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Let G be a complex reductive group, and let T ⊂ G be a maximal torus. Let
Λ and Λ∨ be the lattices of characters and 1-parameter subgroups of T . We have
natural inclusions Λ ⊂ t∗ and Λ∨ ⊂ t. Let ∆ ⊂ Λ and ∆∨ ⊂ Λ∨ be the sets of
roots and coroots. We write the root and coroot data as follows

(
∆ ⊂ Λ ⊂ t∗, ∆∨ ⊂ Λ∨ ⊂ t

)
.

Let G′ be another reductive complex group with a maximal torus T ′ and root
and coroot data (

∆′ ⊂ Λ′ ⊂ t′∗, ∆′∨ ⊂ Λ′∨ ⊂ t′
)
.

Assume that there is an isomorphism ϕ : t → t′∗ interchanging the root and
coroot data. More precisely, it identifies ∆ with ∆′∨ and Λ with Λ′∨, and that the
isomorphism t′ → t∗ induced by ϕ identifies ∆′ with ∆∨ and Λ′ with Λ∨. Then we
say that G′ is the Langlands dual group of G, and we denote it by LG. Note that
L(LG) = G.

For example, L GLn
∼= GLn, LSLn

∼= PSLn, LSO2n
∼= SO2n, LSO2n+1

∼= Sp2n

and if T is a complex torus, then LT is the torus dual to T . In general, the center
Z(G) of G is naturally isomorphic to Hom(π1(

LG),C∗), the Pontrjagin dual of the
fundamental group of LG.

Let X be a smooth projective curve over C with genus g > 1, and let BunG

be the moduli stack of principal G-bundles. An LG local system on X is a differ-
entiable principal LG-bundle together with a flat connection. Equivalently, it is a
pair (P,∇) where P is a holomorphic LG-bundle and ∇ a holomorphic connection
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(the flat connection decomposes in a (0, 1) part, which is the holomorphic structure
on P , and a (1, 0) part, which is the holomorphic connection).

Conjecture 0.1 (Geometric Langlands). For each irreducible LG-local system E on
X, there is an irreducible holonomic D-module FE on BunG, such that FE is a
“Hecke eigensheaf” with “eigenvalue” E (cf. section 4).

This conjecture is inspired by the Langlands correspondence between Galois
LG-representations and automorphic functions on G(A), where A is the ring of
adèles.

In these notes we only consider the case of curves over C, but we should
mention here that there is a version of the geometric Langlands conjecture for
curves over Fq, but using perverse sheaves instead of D-modules. For G = GLn this
conjecture is due to Drinfeld and Laumon [26] generalizing Drinfeld’s construction
for GL2 [12] and Deligne’s proof for GL1, and it is was proved by Lafforgue [25].
The version over a field of characteristic zero (or also a finite field of l elements,
with l sufficiently large) was proved by Frenkel, Gaitsgory and Vilonen in [15, 18].

For a complex reductive group, the geometric Langlands conjecture is due to
Beilinson and Drinfeld, and they proved it (over C) when G is semisimple and E
is a LG-oper [6] (cf. section 5).

For a geometric motivation, consider the group G = GL1 and the Picard
scheme Pic(X) (note that we are using the Picard scheme, not the Picard stack).
As we have said, there is a proof in this case due by Deligne, which works both
over Fq and over C (see [14, 4.1]). In the complex case there is a direct construction
(see [14, 4.3]) which we explain now.

Let’s consider C∗-local systems onX . They are in bijection with 1-dimensional
representations of π1(X), or πab

1 (X) (since the representations are 1-dimensional,
they factor through the abelianization). Consider the embedding i : X ⊂ Pic1(X)
given by the Abel-Jacobi map. This map induces an isomorphism between the
abelianization πab

1 (X) of the fundamental group of X and the fundamental group
π1(Pic1(X)) of Pic1(X) (this is already Abelian), and hence a bijection between
1-dimensional local systems. This bijection gives the following theorem (which is
a reformulation of the geometric Langlands conjecture)

Theorem 0.2. For each 1-dimensional local system E on X, there is a 1-dimensional
local system FE on Pic(X) such that

1. m∗(FE) ∼= FE ⊠ FE, where m : Pic(X) × Pic(X) −→ Pic(X) is tensor
multiplication of line bundles.

2. i∗FE
∼= E, where i : X −→ Pic1(X) is the Abel-Jacobi map.

Therefore the geometric Langlands conjecture can be seen as a (rather non-
trivial!) generalization of this theorem. For simplicity, in these notes we will assume
that G is semisimple, simply connected. It follows that LG is of adjoint type.

A very good introduction to the geometric Langlands program, with an ex-
planation of how it is related to the Langlands program in number theory, see
Frenkel’s lectures [14]. Kapustin and Witten [24] have found a relationship between



Geometric Langlands conjecture 3

the geometric Langlands program and the S-duality appearing in four-dimensional
gauge theories. There is a different version of Langlands duality (cf. [21, 11]) which
can be considered as a “classical limit” of the Langlands duality discussed in this
article. It states that the fibers of the Hitchin map for the moduli of principal
Higgs G-bundles should be dual to the fibers of the Hitchin map for LG.

Defining D-modules on an arbitrary smooth stack is technically difficult, but
we will deal with a special class of stacks (DG-free stacks), and this leads to some
technical simplifications (section 1). The stack of G-modules is constructed using
an idea that goes back to A. Weil (section 3). In section 4 we define the Hecke
eigenproperty, and with this, the statement of the Geometric Langlands conjecture
is complete.

Beilinson and Drinfeld construct the eigensheaf Fσ for a certain class of local
systems, called opers (section 5). There is a general way of producing D-modules
using an integrable quantum system (cf. section 6). The quantum integrable sys-
tem they use is defined in section 9, using the formalism of the localization functor
for Harish-Chandra modules (section 8). An important point is that the quantum
system used by Beilinson and Drinfeld is a quantization of the classical integrable
system of Hitchin. This system is described in section 7, and it is recast in the
language of chiral algebras in section 10 (see section 2 for the definition of a chiral
algebra). This second description is needed to show that Beilinson-Drinfeld’s sys-
tem is indeed a quantization of Hitchin’s system (cf. 11). The fact that Beilinson-
Drinfeld’s system is a quantization of Hitchin’s system is important, because it
tells us that the D-modules Fσ we have constructed is nonzero. Finally, in section
12, we state a few words about how to prove that Fσ is a Hecke eigensheaf.

Notation. Given an affine scheme Z, we will denote by O(Z) its coordinate ring.
Let P be a principal H-bundle on M , and let H act on F . Then we denote by

P ×H F = (P × F )/H

the associated fiber bundle on M with fiber F . Unless otherwise noted, X will be a
fixed smooth projective curve over C with genus g > 1. All the derived categories
that appear in this article are assumed to be bounded derived categories. For more
details about sheaves on stacks, see [33, 28, 29, 30]
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1. D-modules on stacks

Given a smooth scheme, the cotangent bundle is a vector bundle of rank equal
to the dimension of the scheme. The correct generalization of this notion, when
working with smooth Artin stacks, is not a vector bundle, but rather the cotangent
complex [22, 23, 27]. Fortunately, the Artin stacks we will consider are “good” (or
DG-free, see definition below), and for this class of stacks one can give a simplified
definition. For this section, see [6, sec. 1 and 7].

Let Y be a smooth algebraic stack, let Z be a scheme, and let π : Z −→ Y
be a smooth morphism. Let TZ/Y be the relative tangent sheaf on Z. This sheaf
is defined as TZ/Y := ∆∗(T(Z×YZ)/Z ), where ∆ : Z −→ Z ×Y Z is the diagonal.

For all smooth morphism Z −→ Y there is a complex TZ/Y → TZ . This
morphism is not necessarily a bundle morphism. Given smooth morphisms

Z ′
g

−→ Z −→ Y,

the canonical map

g∗(TZ/Y → TZ)
∼
−→ (TZ′/Y → TZ′)

is a quasi-isomorphism, and hence the following definition makes sense.

Definition 1.1. The sheaf TY on Y is defined as follows: for any smooth morphism
π : Z → Y we set

π∗(TY) := TZ/TZ/Y .

Define the stack T ∗Y as

T ∗Y := SpecY(Sym(TY)).

In general we have dimT ∗Y ≥ 2 dimY.

Definition 1.2. A smooth algebraic stack is called “good” (or DG free) if one of
the following equivalent conditions holds

1. dimT ∗Y = 2 dimY
2. codim

{
y ∈ Y| dim Aut(y) = n

}
≥ n, ∀ n > 0

3. The complex Sym(TZ/Y −→ TZ), defined as

· · · −→ Sym(TZ) ⊗

2∧
TZ/Y −→ Sym(TZ) ⊗ TZ/Y −→ Sym(TZ),

is exact except in degree 0, and this 0-th cohomology is Sym(TZ)/ Sym(TZ)TZ/Y .
4. The morphism T ∗Z −→ T ∗Z/Y is flat.

(This definition is in [6, Sect. 1.1.1]). Note that item 2 implies that there is a
dense open substack of Y where it is Deligne-Mumford. Note that the stack T ∗Y
is well defined for an arbitrary smooth stack, but it is only a reasonable definition
for the cotangent stack if Y is good. By this I mean that, for an arbitrary smooth
stack, the complex in item 3 has cohomology in several degrees, but our definition
only encodes the 0-th cohomology. For an arbitrary smooth stack, instead of a
cotangent bundle we have a cotangent complex, instead of the symmetric algebra
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we have a DG-algebra, and instead of a scheme (locally on the stack) we have a
DG-scheme [3].

Definition 1.3. A left D-module on Y is a DZ-module MZ for each smooth mor-
phism, Z → Y, with the obvious compatibility conditions. More precisely, given
a pair fi : Zi → Y and fj : Zj → Y of smooth morphisms, and denoting
Zij = Zi ×Y Zj, an isomorphism between p∗iMZi

and p∗jMZj
is given, satisfying a

cocycle condition on triples.
The sheaf DY is defined as follows: for any smooth morphism π : Z → Y we

set
π∗(DY) := DZ/(DZ · TZ/Y).

Again, this definition for the sheaf of differential operators on Y is reasonable
if Y is DG-free. For a general smooth scheme we should have considered the relative
de Rham complex

· · · −→ DZ ⊗

2∧
TZ/Y −→ DZ ⊗ TZ/Y −→ DZ . (1.1)

The point is that if Y is DG-free, then this complex is exact except in degree 0, and
hence it is enough to take only the 0-th cohomology instead of the whole complex.
For the definition of D-module on an arbitrary smooth stack, see [6, 7.3,7.5]. For
the following lemma, see [6, 1.1.4].

Lemma 1.4. If Y is DG-free, then there is an isomorphism

p∗OT∗Y

∼=
−→ grDY ,

where p : T ∗Y −→ Y is the natural projection.

