
SEMINAR NOTES: MAPPING STACKS AND BunG(X) (SEPT. 17, 2009)

DENNIS GAITSGORY

1. Stacks of the form Maps(X,Y)

1.1. For a ”source” scheme X and a ”target” stack Y, we define a presheaf of groupoids
Maps(X,Y) as S 7→ Hom(S ×X,Y).

Exercise 1.2. Assume that Y is a sheaf of groupoids (resp., sets). Show that in this case so is
Maps(X,Y).

1.3. The main example. Take Y = BG for an affine algebraic group G.

Definition 1.4. The presheaf of groupoids BunG(X) is defined as Maps(X,BG).

Again, explicitly, for a scheme S, by definition, the groupoid Hom(S,BunG(X)) is the
groupoid of G-bundles on S ×X. By the above, this is a sheaf of groupoids.

Our goal in this talk is to show that when X is projective, the above sheaf of groupoids
satisfies Condition 1 for being an algebraic stack.

1.5. We shall first consider the case when the stack Y is in fact a scheme Y , so we are dealing
with a sheaf of sets, rather than a sheaf of groupoids. Let’s try to figure out when it’s reasonable
to expect that Maps(X,Y ) is schematic.

Suppose Y = A1. Then the set points of Maps(X,Y ) (i.e., Maps(X,Y )(pt)) is the same as
the vector space Γ(X,OX). Thus, we see that it’s reasonable to expect that Maps(X,Y ) is a
scheme when something guarantees that this vector space is finite-dimensional.

A natural condition is that X is proper, which is what we shall assume from now on. Under
this hypothesis, we’ll prove that Maps(X,Y ) is indeed representable by a scheme, at least when
Y is quasi-projective. More generally, we’ll prove the following:

Theorem 1.6. Let S be a base scheme and XS → S a flat and projective morphism. Let
YS → XS a quasi-projective morphism. Consider the ”space” of sections of YS over XS, i.e.,
the functor Sect(XS , YS) on the category of schemes over S:

S′/S 7→ HomXS′ (XS′ , YS′) = HomXS
(XS′ , YS),

where ?S′ :=?×
S
S′. Then the above functor is representable.

Exercise 1.7.
(a) Take S = pt, XS = X and YS = X × Y . Show that in this case Sect(XS , YS) recovers
Maps(X,Y ).
(b) Convince yourself that Sect(XS , YS) is the right way to formulate the relative version of
Maps(X,Y ).
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1.8. Before we prove the theorem, let’s discuss some application for ”actual” algebraic stacks.

As was remarked above, our goal is to show that for an algebraic group G, the diagonal map

BunG(X)→ BunG(X)× BunG(X)

is schematic.

Exercise 1.9. Show that for two groups G′ and G′′, we have BG′ × BG′′ ' B(G ×G′′), and
hence BunG′(X)× BunG′′(X) ' BunG′×G′′(X).

Hence, it would suffice to prove a more general assertion:

Proposition 1.10. Let G1 → G2 be an injective homomorphism of affine algebraic groups.
Then the corresponding morphism of stacks BunG1(X)→ BunG2(X) is schematic.

This proposition can be used to reducing the proof that BunG(X) is an algebraic stack to the
case of GLn (indeed, embed G into GLn, and use the above proposition and Exercise 3.2). The
verification of the second stack axiom for BunGLn

(X), i.e., that it admits a smooth surjective
morphism from a scheme, will be done later in the semester.

1.11. Let us show how Prop 1.10 follows from Theorem 1.6. Note that the morphism

BunG1(X)→ BunG2(X)

comes from the morphism pt /G1 → pt /G2 by taking Maps(X,−). Recall that the morphism
pt /G1 → pt /G2 is schematic, and in fact, quasi-projective.

Hence, to prove Prop 1.10, it suffices to show the following:

Proposition 1.12. Let Y1 → Y2 be a schematic quasi-projective map of presheaves. Then for
a proper X, the corresponding map Maps(X,Y1)→ Maps(X,Y2) of presheaves is schematic.

