
THE COTANGENT STACK

SAM RASKIN

1. Introduction

1.1. Let us fix our notations and conventions.

1.2. We refer to [LMB] for the basic background on stacks. Let us quickly recall:
a stack over a scheme S is a sheaf of groupoids on the faithfully flat topology of
S-schemes, where the presheaf requirement that the composition of the restriction
maps is the restriction map of the composition is understood in the weak sense.
Stacks form a 2-category with fiber products and there is a clear embedding of the
category of schemes as a full subcategory. A morphism X −→ Y is representable if
for any map to Y from a scheme the pull-back of X along this map is an algebraic
space. For representable morphisms, it makes sense to say it has a local property like
flatness or smoothness, and we will call such morphisms flat or smooth withholding
the word representable where convenient.

An Artin (or algebraic) stack is a stack X for which there exists a smooth pre-
sentation, i.e., a smooth, surjective map X −→X from a scheme X, and such that
the diagonal map X −→X ×X is representable and quasicompact. Note that to
say the diagonal map is representable is equivalent to requiring that any morphism
from a scheme to X is representable. By this condition, for any point x : S −→X
from a scheme to a stack, one can make sense of the automorphisms of this point
Aut(x) = S ×sX S, and if this stack is an Artin stack then this is naturally given
the structure of a group scheme over S. An accessible example of an algebraic stack
is given by taking the quotient stack X/G where G is an algebraic group acting on
X. The S-points of this stack are given by the groupoid of G-torsors on S equipped
with an equivariant map to X.

An Artin stack X is smooth if for every scheme U mapping smoothly to X , the
scheme U is smooth. One can check that a stack X is smooth if and only if there is
a smooth scheme U equipped with a smooth epimorphism U −→X . In general, it
makes sense to talk about properties of X which are local properties for the smooth
topology.

We denote by Xsm the smooth topology of X , i.e., it is the site for which the

underlying category is that of schemes U equipped with a smooth map U
πU−→X and

for which morphisms are “smooth 2-morphisms” and for which covering maps are
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those smooth maps which are epimorphisms of schemes. By a smooth 2-morphism
between (U, πU) and (U ′, πU ′) in this category, we mean a pair (f, α) consisting of

a smooth map f : U −→ U ′ and α : πU
'−→ π′U ◦ f , though we will allow ourselves

to withhold α from notation in the future. A quasi-coherent sheaf on X is the
data of a quasi-coherent sheaf FU on each U −→ X in the flat topology such
that for each (f, α) a morphism in the flat topology (i.e., an arbitrary morphism of

schemes) we have an isomorphism βf : f ∗F ′
U
'−→ FU such that these isomorphisms

satisfy the cocycle condition that βf ◦ f ∗(βf ′) = βf ′◦f whenever we have morphisms

U
f−→ U ′

f ′
−→ U ′′.

1.3. We may sometimes write “stack” in place of “smooth Artin stack” because
these notes are concerned with nothing more. We work over C throughout. By a
category we mean an essentially small category, i.e., one for which the isomorphism
classes of objects form a set.

2. The tangent complex

2.1. The infinitesimal study of a smooth Artin stack via its tangents is fundamen-
tally derived, i.e., there are homological aspects one cannot ignore.1 Therefore, one
must study2 the “tangent complex” to have any reasonable control of the tangent
sheaf. Intuitively, this is because there are two kinds of infinitesimal deformations:
the usual geometric kind, and along infinitesimal automorphisms of a point. Let
us first try to convince the reader of this homological nature before defining the
tangent complex, recalling the necessary background along the way.

2.2. We will freely use the dual numbers in what follows. Let us recall what these
look like. The dual numbers are the scheme D = Spec(C[ε]/ε2). The dual numbers
have pt = Spec(C) as a closed subscheme equipped with a canonical retraction
D −→ pt. The dual numbers corepresent tangent vectors, i.e., to lift a map x :
pt −→ X to D amounts to giving a tangent vector at the point x, which is simple
to check using derivations. The addition and scalar multiplication of lifts of maps
x : pt ↪→ X to D come from the ring homomorphisms + : D −→ D

∐
ptD is given

by the map C[ε1, ε2]/(ε2i , ε1 ·ε2) a+bε1 +cε2 7→ a+(b+c)ε and λ : a+b ·ε 7→ a+λ ·b ·ε.
Consider a point x : pt −→ X of a Artin stack.3 A tangent vector at x is a

lift of the map x to a map D −→ X . What sort of object does the collection of

1This is analogous to the case of a singular scheme, where the cotangent bundle should be
derived to the cotangent complex, c.f. [I].