For an arbitrary smooth stack, this morphism is only a surjection. The inverse
of this isomorphism gives the symbol map σ. The following composition is denoted
σY :

gr Γ(Y,DY) −→ Γ(Y, grDY)
Γ(σ−1)
−→ Γ(Y, p∗OT∗Y)

Analogously, given a line bundle L on Y, we can define the category of L-
twisted D-modules on Y, and the sheaf DL

Y .

Proposition 1.5. If G is semisimple, then the moduli stack of principal G-bundles
on a smooth curve X of genus g > 0 is DG-free.

This is proved in [6, 2.10.5].

2. Chiral algebras

In this section we will recall some definitions and constructions which will be used
in section 9. Chiral algebras first appeared in Mathematical Physics, in the study
of conformal field theory [8]. From the mathematical point of view, chiral algebras
can be considered the geometric approach to the vertex algebras introduced in [9].
For an introduction to vertex algebras, and its relationship with chiral algebras,
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see [16]. For a reference on chiral algebras, see [7], [17] or [1]. For the theory of
D-modules, see [10].

Let X be a complex curve. Let DX be the sheaf of differential operators
on X . Unless otherwise stated, by DX -module we mean a left DX -module, i.e., a
quasi-coherent OX -module endowed with a left action of DX . Explicitly, M is a
DX -module if there is an action of TX on M such that

1. ξ(fm) = ξ(f)m+ fξ(m)
2. (fξ)(m) = fξ(m)
3. [ξ1, ξ2](m) = ξ1(ξ2(m)) − ξ2(ξ1(m))

for all ξ ∈ TX , f ∈ OX and m ∈M .
Let ωX be the dualizing sheaf. Recall that M 7→M ⊗OX

ωX gives an equiv-
alence of categories from the category of left DX -modules to right DX -modules.
Indeed, ωX is a right DX -module (a tensor field ξ ∈ TX ⊂ DX acts on ν ∈ ωX as
ν · ξ = −Lieξ(ν)), and ξ acts on m ⊗ ν ∈ M ⊗OX

ωX as m ⊗ (ν · ξ) − ξ(m) ⊗ ν.

The inverse is given by M 7→M ⊗OX
ω−1

X .
The category (DX -mod) is a tensor category: given two DX -modules M and

N , the product M ⊗OX
N gets an DX -module structure by the Leibniz formula

ξ(m⊗ n) = ξ(m) ⊗ n+m⊗ ξ(n).

Let f : Y → Z be a morphism between smooth schemes. Let N be a right DZ-
module. Let f−1 be the inverse image in the category of sheaves. The sheaf

DY→Z = OY ⊗π−1OZ
π−1DZ

is a left DY -module and right π−1DZ -module. The sheaf f−1N is a left π−1DZ-
module, and therefore

f !N = DY→Z ⊗π−1DZ
f−1N

is a right DY -module. Now let M be a right DY -module. The sheaf

DZ←Y = DY→Z ⊗OY
ωY ⊗π−1OZ

π−1ω−1
X

is a right DY -module and left π−1DZ-module, hence

f!M = M ⊗DY
DZ←Y

is a left π−1DZ module, and hence also a left DZ-module. If f is an open em-
bedding, then f ! is just restriction, and is therefore denoted f∗, and, on the other
hand, DZ←Y is just DY , so, for an open embedding, f! is denoted f∗.

A DX -algebra is a commutative algebra with unit in the tensor category
of DX -modules. For example, OX is a DX -algebra, and if F is a commutative
C-algebra, then F ⊗C OX is a DX -algebra.

Consider the forgetful functor from (DX -alg) to (OX -alg). It has a left ad-
joint functor, called the jet construction J(·)

HomDX -alg(J(C), B) = HomOX -alg(C,Forget(B)) (2.1)

Explicitly, J(C) is the D-algebra defined as the quotient of SymOX
(DX ⊗OX

C)
by the ideal generated by (1 ⊗ c1) · (1 ⊗ c2) − (1 ⊗ c1 · c2) and (1 ⊗ 1) − 1.
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From now on we will assume that X is a projective curve. Consider the
functor from (C -alg) to (DX -alg) sending F to F ⊗ OX . It has a left adjoint,
called the coinvariants construction H∇(X, ·)

HomC -alg(H∇(X,A), F ) = HomDX -alg(A,F ⊗OX
OX) .

It is given by the formula

H∇(X,A) = Ax/DR0(X − x,A) ⊗Ax

where x is a point on X , Ax = A⊗OX
OX/mx is the fiber at x, and DR0(X−x,A)

is the set of sections on X − x of coinvariants of the action of TX on Ar, where
Ar = A ⊗ ΩX is the right D-module corresponding to the left D-module A. The
algebra H∇(X,A) is independent of the point x chosen. This formula shows that
for any x ∈ X , there is a surjection

Ax ։ H∇(X,A).

Let ∆ : X −→ X ×X be the diagonal, and j : X ×X − ∆(X) −→ X ×X
the inclusion of the complement of the diagonal.

An algebra structure on a OX -module M can be described by a homomor-
phism

M ⊠M → ∆∗M .

Chiral algebras are “meromorphic” generalizations of this notion for DX -modules,
allowing poles along the diagonal. Therefore, instead of M ⊠ M we consider
j∗j
∗M ⊠M A local section of this sheaf is of the form f(x, y)a⊠ b where f(x, y)

is a rational function on an open subset of X ×X , where we allow poles along the
diagonal, and a and b are local sections of M . Also, instead of ∆∗M (“extension
of M by zero”), we will use ∆!M . Denote by σ12 the automorphism of X × X
which permutes the factors. It follows from the definition of ∆!M that there is a
canonical lift to ∆!M , which we denote

σ̃12 : ∆!M −→ σ∗12∆!M

A chiral algebra is a right DX -module A together with a right DX×X -module
homomorphism

{ } : j∗j
∗(A⊠A) −→ ∆!(A)

such that (antisymmetry)
{
f(x, y)a⊠ b

}
= −σ̃12

{
f(y, x)b⊠ a

}
,

where f(y, x) is the transposition σ12 composed with f(x, y), and if f(x, y, z)a⊠b⊠c
is a section on the complement of all the diagonals in X ×X × X , then (Jacobi
identity)
{{
f(x, y, z)a⊠b

}
⊠c

}
+σ̃123

{{
f(x, y, z)b⊠c

}
⊠a

}
+σ̃2

123

{{
f(y, z, x)c⊠a

}
⊠b

}
= 0

as a section of ∆x=y=z∗(A), where σ̃123 is the lift of the cyclic permutation. A unit
of a chiral algebra is a morphism u : ΩX −→ A such that the following diagram is
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commutative

j∗j
∗(ΩX ⊠A)

u⊠id

f

j∗j
∗(A⊠A)

{ }

∆!(A) ∆!(A)

(2.2)

where the morphism f comes from the short exact sequence

0 −→ ΩX ⊠A−→j∗j
∗(ΩX ⊠A)−→∆!(A) −→ 0.

A chiral algebra is called commutative if the restriction of the bracket { } to
A⊠A ⊂ j∗j

∗(A⊠A) is zero

{ }|A⊠A = 0.

Alternatively, the bracket factors as

j∗j
∗(A⊠A)

{ }

p

∆!A

∆!∆
!(A⊠A) ∼= ∆!(A⊗A)

(2.3)

Hence, in a commutative chiral algebra, the bracket map comes from a morphism
A⊗A −→ A.

Proposition 2.1. If A is a commutative chiral algebra, then A ⊗ Ω−1
X is a DX-

algebra. Conversely, if A is a DX -algebra, then Ar := A ⊗ ΩX is a commutative
chiral algebra, with the bracket defined using the algebra structure Ar ⊗Ar −→ Ar

and (2.3).

A Lie∗ algebra is a right DX -module A together with a right DX×X -module
morphism

[ ] : A⊠A −→ ∆!A

which is antisymmetric and satisfies the Jacobi identity, in a similar way as in the
definition of chiral algebra. Given a chiral algebra, we define a Lie∗ algebra by
composition

[ ] : A⊠A →֒ j∗j
∗(A⊠A)

{ }
−→ ∆!A

This gives a “forgetful” functor from (ChX) to (Lie∗X). It has a left adjoint functor,
called the chiral envelope

HomChX
(U(L), A) = HomLie∗

X
(L,Forget(A))

Let g be a Lie algebra, and let q be an invariant symmetric bilinear form on
g. Consider the right DX -module

g ⊗DX ⊕ ΩX (2.4)

with bracket

[g1 ⊗ 1 ⊠ g2 ⊗ 1] = [g1, g2] ⊗ 1 ⊕ q(g1, g2)1
′
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where 1
′ is the canonical antisymmetric section of ∆!(ΩX). This gives (2.4) the

structure of a Lie∗ algebra, called the Kac-Moody Lie∗ algebra. The fiber of U(g⊗
DX ⊕ ΩX) over x is

U(g ⊗DX ⊕ ΩX)x = Ind
bgq

g⊗ bO⊕C1
C. (2.5)

See section 9 for the definition. For a proof of this formula, and further details
about the chiral envelope, see [7, Sect. 3.7]

3. Geometry of the affine Grassmannian

For a reference for this section, see [34, Section 5] and the references there in.
Given a ring R, R[[t]] will be the ring of formal power series with coefficients in

R, and R((t)) will be the ring of formal Laurent series. Let Ô = C[[t]], and let

K̂ = C((t)) be its quotient field. Let Z be an affine scheme. We denote by Z[[t]]

(or Z(Ô)) the functor defined as

Hom(S,Z[[t]]) := Homalg(O(Z),O(S)[[t]]) ,

where S is an affine scheme. It can be shown that Z[[t]] is representable by a

scheme. Note that the C-valued points of Z[[t]] are the Ô-valued points of Z. We

will denote by Z((t)) (or Z(K̂)) the functor

Hom(S,Z((t))) := Homalg(O(Z),O(S)((t))).

Note that the C-valued points of Z((t)) are the K̂-valued points of Z. It can be
shown that Z((t)) is an ind-scheme. Recall that a functor is called and ind-scheme
if is representable by a direct limit of closed embeddings. More precisely a functor
F : (Sch) → (Sets) is called and ind-scheme if there are schemes Yi, i ∈ N, closed
embeddings Yi → Yi+1 and

F = lim
→
Yi,

where this functor is defined as
(
lim
→
Yi

)
(S) = lim

→
Hom(S, Yi).

If Yi and Y ′j are two inductive systems that are cofinal (i.e. for all i there is an j
such that Yi ⊂ Y ′j and for all j there is an i such that Yi ⊃ Y ′j ), then the functors

lim→ Yi and lim→ Y
′
i are canonically isomorphic. We say that and ind-scheme is

of ind-finite type if the schemes Yi can be chosen of finite type. We say that it is
ind-complete if the schemes can be chosen to be complete, and analogously, for
any property P that is stable under restriction to a closed subscheme, we say that
an ind-scheme is ind-P if the schemes Yi have the property P .

