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1. G-bundles

1.1. Let G be an affine algebraic group over a ground field k. We assume that k is algebraically
closed.

Definition 1.2. A G-bundle P over a scheme X is a sheaf on the category Sch/X (i.e., the
category of schemes over X with a flat topology) which is a torsor for the sheaf of groups
Y/X 7→ Hom(Y,G), in the flat topology.

Let Y/X be a scheme, such that Γ(Y,P) 6= ∅. Choosing a section, we obtain a Cech 1-cocycle
on φ : Y ×

X
Y with values in G.

Definition 1.3. A G-bundle over X is a scheme X̃ over X, acted on by G, such that, locally
in the flat topology, X̃ is isomorphic to the product, i.e., there exists a faithfully flat morphism
Y → X, such that Ỹ := Y ×

X
X̃ ' Y ×G as G-schemes.

Let’s see why the two definitions are equivalent. Having X̃ we define P to be the sheaf
Y/X 7→ HomX(Y, X̃) = HomY (Y, Ỹ ). Going in the opposite direction, let Y → X be a
faithfully flat cover such that Γ(Y,P) 6= ∅. Set Ỹ = Y × G. The Cech cocycle φ introduced
above defines a descent datum for Ỹ with respect to Y → X.

The same construction also establishes the following: given a G-bundle P and a scheme Z
acted on by G, we can form a scheme ZP := G\(X̃ × Z) over X. We call it ”the fiber-bundle
over X associated to P and the G-scheme Z”.

Remark 1.4. Technically speaking, for this construction to work we need to assume something
about Z. E.g., if Z affine is always OK. More generally, we can take Z projective or quasi-
projective endowed with a polarization (i.e., an ample line bundle), which is G-equivariant. This
assumption will always be satisfied in our example, where Z is of the form G/G1 for a subgroup
G1 ⊂ G.

Here is yet one more equivalent definition:

Definition 1.5. A G-bundle over X is a scheme X̃ over X, acted on by G, such that X̃ → X
is faithfully flat, and the morphism G×X̃ → X̃×

X
X̃ (where the first component is the projection

G× X̃ → X̃, and the second component is the action map), is an isomorphism.

It is easy to see that if X̃ satisfies Definition 1.3, then it also satisfies Definition 1.5: indeed,
it’s enough to check the corresponding properties after a faithfully flat base change Y → X,
when the statement is evident b/c we are in the product situation.

Vice versa, having X̃ satisfying Definition 1.5, we can take Y := X̃, and it satisfies Defini-
tion 1.3.
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1.6. Assume now that G is smooth (always true if we are in char. 0). In this case we claim
that every G-torsor is locally trivial in the smooth (and, hence, the étale) topology.

Indeed, the map X̃ → X is smooth (b/c it becomes such after a faithfully flat base change).
So, Y := X̃ → X is the sought-for smooth map, over which Ỹ is isomorphic to the product
Y ×G.

To get the étale triviality, having a smooth map Y → X, locally in Y , we can factor it as
Y → X × An → X with the first arrow étale. The sought-for scheme Y ′, étale over X, is
X ×

X×An
Y , corresponding to any point a ∈ An.

1.7. Let G = GLn. We claim that a GLn-bundle is the same as a rank-n vector bundle.

In one direction, having a GLn-bundle P, we define the vector bundle E := E0
P, where E0 is

the standard n-dimensional representation of GLn, and the subscript P means the associated
bundle construction introduced above.

In the other direction, given a vector bundle E, we define a GLn-torsor that assigns to Y → X
the set IsomY (E0

Y ,EY ), where E0
Y is the trivial rank-n bundle.

1.8. Our goal is to prove the following:

Proposition 1.9. A G-bundle on X is the same as a tensor (=braided monoidal) exact functor
Rep(G)→ VectX , where Rep(G) is the tensor category of finite-dimensional representations of
G, and VectX is the tensor category of vector bundles on X.

Proof. In one direction, having a G-bundle P, we define a functor F : Rep(G) → VectX by
V 7→ VP (again, the associated bundle construction).

