EQUIVARIANT AND TWISTED \mathcal{D} -MODULES

SAM RASKIN

1. Equivariant \mathscr{D} -modules

1.1. Throughout this section, X will be a scheme over \mathbb{C} and G will be a group scheme acting smoothly on X via the map $act : G \times X \longrightarrow X$. In this section, we will discuss conditions of equivariance for \mathscr{D} -modules on X and use this to give a description of \mathscr{D} -modules on the quotient stack X/G.

1.2. Let M be a \mathscr{D} -module on X with $\alpha : act^*M \xrightarrow{\simeq} p_2^*M$ an isomorphism of $\mathscr{O}_G \boxtimes \mathscr{D}_X$ -modules¹ on $G \times X$ satisfying the cocycle condition, i.e., such that the two isomorphisms of p_3^*M and $(act \circ (id \times act))^*M$ on $G \times G \times X$ agree (and therefore all higher isomorphisms agree). M with the datum α is called a *weakly equivariant* \mathscr{D} -module. If α is an isomorphism of $\mathscr{D}_G \otimes \mathscr{D}_X$ -modules, then we say M is a *(strongly) equivariant* \mathscr{D} -module.

Clearly the pull-back of an equivariant \mathscr{D} -module along a G-equivariant morphism remains equivariant.

Example 1.1. Let X be just a point and let G be connected. Then the category of equivariant \mathscr{D} -modules on X is just the category of vector spaces, while the category of weakly equivariant \mathscr{D} -modules on X is the category of G-representations.

Remark 1.2. There are two other ways of stating the condition that a weakly equivariant \mathscr{D} -module M is equivariant which we mention briefly. One is that for such M, there is are two actions of \mathfrak{g} on sections of M: one from the equivariant structure (which doesn't use the \mathscr{D} -module structure of M), and the other coming from the embedding of \mathfrak{g} as vector fields on X. Equivariance asks that these two actions agree.

The second definition is that for $\psi: D = \operatorname{Spec} \mathbb{C}[\epsilon]/\epsilon^2 \longrightarrow G$ a tangent vector at the identity we get from the equivariant structure an isomorphism between the pullbacks of M along the two morphisms $D \times X \longrightarrow X$ given by factoring D through G and applying either the projection or the action map. But [?] tells us that a connection on M is equivalent to functorial isomorphisms between the pull-backs of M along any two morphisms from a scheme which agree on the reduced part of this scheme. Then strong equivariance requires that these two isomorphisms agree.

Date: October 8, 2009.

¹This is the appropriate interpretation of "a G-family of isomorphisms of \mathscr{D}_X -modules."

SAM RASKIN

1.3. The following proposition justifies the condition of strong equivariance:

Theorem 1.3. Let $\pi : P \longrightarrow X$ be a *G*-bundle. Then there is an equivalence of categories of \mathscr{D} -modules on X and strongly equivariant \mathscr{D} -modules on P given by sending M to π^*M and with inverse sending N on P to its sheaf of invariant sections.

Proof. First, observe that because π is *G*-equivariant with respect to the trivial *G*-action on *X*, π^*M is strongly equivariant for *M* a \mathscr{D} -module on *X*. Therefore, this defines a functor. Let us describe its inverse. Let N^G be the sheaf on *X* of *G*-invariant sections of *N* on *P*. We claim that this inherits an action of \mathscr{D}_X and that this is inverse to the functor above.

First, let us assume that $P = G \times X$ with π the projection. Then \mathscr{D}_X embeds in a canonical way into *G*-invariant differential operators on *P*, so \mathscr{D}_X acts on N^G . We need to check that in the canonical isomorphism $N \xrightarrow{\simeq} \mathscr{O}_G \boxtimes N^G$ that \mathscr{D}_G acts via its projection to \mathscr{O}_G . But this is clear. By this argument, the gluing implicit in the reduction to $P = G \times X$ above is justified. \Box

We want to say that for the stack $\mathscr{X} = X/G$, there is an equivalence between equivariant \mathscr{D} -modules on X and \mathscr{D} -modules on X/G. First, let us formulate what a \mathscr{D} -module is on a smooth stack \mathscr{X} . \mathscr{D} -modules are local for the smooth topology, so one's naive guess for the definition of a \mathscr{D} -module on a smooth Artin stack is correct. That is, a (left or right) \mathscr{D} -module M on \mathscr{X} is the assignment for each smooth morphism $U \xrightarrow{\pi_U} \mathscr{X}$ of a (left or right) \mathscr{D} -module² M_S on S and for each pair (f, α) of a smooth morphism $f : U \longrightarrow V$ and $\alpha : f \circ \pi_V \xrightarrow{\simeq} \pi_U$ an isomorphism³ $\beta : f^*M_{U'} \xrightarrow{\simeq} M_U$ which satisfy the cocycle condition that whenever we have a composition of morphisms $U \xrightarrow{f} U' \xrightarrow{f'} U''$ that $\beta \circ f^*(\beta') = \beta''$.

