EQUIVARIANT AND TWISTED \mathscr{D}-MODULES

SAM RASKIN

1. Equivariant \mathscr{D}-modules

1.1. Throughout this section, X will be a scheme over \mathbb{C} and G will be a group scheme acting smoothly on X via the map act : $G \times X \longrightarrow X$. In this section, we will discuss conditions of equivariance for \mathscr{D}-modules on X and use this to give a description of \mathscr{D}-modules on the quotient stack X / G.
1.2. Let M be a \mathscr{D}-module on X with $\alpha:$ act $^{*} M \xrightarrow{\simeq} p_{2}^{*} M$ an isomorphism of $\mathscr{O}_{G} \boxtimes \mathscr{D}_{X}$-modules ${ }^{1}$ on $G \times X$ satisfying the cocycle condition, i.e., such that the two isomorphisms of $p_{3}^{*} M$ and (act $\left.\circ(i d \times a c t)\right)^{*} M$ on $G \times G \times X$ agree (and therefore all higher isomorphisms agree). M with the datum α is called a weakly equivariant \mathscr{D} module. If α is an isomorphism of $\mathscr{D}_{G} \otimes \mathscr{D}_{X}$-modules, then we say M is a (strongly) equivariant \mathscr{D}-module.

Clearly the pull-back of an equivariant \mathscr{D}-module along a G-equivariant morphism remains equivariant.

Example 1.1. Let X be just a point and let G be connected. Then the category of equivariant \mathscr{D}-modules on X is just the category of vector spaces, while the category of weakly equivariant \mathscr{D}-modules on X is the category of G-representations.

Remark 1.2. There are two other ways of stating the condition that a weakly equivariant \mathscr{D}-module M is equivariant which we mention briefly. One is that for such M, there is are two actions of \mathfrak{g} on sections of M : one from the equivariant structure (which doesn't use the \mathscr{D}-module structure of M), and the other coming from the embedding of \mathfrak{g} as vector fields on X. Equivariance asks that these two actions agree.

The second definition is that for $\psi: D=\operatorname{Spec} \mathbb{C}[\epsilon] / \epsilon^{2} \longrightarrow G$ a tangent vector at the identity we get from the equivariant structure an isomorphism between the pullbacks of M along the two morphisms $D \times X \longrightarrow X$ given by factoring D through G and applying either the projection or the action map. But [?] tells us that a connection on M is equivalent to functorial isomorphisms between the pull-backs of M along any two morphisms from a scheme which agree on the reduced part of this scheme. Then strong equivariance requires that these two isomorphisms agree.

[^0]1.3. The following proposition justifies the condition of strong equivariance:

Theorem 1.3. Let $\pi: P \longrightarrow X$ be a G-bundle. Then there is an equivalence of categories of \mathscr{D}-modules on X and strongly equivariant \mathscr{D}-modules on P given by sending M to $\pi^{*} M$ and with inverse sending N on P to its sheaf of invariant sections.

Proof. First, observe that because π is G-equivariant with respect to the trivial G-action on $X, \pi^{*} M$ is strongly equivariant for M a \mathscr{D}-module on X. Therefore, this defines a functor. Let us describe its inverse. Let N^{G} be the sheaf on X of G-invariant sections of N on P. We claim that this inherits an action of \mathscr{D}_{X} and that this is inverse to the functor above.

First, let us assume that $P=G \times X$ with π the projection. Then \mathscr{D}_{X} embeds in a canonical way into G-invariant differential operators on P, so \mathscr{D}_{X} acts on N^{G}. We need to check that in the canonical isomorphism $N \xrightarrow{\simeq} \mathscr{O}_{G} \boxtimes N^{G}$ that \mathscr{D}_{G} acts via its projection to \mathscr{O}_{G}. But this is clear. By this argument, the gluing implicit in the reduction to $P=G \times X$ above is justified.

We want to say that for the stack $\mathscr{X}=X / G$, there is an equivalence between equivariant \mathscr{D}-modules on X and \mathscr{D}-modules on X / G. First, let us formulate what a \mathscr{D}-module is on a smooth stack \mathscr{X}. \mathscr{D}-modules are local for the smooth topology, so one's naive guess for the definition of a \mathscr{D}-module on a smooth Artin stack is correct. That is, a (left or right) \mathscr{D}-module M on \mathscr{X} is the assignment for each smooth morphism $U \xrightarrow{\pi_{U}} \mathscr{X}$ of a (left or right) \mathscr{D}-modul $\mathscr{L}^{2} M_{S}$ on S and for each pair (f, α) of a smooth morphism $f: U \longrightarrow V$ and $\alpha: f \circ \pi_{V} \xrightarrow{\simeq} \pi_{U}$ an isomorphism ${ }^{3}$ $\beta: f^{*} M_{U^{\prime}} \xrightarrow{\simeq} M_{U}$ which satisfy the cocycle condition that whenever we have a composition of morphisms $U \xrightarrow{f} U^{\prime} \xrightarrow{f^{\prime}} U^{\prime \prime}$ that $\beta \circ f^{*}\left(\beta^{\prime}\right)=\beta^{\prime \prime}$.