Here is another application of Prop 1.12, which will be useful in the future:

Exercise 1.13. Let Z be a scheme acted on by G, satisfying the technical assumption of Remark
1.4 from the talk on G-bundles.
(a) Interpret the sheaf of groupoids Maps(X,Z/G) as classifying G-bundles on X, equipped with
a section of the bundle associated with Z.
(b) Use Prop 1.12 to show that the forgetful map Maps(X,Z/G)→ BunG(X) is schematic.

1.14. Proof of Prop 1.12. Fix an S-point of Maps(X,Y2), i.e., a map S × X → Y2. The
cartesian product

Maps(X,Y1) ×
Maps(X,Y2)

S,

is a presheaf of groupoids (but, as we’ll see shortly, these groupoids are automatically sets) on
the category of schemes over S that associates to S′/S the groupoid

HomS×X

(
S′ ×X,Y1 ×

Y2

(S ×X)
)
.

Let us denote by ZS the cartesian product Y1×
Y2

(S×X). By assumption, ZS is a quasi-projective

scheme over S ×X.

Exercise 1.15. Show that Maps(X,Y1) ×
Maps(X,Y2)

S, viewed as a presheaf of groupoids on the

category of schemes over S, identifies with Sect(S ×X,ZS).

Hence, the schematicity assertion follows from Theorem 1.6.
�
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2. Proof of the theorem, the affine case

2.1. We shall first consider the case when YS is affine over XS .

Recall that an affine scheme is the preimage of 0 under a map An → Am for some m and
n, i.e., an affine scheme can be embedded into the affine space An as the locus of zeroes of m
polynomials.

A similar assertion holds in the relative situation. Namely, there exist vector bundles E1, E2

over XS , and a map between their total spaces E1 → E2, such that

YS ' E1 ×
E2

XS ,

where XS → E2 is the 0-section. We have:

Sect(XS , YS) ' Sect(XS ,E1) ×
Sect(XS ,E2)

Sect(XS , XS).

Note that for the 0 vector bundle, i.e., XS itself, Sect(XS , XS) ' S, by definition.

Exercise 2.2. Let Fi, i = 1, 2, 3 be schematic presheaves, and let F1 → F2 ← F3 be morphisms.
Then F1 ×

F2

F3 is also schematic.

Hence, it is enough to show that for a vector bundle E over XS , the functor on the category
of schemes over S, that associates to S′/S the set Γ(XS′ ,E′) is representable, where E′ denotes
the pullback of E to XS′ .

The proof will also show that the map S → Sect(XS ,E) defined by the 0-section is a closed
embedding. This would imply that in the above situation the map

Sect(XS , YS)→ Sect(XS ,E1)

is also a closed embedding.

2.3. Let’s first try to guess the answer intuitively. Suppose first that S = pt. Denote XS

simply by X. Then what we are after is the vector space Γ(X,E). Recall that for a vector space
V , when we regard it as a scheme, it is Spec(Sym(V ∨)), where V ∨ is the dual vector space.

Hence, in the general case, it’s natural to look for Sect(XS ,E) in the form of a ”generalized
vector bundle”, i.e., SpecS(SymOS

(F)), where F is a coherent sheaf on S, but not necessarily a
vector bundle with the following property:

For s ∈ S, the fiber Fs is the dual vector space to Γ(Xs,Es).

2.4. Remark. The fact that we have the dual here is good news: there will not, in general,
exist a coherent sheaf whose fibers are given by Γ(Xs,Es). Indeed, the obvious candidate,
namely p∗(E), where p is the projection XS → S wouldn’t work, as the higher direct images
Rip∗(E) would screw-up the required isomorphism. What we do always have in the above
situation (i.e., XS flat over S) is an isomorphism

Li∗s ◦Rp∗(E) ' RΓ(Xs, Es),

where Li∗s is the left derived functor of taking the fiber at s.
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2.5. Coming back to the business of F, the usual (non-relative) Grothendieck duality tells us
that Fs is H0(Xs,E

∨
s ⊗KXs), where KXs is the dualizing complex of the projective scheme S,

and E∨ is the dual vector bundle.