2Actually, a more fundamental concept is the “cotangent complex,” just as for schemes the
cotangent sheaf is more fundamental than the tangent sheaf. However, for our purposes in later
sections, the tangent complex is really what we’re interested in and we can get by without ever
mentioning the cotangent complex.

3This paragraph clearly works in the setting of a mere sheaf of groupoids, though some of what
follows later in this section cannot be generalized so directly.
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tangent vectors TX ,x at x form? It is a subgroupoid of Hom(D,X ), namely, the
fiber over x ∈ Hom(pt,X ) of the tautological map Hom(D,X ) −→ Hom(pt,X ).
Furthermore, the addition and scalar multiplication maps above mean that TX ,x is a
category in vector spaces4, i.e., there is an addition map + : TX ,x×TX ,x −→ TX ,x

making it into a Picard category (i.e., a symmetric monoidal category in which
multiplication by any object is an equivalence of categories, equivalently, in which
for every object of the category there exists another object for which composition
of their multiplications is isomorphic to the identity functor) and it has a scalar
multiplication action λ : C −→ C for all λ ∈ C satisfying the natural compatibilities.
Finally, let us note that the involution of X ⊗ X induced by the commutativity
constraint is evidently trivial for each X.

Following [De], a category in vector spaces such that the commutativity constraint
for X⊗X is the identity gives a complex of vector spaces concentrated in degrees −1
and 0 and is essentially equivalent to such a datum. Indeed, given a two step complex

C−1 d−→ C0, one forms the Picard category whose objects are given by C0 and
where a morphism from x to y is given by an element f ∈ C−1 such that df = y−x.
Observe that H0 of this complex gives isomorphism classes of objects in our category
and H−1 gives automorphisms of the unit object. From this description, it is clear
what complex to assign to a category in vector spaces: just the stupid complex
with no differentials and having H0 and H−1 as just described. Quasi-isomorphism
of such complexes corresponds to isomorphism of the corresponding categories, so
such categories are equivalent to objects of the derived category concentrated in two
degrees.

Therefore, given the above, we see that we have a 2-term complex up to quasi-
isomorphism T −1

X ,x −→ T 0
X ,x corresponding to the tangent vectors at the point

x. Explicitly, this complex has H−1 equal to the group of automorphisms of the
composition D −→ pt

x−→ X who compose with pt ↪→ D to give the identity, and
H0 equal to isomorphism classes of liftings of pt −→X to D.

Note that H−1 can also be realized as the Lie algebra of Aut(x). Indeed, the fiber
product pt×X pt is (by definition of the fiber product) Aut(x). An automorphism
of the map D −→ X which is the identity over pt ↪→ D is equivalent to the data
of a map D −→ Aut(x) which is the identity over pt ↪→ D. For, to give a map
D −→ Aut(x) is to give a pair of maps D −→ pt and an automorphism between
their compositions with x, and to ensure that this automorphism is the identity
when restricted to pt is exactly to say that the image of pt in D −→ Aut(x) is the
identity. But such a map D −→ Aut(x) is just a tangent vector of Aut(x) at the
identity, proving our claim.

2.3. Next, we want to define an object TX of the derived category of O-modules
of X , but we have to define what this last object is first. What is the “homotopy

4C.f. [BB].
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correct” notion of a complex of O-modules on X ? One should specify for each
U −→X in the smooth5 topology a complex CU and for f : U −→ V in the smooth
topology a quasi-isomorphism the CU −→ f ∗CV .6 These quasi-isomorphisms should
satisfy the obvious cocycle condition. The category just defined is a DG category, so
one may pass to its homotopy quotient and mod out by acyclic complexes to get the
derived category. This is just to say that this category of (homotopically correct)
complexes on X has an obvious functor H0 to the category of O-modules on X and
therefore a notion of quasi-isomorphism, and we localize at the quasi-isomorphisms.
This is a triangulated category by its first description equipped with a t-structure
whose heart is the category of O-modules on X and whose corresponding homology
functor is induced from the H0 functor above, and will be denoted the same.