In the opposite direction, let F be a tensor functor as above. We are going to produce
a G-scheme X̃ over X. Consider the ring of functions on G, denoted Reg(G), viewed as a
(infinite-dimensional) representation of G with respect to the left-regular action of G. We have
Reg(G) ' lim

−→
Vi, where Vi are finite-dimensional representations. It is easy to see that the

commutative ring structure on Reg(G) endows the quasi-coherent sheaf A := F (Reg(G)) :=
lim
−→

F (Vi) with a commutative multiplication. Set

X̃ := SpecX (A) .

The right-regular action of G on Reg(G) defines a G-action on X̃ as a scheme over X.

Since all F (Vi) are vector bundles, and, in particular, flat, so is A. By the exactness of F ,
we have a short exact sequence of quasi-coherent sheaves on X:

0→ OX → A→ F (Reg(G)/k)→ 0,

where k denotes the trivial representation. Since F (Reg(G)/k) is OX -flat (by the same argument
as above), for any point x ∈ X, we obtain that the map k → Ax is injective. In particular,
Ax 6= 0. Hence, X̃ is faithfully flat over X.

Finally,
A ⊗

OX

A = F (Reg(G)) ⊗
OX

F (Reg(G)) ' F (Reg(G)⊗ Reg(G)).

However, for any V ∈ Rep(G),

V ⊗ Reg(G) ' Reg(G)⊗ V ,
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asG-representations, where V is the vector space underlying the representation V . In particular,
Reg(G)⊗ Reg(G) ' Reg(G)⊗ Reg(G), and, hence,

A ⊗
OX

A ' A⊗ Reg(G),

compatible with the algebra structure. So X̃ ×
X
X̃ ' X̃ ×G. Moreover, the latter isomorphism

respects the actions of G on both sides, and hence, X̃ satisfies Definition 1.5.
�

2. A refresher on stacks

Here we’ll just repeat the main points from Toly’s talk.

2.1. Unless specified otherwise, we’ll consider the category of affine schemes of finite type Affft,
which is the same as the opposite category of finitely generated k-algebras.

We consider presheaves of groupoids on Affft, i.e., assignments

S ∈ Affft 7→ F(S),

where F(S) is a groupoid; for every α : S1 → S2 a functor F(α) : F(S2) → F(S1), for any
α : S1 → S2 and β : S2 → S3 a natural transformation (automatically an isomorphism of
functors, as we’re dealing with groupoids)

F(α, β) : F(α) ◦ F(β)⇒ F(β ◦ α),

such that the natural condition holds for 3-fold compositions. Sometimes we’ll write α∗ instead
of F(α), as we think of it as the pull-back.

Morphisms between presheaves are defined naturally: for two presheaves F1,F2 a morphism
f is a datum for every S ∈ Affft of a functor f(S) : F1(S)→ F2(S), and for every α : S1 → S2

of a natural transformation

f(S2) ◦ F1(α)⇒ F2(α) ◦ f(S1),

compatible with the data of F1(α, β), F2(α, β). Morphisms F1 → F2 form a category. Isomor-
phisms should also be understood naturally:

f : F1 → F2 : g

are mutually inverse iff f ◦ g and g ◦ f are isomorphic to the identity self-functors of of F2 and
F1, respectively.

For three presheaves and morphisms f : F1 → F2 ← F3 : g we form the Cartesian product
F1 ×

F2

F3 naturally: (F1 ×
F2

F3)(S) is the category of triples

{a1 ∈ F1(S), a3 ∈ F3(S), γ : f(a1) ' g(a3) ∈ F3(S)}.

Morphisms between such triples are defined naturally: they must respect the data of γ.

2.2. Note that every presheaf of sets can be viewed as a presheaf of groupoids. For a scheme
X we define the presheaf X to be one corresponding to the presheaf of sets S 7→ Hom(S,X).

Yoneda’s lemma says that for an affine scheme S, the category Hom(S,F) is naturally equiv-
alent to F(S).

We say that F is schematic if it is equivalent to a presheaf of the form X where X is a
scheme.