Well, if you are not comfortable with the Grothendieck duality, you can assume that Xs is
smooth of dimension n (which is the case that interests us), in which case KXs

' Ωn
Xs

[n], and
then the Grothendieck duality becomes the usual Serre dualily

Hn(Xs,E
∨
s ⊗ Ωn

Xs
) ' H0(Xs, Es)∨.

This should be particularly familiar for Xs being a smooth curve!

2.6. All of the above was a motivation for the following statement:

Lemma 2.7. Let XS, ES be as above (i.e., XS → S is flat and proper and E is a vector
bundle over XS). Then there exists a coherent sheaf F on S with the following property: for
any S′ → S,

HomOS′ (F′,OS′) ' Γ(S′, p′∗(E
′)),

where p′ : S′ ×X → S′, and F′ is the pullback of F to S′.

Exercise 2.8.

(a) Show that for F as in the lemma, the functor Sect(XS ,E) is indeed representable by
SpecS(SymOS

(F)).

(b) Show that the map S → Sect(XS ,E) identifies with the 0-section of the generalized vector
bundle SpecS(SymOS

(F)), and so is indeed a closed embedding.

2.9. Proof of the lemma, Strategy 1. All you need to do is apply the relative version of
the Grothendieck duality reasoning we used above. Namely, let KXS/S be the relative dualizing
complex on XS . Then

F ' H0
(
Rp∗(E∨ ⊗KXS/S)

)
.

�

2.10. Proof of the lemma, Strategy 2 (for the lazies). I’ll tell you a secret:

Exercise 2.11. Show that you can make E1 and E2 (chosen for our YS) to be as ample as you
want. In particular, you can assume that for i = 1, 2,

Rjp∗(Ei) = 0 for j > 0.

In this case, the corresponding Fi is just (p∗(Ei))
∨.

�

3. Proof of the theorem, the general case

3.1. To treat the case of a quasi-projective YS/XS we’ll proceed in three steps.

Exercise 3.2. (a) Let F1 → F2 be a schematic map of presheaves of groupoids/sets, and assume
that F2 is representable by a scheme (resp., is an algebraic stack). Then so is F1.

(b) Assume that in the above situation F2 is representable by a scheme Z2. Let Z1 be the scheme
representing F1. Then if α is a closed/open embedding of presheaves, then so is the resulting
map Z1 → Z2.
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Step 1. Let YS and ZS be arbitrary schemes over XS , and let ZS ↪→ YS is an open embedding.
Then

Sect(XS , ZS)→ Sect(XS , YS)

is an open embedding of presheaves.

Step 1 shows that if the assertion of the theorem holds for a certain YS , and ZS ⊂ YS is an
open subscheme, then the assertion holds also for ZS .

Proof. (of Step 1)
Indeed, let S′ be a scheme over S, and α : XS′ → YS be an S′-point of Sect(XS , YS). We

need to show that the following functor on the category of schemes over S′ is representable by
an open subscheme of S′:

The functor in question assigns to S′′/S′ the 1-element set if the composition

XS′′ → XS′ → YS

lands in ZS , and the empty set otherwise.

Let WS′ be the open subscheme of XS′ equal to α−1(ZS). Then the required open subscheme
of S′ is

S′ − (p′ (XS′ −WS′)) .

(Here, and elsewhere, p′ denotes the map XS′ → S′.)

In the above formula, p′ (XS′ −WS′) is closed in S′ because XS′ is proper over S′.
�

Step 2. Let YS and ZS be arbitrary schemes over XS , and let ZS ↪→ YS is a closed embedding.
Then

Sect(XS , ZS)→ Sect(XS , YS)

is a closed embedding of presheaves.

