
QUANTIZATION VIA DIFFERENTIAL OPERATORS ON STACKS

SAM RASKIN

1. Differential operators on stacks

1.1. We will define a D-module of differential operators on a smooth stack and
construct a symbol map when the stack is good, but first we need to give definition
of a D-module on a stack. D-modules are local for the smooth topology, so one’s
naive guess for the definition of a D-module on a smooth Artin stack is correct. That

is, a (left or right) D-module M on X is the assignment for each U
πU−→X in Xsm

of a (left or right) D-module1 MS on S and for each (f, α) a morphism in Xsm an

isomorphism2 β : f ∗MU ′
'−→MU which satisfy the cocycle condition that whenever

we have a composition of morphisms U
f−→ U ′

f ′−→ U ′′ that β ◦ f ∗(β′) = β′′. Let
us denote by M (X ) the category of right D-modules on X and by M `(X ) the
category of left D-modules. For a D-module M on X , we denote by Γ(X ,M) the
space of global sections of M considered as a quasi-coherent sheaf, where the functor
Γ is defined for quasi-coherent sheaves by forming Hom(OX ,M), or equivalently,
taking compatible families of sections.

Now we will define the D-module of differential operators DX on X . Let f :
U −→ X be a smooth map. Then let I be the left ideal of DU generated by the
image of TU/X −→ U . Then define the pull-back (DX )U of DX to U to be DU/I.
This is a D-module on U . One can immediately check that this defines a D-module
on X for us. This is the D-module of differential operators and is denoted DX or D
if there’s no confusion. It satisfies the property that HomM `(DX ,M) = Γ(X ,M)
for any left D-module M .

Note that DX is not a sheaf of rings (and there may be no sheaf of rings on Xsm

such that D-modules are modules over it). However, the global sections of DX do
form a ring because:

HomM `(DX ,DX ) = Γ(X ,DX )

Date: October 8, 2009.
1Of course, the notation is misleading since MU also depends on πU . We may also write π∗UM

in its place.
2Here f∗ denotes the O-module pull-back equipped with its natural structure of D-module given

by push-forward of vector fields.
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It will be convenient for us to consider Γ(X ,DX ) as an associative algebra via the
algebra structure opposite to the one above, and we will do this throughout the
following, denoting3 this algebra by DX .

DX is filtered by the order of a differential operator and the induced filtration on
DX is compatible with the algebra structure, making DX an almost commutative
algebra, i.e., a filtered algebra with commutative quotient, so that GrDX is a graded
Poisson algebra.

We denote4 by PX the algebra Γ(X , Sym T sh
X ). This is a graded Poisson algebra,

as one can easily check by chasing the definitions.

1.2. Of course, none of the above constructions involved any kind of goodness.
However, the construction of a symbol map σ : GrDX ↪→ PX does. We claim that

goodness implies an isomorphism5 Sym T sh
X

'−→ Gr DX , so that the symbol map σ
is defined to be the composition:

Gr(Γ(X ,DX ) ↪→ Γ(Gr DX )
'−→ Γ(Sym T sh

X )

where the first morphism comes from left exactness of Γ. Then σ is a morphism of
algebras commuting with Poisson brackets.

Indeed for f : U −→ X smooth, there is a (dual) relative de Rham complex of
DU :

C
•

= . . . −→ Λ2TU/X ⊗DU −→ TU/X ⊗DU −→ DU −→ 0 −→ . . .

Observe that H0(C
•
) = DU/DUTU/X = f ∗DX . Then C

•
has an obvious filtra-

tion F for which the associated graded is Sym(TU/X −→ TU), namely, this filtra-

tion has F jC−i = ΛiTU/X ⊗ D≤j−iU . Then goodness gives an quasi-isomorphism
Sym(TU/X −→ TU) −→ Sym f ∗T sh

X . The spectral sequence for the complex C
•

with its filtration above then tells us that C
•

is concentrated in degree 0, with
Gr(f ∗DX ) = Gr(H0(C

•
)) = Sym f ∗T sh

X . This gives us the desired result.

1.3. Let us conclude this section by translating this into the setting of twisted
D-modules. Let L be a line bundle on X . For each λ ∈ C, the notion of an
L ⊗λ-twisted D-module on X is clear: it is a compatible family of L ⊗λ-twisted D-
modules on elements of Xsm. There is a canonical L ⊗λ-twisted D-module DX ,L⊗λ

which corepresents global sections and whose global sections form an algebra. For
a good stack, there is a symbol map σL⊗λ : GrDX ,L⊗λ ↪→ PX defined as above.
Note however that unlike the scheme case, for stacks GrDX ,L⊗λ does depend on the
choice L and λ. For example, it is shown in [BD] that for X = BunG(X) with X a

3Our notation differs slightly from that of [BD]. Namely, they denote by DX the sheaf of
algebras EndM `(DX ) with the opposite algebra structure, instead of its global sections. However,
we do not need use this sheaf of algebras, only its global sections, so we deal only with its global
sections.

4A similar remark to footnote 3 holds.
5If X is not good, then this is a mere surjection.
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projective curve and L = ωBunG = det LΩ1
BunG

, then GrDX ,L⊗λ has global sections
if and only if λ = 1/2.

2. Quantization schema

2.1. Next, we will describe a local to global principal for “quantization” of the
Poisson algebra of symbols PX for a smooth quotient stack X and some variations
on this theme. Here by quantization we mean to produce a filtered associative
algebra whose associated graded is a given graded Poisson algebra.