A vector bundle over the disk D = Spec Ô is a finitely generated free Ô-
module. A family of vector bundles over D parameterized by an affine scheme S is
a finitely generated O(S)[[t]]-module, such that locally in the Zariski topology of
S, it is isomorphic to the trivial bundle.
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Replacing D with D
× = Spec K̂ and Ô with K̂, we obtain the analogous

notions for the punctured disk.

Definition 3.1. A family of principal G-bundles on D parameterized by an affine
scheme S is a tensor functor from the category of representations of G to the
category of S-families of vector bundles on D

Rep(G) −→ (S-families of vector bundles on D)

We also have the analogous notion for the punctured formal disk.
Let G be an affine algebraic group. Then G[[t]] is a group scheme, and G((t))

is a group ind-scheme. We define the affine Grassmannian GrG to be the quotient
(as fpqc sheaves) G((t))/G[[t]].

Lemma 3.2. The affine Grassmannian is naturally isomorphic to the functor

S 7−→ (PG, β : PG|D××S −→ P 0
G|

D××S)

where PG is a family of G-bundles on the formal disk D parameterized by S, P0
G

is the trivial G-bundle, and β is an isomorphism.

Theorem 3.3. The affine Grassmannian GrG is an ind-scheme of ind-finite type.
If G is reductive, then GrG is ind-complete.

A pro-algebraic group H is an affine group scheme that is represented by a
projective limit of affine algebraic groups of finite type, i.e., there are algebraic
groups Hi of finite type, group morphisms Hi+1 → Hi, and

H = lim
←
Hi

For example, G[[t]] is a pro-algebraic group. The group of automorphisms of

C[[t]] = Ô, denoted Aut(Ô), is also a pro-algebraic group

Aut(Ô) = lim
←

(
Aut(C[t]/(ti))

)
.

Definition 3.4. An action of a pro-algebraic H group on an ind-scheme Y is nice
if we can write Y = limYi such that

• Yi is H-invariant for all i.
• The H-action of on Yi factors through a finite dimensional quotient of H .

Lemma 3.5. The natural action of G(Ô) = G[[t]] on GrG = G((t))/G[[t]] is nice.

The natural action of Aut(Ô) on GrG is also nice.

There are countably many orbits of G(Ô) on GrG, and this orbits are enu-
merated by Λ+ = Λ/W , where Λ are the coweights of G, and Λ+ is the semi-group
of dominant coweights, and W is the Weyl group. The dimension of the orbit
corresponding to the coweight λ is

dim(Grλ
G) = 2ρ(λ)

where ρ is half the sum of the positive roots (see [31, section 2]).
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Now we will explain the relationship between the affine Grassmannian and
the moduli stack of principal G-bundles on a curve X . We choose a point x ∈ X ,

and fix an isomorphism between Ô = C[[t]] and the completion Ôx of the local

ring of X at x. This induces an isomorphism between K̂ = C((t)) and the quotient

field K̂x of Ôx. In other words, we have chosen a local parameter t at the point x.
Define the functor LXG as

Hom(S,LXG) := Homalg(O(G),O(S) ⊗O(X − x)),

so that C-points of LXG correspond to morphisms from X − x to G.
The intuitive idea is of uniformization is the following: a principal bundle is

trivial when restricted to a disk D or the complement of a point X∗ = X − x (for
the later, we need G to be semisimple). Therefore, to describe a principal bundle
we have to give the transition function, which is a map from the intersection, i.e.
the pointed disk D× to G. In other words, a C-valued point of G((t)). Then we
have to “forget” the trivializations, so the set of isomorphism classes of principal
bundles will correspond to the double quotient LXG\G((t))/G[[t]]. If we take this
quotient in the sense of stacks, we obtain the moduli stack of principal G-bundles
on X .

Of course, we have to work with families of bundles, and to make this rigorous
we need two technical theorems. The first one tells us that the restriction to X−x
is trivial [13].

Theorem 3.6 (Drinfeld-Simpson). Suppose G is semisimple, let S be an affine
scheme and let P be a principal G-bundle on X × S. Then the restriction of P to
(X − x) × S is trivial, locally for the étale topology on S.

In positive characteristic we would need the fppf topology. The second theo-
rem tells us that we can glue trivial G-bundles on D and X−x to obtain a principal
G-bundle on X . In [2] it is proved for vector bundles, but it is easy to generalize
to principal G-bundles (see also [32]).

Theorem 3.7 (Beauville-Laszlo). Let γ be an S-valued point of G((t)). Then there
exists a principal G-bundle P on X × S and trivializations σ and τ on D× S and
(X−x)×X whose difference on the intersection D××S is γ. Moreover, the triple
(P, σ, τ) is unique up to unique isomorphism.

Using these theorems, the uniformization theorem for principal G-bundles
follows (recall that we are assuming that G is semisimple).

Theorem 3.8. 1. The ind-scheme G(K̂) represents the functor of principal bun-
dles with a trivialization on the formal disk and on X∗ = X − x (recall
definition 3.1)

Hom(S,G(K̂)) =
{
P, α : P |DS

→ P 0|DS
, β : P |X∗

S
→ P 0|X∗

S

}
,

where P is a principal G-bundle on X × S, DS = D × S, X∗S = (X − x) × S
and α, β are isomorphisms.
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2. The affine Grassmannian G(K̂)/G(Ô) represents the functor of principal G-
bundles with a trivialization on X − x

Hom(S,GrG) =
{
P, β : P |X∗

S
−→ P 0|X∗

S

}
.

3. The quotient LXG \ G(K̂) represents the functor BunG,x of principal G-
bundles with a trivialization on the formal disk D

Hom(S,BunG,x) =
{
P, α : P |DS

→ P 0|DS

}
. (3.1)

4. The space BunG,x is a principal G(Ô)-bundle on BunG, and we have

BunG
∼= [BunG,x

/
G(Ô)]. (3.2)

4. Hecke eigenproperty

4.1. Convolution product

In this section we consider the category SphG of G(Ô)-equivariant perverse sheaves
on GrG. We have chosen to use perverse sheaves, following [31], but we could have
worked with D-modules as in [6]. Both approaches are equivalent, thanks to the
Riemann-Hilbert correspondence.

We define a convolution product S1 ∗ S2 in this category, that will give a
structure of symmetric tensor category. This symmetric tensor category will be
equivalent to the category of representations of the group LG, the Langlands dual
group of G. Since a group is defined by the symmetric tensor category of its
representations, this gives a geometric definition of the Langlands dual group.

We now recall the definition of perverse sheaf and equivariant perverse sheaf
(see [4] and [31, section 2]). Let H be an algebraic group acting on a scheme Y
of finite type. Let m : H × Y → Y be the action and let p be the projection
from H × Y to Y . Fix a Whitney stratification T of Y such that the action of H
preserves the strata (in our application, the strata will be the orbits of H). Let
DT (Y ) be the bounded derived category of T -constructible C-sheaves. That is,
the full subcategory of the derived category of C-sheaves whose objects S have
Hk(Y,S) = 0 unless k = 0 and the restriction of the cohomology Hk(S)|T for any
T ∈ T is a local system of finite dimensional C-vector spaces.

An object S ∈ DT (Y ) is called perverse if, for all i : T →֒ Y , T ∈ T ,

1. Hk(i∗S) = 0 for k > − dimC T
2. Hk(i!S) = 0 for k < dimC T

The full subcategory (of DT (Y )) of perverse sheaves PervT (Y ) is an abelian cate-
gory. An H-equivariant perverse sheaf on Y is a pair (S, ϕ), where S is a perverse
sheaf S on Y , and ϕ is an isomorphism

ϕ : m∗S −→ p∗S

such that

1. (Identity) ϕ is the identity map when restricted to e × Y (where e is the
identity element of H)
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2. (Associativity) The two isomorphisms induced by the two natural maps from
H ×H × Y to Y coincide.

We denote the category of equivariant perverse sheaves as PervH(Y ). If H is
connected, then the isomorphism ϕ, if it exists, is unique, and then PervH(Y ) ⊂
PervT (Y ). If H is a pro-algebraic group and Y is and ind-scheme, and if the action
is nice (cf. definition 3.4), then we define

PervH(Y ) = lim
→

PervH(Yi)

This allows us to define:

Definition 4.1. The category SphG of spherical sheaves is defined to be PervG( bO)(GrG),

where the strata are taken to be the G(Ô)-orbits in GrG.

A homomorphism λ : C
∗ → T to a maximal torus of G determines a coset

λ · G(Ô) ⊂ G(K̂), and hence a point in GrG. Let Grλ
G be the G(Ô)-orbit of this

point. We have Grλ
G = Grµ

G if and only if λ and µ are conjugate by the Weyl

group. The category SphG is semisimple ([31, Lemma 7.1]), and since the G(Ô)-

orbits Grλ
G are simply connected, it follows that every G(Ô)-equivariant perverse

sheaf on GrG is a direct sum of intersection cohomology sheaves IC
Grλ

G

, where

IC
Grλ

G

is the Goresky-MacPherson extension of the trivial local system on Grλ
G.

Therefore (see [31, Proposition 2.2]), we obtain the following

Lemma 4.2. Every object in SphG is automatically equivariant with respect to

Aut(Ô).

By definition, G(K̂) is a principal G(Ô) bundle on GrG. Define the convolu-
tion diagram ConvG to be the associated fiber bundle on GrG with fiber GrG

ConvG = G(K̂) ×G( bO) GrG

Let p1 and p be defined as follows

ConvG −→ GrG

p1 : (g1, g2) 7−→ g1

p : (g1, g2) 7−→ g1g2

Note that p1 is the structure morphism of ConvG as a GrG-fiber bundle over GrG.
This fiber bundle is not trivial, but still we have an isomorphism

(p, p1) : ConvG

∼=
−→ GrG ×GrG .

Now we give a more geometric description of ConvG. It represents the functor

S 7−→
{
P, P ′, β : P |X∗

S
−→ P ′|X∗

S
, β′ : P ′|X∗

S
−→ P 0|X∗

S

}
,

where P and P ′ are principal G-bundles on X × S, P 0 is the trivial G-bundle,

X∗S = (X − x) × S, and β̃ and β′ are isomorphisms. The morphisms p1 and p are
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defined as follows:

p1(P, P
′, β, β′) = (P ′, β′)

p(P, P ′, β, β′) = (P, β′ ◦ β)

The convolution diagram is used to define a product

Perv(GrG) × PervG( bO)(GrG) −→ Perv(GrG)

(S1,S2) 7−→ S1 ∗ S2

To define this product, we will use the following useful construction. Let π : P → Y
be a principal H-bundle on a scheme Y , and let H act on a scheme F . Let S1 be a
perverse sheaf on Y , and let S2 be an H-equivariant perverse sheaf on F . Consider
the sheaf π∗S1 ⊠ S2 on P × F . It is H-equivariant because S2 is H-equivariant,
and hence it descends to a sheaf on (P ×F )/H = P ×H F , i.e., the F -fiber bundle
associated to the principal H-bundle

Perv(Y ) × PervH(F ) −→ Perv(P ×H F )

(S1,S2) 7−→ S1⊠̃S2
(4.1)

If P , Y and F are ind-schemes, H is a pro-algebraic group, and the action is nice,
then this construction still makes sense.