To summarize: if one gives a complex on each element of the smooth topology
of X and a compatible family of quasi-isomorphisms between pull-backs of these
complexes along maps in the smooth topology, then one has defined what may fairly
be described as an object of the derived category of X , and one has sheaves H i of
this complex for all i.

2.4. With this, we are ready to tackle defining TX . First, we define for U ∈ Xsm

the vector bundle TU/X on U . If X is a scheme and f : U −→ X is a smooth map
of schemes, then for any other scheme V equipped with a map g : V −→ X we
have g∗U(TU/X) ' TU×

X
V/V where gU is the map U ×X V −→ U . Then for X with

U ∈Xsm, the above implies that that for any scheme V equipped with a faitfully flat
morphism V −→ X we can descend TU×

X
V/V to a vector bundle on U via faithfully

flat descent. The resulting vector bundle on U can be explicitly described as follows.
Take V = U , and consider the following diagram, where the right part is 2-cartesian:

U
∆ // U ×X U

π1 //

π2

��

U

��
U // X

Next, recall that for morphisms between smooth schemes X
f−→ Y

g−→ Z with f
smooth, we have the following exact sequence, which one can easily see exists also
when Z is a smooth stack:

0 −→ TX/Y −→ TX/Z −→ f ∗TY/Z −→ 0

and in particular, if Z = pt, then we have the sequence:

0 −→ TX/Y −→ TX −→ f ∗TY −→ 0

5Equivalently flat, c.f. [BD] Section 7.5.
6In fact, the quasi-isomorphism could go the other way and we would get a triangulated category

which is canonically identified with this one, c.f. [BD] Section 7.4.
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In other words, we have a quasi-isomorphism:

(TX/Y −→ TX)
'−→ f ∗TY

where the left hand side is regarded as a complex concentrated in degrees −1 and
0. Therefore:

Definition 2.1. For f : U −→ X in the smooth topology, the complex on U f ∗TX

defining the pull-back of the tangent complex on X is TU/X −→ TU considered as
a complex concentrated in degrees −1 and 0.

Let us check that this actually defines an object of the derived category. We
need to show that for ϕ : U −→ V a morphism of schemes in Xsm we have a
quasi-isomorphism:

TU/X
//

��

TU

��
ϕ∗TV/X

// ϕ∗TV

Define the arrows going down to be the tautological morphims. That these define a
quasi-isomorphism follows from our earlier discussion since we have a commutative
diagram of short exact sequences:

0 // TU/V
//

id
��

TU/X
//

��

ϕ∗TV/X
//

��

0

0 // TU/V
// TU

// ϕ∗TV
// 0

These quasi-isomorphisms satisfy the cocycle condition.
One defines the (naive) sheaf of tangent vectors on X to be T sh

X := H0(TX ).
This sheaf may not be a vector bundle even if X is smooth, as will be visible
explicitly in many forms in the rest of this section. Observe that for f : U −→ X
smooth, f ∗T sh

X = H0(TU/X −→ TU).

2.5. Let us compute the fiber of TX over a point x : pt −→ X . First, let us note
that while constructing pull-backs for the derived category of stacks requires some
work,7 if we have a complex of sheaves which is represented everywhere by sheaves
flat over the source and a morphism which factors through some smooth (or flat)
map from a scheme, then the naive pull-back of complexes is fine. Therefore, since
TX is represented everywhere by a complex of vector bundles, we can compute its
pull-back along x naively. We claim that the resulting complex of vector spaces is
canonically quasi-isomorphic to the complex TX ,x from the beginning of the section.