4 DENNIS GAITSGORY

2.3. We say that a map of presheaves f : F′ → F is schematic if ”its fibers are schemes”. We
formalize this idea as follows: we require that for every S ∈ Affft and a ∈ F(S), thought of as
a map of presheaves S → F, the Cartesian product

S ×
F

F′

is a schematic presheaf. Again, by Yoneda, the map of presheaves

S ×
F

F′ → S

corresponds to a map of schemes S′ → S, where S′ is such that S′ ' S ×
F

F′.

For a schematic map of presheaves it makes sense to require that it be an open embed-
ding/closed embedding/affine/projective/flat/smooth. etc. In fact, any property of morphisms
stable with respect to the base make sense. By definition, this means that the corresponding
property holds for the map of schemes S′ → S above for any S with a map to F.

2.4. Let S be an affine scheme, F a presheaf, and a1, a2 be two objects of F(S). Consider the
presheaf

IsomS(a1, a2) := S ×
F×F

F.

By definition, for S′ ∈ Affft, the category IsomS(a1, a2)(S′) is discrete (i.e., equivalent to a
set) and consists of a data α : S′ → S and an isomorphism α∗(a1) ' α∗(a2). (This explains the
name ”Isom”.)

2.5. We say that a presheaf F is a sheaf if the following two conditions are satisfied.

First, we require that for every S, a1, a2 ∈ F(S), the presheaf of sets on Affft /S given by
IsomS(a1, a2) be a sheaf in the flat topology.

Secondly, we require that for a faithfully flat map α : S′ → S ∈ Affft, we have descent for
F(S′) with respect to α. To formulate what this means think of the example F(S) = QCoh(S),
and formulate the assertion in abstract terms.

2.6. We say that a sheaf of groupoids is an algebraic stack if the following two additional
conditions hold.

Condition 1 says that the diagonal map F → F × F be schematic. This is tautologically
equivalent to the following: for any S ∈ Affft and a1, a2 ∈ F(S), the presheaf IsomS(a1, a2)
(which is a sheaf by the assumption that F is a sheaf of groupoids) must be schematic.

Condition 1 can be reformulated (less tautologically) as follows: for any S ∈ Affft and
a ∈ F(S) the corresponding morphism S → F is schematic. By definitoon, this is equivalent to
requiring that for S1, S2 ∈ Affft and ai ∈ F(Si), the Cartesian product

S1 ×
F
S2

be schematic.

The equivalence of the two versions of Condition 1 is established as follows. For F satisfying
the first version, and S1, S2, ai ∈ F(Si) we have:

S1 ×
F
S2 ' F ×

F×F
(S1 × S2).

Vice versa, for F satisfying the second version, S ∈ Affft and a1, a2 ∈ F(S), we have

IsomS(a1, a2) ' S ×
S×S

(S ×
F
S).
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A non-example. Show that the sheaf F(S) := Coh(S) doesn’t satisfy the above condition.

Condition 2 for being an algebraic stack is: there exists an affine scheme X endowed with a
smooth and surjective map X → F.

Note that by the first condition, any map X → F is schematic, so the notion of smoothness
and surjectivity makes sense.

Our main example of an algebraic stack is BG, discussed below.

3. The stack BG

Here again, we’ll repeat some points from Toly’s talk.

3.1. Let G be an affine (smooth) algebraic group as above. We define the presheaf BG as
follows: for a (affine) scheme X, we set BG(X) to be the groupoid of G-bundles on X. The
fact that this presheaf is a sheaf follows from the usual descent theory.

3.2. Let’s check the first condition of algebraicity. For a scheme X and two maps to BG, i.e.,
for two principal G-bundles P1 and P2, we have to show that the sheaf of sets IsomX(P1,P2)
is representable by a scheme.

Exercise 3.3. Show that IsomX(P1,P2) is represented by the scheme GP1×P2 . (Here we re-
gard G as a scheme acted on by the group G × G, and we are applying the associated bundle
construction with respect to the G×G-torsor P1 × P2).

Thus, the above exercise implies that Condition 1 for being an algebraic stack holds.

3.4. Let’s check the second condition. We claim that the tautological map pt → BG corre-
sponding to the trivial G-bundle on pt is smooth and surjective. Let X be a (affine) scheme
mapping to BG, that is we have a G-bundle P over X. We need to compute the Cartesian
product X ×

BG
pt, which is a scheme by Condition 1, and show that its projection to X is smooth.