Applying this to our situation, we obtain a perverse sheaf S1⊠̃S2 on ConvG.
Let p! be the push-forward in the derived category (i.e., p! = Rp∗, where p∗ is the
push-forward in the category of C-sheaves). Apply the functor p! to define

S1 ∗ S2 = p!(S1⊠̃S2)

If S2 is G(Ô)-equivariant, then S1 ∗ S2 is also G(Ô)-equivariant. The sheaf S1 ∗ S2

is perverse [31, Proposition 4.2], i.e.

S1 ∗ S2 ∈ SphG

Theorem 4.3. There are functorial isomorphisms S1 ∗ S2
∼= S2 ∗ S1 and (S1 ∗

S2) ∗ S3
∼= S1 ∗ (S2 ∗ S3), giving the category SphG the structure of a unital rigid

commutative associative tensor category (in particular, they satisfy the “hexagon
axiom”, cf. [19, Sect. 3.7]).

The associativity is [31, Proposition 4.5], and the commutativity in [31, sec-
tion 5]. The unit for the convolution product is IC

Gr0
G

. Rigidity means that duals

exist, and it is proved in [19, Proposition 1.3.1(ii)].
Now we will define GrX and GrX×X , and use them to give an alternative

definition of the product S1 ∗ S2. We will use this to define the commutativity
isomorphism.

Let π : X −→ X be the canonical principal Aut(C[[t]])-bundle on X . A point
of X is a pair

(
x, ϕ : Ôx

∼=
−→ C[[t]]

)
, (4.2)
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where x ∈ X , and ϕ is an isomorphism between C[[t]] and the completion Ôx of

the local ring at x. In general, if Aut(Ô) acts on F , we can form the associated
fiber bundle

X(F ) := X ×Aut(C[[t]]) F,

and using (4.1), a functor

PervAut( bO)(F ) −→ Perv(X(F ))

S 7−→ SX := CX⊠̃S
(4.3)

where CX is the constant sheaf on X .

We define GrX as the associated GrG-fiber bundle

GrX = X ×Aut(C[[t]]) GrG .

It is an ind-scheme. The fiber of GrX over a point x ∈ X is canonically isomor-

phic to G(Kx)/G(Ôx), where Kx is its quotient field of Ôx. The ind-scheme GrX

represents the functor

S 7−→
(
f : S → X,P, β : P |X×S−Γf

∼=
−→ P 0|X×S−Γf

)
,

where P is a principal G-bundle on X×S, and β is a trivialization on X×S−Γf ,
where Γf is the graph of f .

Define GrX×X as the functor

S 7−→
{
f1, f2 : S → X,P, β

}

where β is a trivialization of P on X×S− (Γf1 ∪Γf2 ). The functor GrX×X comes
with a natural projection to X×X . The fiber over (x, y) when x 6= y is GrG ×GrG,
but it is GrG if x = y. In particular, GrX×X is not a fiber bundle (as opposed to
what happens with GrX).

Proposition 4.4. The functor GrX×X is representable by an ind-scheme. Let ∆ ⊂
X ×X be the diagonal. We have the following isomorphisms

GrX×X |X×X−∆
∼= GrX ×GrX |X×X−∆

GrX×X |∆ ∼= GrX

Given a G(Ô)-equivariant perverse sheaf S on GrG, since it is also Aut(Ô)
equivariant (lemma 4.2) we can associate a perverse sheaf on GrX as in (4.3)

PervG( bO)(GrG) −→ Perv(GrX)

S 7−→ SX := CX⊠̃S

where CX is the constant sheaf on X .

Given a principal divisor Y0 on a scheme Y (i.e., Y0 is defined as the zero of
a section of a line bundle on Y ) we consider the nearby cycles functor

Ψ : Perv(Y − Y0) −→ Perv(Y0).
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Taking Y = GrX×X , Y0 = GrX×X |∆, and using proposition 4.4, we define

Perv(GrG) × PervG( bO)(GrG) −→ Perv(GrX)

(S1,S2) 7−→ Ψ
(
(S1,X ⊠ S2,X)|X×X−∆

)

The following theorem follows from [31, (5.10)]

Theorem 4.5. We have
(
S1 ∗ S2

)
X

∼= Ψ
(
(S1,X ⊠ S2,X)|X×X−∆

)

Therefore (cf. [31, (5.11)]):
(
S1 ∗S2

)
X

∼= Ψ
(
(S1,X ⊠S2,X)|X×X−∆

)
∼= Ψ

(
(S2,X ⊠S1,X)|X×X−∆

)
∼=

(
S2 ∗S1

)
X

and specializing to any point in X we get an isomorphism

ψ′ : S1 ∗ S2

∼=
−→ S2 ∗ S1

This commutativity isomorphism provides SphG with the structure of a tensor
category. We modify the commutativity isomorphisms ψ′ with a sign in the fol-

lowing way. Given a connected component of Gr, all the G(Ô)-orbits have even
(respectively odd) dimension ([6, Proposition 4.5.11]), and then we say that this
component is even (respectively odd). Given an irreducible perverse sheaf S on
Gr, define p(S) = 1 if the support is even and p(S) = −1 if it is odd. If S1

and S2 are irreducible, we modify the commutativity with the following sign:
ψ = (−1)p(S1)p(S2)ψ′.

Proposition 4.6. The hyper-cohomology functor H∗ : SphG → VectC, sending a
sheaf S to ⊕Hi(S), is a tensor functor with respect to the commutativity isomor-
phism ψ ([31, Proposition 6.3]).

Theorem 4.7. There is a canonical equivalence of tensor categories

Rep(LG)
∼=
−→ SphG,

where LG is the Langlands dual group to G. This equivalence sends the represen-
tation V λ to the sheaf IC

Gr
λ , where λ is a cocharacter of G, and hence a weight

of LG.

This was proved by Ginzburg [19] for characteristic 0 and by Mirkovic and
Vilonen [31, Theorems 7.3 and 12.1] in a more general setting.

4.2. Hecke stacks and Hecke functors

In this section we introduce the Hecke stacks. These give analogs for principal
G-bundles of the Hecke transformation for vector bundles. There are two versions
of this stack, depending on whether the point x is fixed or is allowed to move in X .
Using these stacks, we define the Hecke functor (4.4). This is a product between
objects of SphG and D-modules on the moduli stack BunG of principal G-bundles
on X . This product is used to define the notion of Hecke eigensheaf for D-modules
on BunG.
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Recall (3.1) that BunG,x is a principal G(Ô)-bundle on BunG. Let xHG be
the associated GrG-fiber bundle.

xHG = BunG,x ×G( bO) GrG .

It represents the 2-functor

S 7−→
(
P, P ′, β : P |X∗

S

∼=
−→ P ′|X∗

S

)
,

where P and P ′ are principal G-bundles on X × S and β is a trivialization on
(X − x) × S. We define morphisms of stacks

xHG

h h′

BunG BunG

sending (P, β) to P and P ′. We use this stack to define a product, called the Hecke
functor

xH(·, ·) : SphG ×D(BunG) −→ D(BunG)

(S,F) 7−→ xH(S,F) = h′!(F⊠̃ DR−1(S))
(4.4)

where DR is the de Rham functor, giving the Riemann-Hilbert correspondence
between D-modules and perverse sheaves, and D(BunG) is the category of D-
modules on BunG (see [6, Section 7] for the definition of the category of D-modules
on a stack).

Lemma 4.8. There is an isomorphism

xH(S1, xH(S2,F)) ∼= xH(S1 ∗ S2,F)

This lemma follows from the associativity of the convolution. Now we define
a global version of this stack and convolution product. We say “global” in the
sense that now the point x will be allowed to move in X .

Recall (4.2) the definition of the canonical Aut(Ô)-bundle π : X → X . The

group Aut(Ô) acts on xHG, and we define HG to be the associated fiber bundle
on X

HG = X ×Aut( bO) xHG.

It represents the 2-functor

S 7−→
(
f : S → X,P, P ′, β : P |X×S−Γf

∼=
−→ P ′|X×S−Γf

)
,

where Γf is the graph of f and β is an isomorphism on X × S − Γf . There are
morphisms

HG

h
s

h′

BunG X BunG

(4.5)
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Sending (f, P, P ′, β) to P , f , and P ′. Given S ∈ SphG := PervG( bO)(GrG) and F ∈

D(BunG), applying the construction of (4.1) we obtain F⊠̃DR−1(S) ∈ D(xHG).

Since S was Aut(Ô) equivariant (lemma 4.2), the same holds for F⊠̃DR−1(S),

hence we can define (F⊠̃DR−1(S))X ∈ D(GG) as in (4.3). Hence we can define a
product

H(·, ·) : SphG ×D(BunG) −→ D(X × BunG)

(S,F) 7−→ H(S,F) = (s, h′)!
(
(F⊠̃DR−1(S))X

)

We can iterate this construction using the diagram

HG

h (s,h′)

X ×HG

id×h id×(s,h′)

BunG X × BunG X ×X × BunG

and we obtain a product

H(·, ·) : SphG ×D(X × BunG) −→ D(X ×X × BunG)

(S,G) 7−→ H(S,G) =
(
id×(s, h′)

)
!

(
(G⊠̃ DR−1(S))X

)

Proposition 4.9. Let σ12 : X × X → X × X be the morphism exchanging the
factors. We have

• H(S1, H(S2,F))|(X×X−∆)×BunG
∼= σ∗12H(S2, H(S1,F))|(X×X−∆)×BunG

• Ψ
(
H(S1, H(S2,F))

)
∼= H(S1 ∗ S2,F)

4.3. Statement of Hecke eigenproperty

Recall (theorem 4.3) that there is an equivalence of categories between Rep(LG)
and SphG. We denote by SV the sheaf corresponding to the representation V .
Let σ : π(X) −→ LG be a representation of the fundamental group. Given a
representation V ∈ Rep(LG), we denote by Vσ the induced local system on X .

Let F ∈ D(BunG) be a D-module on BunG. Assume that for all V ∈ Rep(LG)
we are given an isomorphism

φV : H(SV ,F)
∼=
−→ Vσ ⊠ F ∈ D(X × BunG)

Iterating this isomorphism, we obtain

φV,W : H(SV , H(SW ,F))
∼=
−→ Vσ ⊠Wσ ⊠ F ∈ D(X ×X × BunG)

Assume that the following diagrams commute

H(SV , H(SW ,F))|U
∼=

φV,W ∼=

σ∗12H(SV , H(SW ,F))|U

σ∗
12φV,W

∼=

Vσ ⊠Wσ ⊠ F
∼=

σ∗12Wσ ⊠ Vσ ⊠ F
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Ψ
(
H(SV , H(SW ,F))

) ∼=

∼=Ψ(φV,W )

H(SV ∗ SW ,F)

∼=φV ⊗W

Ψ
(
Vσ ⊠Wσ ⊠ F

) ∼=
(V ⊗W )σ ⊠ F

where U = (X ×X − ∆) × BunG. Then we say that F is a Hecke eigensheaf with
“eigenvalue” Vσ.