Since $U \longrightarrow X/G$ is defined via a principal bundle $P \longrightarrow U$ mapping equivariantly to X, we see that such a \mathscr{D} -module is equivalent to a family of strongly equivariant \mathscr{D} -modules on G-bundles over elements of the smooth topology mapping equivariantly to X, which is obviously equivalent to a strongly equivariant \mathscr{D} -module on X.

2. Twisted \mathscr{D} -modules

2.1. This section summarizes just a few constructions of [?], Section 2. The reader is encouraged to refer there for the further useful perspectives on twisted \mathscr{D} -modules.

²Of course, the notation is misleading since M_U also depends on π_U . We may also write $\pi_U^* M$ in its place.

³Here f^* denotes the \mathscr{O} -module pull-back equipped with its natural structure of \mathscr{D} -module given by push-forward of vector fields.

2.2. Let X be a smooth scheme. Then \mathscr{D}_X gives a quantization of \mathscr{O}_{T^*X} , i.e., \mathscr{D}_X is filtered by the order of a differential operator such that the associated graded is \mathscr{O}_{T^*X} and the induced Poisson structure on \mathscr{O}_{T^*X} agrees with the one given by its symplectic structure. Can we produce other quantizations of \mathscr{O}_{T^*X} in a similar fashion?

First, let us give a convenient description of \mathscr{D}_X . One forms the intermediate sheaf of Lie algebras $\widetilde{\mathscr{T}}_X$ on X which is $\mathscr{O}_X \oplus \mathscr{T}_X$ as an \mathscr{O}_X -module and whose bracket is given component-wise by the Lie bracket of \mathscr{T}_X , the action of \mathscr{T}_X on \mathscr{O}_X , and 0 on \mathscr{O}_X . We take the sheaf of algebras denoted $\mathscr{D}_{\widetilde{\mathscr{T}}_X}$ which is the universal algebra equipped with morphisms $\mathscr{O}_X \hookrightarrow \mathscr{D}_{\widetilde{\mathscr{T}}_X}$ and $\widetilde{\mathscr{T}}_X \hookrightarrow \mathscr{D}_{\widetilde{\mathscr{T}}_X}$ and has relations making the embedding $\mathscr{O}_X \hookrightarrow \widetilde{\mathscr{T}}_X$ a morphism of algebras, $\widetilde{\mathscr{T}}_X \hookrightarrow \mathscr{U}(\widetilde{\mathscr{T}}_X)$ a morphism of Lie algebras which commutes with the \mathscr{O}_X -action on both, and such that the unit 1 of the $\mathscr{D}_{\widetilde{\mathscr{T}}_X}$ is equal to $\mathbf{1} \in \mathscr{O}_X \subset \widetilde{\mathscr{T}}_X$.

The arguments above used only the following facts about $\widetilde{\mathscr{T}}_X$: it is a sheaf of Lie algebras which is a Lie algebra extension of \mathscr{T}_X by the commutative Lie algebra \mathscr{O}_X and such that for ξ, η in $\widetilde{\mathscr{T}}_X$ and $f \in \mathscr{O}_X$, we have $[\xi, f\eta] = f[\xi, \eta] + (\sigma(\xi)f) \cdot \eta$ for $\sigma : \widetilde{\mathscr{T}}_X \longrightarrow \mathscr{T}_X$ the projection. Let us say explicitly that the element $1 \in \mathscr{O}_X$ should really be regarded as part of the data because we used it in forming the algebra \mathscr{D}_X . Such a datum in the terminology of [?] is called a *Picard algebroid*. The sheaf of algebras $\mathscr{D}_{\mathscr{P}}$ of any Picard algebroid \mathscr{P} is a quantization of \mathscr{O}_{T^*X} , and we call such an algebra a (sheaf of) *twisted differential operators (tdo)*.

2.3. Let us give an example useful to us in the text. This is the Picard algebroid of infinitesimal symmetries of a line bundle. Let \mathscr{L} be a line bundle on X. Then we let $\mathscr{P}_{\mathscr{L}}$ be the Lie algebra of \mathbb{G}_m -invariant vector fields on the principal \mathbb{G}_m -bundle associated to \mathscr{L} (i.e., the total space of \mathscr{L} minus the 0 section). This is equipped with a map to \mathscr{T}_X by projection and has kernel \mathscr{O}_X , so gives a Picard algebroid. We denote the associated sheaf of tdos by $\mathscr{D}_{\mathscr{L}}$ or $\mathscr{D}_{X,\mathscr{L}}$.