Exercise 3.5. Deduce from Exercise 3.3 that X ×
BG

pt identifies with X̃–the total space of the

G-bundle P.

3.6. Let now Z be a scheme acted on by G. We define the stack quotient G\Z as follows:
Hom(S,G\Z) is the groupoid of pairs (X̃, α), where X̃ is a G-bundle on X, and α is a G-
equivariant map X̃ → Z. (Note that for Z = pt we recover G\ pt ' BG.)

It is easy the assignment S 7→ Hom(S,G\Z) is a sheaf of groupoids.

Exercise 3.7. Check Condition 1 for being an algebraic stack.

To check Condition 2, note that we have the tautological map Z → G\Z, corresponding to
the trivial G-bundle on Z and the action map Z̃ ' G × Z → Z. We claim that this map is
smooth and surjective. Indeed, fix an X-point (X̃, α : X̃ → Z) of G\Z.

Exercise 3.8. Show that X ×
G\Z

Z is canonically isomorphic to X̃.

3.9. Assume for a moment that the action of G on Z is free. By definition, this means that
there exists a scheme Y with a G-bundle P such that Ỹ ' Z, as schemes acted on by G.

Exercise 3.10. Show that in the above case, the stack G\Z is representable by the scheme Y .

So, in this case it’s OK to write Y ' G\Z, i.e., the two ways to understand the quotient (as
a scheme and as a stack), coincide.
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3.11. Assume that Z satisfies the technical assumption from the Remark 1.4. Consider the
canonical map of stacks G\Z → BG. We claim that this morphism is schematic.

Indeed, fix an X-point P of BG, and consider the Cartesian product X ×
BG

G\Z.

Exercise 3.12. Show that X ×
BG

G\Z ' ZP, the associated bundle.

3.13. Let us generalize the above set-up slightly. Let Z1 → Z2 be a map of G-schemes. We
obtain the corresponding map of stacks G\Z1 → G\Z2. In particular, for Z1 = Z and Z2 = pt
we recover the above map G\Z → BG.

Let us make the following technical assumption: Z1 is polarized quasi-projective over Z2 in
a G-equivariant way. This means that there exists a G-equivariant line bundle on Z1, which is
ample relative to Z2. This assumption will be satisfied in all the example of interest, since our
schemes will be ”explicitly” quasi-projective.

We claim that in the above case, the map G\Z1 → G\Z2 is schematic, and in fact quasi-
projective. Indeed, fix an X-point (X̃, X̃ → Z2) of G\Z2, and consider the Cartesian product:

X ×
G\Z2

G\Z1.

Exercise 3.14.
(a) Show that the action of G on X̃ ×

Z2

Z1 is free. More precisely, show that one can descend

X̃ ×
Z2

Z1, viewed as a scheme over X̃, to a scheme over X.

(b) Show that the resulting scheme G\(X̃ ×
Z2

Z1) identifies with X ×
G\Z2

G\Z1.

3.15. Let G1 → G2 be a homomorphism of algebraic groups. In this case we have a natural
morphism of algebraic stacks BG1 → BG2.

Assume now that G1 → G2 is injective. We claim that in this case, the morphism BG1 →
BG2 is schematic (and quasi-projective).

Indeed, fix an X-point of BG2, i.e., a G2-bundle P2 on X. We ask: what is the Cartesian
product X ×

BG2

BG1?

For a scheme X ′ to map it to X ×
BG2

BG1 means to fix a map X ′ → X and choose a reduction

of the G2-bundle P′2 := P2|X′ to the subgroup G1.

Exercise 3.16. Identify X ×
BG2

BG1 with (G2/G1)P2 (again, the associated bundle construc-

tion), where we view the quotient G2/G1 as a scheme acted on by G2.

Here is another way to view the map BG1 → BG2:

Exercise 3.17. Identify the stack BG1 with G2\(G2/G1), and the map BG1 → BG2 with the
map G2\(G2/G1)→ BG2. Deduce Exercise 3.16 from Exercise 3.12.