Since $U \longrightarrow X / G$ is defined via a principal bundle $P \longrightarrow U$ mapping equivariantly to X, we see that such a \mathscr{D}-module is equivalent to a family of strongly equivariant \mathscr{D}-modules on G-bundles over elements of the smooth topology mapping equivariantly to X, which is obviously equivalent to a strongly equivariant \mathscr{D}-module on X.

2. Twisted \mathscr{D}-modules

2.1. This section summarizes just a few constructions of [?], Section 2. The reader is encouraged to refer there for the further useful perspectives on twisted \mathscr{D}-modules.

[^1]2.2. Let X be a smooth scheme. Then \mathscr{D}_{X} gives a quantization of $\mathscr{O}_{T^{*} X}$, i.e., \mathscr{D}_{X} is filtered by the order of a differential operator such that the associated graded is $\mathscr{O}_{T^{*} X}$ and the induced Poisson structure on $\mathscr{O}_{T^{*} X}$ agrees with the one given by its symplectic structure. Can we produce other quantizations of $\mathscr{O}_{T^{*} X}$ in a similar fashion?

First, let us give a convenient description of \mathscr{D}_{X}. One forms the intermediate sheaf of Lie algebras $\widetilde{\mathscr{T}}_{X}$ on X which is $\mathscr{O}_{X} \oplus \mathscr{T}_{X}$ as an \mathscr{O}_{X}-module and whose bracket is given component-wise by the Lie bracket of \mathscr{T}_{X}, the action of \mathscr{T}_{X} on \mathscr{O}_{X}, and 0 on \mathscr{O}_{X}. We take the sheaf of algebras denoted $\mathscr{D}_{\widetilde{\mathscr{T}_{X}}}$ which is the universal algebra equipped with morphisms $\mathscr{O}_{X} \hookrightarrow \mathscr{D}_{\widetilde{\mathscr{T}_{X}}}$ and $\widetilde{\mathscr{T}}_{X} \hookrightarrow \mathscr{D}_{\widetilde{T}_{X}}$ and has relations making the embedding $\mathscr{O}_{X} \hookrightarrow \widetilde{\mathscr{T}}_{X}$ a morphism of algebras, $\widetilde{\mathscr{T}}_{X} \hookrightarrow \mathscr{U}\left(\widetilde{\mathscr{T}}_{X}\right)$ a morphism of Lie algebras which commutes with the \mathscr{O}_{X}-action on both, and such that the unit 1 of the $\mathscr{D}_{\mathscr{T}_{X}}$ is equal to $1 \in \mathscr{O}_{X} \subset \widetilde{\mathscr{T}}_{X}$.

The arguments above used only the following facts about $\widetilde{\mathscr{T}}_{X}$: it is a sheaf of Lie algebras which is a Lie algebra extension of \mathscr{T}_{X} by the commutative Lie algebra \mathscr{O}_{X} and such that for ξ, η in $\widetilde{\mathscr{T}}_{X}$ and $f \in \mathscr{O}_{X}$, we have $[\xi, f \eta]=f[\xi, \eta]+(\sigma(\xi) f) \cdot \eta$ for $\sigma: \widetilde{\mathscr{T}}_{X} \longrightarrow \mathscr{T}_{X}$ the projection. Let us say explicitly that the element $1 \in \mathscr{O}_{X}$ should really be regarded as part of the data because we used it in forming the algebra \mathscr{D}_{X}. Such a datum in the terminology of [?] is called a Picard algebroid. The sheaf of algebras $\mathscr{D}_{\mathscr{P}}$ of any Picard algebroid \mathscr{P} is a quantization of $\mathscr{O}_{T^{*} X}$, and we call such an algebra a (sheaf of) twisted differential operators (tdo).
2.3. Let us give an example useful to us in the text. This is the Picard algebroid of infinitesimal symmetries of a line bundle. Let \mathscr{L} be a line bundle on X. Then we let $\mathscr{P}_{\mathscr{L}}$ be the Lie algebra of \mathbb{G}_{m}-invariant vector fields on the principal \mathbb{G}_{m}-bundle associated to \mathscr{L} (i.e., the total space of \mathscr{L} minus the 0 section). This is equipped with a map to \mathscr{T}_{X} by projection and has kernel \mathscr{O}_{X}, so gives a Picard algebroid. We denote the associated sheaf of tdos by $\mathscr{D}_{\mathscr{L}}$ or $\mathscr{D}_{X, \mathscr{L}}$.