It follows that if we restrict to a point x, we obtain the following commutative
diagram

xH(SV , xH(SW ,F))
∼=

∼=xH(id, xφW )

xH(SV ∗ SW ,F)

∼=xφV ⊗W

xH(SV , xWσ ⊗F)
∼=

xφV
xVσ ⊗ xWσ ⊗F

5. Opers

We are mainly interested in the case of a semisimple group of adjoint type, but
some of the results will be given for an arbitrary connected reductive group which
we will denote H . Let X be a smooth curve (or D, or D×).

Definition 5.1. A GLn-oper on X is a triple

(E,∇ : E −→ E ⊗ ΩX , 0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E)

where E is a vector bundle on E, ∇ is a connection on E, and M• is a filtration
by vector bundles with rkMi = i, such that

1. ∇(Ei) ⊂ (Ei+1 ⊗ ΩX).
2. The following induced morphism is an isomorphism

(∇)i : Mi/Mi−1

∼=
−→Mi+1/Mi ⊗ ΩX .

Note that this morphism is OX -linear.

Now we will generalize this definition for a connected reductive group H with
Lie algebra h. Fix a Borel subgroup B, N = [B,B], so that T = B/N is isomorphic
to a Cartan subgroup. Denote by n ⊂ b ⊂ h, t the corresponding Lie algebras. We
have a filtration of B-modules (using the adjoint action)

h0 = b ⊂ h−1 = b ⊕
⊕

α∈I

hI ,

where I is the set of negative simple roots, and a canonical isomorphism of B-
modules.

h−1/b ∼=
⊕

α∈I

hα.
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Note that the action of B on hα factors through B → T hence for any principal
B-bundle PB, the associated bundle PB ×B (h−1/b) splits as a direct sum of line
bundles

PB ×B (h−1/b) ∼=
⊕

α∈I

α(PT ),

where PT is the principal T -bundle associated to PB and the morphism B → T ,
and α(PT ) = PT ×T,α C is the line bundle associated to PT and the root α.

Given a connection ∇ on PG and a reduction PB of structure group to B, let

c(∇) ∈ Γ(X, (PB ×B (h/b)) ⊗ ΩX)

be the second fundamental form.

Definition 5.2. An H-oper on X is a triple

(PH ,∇, PB)

where PH is a principal H-bundle, ∇ is a connection on the PH , and PB is a
reduction of structure group to B, such that

1. c(∇) ⊂ Γ(X, (PH ×H (h−1/b)) ⊗ ΩX)
2. For all α ∈ I, the component

c(∇)α ∈ H0(X,α(PT ) ⊗ ΩX)

doesn’t vanish at any point of X .

Definition 5.3. If h is a semisimple Lie algebra, then we define a h-oper to be a
Had-oper, where Had is the corresponding adjoint group.

Recall that giving a local system on a curve X with group H is equivalent
to giving a pair (H,∇), where PH is a holomorphic principal H-bundle and ∇ a
holomorphic connection. We can think of an H-oper as a local system (PH ,∇)
on X plus an oper structure: a reduction of PH to a Borel subgroup satisfying
conditions 1 and 2.

Proposition 5.4. Let (PH ,∇, PB) be an H-oper. If X is connected, then Aut(PH ,∇, PB) =
Z, the center Z of the group H.

Proposition 5.5. Let X be a projective connected curve of genus g > 1. Let (PH ,∇)
be a local system that admits an oper structure. Then

1. The oper structure is unique. In fact, the reduction PB is the Harder-Narasimhan
reduction.

2. Aut(PH ,∇) = Z
3. The local system (PH ,∇) is irreducible, i.e., the local system doesn’t admit a

reduction to a nontrivial parabolic subgroup.
4. If H is of adjoint type, the underlying principal H-bundle PH is always the

same (up to isomorphism) for all H-opers .
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Assume that X is a projective curve. Then H-opers form an algebraic stack
OpH(X). If H is semisimple, it is a Deligne-Mumford stack, and if H is of adjoint
type, then it is an affine scheme. From now on we will assume that H is of adjoint
type.

Lemma 5.6. The space Opsl2
(X) of sl2-opers on X (cf. Definition 5.3) is a prin-

cipal homogeneous space for Γ(X,Ω⊗2
X ).

Proof. The set of isomorphism classes of principal PGL2-bundles on a curve X is
equal to the set of isomorphism classes of vector vector bundles with det(E) = ∆,
where ∆ is either OX or OX(p) for some fixed point p ∈ X , modulo tensoring
with a line bundle L with L⊗2 ∼= OX . This vector bundle can be written as an
extension

0 −→M −→ E −→M−1 ⊗ ∆ −→ 0 (5.1)

for some line bundle M . Given a PGL2-oper, the second fundamental form

c(∇) ∈ H0(M−2 ⊗ ∆ ⊗ ΩX)

is required to be a non-vanishing section, so this forces M⊗2 ⊗ ∆ ∼= ΩX . Since
deg ΩX is even, this forces ∆ = OX . Therefore, the PSL2-bundle lifts to an SL2-
bundle E, which is an extension as in (5.1), and the holomorphic connection lifts
to a holomorphic connection on E. A theorem of Weil says that a vector bundle
on a curve admits a holomorphic connection if and only if each indecomposable
summand is of degree 0. Therefore, the extension (5.1) is non-trivial.

Summing up, the set of isomorphism classes of PGL2-opers is equal to the
set of equivalence classes of pairs

(
0 −→ Ω

1/2
X

i
−→ E

p
−→ Ω

−1/2
X −→ 0, ∇

)
(5.2)

where Ω
1/2
X is a square root of ΩX , E is the unique non-trivial extension

0 −→ Ω
−1/2
X −→ E −→ Ω

1/2
X −→ 0 ,

∇ is a connection on E inducing an isomorphism

Ω
1/2
X

i
−→ E

∇
−→ E ⊗ ΩX

p⊗id
−→ Ω

−1/2
X ⊗ ΩX ,

and two pairs are equivalent if there exists a rank one local system (L,∇L) of
order 2 such that (E′,∇′) ∼= (E,∇) ⊗ (L,∇L). Note that we obtain item (4) of
proposition 5.5, because if E and E′ differ by a line bundle, then the associated
PGL2-bundles are isomorphic.

Let β ∈ Γ(X,Ω⊗2
X ). Given a sl2-oper, consider the corresponding extension as

in (5.2). The action is defined by sending the connection ∇ to ∇+(i⊗ idΩX
)◦β ◦p.

It is easy to check that this action if free and transitive. �

Let B0 be a Borel subgroup of PGL2, N0 = [B0, B0], and let (e, f, h) be a
standard basis of sl2 with e ∈ n0.

Let e′ ∈ h be a regular (i.e., centralizer has minimal dimension equal to the
rank of h) nilpotent element. There exists a group morphism ι : PGL2 → H that,
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at the level of Lie algebras, sends e ∈ sl2 to dι(e) = e′. Let V = ker([e′, ·]) ⊂ h.
Define an action of Gm on V by

Gm × V −→ V
(t, v) 7−→ at(v) := tAd(ϕ(t))v

where ϕ : Gm −→ B0/N0 = T is an isomorphism between Gm and the torus T of
PGL2.

Theorem 5.7 (Kostant). Let h−1
nd ⊂ h−1 be the subset where the projection to each

root space h−1
։ hα for all α ∈ I is nonzero (“nd” stands for non-degenerate).

Consider the adjoint action of B on h−1
nd . The following morphism is an isomor-

phism

ψ : V −→ h−1
nd /B

v 7−→ v + f ′

where f ′ = dι(f) is the image of the standard generator. Furthermore, this iso-
morphism is Gm-equivariant, i.e.,

ψ(at(v)) = tψ(v)

Considering ΩX as a principal Gm-bundle on X , and using this action, the
embedding Ce′ →֒ V produces a vector bundle embedding

Ω⊗2
X

∼= (ΩX ×Gm
Ce′) →֒ (ΩX ×Gm

V )

(the first isomorphism follows from at(e) = t2e), hence

Γ(X,Ω2
X) ⊂ Γ(X,ΩX ×Gm

V ).

Since Γ(X,Ω2
X) acts on Opsl2

(X) (lemma 5.6), we can consider the space

Opsl2
(X) ×Γ(X,Ω2

X
) Γ(X,ΩX ×Gm

V ) (5.3)

Proposition 5.8. The space (5.3) is canonically isomorphic to OpH(X). In partic-
ular, OpH(X) is a principal homogeneous space for Γ(X,ΩX ×Gm

V ).

Proof. We will define the map from (5.3) to OpG(X).
Let (PPGL2

,∇, PB0) be a sl2-oper. By condition 2 in definition 5.2, we have
that (PB0 ×Ad Cf) ⊗ ΩX is a trivial line bundle, and hence (PB0 ×Ad Ce) ∼= ΩX .
It follows that

ΩX ×Gm
V ∼= PB0 ×B0,ϕ′ V

where ϕ′ is the action

ϕ′ : B0 × V −→ V
( (

a b
0 a−1

)
, v

)
7−→ a2v

On the other hand

PB ×B g = PB0 ×B0 g
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where PB = ι∗PB0 is the induced B-bundle, B has the adjoint action on h, and
B0 acts on h via ι and the adjoint action. Furthermore, this last action, when
restricted to V ⊂ h, is exactly the action ϕ′, and hence

ΩX ×Gm
V ⊂ PB ×B g. (5.4)

Now let η ∈ Γ(X,ΩX ×Gm
V ). Define the map from (5.3) to OpH(X) by

sending (PPGL2 ,∇, PB0) to

(ι∗PPGL2 ,∇ + η, PB).

By (5.4), η can be considered as a section of PB ×B h, so this definition makes
sense. It remains to show that this map is an isomorphism (Kostant’s theorem is
used here). �

We define Opcl
H(X) := Γ(X,ΩX ×Gm

V ). Then we have grO(OpH(X)) =

O(Opcl
H(X)). Alternatively, we can introduce Opcl

H using λ-connections:

Definition 5.9 (λ-connection). Let M be a coherent sheaf on X . Let λ ∈ C. A
λ-connection on M is an operator

∇λ : M −→M ⊗ ΩX

such that

∇λ(fm) = λdf ⊗m+ f∇λ(m)

If λ 6= 0, then ∇λ is a λ-connection if and only if (1/λ)∇λ is a usual connec-
tion. For λ = 0, a 0-connection is just a (OX -linear) homomorphism from M to
M ⊗ ΩX .

Definition 5.10 (λ-opers). A H-λ-oper is a triple (PH ,∇
λ, PB) where ∇λ is a

λ-connection, with the same properties as in definition 5.2.