Step 2 shows that if the assertion of the theorem holds for YS , and ZS ⊂ YS is a closed
embedding, then the assertion holds also for ZS .

Proof. Again, let S′ be a scheme over S, and α : XS′ → YS be an S′-point of Sect(XS , YS). We
need to show that the following functor on the category of schemes over S′ is representable by
a closed subscheme of S′:

The functor in question assigns to S′′/S′ the 1-element set if the composition

XS′′ → XS′ → YS

lands in ZS , and the empty set otherwise.

Let WS′ be again the subscheme of ZS equal to α−1(ZS). This is a closed subscheme of XS′ ,
and in particular, WS′ → XS′ is affine.

Exercise 3.3. Show that the functor in question on the category of schemes over S′ is isomor-
phic to Sect(XS′ ,WS′).

Hence, the assertion follows from the affine case considered previously. Note that in this case
the vector bundle E1 to is the 0 vector bundle, i.e., XS , so Sect(XS′ ,WS′) is a closed subscheme
of Sect(XS′ , XS′) ' S′, as required.

�
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Step 3. Let E be a vector bundle over XS and consider YS = P(E). Then the presheaf
Sect(XS , YS) is representable by a scheme.

Clearly, Steps 1-3 combined prove the theorem. Step 3 is the only actual piece of work that
we’ll need to do. Fortunately, the non-trivial part of it has been taken care of by Grothendieck.
Here is the main theorem (see the ”Téchniques de construction” papers referred to on the
seminar website).

Theorem 3.4. Let XS be a scheme projective over S, and let E be an S-flat coherent sheaf on
XS. Consider the functor on the category of schemes over S that associates to S′/S the set of
quotient coherent sheaves of E′ := E|XS′

E′ � F′,

such that F′ is S-flat. Then this functor is representable by a scheme over S, denoted 1 Quot(E).

Let us see how this theorem implies the assertion of Step 3.

Proof. We’ll show that Sect(XS ,P(E)) is isomorphic to an open sub-functor of Quot(E).

An S′-point of Sect(XS ,P(E)) consists of a pair (L′, α′), where L′ is a line bundle on XS′ ,
and α′ is an injective bundle map L′ → E′, i.e., this is an injective map of coherent sheaves,
such that the induced map of fibers at any (field-valued, or, equivalently, scheme-valued) point
of XS′ is still injective. The latter condition is equivalent to the condition that the quotient
F′ := E′/L′ be OXS′ -flat, or, equivalently, a vector bundle.

Thus, an S′-point of Quot(E) corresponds to an S′-point of the presheaf Sect(XS ,P(E)) if
and only if the following two conditions hold:

• F′ is XS′ -flat (and not just S′-flat).
• The rank of F′ (assumed to be a vector bundle by the above) is rk(E)− 1.

We need to show that these conditions correspond to an open subscheme of S′.

Let’s first deal with the first condition. Fix an S′-point of Quot(E). We need to prove that
the following presheaf on the category of S′-schemes is representable by an open subscheme of
S′:

The functor in question assigns to S′′/S′ the 1-element set if F′′ := F′XS′′ is a vector bundle
over XS′′ (=is flat as a coherent sheaf on XS′′), and the empty set otherwise.

Let U ⊂ XS′ be the locus of flatness of F′; this is an open subscheme of XS′ . The sought-for
open subscheme of S′ is easily seen to be given by S′ − p′(XS′ − U).

Let’s now deal with the second condition. We claim that the condition that the rank of a
vector bundle be a specified integer is both an open and a closed condition (i.e., corresponds to
the union of connected components of S). Indeed, this follows from the fact that the rank of a
vector bundle stays constant on a connected component.

�

1Quot(E) is a countable union of projective schemes: once we fix the Hilbert polynomial p of F with respect
to some relative projective embedding of XS , the corresponding subscheme Quot(E)p, which is both open an

closed i.e. a union of connected components, is a projective scheme.


