
a — ¢ belongs to the left ideal of A topologically generated by g ® m. Then
(397) holds.

Indeed, MA™! is a Dynri-module. Therefore by ??? A% acts on
T(Uy, MA~1) (can we write simply MA~1 77?) sothat h:=1—1€ g@ K C
A% acts as multiplication by A (is this expression OK ???). We can rewrite

(397) as
(398) h~'a- 6, = —(d(a), Bx) -6, mod h.

By 10.1.5(iii) and 10.1.5(iv) we have ady, = cd, = ¢(c)dp. On the other hand,
¢(c) € C[h] is congruent to —(d(a), Bx)h modulo h? (see the definition of ¢
from 10.1.5 and the definition of d from 3.6.10). So we get (398).

10.1.7. Let us construct the Dyn-module M and the morphism (395)
satisfying 10.1.5(i) — 10.1.5(iv).

We have the G(O)-equivariant line bundle A = Az on GR. Denote by
Ay its restriction to Orb,. Let orb, and p : Orb, — orb, have the
same meaning as in 9.1.3 and 9.1.5. Recall that G(O) acts on orb, via
G(O/tO) = G and p is G(O)-equivariant. By 9.1.11 there is a unique G-
equivariant line bundle A, on orby such that A, = p*A,.

On orb, we have the sheaf of twisted differential operators DAZ . Set
N = pTDA;h where DA;;L is considered as a left DA;;L—module and p' is the
usual pullback functor. N is a left DA;h—module on Orb, equipped with a

canonical section 1 := pf(1) € I'(Orby, N). Clearly wom, ®o N is a right
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D)\Q—module*) on Orb,. The section T induces an O-module morphism
(399) WOrby — Worby, ®o N .

We define M to be the direct image of wor,, ®o N under the closed
embedding Orb, — U,. The morphism (395) is defined to be the

composition
0y = I'(Orby,worm, ® ') = T'(Orby, (worb, ®o N)ALH) = T'(Uy, MA™!)

where the first morphism is induced by (241) and the second one is induced
by (399).

The property 10.1.5(i) is clear. The property 10.1.5(ii) is also clear: the
morphism My — Ig comes from the D-module morphism Ny = pTDorbX —
Oorb,, such that T+ 1 (is it OK to write T instead of T mod h, or T, etc.
777). Notice that 10.1.5(iii) and 10.1.5(iv) are properties of the action of
g ® O on the image of (395). This image is contained in the g ® O-invariant

subspace (or C[h]-submodule 777?)
(400) T'(Orby, (worb, ®o N)AL') =T(Orby, AL 'worm, ®o N).

So to prove 10.1.5(iii) and 10.1.5(iv) it suffices to work on Orb,. Using (241)
we identify (400) with

(401) 9, @ T(Orby, N) .

The isomorphism between (400) and (401) is g® O-equivariant (the action of
g ® O on 0, is trivial), because the isomorphism (241) is g ® O-equivariant.

So 10.1.5(iii) and 10.1.5(iv) are equivalent to the following properties of

“)By the way, wWorby, ®o N is canonically isomorphic to the pullback of the right DAQ'
module Worb, Q0 DAQ' Indeed, the image of Worb,, Q0 DA;} under the usual functor

M +— M ®¢ wli transforming right Dy.-modules into left D, _n-modules is freely
OrbX AX AX

—1

orbx) and therefore is canonically isomorphic

generated by 1 € T'(orby, worb, ®o0 DA’; Qo w

to DA;h .
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I € T(Orb,, N):

(402) (gom)I=0,

(403) cIl=¢(c)I for ceC.

Recall that C :=the center of Ug, ¢ : C — CJh| denotes the character
corresponding to the Verma module with highest weight —hBy, and B :
h — b* is the scalar product (18).

So it remains to prove (402) and (403). Recall that N := pTDA;h,,
I := p'(1), and p : Orb, — orb, is G(O)-equivariant. Therefore (402)
is clear (because the action of g ® m on (orby, A, ) is trivial) and (403) is

equivalent to the commutativity of the diagram

C — Ug
(404) wl l
C[h] <— T(orby, DA;}")
Recall that A, is the G-equivariant line bundle on orb, such that A, =

p*A,. Since orby = G/ P (see 9.1.3) the isomorphism class of \, is defined
by some | € Hom(P_, G,,) C Hom(H, Gy,) C h*. In fact,

(405) = By.

Indeed, there is a G(O)-equivariant isomorphism Ay = wou, (see (241)), so
A, is G-isomorphic to the line bundle M, from 9.1.12 and (405) is equivalent
to Proposition 9.1.13. The commutativity of (404) follows from (405) (see

777). So we are done.
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