Actually, $\mathscr{D}_{\mathscr{L}}$ admits more explicit descriptions as well. Namely, it is the "sheaf of differential operators on \mathscr{L} ." We will describe the sheaf of differential operators Diff(\mathscr{E}, \mathscr{F}) for any \mathscr{O}_X -modules \mathscr{E} and \mathscr{F} , and then $\mathscr{D}_{\mathscr{L}}$ will be Diff(\mathscr{L}, \mathscr{L}). First, one can just say that Diff(\mathscr{E}, \mathscr{F}) = Hom $_{\mathscr{D}_X}(\mathscr{E} \otimes_{\mathscr{O}_X} \mathscr{D}_X, \mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{D}_X)$. This admits a more explicit description as well: inductively, *i*-order differential operators from \mathscr{E} to \mathscr{F} are \mathbb{C} -linear morphisms whose commutant with any \mathscr{O}_X -linear morphism is an (i-1)-order differential operator, where the two actions of \mathscr{O}_X on Hom $_{\mathbb{C}}(\mathscr{E}, \mathscr{F})$ are given by the action on \mathscr{E} and the action on \mathscr{F} respectively. To see that this is equivalent to our first definition, we describe the two maps and one can then check locally that this is an isomorphism. To pass from $\varphi \in \text{Hom}_{\mathscr{D}_X}(\mathscr{E} \otimes \mathscr{D}_X, \mathscr{F} \otimes \mathscr{D}_X)$ to a \mathbb{C} -linear morphism from \mathscr{E} to \mathscr{F} , one restricts φ to \mathscr{E} and then passes to the quotient \mathscr{F} of $\mathscr{F} \otimes \mathscr{D}_X$. Conversely, given a differential operator (in the second definition) $\psi : \mathscr{E} \longrightarrow \mathscr{F}$, one first observes this for $\mathscr{E} = \mathscr{O}_X$ where this is readily

SAM RASKIN

apparent, and then in general defines $\mathscr{E} \longrightarrow \mathscr{F} \otimes \mathscr{D}_X$ to be the map which assigns to a section s of \mathscr{E} the differential operator from \mathscr{O}_X to \mathscr{F} sending f to $\psi(fs)$. Finally, we leave it to the reader to check that $\mathscr{D}_{\mathscr{L}}$ is actually isomorphic to $\text{Diff}(\mathscr{L}, \mathscr{L})$.

2.4. Next, observe that the category of modules over \mathscr{D}_X is isomorphic to the category of modules over $\mathscr{D}_{\mathscr{L}}$. Indeed, the functor $M \mapsto M \otimes \mathscr{L}$ gives such an equivalence. However, this functor does not commute with taking global sections.

2.5. There is another useful construction with twisted \mathscr{D} -modules which is not visible for usual \mathscr{D} -modules. Namely, for any Picard algebroid \mathscr{P} , we can form for any $\lambda \in \mathbb{C}$ the Picard algebroid \mathscr{P}_{λ} , where we replaced the choice of $\mathbf{1}$ in $\mathscr{O}_X \subset \mathscr{P}_{\lambda}$ by $\lambda^{-1}\mathbf{1}$. To extend this to the case where $\lambda = 0$, one notes that \mathscr{P}_{λ} is the λ -Baer multiple of the extension \mathscr{P} of \mathscr{T}_X by \mathscr{O}_X equipped with the obvious bracket. Then for $\lambda = 0$, we get the standard Picard algebroid described in the beginning of this section. The sheaf of twisted differential operators associated to \mathscr{P}_{λ} can be described directly using only \mathscr{P} . Namely, one follows the construction as for $\lambda = 1$ but demands that $\lambda = \mathbf{1}$ instead of $1 = \mathbf{1}$. One easily checks that for $\lambda \in \mathbb{Z}$, $\mathscr{P}_{\mathscr{L}^{\lambda}} = \mathscr{P}_{\mathscr{L},\lambda}$, and therefore we use this notation for all complex numbers. Even in the case of a line bundle, the categories of modules over \mathscr{P}_{λ} as λ may in general be inequivalent.

References

- [BB] A. Beilinson and J. Bernstein, A proof of Jantzen conjectures. I. M. Gelfand Seminar, 1–50, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993.
- [BD] A. Beilinson and V. Drinfeld, *Quantization of Hitchin's integrable system and Hecke eigen-sheaves*, available at http://www.math.uchicago.edu/ mitya/langlands.html
- [Gr] A. Grothendieck, "Crystals and the de Rham cohomology of schemes." 1968 Dix Exposs sur la Cohomologie des Schmas pp. 306–358 North-Holland, Amsterdam; Masson, Paris.