A classical oper is a H-λ-oper for λ=0. Equivalently, a classical H-oper is a
pair (

PB ,∇
cl ∈ Γ(X, (PB ×B h) ⊗ ΩX)

)

Proposition 5.11. Assume H is of adjoint type. There are canonical isomorphisms

Opcl
sl2

(X) ∼= Γ(X,Ω⊗2
X )

Opcl
H(X) ∼= Γ(X,ΩX ×Gm

V )

6. Constructing D-modules

If Y is a scheme and L a line bundle on Y , we can define DL
Y = Diff(L,L), the sheaf

of differential operators in L. Let DL
Y -mod be the category of left DL

Y -modules on
Y . It is equivalent to the category DY -mod of left DY -modules.

(DY -mod) −→ (DL
Y -mod) (6.1)

M 7−→ L⊗OY
M
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This is defined locally as follows: let U be an open set of Y with a trivialization
of L|U . This trivialization induces an isomorphism between DL

U and DU , and an
isomorphism between L⊗M |U and OU ⊗MU , and hence the natural DU -module
structure of OU ⊗MU induces a DL

U -module structure. Then we check that this
structure is independent of the trivialization used. As an example of this equiva-
lence, if M = DY , then L⊗DY = Diff(OY , L).

Let Y be a DG-free algebraic stack (cf. definition 1.2). Let L be a line bundle
on Y. We define the category of L-twisted D-modules on Y as the category of
sheaves on Y of the form L⊗OY

M , where M is a D-module on Y.
In our application, Y will be BunG, and L will be the positive square root

of the determinant bundle associated to the adjoint vector bundle on BunG. We
assume that G is semisimple and simply connected (in particular, BunG is DG-
free), and then this square root is uniquely defined.

For the construction of the determinant line bundle and its square root, see
[34, Section 6]. Here we will give a brief sketch of the ingredients that are needed.

Recall that a family of vector bundles on a curve X parameterized by S is
a vector bundle F on X × S. This data produces a line bundle on S, called the
determinant line bundle DF , whose fiber over a point s is canonically isomorphic
to

max∧
H1(X,Fs) ⊗

( max∧
H0(X,Fs)

)−1

([34, Section 6.1]). If we endow F with a nondegenerate quadratic form σ with
values in the canonical line bundle ΩX of the curve, then we can define a canonical
square root of the determinant line bundle, called the Pfaffian line bundle P(F,σ)

([34, Section 6.3]). In our case, we consider the universal adjoint bundle E(g).
The Cartan-Killing form gives a nondegenerate quadratic form with values in OX ,
so, tensoring with a theta characteristic (i.e., a square root of ΩX), we obtain
a nondegenerate quadratic form σ with values in ΩX , and the Pfaffian P(E(g),σ)

gives a square root of DE(g). Note that, in general, this square root depends on
the choice of a theta characteristic, but, when G is semisimple, Pic(BunG) ∼= Z

([34, Corollary 10.3.4]), so there is a unique positive square root, and this is the
line bundle we take as L.

The sheaf DL
Y is defined as follows: for any smooth morphism π : Z → Y we

set
π∗(DL

Y) := DL
Z/(D

L
Z · TZ/Y).

The modules EndDL -mod(D
L
Y) and Γ(Y,DL

Y) are isomorphic. Hence we give

a ring structure to Γ(Y,DL
Y) as follows

Γ(Y,DL
Y) = EndDL -mod(D

L
Y)opp.

We take the opposite ring structure so that if Y is a scheme, we obtain the natural
ring structure on Γ(Y,DL

Y).

Definition 6.1. A quantum integrable system on Y is a ring homomorphism

h : A −→ Γ(Y,DL
Y)
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where A is a commutative ring, L is a line bundle on Y.

The tangent bundle TY has a Lie algebra structure, and this Lie bracket
extends uniquely to a Poisson bracket {·, ·} on the sheaf of rings SymTY by the
Leibniz rule: {f, gh} = {f, g}h+ {f, h}g.

Definition 6.2. A classical integrable system on Y is a ring homomorphism

hcl : Acl −→ Γ(Y, SymTY),

where Acl is a commutative ring and

{hcl(a1), h
cl(a2)} = 0

for all a1, a2 in Acl, where { , } is the Poisson bracket.

We say that h is a quantization of hcl if A is filtered, h is compatible with
the filtration, grA ∼= Acl, and the following diagram commutes

Acl
hcl

Γ(Y, Sym TY)

grA
gr h

gr Γ(Y,DL
Y)

Given a quantum integrable system, we associate for each closed point σ ∈
SpecA a DL-module on Y

FL
σ = DL

Y ⊗A A/mσ, (6.2)

where mσ ⊂ A is the maximal ideal corresponding to σ, and a ∈ A acts on DL
Y by

sending d ∈ DL
Y to d ·h(a). In our application, DL

Y will be flat over A (lemma 11.2),
and hence this tensor product is equivalent to the tensor product in the sense of
derived categories. The fact that the tensor product coincides with the derived
tensor product in the case at hand is used in the proof of the Hecke eigenproperty.

Untwisting with L we obtain a D-module on Y

Fσ = L−1 ⊗OY
FL

σ . (6.3)

Example. Let Y = V = Spec C[x1, . . . , xn] be a vector space of dimension n
considered as a scheme. Let A = C[∂1, . . . , ∂n], where ∂i = ∂/∂xi. We take L
to be the trivial bundle. We have

Γ(V,DV ) = C[x1, . . . , xn, ∂1, . . . , ∂n],

We can identify the dual vector space V ∗ = SpecA. Consider the inclusion map

h : C[∂1, . . . , ∂n] −→ Γ(V,DV ).

Let v∗ ∈ V ∗. The induced DV -module is the pullback via v∗ : V −→ A
1 of the

DA1 -module generated by one generator ξ and with relation ∂tξ = ξ.
In other words, if (∂1−a1, . . . , ∂n−an), ai ∈ C, is a maximal ideal, the induced

DV -module is the trivial bundle OV with flat connection given by d+
∑
aidxi.
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Example. Let X be a smooth projective curve. Let Y = J(X) be the Jacobian and
L = OJ(X), the trivial line bundle on J(X). Let A = SymH1(X,OX). We have

Γ(J(X),DJ(X)) ∼= SymH1(X,OX).

Take h : A→ Γ(J(X),DJ(X)) to be the identity.
A 1-dimensional local system on X is equivalent to a pair (M,∇), where M

is a holomorphic line bundle and ∇ is a holomorphic connection. If M = OX ,
then a holomorphic connection is written as ∇ = d+ ω with ω ∈ H0(X,ΩX), i.e.,
there is a bijection between H0(X,ΩX) and local systems whose holomorphic line
bundle is trivial.

By Serre duality,

H0(X,ΩX) ∼= H1(X,OX)∗ ∼= Spec SymH1(X,OX)

Therefore, a local system of the form (OX , d + ω) gives, by Serre duality, an
element σ ∈ H1(X,OX)∗, and hence a maximal ideal mσ of A, and the previous
construction produces a DJ(X)-module Fσ, which is the trivial line bundle OJ(X)

with connection d+ σ, where σ ∈ H0(J(X), T ∗J(X)) = H1(X,OX)∗.

This example gives the geometric Langlands correspondence for G = C∗, but
only for those local systems on X whose holomorphic line bundle is trivial.

In our application, A will be the ring of functions O(OpLG(X)) of the affine
scheme OpLG(X) of LG-opers, and Y = BunG. This system will be a quantization

of a classical system where Acl is O(Opcl
LG(X)), the ring of functions on the space

of classical LG-opers, and the map hcl will be Hitchin integrable system. This con-
struction will give the Langlands correspondence, but only for those local systems
on X which admit an oper structure, i.e., we get the “oper part” of the Langlands
correspondence.

7. Hitchin integrable system I: definition

Recall the definition of the cotangent bundle for a DG-free stack (definition 1.1).
A point in the cotangent bundle T ∗BunG is a pair (P, γ) where P is a principal
G-bundle and

γ ∈ H1(X,P ×G g)∗ = H0(X,ΩX ⊗ P ×G g∗) (7.1)

Consider the GIT quotient of the adjoint action of G on g∗, that is, the spectrum
of the ring of polynomial invariants on g∗:

g∗ −→ g∗/AdG := Spec(Sym g)G

By a theorem of Chevalley, the ring (Sym g)G of invariant polynomials on the
vector space g∗ is free, so this quotient is an affine space. Fixing the zero to be the
image of the zero vector in g∗, this becomes a vector space. Let pi, i = 1, . . . , k be
a basis for the ring of invariants. The space (7.1) maps to

H0
(
X,ΩX ⊗ [P ×G (g∗/AdG)]

)
= H0

(
X,ΩX ×Gm

(g∗/AdG)
)

= H0
(
X,⊕k

i=1Ω
di

X

)
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where the first equality follows from the fact that P ×G (g∗/Ad(G)) is the trivial
vector bundle with fiber g∗/Ad(G), and di = deg pi. We denote by γ the image of
γ. The Hitchin map is defined as the morphism

T ∗BunG −→ HitchG(X) := Γ(X,ΩX ×Gm
g∗/AdG)

(P, γ) 7→ γ

Lemma 7.1. The Hitchin map is flat, and moreover it induces an isomorphism at
the level of global functions

O(HitchG(X))
∼=
−→ O(T ∗ BunG) (7.2)

Proof. We start by showing that the Hitchin map is flat. Since T ∗BunG is a
complete intersection, it is enough to prove that the fibers are equidimensional.
Both sides are cones, i.e., they have C∗ actions, and the map is equivariant with
respect to this action, so it is enough to show that the dimension doesn’t jump
at the origin. The fiber over the origin is the nilpotent cone. It is a Lagrangian
substack ([20]), hence its dimension is equal to the dimension of BunG, and we
conclude that the map is flat.

Now we look at the morphism at the level of global sections. It is injective be-
cause it is flat (hence dominant, because the base is irreducible), and it is surjective
because the generic fiber is projective. �

Lemma 7.2. There is a natural isomorphism

HitchG(X) ∼= Opcl
LG(X) (7.3)

Proof. Recall (cf. proposition 5.11) that

Opcl
LG(X) ∼= Γ(X,ΩX ×Gm

LV ),

where LV = ker([e′, ·]) ⊂ Lg, where Lg is Lie algebra of the Langlands dual group
LG. Then we have to show that LV ∼= g∗/AdG. Using Kostant’s isomorphism
(theorem 5.7) we have

LV ∼= Lg−1
nd /

LB ∼= Lg/Ad(LG) ∼= Lt/LW

where Lt is a Cartan subalgebra of Lg, and LW is the Weyl group. We have Lt = t∗

(and LW = W ), hence

Lt/LW ∼= t∗/W ∼= g∗/AdG

�

Remark 7.3. Note that in (7.3) we have the group G on the left hand side, but
the Langlands dual group LG on the right hand side.

Using Γ(T ∗BunG,OT∗ BunG
) = Γ(BunG, SymTBunG

), (7.2) and (7.3) gives
an isomorphism

hcl : O(Opcl
LG(X)) −→ Γ(BunG, SymTBunG

) (7.4)
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with Acl = O(Opcl
LG(X)), the ring of functions on the affine space Opcl

LG(X). We
will show later that the image of hcl consists of Poisson-commuting functions,
hence hcl is a classical integrable system.