Actually, $\mathscr{D}_{\mathscr{L}}$ admits more explicit descriptions as well. Namely, it is the "sheaf of differential operators on \mathscr{L}." We will describe the sheaf of differential operators $\operatorname{Diff}(\mathscr{E}, \mathscr{F})$ for any \mathscr{O}_{X}-modules \mathscr{E} and \mathscr{F}, and then $\mathscr{D}_{\mathscr{L}}$ will be $\operatorname{Diff}(\mathscr{L}, \mathscr{L})$. First, one can just say that $\operatorname{Diff}(\mathscr{E}, \mathscr{F})=\operatorname{Hom}_{\mathscr{D}_{X}}\left(\mathscr{E} \otimes_{\mathscr{O}_{X}} \mathscr{D}_{X}, \mathscr{F} \otimes_{\mathscr{O}_{X}} \mathscr{D}_{X}\right)$. This admits a more explicit description as well: inductively, i-order differential operators from \mathscr{E} to \mathscr{F} are \mathbb{C}-linear morphisms whose commutant with any \mathscr{O}_{X}-linear morphism is an $(i-1)$-order differential operator, where the two actions of \mathscr{O}_{X} on $\operatorname{Hom}_{\mathbb{C}}(\mathscr{E}, \mathscr{F})$ are given by the action on \mathscr{E} and the action on \mathscr{F} respectively. To see that this is equivalent to our first definition, we describe the two maps and one can then check locally that this is an isomorphism. To pass from $\varphi \in \operatorname{Hom}_{\mathscr{D}_{X}}\left(\mathscr{E} \otimes \mathscr{D}_{X}, \mathscr{F} \otimes \mathscr{D}_{X}\right)$ to a \mathbb{C}-linear morphism from \mathscr{E} to \mathscr{F}, one restricts φ to \mathscr{E} and then passes to the quotient \mathscr{F} of $\mathscr{F} \otimes \mathscr{D}_{X}$. Conversely, given a differential operator (in the second definition) $\psi: \mathscr{E} \longrightarrow \mathscr{F}$, one first observes this for $\mathscr{E}=\mathscr{O}_{X}$ where this is readily
apparent, and then in general defines $\mathscr{E} \longrightarrow \mathscr{F} \otimes \mathscr{D}_{X}$ to be the map which assigns to a section s of \mathscr{E} the differential operator from \mathscr{O}_{X} to \mathscr{F} sending f to $\psi(f s)$. Finally, we leave it to the reader to check that $\mathscr{D}_{\mathscr{L}}$ is actually isomorphic to $\operatorname{Diff}(\mathscr{L}, \mathscr{L})$.
2.4. Next, observe that the category of modules over \mathscr{D}_{X} is isomorphic to the category of modules over $\mathscr{D}_{\mathscr{L}}$. Indeed, the functor $M \mapsto M \otimes \mathscr{L}$ gives such an equivalence. However, this functor does not commute with taking global sections.
2.5. There is another useful construction with twisted \mathscr{D}-modules which is not visible for usual \mathscr{D}-modules. Namely, for any Picard algebroid \mathscr{P}, we can form for any $\lambda \in \mathbb{C}$ the Picard algebroid \mathscr{P}_{λ}, where we replaced the choice of $\mathbf{1}$ in $\mathscr{O}_{X} \subset \mathscr{P}_{\lambda}$ by $\lambda^{-1} 1$. To extend this to the case where $\lambda=0$, one notes that \mathscr{P}_{λ} is the λ Baer multiple of the extension \mathscr{P} of \mathscr{T}_{X} by \mathscr{O}_{X} equipped with the obvious bracket. Then for $\lambda=0$, we get the standard Picard algebroid described in the beginning of this section. The sheaf of twisted differential operators associated to \mathscr{P}_{λ} can be described directly using only \mathscr{P}. Namely, one follows the construction as for $\lambda=1$ but demands that $\lambda=\mathbf{1}$ instead of $1=\mathbf{1}$. One easily checks that for $\lambda \in \mathbb{Z}$, $\mathscr{P}_{\mathscr{L}^{\lambda}}=\mathscr{P}_{\mathscr{L}, \lambda}$, and therefore we use this notation for all complex numbers. Even in the case of a line bundle, the categories of modules over \mathscr{P}_{λ} as λ may in general be inequivalent.

References

[BB] A. Beilinson and J. Bernstein, A proof of Jantzen conjectures. I. M. Gelfand Seminar, 1-50, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993.
[BD] A. Beilinson and V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, available at http://www.math.uchicago.edu/ mitya/langlands.html
[Gr] A. Grothendieck, "Crystals and the de Rham cohomology of schemes." 1968 Dix Exposs sur la Cohomologie des Schmas pp. 306-358 North-Holland, Amsterdam; Masson, Paris.

[^0]: Date: October 8, 2009
 ${ }^{1}$ This is the appropriate interpretation of "a G-family of isomorphisms of \mathscr{D}_{X}-modules."

[^1]: ${ }^{2}$ Of course, the notation is misleading since M_{U} also depends on π_{U}. We may also write $\pi_{U}^{*} M$ in its place.
 ${ }^{3}$ Here f^{*} denotes the \mathscr{O}-module pull-back equipped with its natural structure of \mathscr{D}-module given by push-forward of vector fields.