Factoring x through some smooth map U −→ X and denoting the lift x by u,
we see that our pull-back is the complex of vector spaces TU/X ,u −→ TU,u. An

7Maybe the appropriate formalism can be pieced together from [Dr] and Section 7 of [BD].
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element of the TU/X ,u is the same as a datum of a tangent vector D −→ U at u and
a trivialization of the projection of this map to X . The differential is the forgetful
map that remembers the tangent vector to U. Since the map U −→ X is smooth,
every tangent vector to X at x can be lifted to a tangent vector to U at u. Hence,
the above complex canonically represents the tangent groupoid TX ,x.

To summarize in proposition form:

Proposition 2.2. For a smooth stack X and a point x : pt −→ X , the tan-
gent complex pulled back to x has Euler characteristic the dimension of X at the
connected component of X containing x, with H−1 having dimension equal to the
dimension of the group of automorphisms at x.

Remark 2.3. In fact, most of the above can be done “in families,” i.e., parametrized
by a base scheme S. Indeed, we can talk about the groupoid of liftings of a map
S −→X to S×D, and such gadgets give a 2-step complex whose H0 is isomorphism
classes of lifts and whose H−1 is infinitesimal automorphisms of our S −→X . Fur-
thermore, after giving an appropriate descent theory for derived categories, one can
talk about the pull-back of the tangent complex of X along S −→ X (possibly
not a smooth morphism), and one finds that it is represented by a 2-step complex
of vector bundles and whose cohomology, essentially by the argument above, agrees
with the cohomology described in terms of liftings. And in fact, there is an isomor-
phism not just on the level of cohomology, but actually these two complexes are
quasi-isomorphic.

For any (not necessarily smooth) equidimensional Artin stack X of dimension d,
we define for each x : pt −→X the integer χ(x) to be the Euler characteristic of the
complex8 TX ,x. Then just as an equidimensional scheme of dimension d is smooth if
and only if the dimensions of its tangent spaces are constantly d, X is smooth if and
only if χ(x) is constantly d. Indeed, it suffices to show that any U ∈Xsm is smooth.
Our argument above shows that for a lift of x to U , the Euler characteristics of the
fibers of TU/X,x −→ TU,x do not jump. But because the U −→ X is smooth, the
first element of the sequence is a vector bundle, so the latter term must have fibers
whose terms do not jump. This gives the result.

2.6. We now discuss what the tangent complex for a quotient stack.

Example 2.4. Let X be a scheme on which a group G acts and let X/G be the
quotient stack. Then we will show that the complex defining the tangent complex
on the presentation X of X/G is g⊗OX −→ TX with the differential the embedding
of vector fields defined by the action and extended by OX-linearity. Indeed, the 0

8This is maliciously poor notation. In fact, there is a notion of the tangent complex for a
possibly singular Artin stack, but this complex would not compute its fiber because it might have
higher terms. However, this notation, defined in the beginning of the section, works for any sheaf
of groupoids.
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term of the tangent complex is by definition TX . The −1 term TX/(X/G) is defined
using the diagram:

X
∆ // X ×X/G X

π2 //

π1

��

X

��

X // X/G

But X×X/GX is isomorphic to X×G where π1 translates to p1 the first projection,
π2 translates to the action map, and ∆ is the map sending x to (x, 1) with 1 the
identity. Then we see that TX/(X/G) is Ker(TX ⊕ g⊗OX −→ TX) which is exactly
g⊗ OX . The differential is readily checked to agree with our claim.

2.7. For a smooth projective curveX and an affine groupG, let BunG be the (Artin)

stack of G-bundles on X. Fix a G-bundle P on X with total space P
π−→ X. We

will compute H0(TBunG,P) and H−1(TBunG,P) and then discuss the smoothness and
dimension of this stack. This section is tangential to the body of the text and may
be readily skipped by the reader.

Let us first compute H−1(TBunG,P). These are G-bundle automorphisms of the

trivial extension of P to X̃ := X × D. But this is explicitly realized as the space
of maps D × P −→ D × P which commute with the G-action on both sides and
with the projection to X ×D, which is to say global G-invariant vector fields on P
whose projection to X is trivial. Thus, H−1(TBunG,P) = H0(X, gP ) where gP is the
sheaf of sections of the vector bundle which is the twist of the G-module (via the
adjoint action) g by the torsor P and is realized as those G-invariant vector fields
on P whose push-forward to X is 0.