8. Localization functor

We start by defining the “untwisted” localization functor, which takes a Harish-
Chandra module acting on a scheme and produces an D-module on the quotient
of that scheme. This functor is called “localization” because it is adjoint to taking
global sections (see [5]). Then we define a “twisted” version, giving DL-modules. It
is this twisted version that will be used to give the quantization of Hitchin system.
As a reference for this section, see [14, Section 7.4].

Definition 8.1. A Harish-Chandra pair (l,K) consists of a Lie algebra l and a Lie
group K, together with an inclusion i : k = Lie(K) →֒ l and an action of K on l

compatible with the adjoint action coming from the inclusion.

A (l,K)-module is a vector space V with a group representation f : K −→
GL(V ) and a Lie algebra representation α : l −→ gl(V ) such that the following
diagram commutes

k
df

i

gl(V )

l

α

We say that a Harish-Chandra pair acts on Z if K acts on Z and there is a
Lie algebra homomorphism

l −→ Γ(Z, TZ) (8.1)

extending the map k −→ Γ(Z, TZ) induced by the action. Let Y = [Z/K] be the
quotient stack, and assume that Y is DG-free (definition 1.2). The (untwisted)
localization functor is defined as follows

Loc :
(
(l,K) -mod

)
−→ (D -mod on Y)

M 7−→ DZ ⊗U(l) M

where U(l) is the universal enveloping algebra. Note that on the right we have a
K-equivariant D-module on Z, hence it gives a D-module on Y.

For example, consider the trivial Lie representation of k on C, and let

V = Indl
k(C) := U(l) ⊗U(k) C. (8.2)

Clearly, V is a (l,K)-module. We have Loc V ∼= DY . This follows from:

π∗(Loc V) ∼= DZ ⊗U(l) U(l) ⊗U(k) C ∼= DZ ⊗U(k) C ∼= DZ/(DZ · k).
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Remark 8.2. For an arbitrary smooth algebraic stack Y the localization functor
is defined using the derived tensor product DZ ⊗L

U(l) M , and therefore we obtain

an object in the derived category of D-modules. If we take M = V (cf. (8.2)), we
obtain that DZ ⊗L

U(l) V is precisely the complex (1.1), but, if Y is DG-free, this

complex is exact except in degree 0, so we can take DZ ⊗U(l) V.

Now, End(DY) ∼= Γ(Y,DY)opp, and on the other hand, for any Harish-
Chandra module V we have V K = Hom(V, V ), the K-invariant vectors of V , so
there is a bijection VK = End(V) that is actually an anti-isomorphism of algebras.
Since Loc is a functor, we obtain an algebra homomorphism

V
K = End(V)opp Loc

−→ End(DY)opp = Γ(Y,DY) (8.3)

Now we will study the graded of this morphism. We have gr V = Sym(l /k), and
this induces an inclusion of rings

σ(l,K) : gr(VK) →֒ Sym(l /k)K .

Proposition 8.3. If Y is DG-free, the following diagram is commutative

Sym(l /k)K
f

Γ(Y, p∗OT∗Y)

gr(VK)

σ(l,K)

gr Loc
gr Γ(Y,DY)

σY

where the morphism f is induced from the action of l (8.1), and σY was defined
in lemma 1.4.

Now we will introduce a twisted version of the localization functor. Let the
Harish-Chandra pair (̃l,K) act on Z, and let L be a line bundle on Y. We assume

that the Lie algebra l̃ is a central extension of a Lie algebra l, k ⊂ l, and we assume
that this is split on k, i.e., there is a commutative diagram

0 C1 l̃ l 0

k

i

Let Diffn(A,B) denote the sheaf of differential operators of order n between the

vector bundles A and B. We say that a central extension l̃ acts on L if there is a
map

l̃ −→ Diff1(π∗L, π∗L), (8.4)
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where π : Z −→ [Z/K], and such that the restriction of this map to the central
element 1 acts by scalar multiplication, i.e., there is a commutative diagram

l̃ Diff1(π∗L, π∗L)

C1
j

C ⊂ OZ Diff0(π∗L, π∗L)

where the map j sends 1 to 1 ∈ C.

Let (̃l,K) -mod′ be the category of Harish-Chandra modules such that the
central element 1 acts as multiplication by 1 ∈ C. We define the twisted localization
functor

Loc′ :
(
(̃l,K) -mod′

)
−→

(
DL -mod on Y

)

M 7−→ Dπ∗L
Z ⊗U(el) M

For example, we can take the twisted vacuum Harish-Chandra module

V
′ = U ′(̃l) ⊗U(k) C

where U ′(̃l) = U (̃l)/(1−1) and k acts on C as the trivial Lie algebra representation
(multiplication by zero). Alternatively, we can define V′ as

V
′ = Ind

el
k⊕C1

C

where 1 acts on C as multiplication by 1 ∈ C and k acts trivially on C. We have

Loc′(V′) = DL
Y . (8.5)

We have End(DL
Y) ∼= Γ(Y,DL

Y)opp, V′K = End(V′)opp, and Loc′ gives an
algebra homomorphism

V
′K = End(V′)opp Loc′

−→ End(DL
Y)opp = Γ(Y,DL

Y)

There is an inclusion

σ(̃l,K) : gr End(V′) →֒ Sym(l /k)K

Proposition 8.4. If Y is DG-free, the following diagram is commutative

Sym(l /k)K
f

Γ(Y, p∗OT∗Y)

gr(V′K)

σ(̃l,K)

gr Loc′

gr Γ(Y,DL
Y)

σY

where the morphism f is induced from the action of l (cf. (8.1)). The morphism
σY was defined for D-modules on Y in lemma 1.4, but it can also be defined for
twisted differentials.
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9. Quantum integrable system h

Now we will apply the twisted localization functor to define a quantum integrable
system h. In our application we will take Z = BunG,x (cf. (3.1)) and (l,K) =

(g ⊗ K̂x, G(Ôx)), and hence Y = BunG (cf. (3.2)).

Recall that a point of BunG,x corresponds to a pair (P, α), where P is a
principal G-bundle on X and α is a trivialization of P on the disk Dx (in this

picture, G(Ôx) acts by change of trivialization). The tangent at (P, α) is

T(P,α) BunG,x
∼= Γ(X−x, P×Gg)

∖
((P×Gg)⊗OX

K̂x) ∼= Γ(X−x, P×Gg)
∖
g⊗K̂x,

where (P ×G g)⊗OX
K̂x = (P ×G g)|

D
×
x

is the associated bundle on the punctured
disk, and the second isomorphism is obtained using α. Then we have a map

g ⊗ K̂x −→ Γ(BunG,x, TBunG,x
), (9.1)

compatible with the action of g ⊗ Ôx, and hence the Harish-Chandra pair (g ⊗

K̂x, G(Ôx)) acts on Z = BunG,x.

Proposition 9.1. Let q : g ⊗ g −→ g be an invariant quadratic form, and let ĝq be
the central extension

0 −→ C1 −→ ĝq −→ g ⊗ K̂x −→ 0

with Lie algebra structure given by

[g1 ⊗ f1, g2 ⊗ g2] = [g1, g2] ⊗ f1f2 + q(g1, g2)Res((df1)f2)1.

Take q = −q0, where q0 is the Killing form. Then ĝ−q0 acts on p∗Ldet, where
p : BunG,x −→ BunG is the projection and Ldet is the determinant line bundle on
BunG.

Let c ∈ C. If we take q = −cq0, then ĝ−cq0 acts on Lc
det, provided that this

line bundle exists (for an arbitrary c ∈ C, Lc
det ∈ Pic(BunG) ⊗Z C). We will be

interested in q = − 1
2q0, the so-called critical level. In the case c = 1/2 the line

bundle exists because Ldet admits a square root, using the Pfaffian construction
(see section 6).

Corollary 9.2. Let L be the square root of the determinant bundle Ldet on BunG,
i.e. L⊗2 = Ldet (it is unique if G is simply connected). The central extension for
the critical level ĝcrit := ĝ− 1

2 q0
acts on L.

Define the vacuum Harish-Chandra module for ĝq

Vq = Ind
bgq

g⊗ bOx⊕C1
C. (9.2)

It is a filtered module. The endomorphism algebra End(Vq) of the vacuum is called
the chiral center. The following proposition shows that it is non-trivial if we take
the critical level.
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Theorem 9.3 (Feigin-Frenkel). If q 6= − 1
2q0, then

End Vq = C

For the critical level q = − 1
2q0, then the inclusion σ(g̃crit,G( bOx)) is an isomorphism

σ(g̃crit,G( bOx)) : gr EndVcrit

∼=
−→ Sym(g ⊗ K̂x/g ⊗ Ôx)G( bOx) (9.3)

The twisted localization functor gives a functor

Loc′ :
(
(ĝcrit, G(Ôx)) -mod′

)
−→

(
DL -mod on BunG

)
,

and hence a morphism

V
G( bOx)
crit = End(Vcrit) −→ Γ(BunG,D

L
BunG

). (9.4)

This morphism is the main ingredient in the construction of the quantization of
the Hitchin integrable system.

Recall that when x ∈ X varies, the modules Vq give a D-module on X . More
precisely, consider the Kac-Moody Lie∗ algebra g ⊗DX ⊕ ΩX and define

B(g, q) := U(g ⊗DX ⊕ ΩX)/(u(ΩX) − ΩX),

where U(g ⊗DX ⊕ ΩX) is the chiral enveloping algebra, and

u : ΩX −→ U(g ⊗DX ⊕ ΩX)

is the unit (cf. (2.2)). Note that this is a filtered chiral algebra. The fiber over
x ∈ X is canonically isomorphic to the vacuum module

B(g, q)x
∼= Vq.

Define the center of the chiral algebra B(g, q)

Z = Z(B(g, q)) =
{
b ∈ B(g, q) : [b⊠ b′] = 0 ∀ b′ ∈ B(g, q)

}
,

where [ ] is the Lie∗ algebra bracket. It is a filtered chiral algebra. Since it is
defined as a center, it is a commutative chiral algebra, i.e., there is a morphism
Z⊗Z −→ Z giving the corresponding D-module the structure of a D-algebra. Then
we can consider the algebra of coinvariants H∇(X,Z).

Let the fiber on x ∈ X be denoted by

Zx = Z ⊗OX/mx.

It has an induced filtration. There is a canonical surjection

Zx ։ H∇(X,Z). (9.5)

Using this surjection and the filtration in Zx, the algebra of coinvariants H∇(X,Z)
becomes a filtered algebra.

Theorem 9.4 (Feigin-Frenkel, first iteration). There is an isomorphism of filtered
algebras

H∇(X,Z) ∼= O(OpLG(X))

between the coinvariants and the ring of functions on the affine space of LG-opers.
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Proposition 9.5. There is an isomorphism Zx
∼= V

G( bOx)
q , and we have a commuta-

tive diagram

Zx

∼=
V

G( bOx)
q

B(g, q)x

∼=
Vq

Furthermore, the ring structure on V
G( bOx)
q

∼= End(Vq) coincides with the algebra
structure on Zx. In particular, End(Vq) is commutative.

Using the isomorphism of proposition 9.5 and the morphism (9.4), we have
a morphism

hx : Zx −→ Γ(BunG,D
L
BunG

). (9.6)

Using Feigin-Frenkel’s isomorphism (theorem 9.4) and the surjection (9.5), we have
a morphism

f : Zx −→ O(OpLG(X)).

The following theorem defines the quantum integrable system h.

Theorem 9.6. The morphism hx factors through f

Zx
hx

f

Γ(BunG,D
L
BunG

)

O(OpLG(X))

h

Sketch of proof. As x ∈ X vary, the morphism hx in (9.6) define a morphism of
OX -algebras

Z −→ Γ(BunG,D
L
BunG

) ⊗OX .

It can be shown that this is in fact a morphism of DX -algebras [6, 2.8], and then
the left adjoint property of H∇(X, ·) gives a morphism of algebras

H∇(X,Z) −→ Γ(BunG,D
L
BunG

).

Using the Feigin-Frenkel isomorphism (theorem 9.4) this map defines h, and one
checks that h ◦ f = hx. �

In section 11 we will show that this morphism h is a quantization of the
Hitchin integrable system.

10. Hitchin integrable system II: D-algebras

In this section we give an alternative description of Hitchin integrable system,
using chiral algebras. This will be used to quantize this system.
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Think of the cotangent bundle ΩX as a principal Gm-bundle on X . Recall
(from section 7) that g∗/AdG is a vector space. Consider the associated vector
bundle defined as ΩX ×Gm

(g∗/AdG), and define the sheaf of algebras

C := Sym
[
ΩX ×Gm

(g/AdG)
]
, (10.1)

i.e., SpecC −→ X is the total space of the vector bundle.

Definition 10.1. Let
Zcl := J(C),

the jet construction of C (cf. (2.1)). Let

Zcl
x := Zcl ⊗OX

OX/mx,

the fiber of at x.

Lemma 10.2. We have

O(Hitchcl
G(X)) ∼= H∇(X,Zcl),

the algebra of coinvariants.

Proof. We will check the lemma for C-valued points (the general case is analogous).
Recalling the definition of Hitch(X), this isomorphism follows from an easy calcu-
lation, using the definitions of the jet construction and the algebra of coinvariants
as left adjoint functors

Hitch(X) := Γ(X,ΩX ×Gm
g∗/AdG) = HomOX -alg(C,OX) =

HomDX -alg(J(C),OX) = HomC -alg(H∇(X,Zcl),C) = SpecH∇(X,Zcl),

where C is the sheaf of algebras defined in (10.1). �

Recall that the Harish-Chandra pair (g ⊗ K̂x, G(Ôx)) acts on Z = BunG,x,

and [Z/G(Ôx)] = BunG. In particular, there is a map g ⊗ K̂x −→ Γ(Z, TZ) (cf.
9.1), and this map induces the following morphism

Sym(g ⊗ K̂x/g⊗ Ôx)G( bOx) −→ Γ(BunG, SymTBunG
). (10.2)

Lemma 10.3. There is an isomorphism

Zcl
x

∼= Sym(g ⊗ K̂x/g ⊗ Ôx)G( bOx).

This isomorphism together with morphism (10.2) give a morphism

hcl
x : Zcl

x −→ Γ(BunG, SymTBunG
).

Lemma 10.4. The following diagram is commutative

Zcl
x

hcl
x

fcl

Γ(BunG, p∗OT∗ BunG
)

O(Opcl
LG(X))

∼=

hcl
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where f cl comes from the canonical surjection Zcl
x ։ H∇(X,Zcl), lemma 10.2 and

isomorphism (7.3), and hcl is the isomorphism (7.4).

11. Quantization condition

In this section we will show that the quantum integrable system h is a quantization
of the Hitchin integrable system.

For any filtered chiral algebra, in particular for Z, there is a commutative
diagram

grH∇(X,Z) grZx

H∇(X, grZ)

(11.1)

Putting together proposition 9.5, proposition 9.3 and lemma 10.3, we have an
isomorphism grZx

∼= Zcl
x . This globalizes to give an isomorphism

grZ ∼= Zcl. (11.2)

Proposition 11.1. There is a commutative diagram

grH∇(X,Z)
gr h

gr Γ(BunG,D
L
BunG

)

σBunGgrZx

H∇(X,Zcl)

α

hcl

∼=
Γ(BunG, SymTBunG

)

(11.3)

Proof. The left triangle is commutative by (11.1) and (11.2). The top triangle is
commutative by theorem 9.6. The right triangle is commutative by proposition 8.4
and proposition 9.5, and the bottom triangle is commutative by lemma 10.4. It
follows that the outer square is also commutative. �

Since hcl is an isomorphism, it follows from the commutativity of (11.3) that
the other three maps α, σBunG

and grh are also isomorphisms. Hence, using the
Feigin-Frenkel isomorphism (theorem 9.4) and the isomorphism of lemma 10.2, the
diagram (11.3) becomes

grO(OpLG(X))
gr h

gr Γ(BunG,D
L
BunG

)

σBunG
∼=

O(Opcl
LG(X))

hcl

α

Γ(BunG, SymTBunG
)

In other words, h is the quantization of the Hitchin system hcl.
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Lemma 11.2. Let π : Z −→ BunG be an affine cover. Then Γ(Z, π∗DBunG
) is a

flat O(OpLG(X))-module.

Proof. Both objects are filtered (in a way compatible with the module structure).
We have

gr Γ(Z, π∗DBunG
) = Γ(Z, π∗ SymTBunG

)

grO(OpLG(X))
α
∼= O(Opcl

LG(X))

Lemma 7.1 implies that Γ(Z, π∗ SymTBunG
) is a flat O(Opcl

LG(X))-module, hence
gr Γ(Z, π∗DBunG

) is a flat grO(OpLG(X))-module, and the result follows. �

12. Proof of Hecke eigenproperty

Recall that if a local system σ admits an oper structure, this oper structure is
unique, so we can also denote the oper by σ.

Theorem 12.1 (Beilinson-Drinfeld). Let σ be an irreducible LG-local system on X
that admits an oper structure. Let Fσ be the D-module on BunG obtained from the
Hitchin quantum system (theorem 9.6) as in (6.3). Then Fσ is a Hecke eigensheaf
with eigenvalue σ.

Recall (subsection 4.3) that the Hecke eigenproperty says that for all repre-
sentations V of LG there is an isomorphism

φV : H(SV ,Fσ)
∼=
−→ Vσ ⊠ Fσ ∈ D(X × BunG)

with certain compatibility conditions, where Vσ is the induced local system on X
and SV ∈ SphG is the sheaf associated by theorem 4.3.

If we restrict to a point x, we obtain an isomorphism

xφV : xH(SV ,Fσ)
∼=
−→ xVσ ⊗Fσ ∈ D(BunG) (12.1)

In this section we will only explain how to prove this local version.

Before we continue, we need to introduce some notions from DX -schemes.
An affine DX -scheme is a pair

(π : Z → X,ψ : OZ → OZ ⊗ π∗ΩX)

where Z is an affine X-scheme, ψ is OX -linear, and there is a DX -algebra A (cf.
section 2) such that

Z = Spec(A)

(here we only use the OX -algebra structure of A) and ψ is induced by the DX -
algebra structure A → A⊗ ΩX .

An arbitrary DX -scheme is a pair (Z,ψ) such that Z can be covered by affine
X-schemes Ui and (Ui, ψ|Ui

) is an affine DX -scheme.
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Now we will define the DX -scheme OpLG. We do this by describing the functor
that it represents

(DX − Sch) −→ (Sets)

(Z
π
→ X) 7−→ {LG− Opers on Z relative to X}

where an oper on Z relative to X is a LG-bundle on Z, a reduction to a Borel
subgroup of LG and a connection along X satisfying the usual oper condition. A
connection along X is a map

OZ −→ Lg ⊗ π∗ΩX

that satisfies the Leibniz rule with respect to the map

OZ −→ OZ ⊗ π∗ΩX

coming from the DX -scheme structure of Z. In particular, OpLG(X) = OpLG(X),
the scheme of usual opers. Note that Op is affine over X . We denote O(Op) the
corresponding DX -algebra.

Theorem 12.2 (Feigin-Frenkel, second iteration). There is an isomorphism of DX-
algebras

Z ∼= O(Op).

Note that the ’first iteration’ (theorem 9.4) follows from this. Indeed, we have

Homalg(H∇(X,O(Op)),C) = HomDX -alg(O(Op),OX) = Op(X),

hence H∇(X,Op) = O(Op(X)), and hence theorem 12.2 implies theorem 9.4.
The DX -scheme Op −→ X has a universal LG-bundle, hence giving a repre-

sentation V ∈ Rep(LG) we obtain a vector bundle V on Op. Using theorem 12.2,
the fiber of Op over x ∈ X is

x Op = Spec(Zx) = OpLG(Dx)

and the restriction xV of V to x Op is a Zx-module.
Recall that Fσ is defined as a twist of FL

σ (cf. 6.3), and FL
σ is defined as a

quotient of DL
BunG

(cf. 6.2). Therefore it is enough to construct an isomorphism

xφV : xH(SV ,D
L
BunG

)
∼=
−→ xV ⊗Zx

DL
BunG

(12.2)

Lemma 12.3. We have

Loc′(Γ(G(K̂)/G(Ô),SV )) ∼= SV ∗ DBunG

Let V = V− 1
2 q0

be the vacuum Harish-Chandra module for the critical level

(cf. 9.2).

Theorem 12.4 (Feigin-Frenkel, third iteration).

1. We have a noncanonical isomorphism of Harish-Chandra modules for some
n

Γ(G(K̂)/G(Ô),SL
V ) ∼= V

⊕n
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2. We have a canonical isomorphism of modules

Homegcrit

(
V,Γ(G(K̂)/G(Ô),SL

V )
)

∼= xV

In item 2, the left hand side is an End(V)-module, and the right hand side
is a Zx-module. The statement means that the module structures coincide, under
the identification of these two rings given in proposition 9.5.

Then, using item 1, we obtain a canonical isomorphism

Γ(G(K̂)/G(Ô),SV ) ∼= Hom(V,Γ(G(K̂)/G(Ô),SV )) ⊗End(V) V (12.3)

Using item 2, this is isomorphic to

xV ⊗End(V) V = xV ⊗Zx
V. (12.4)

Hence

xH(SV ,D
L
BunG

) = SV ∗ DL
BunG

= Loc′(Γ(G(K̂)/G(Ô),SL
V )) =

= Loc′(xV ⊗Zx
V) = xV ⊗Zx

DL
BunG

where the first equality is by definition, the second equality is lemma 12.3, the
third follows from applying the functor Loc to (12.3) and (12.4), and the fourth
follows from (8.5). Then we have proved (12.2), and hence also (12.1).
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