Next, we compute H0(TBunG,P). This classifies lifts of the point P : pt −→ BunG
to D, i.e., G-bundles P̃ on X̃ whose restriction to X × pt is P. First, one checks
via a cocycle computation that for any affine scheme U , any extension of a G-bundle
on U to U×D is isomorphic (as such an extension) to the trivial extension. Now let

U −→ X be a Zariski cover by an affine scheme. For Ũ := U ×D −→ X̃, the pull-

back of P̃ to Ũ is the trivial torsor because U is affine. Choose a trivialization of
this deformation. Then on U×X U we obtain two different trivializations of the pull-
back of P̃ as a deformation of the pull-back of P via each of the two projections.
By the preceding paragraph, their difference is a section of gP over U ×X U , which
is readily seen be a Cech cocycle. Moreover, a different choice of trivialization of the

pull-back of P̃ to U as a deformation of the pull-back of P leads to a cohomologous
cocycle. The above defines a map from isomorphism classes of deformations to
H1(X , gP ), and one can check by tracing the construction backwards that this is
an isomorphism.

Now, to prove the smoothness of BunG, we show that it satisfies formal smooth-
ness:
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Proposition 2.5. A stack X locally of finite type is smooth if and only if for any
S0 ↪→ S a closed embedding defined by a nilpotent ideal, any morphism S0 −→ X
can be extended to a morphism S −→ X . Furthermore, if this condition is true
merely for all ideals of square zero, a priori a weaker condition, then the stack is
nevertheless smooth.

At this point, one can avoid gerbes no longer. First, note that given an extension of
sheaves of groups 0 −→ A −→ G ′ −→ G −→ 1 where A is a sheaf of abelian groups
and a G -torsor P, then the stack of extensions of P to a G ′-torsor obviously forms
a gerbe, and a direct construction shows that this a gerbe over the Picard category
of AP-torsors, where AP is the twist of A by P along the adjoint action of G on
A .

Now consider i : S0 ↪→ S where S is any affine scheme and S0 is a closed subscheme
defined by an ideal I of square 0. To prove smoothness, we need to show that any
G-bundle on S0 × X extends to a G-bundle on S × X. We have the sheaf of
groups GS0 on the étale site of S0 × X defined by maps into the group G, which
is a quotient of i−1GS the restriction of the similar sheaf on S × X, with kernel
I ⊗OS0

LieG. An extension of a G-bundle P on S0 × X to S × X is equivalent to

extending the associated torsor for GS0 to i−1GS. The category of such extensions
is a gerbe for I⊗OS0

by the above. But isomorphisms classes of such gerbes are

classified by H2(X×S0, I⊗OS0
), which is 0 because X is a curve and S0 is affine and

because it doesn’t matter whether we compute this in the Zariski topology or in the
étale topology. Therefore, our gerbe is neutral, i.e., there exists a global extension!
Therefore, BunG is smooth. Observe that this computation of the gerbe also implies
the results in the above paragraphs about H0 and H1 of the tangent complex of
BunG.

Finally, let us compute the dimension of BunG for G reductive. In this case, g is
self-dual as a G-module and therefore gP must have degree 0. Then Riemann-Roch
tells us that the Euler characteristic of the vector bundle gP is dimG·(1−g) for g the
genus of X, and we see as a biproduct that the dimension of BunG is dimG ·(g−1).9

3. Goodness

3.1. One defines the algebraic stack T ∗X as Spec
X

(Sym T sh
X ).

Example 3.1. Suppose that X is a scheme equipped with the action of a group G and
X is the stack X/G. Then T ∗(X/G) is obtained T ∗X by Hamiltonian reduction
along the moment map µ : T ∗X −→ g∗ defined by the embedding of g as tangent

9Observe that this does not agree with one’s first guess in the approachable setting G = Gm

where BunG is essentially the Jacobian crossed with Z, which of course has dimension g. The saving
grace is in the word “essentially”: BunGm also accounts for the automorphisms of line bundles,
which everywhere have dimension 1. Therefore dim BunGm should be 1 less than the dimension of
the Jacobian.
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fields on X , i.e., one takes the scheme-theoretic fiber over 0 of this map and quotient
stack-theoretically by the induced G-action on it.

3.2. The following was introduced in [BD] Section 1.

Proposition 3.2. If X is connected, then the following conditions are equivalent:

(1) dimT ∗X = 2 dim X .
(2) codim{x ∈X | dim Aut(x) = n} ≥ n for all n > 0.
(3) For any U −→X smooth, the complex Sym(TU/X −→ TU) has cohomology

concentrated in degree 0. H0(Sym(TU/X −→ TU)) is10 Sym(TU)/TU/X Sym(TU/X ).

In the case that these equivalent conditions are satisfied, we say that X is good.
Note that in 2 above, the “set” in question is naturally a locally closed substack

by Proposition 2.2. In particular, the statement has meaning. Let us also remark
regarding condition 3 above, that for X any possibly not good stack, one has also

that Sym(T sh
X )

'−→ H0(Sym(TU/X −→ TU)).

Proof. Let us first see that 1 and 2 are equivalent; this is essentially a tautology
using Section 2. Consider a point x ∈X . By the right exactness of x∗ and because
TX is concentrated in non-positive degrees, we have x∗H0TX = H0x∗TX . Then
we can apply Proposition 2.2 to see that the fiber of T ∗X over x has dimension
dimx∗T sh

X = dim x∗(TX) + dimx∗H−1(TX) = dim X + dim Aut(x). Therefore,
in general one sees that dimT ∗X ≥ 2 dim X . Now it’s clear that with Xn :=
codim{x ∈ X | dim Aut(x) = n} the fiber of the cotangent bundle over Xn is
exactly dim X + dimXn + n. If dimXn ≤ dim X − n for all n, then clearly
dimT ∗X ≤ 2 dim X , so we must have equality.

Next, let us see the equivalence of 1 and 3. First, one can easily see from definition
chasing that dimT ∗X U = 2 dimU − dim X . Next, recall that one can show11 that
given smooth schemes X, Y , and Z with morphisms X −→ Z and Y −→ Z, then
no there are no higher tors in the formation of X ×Z Y (i.e., in the tensor product
defining this scheme locally) if and only if the dimX+dimY = dimZ+dimX×Z Y ,
and if this is true then X ×Z Y is a local complete intersection. We apply this to
the diagram:

T ∗X ×X U //

��

U

0
��

T ∗U // T ∗X U

This shows that dimT ∗X ×X U−dimU = 2 dimU−(2 dimU−dim X ) is equivalent
to the vanishing of higher homologies for OU ⊗LSym TU/X

Sym TU . But the complex

10For any smooth stack, i.e., not necessarily one satisfying the conditions of the proposition.
11One reduces to the local statement and then translates it to a statement about Koszul

complexes.
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Sym(TU/X −→ TU) is the tensor of Sym TU/X with the Koszul complex for U as
the zero section in T ∗X U and therefore computes the higher tors in question. �

Remark 3.3. Condition 3 makes clear what about the stack X is particularly good.
Namely, it says that Sym(TX ) is concentrated in degree 0. But this object would
be the DG variation on functions on the cotangent stack. Thus, goodness says that
there is nothing DG about this algebra and therefore neither the cotangent stack.

3.3. Let us give some examples of good stacks.

Examples 3.4. (1) Let G be an algebraic group of non-zero dimension and let
BG := pt/G be its classifying stack. Then BG is not good. For example, it
fails 2 above.

(2) For a projective curve X of genus at least 2 and a semisimple group G and let
BunG be as in Section 2.7. This stack is in fact good. This is demonstrated
in [BD] Section 2.10. It follows directly from the theorem of Ginzburg that
the global nilpotent cone is isotropic [Gi], c.f. [BD] Section 2.10. The work
[BD] is concerned with the construction of certain twisted D-modules on
BunG, and the goodness of BunG is used to realize global twisted differential
operators on BunG as a commutative algebra quantizing global functions
on the cotangent bundle. Then D-modules are produced via a geometric
realization of the spectrum of this algebra as classifying a certain space LG-
local systems on X.
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