2.2. A Harish-Chandra pair (g, K) is the following data: g is a Lie algebra, K is
an algebraic group (by which we mean K is of finite type), there is an action of K
on g and there is an embedding k ↪→ g of Lie algebras which commutes with the
K-action (where K acts on k via the adjoint action) and whose induced k-action on
g agrees with the adjoint action. A Harish-Chandra module for (g, K) is a vector
space M given a g-module structure and a K-module such that the two induced
k-module structures agree and so that the action map g⊗M −→M is a morphism
of K-modules.

Suppose we have a Harish-Chandra pair (g, K) acting on a smooth scheme X, that
is, there is an action of K on X and a K-equivariant Lie algebra map g −→ Γ(X,TX)
such that the map k −→ Γ(X,TX) is that induced by the action of K. Let X be
the quotient X/K with projection π : X/K −→ X . We suppose throughout this
section that X is good.

Remark 2.1. In this setting, D-modules on X are equivalent to K-equivariant D
modules on X. There is a useful procedure for moving between (g, K)-modules and
D-modules on X called localization. First, observe that for a D-module M on X ,
Γ(X,M) is naturally a (g, K)-module. On the other hand, given a (g, K)-module
N , we can produce a K-equivariant D-module on X, i.e., a D-module on X , by
forming ∆(N) := DX ⊗U(g)N . The functor ∆ is left adjoint to the functor Γ(X,−).

Exercise 2.2. Let V ac be the Harish-Chandra “vacuum module” Ug⊗Uk C where C
is a module over k via the trivial action, so that V ac corepresents M 7→MK. Show
that ∆(V ac) = DX .

2.3. First, let us describe the local players in the quantization schema. So we
define P(g,K) to be Sym(g/k)K and D(g,K) to be (Ug/Ug · k)K , which are exactly the
“Hamiltonian reductions” of Sym· g and Ug along K, so the former is a Poisson
algebra and the later an almost commutative algebra. Note that there is a local
symbol map σ(g,K) : GrD(g,K) ↪→ P(g,K). One can check directly that D(g,K) is the
algebra opposite to End(g,K)(V ac).

The global players are of course PX and DX from Section 1. By Exercise 2.2
and because End(g,K)(V ac)

op = D(g,K), there is an algebra morphism h : D(g,K) −→
DX . There is also a morphism hcl : P(g,K) −→ PX as follows. One can directly
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check that the pull-back of Sym T sh
X to X is (Sym(TX)/ Sym(TX) · k) and that

Γ(X , Sym(T sh
X ) = Γ(Sym(TX)/ Sym(TX) · k)K . But then the definition of hcl is

obvious: it is induced by the realization of g as vector fields on X. Observe that
this strategy for defining hcl can be easily modified to give an (equivalent) definition
of h, so one can see that the following diagram commutes:

GrD(g,K)
h //

σ

��

GrDX

σ

��
P(g,K)

h // PX

The local quantization condition is that the local symbol map σ(g,K) is an isomor-
phism. The global quantization condition is that h above is strictly6 compatible with
filtrations. In this case, it is clear that the image of h is a quantization of the image
of hcl. Note that if the local and global quantization conditions are satisfied and hcl

is a surjection, then h is a surjection and DX is a quantization of PX .

2.4. Described above is really a toy model of the quantization schema used in [BD].
They apply the above setting when the group K is affine but not of finite type7 and
in the setting of twisted D-modules. We will briefly describe how things look in
these settings.

First, let us continue to assume that g is a finite dimensional Lie algebra and
K is finite type. Suppose g̃ is an extension of g by C which is split over k. We
denote by 1 the element 1 ∈ C ⊂ g̃. Fix a non-zero complex number λ and form
the twisted universal enveloping algebra U ′(g) = U ′λ(g) at level λ by taking the
universal enveloping algebra of g̃ and modding out by the relation 1− λ. Modules
over this algebra are equivalent to modules over g̃ on which 1 acts as multiplication
by λ. U ′(g) is a filtered associative algebra whose associated graded is the Poisson
algebra Sym(g) by the PBW theorem. We let D′(g,K) be (U ′(g)/U ′(fg) · k)K , which
is equipped with a symbol map σg,K : GrD(g,K) ↪→ P(g,K). Suppose now that L
is a line bundle on X equivariant with respect to the (g̃, K) action on X (where
g̃ acts via g̃ −→ g) and such that 1 acts as multiplication by 1. Then we get a
commutative diagram:

GrD′(g,K)
h //

σ

��

GrDX ,L λ

σ

��
P(g,K)

h // PX

6A morphism f : A −→ B of abelian groups with filtrations F and G respectively is strictly
compatible with filtrations if f(F iA) = GiB ∩ f(A).

7A standard fact from algebraic group theory says that K is then a projective limit of affine
algebraic groups. This is routine to check just by translating it into a statement about Hopf
algebras.
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One can formulate in the same manner as above the twisted analogues of the local
and global quantizations conditions.

2.5. Next, let us formulate this quantization scheme for K not necessarily of finite
type. First, one has to take some care in ensuring that X = X/K is an Artin
stack. To do this, we suppose the following: X admits a K-invariant Zariski open
cover {Ui} such that for all i, there is a normal subgroup Ki of K such that K/Ki

is finite type and the fpqc stack quotient Ui/Ki is a smooth scheme. In this case,
X/K = ∪(K/Ki) \ (Ui/Ki), and each term of this union is an open substack of X
which is an Artin stack.

In this infinite-dimensional setting, all of our players obtain topologies. Let us
describe them. Because k is a projective limits of its finite dimensional Lie algebra
quotients, it is a complete topological Lie algebras. To describe the structure of g,
we need the following notion:

Definition 2.3. A Tate vector space is a topological vector space which contains
an open subspace which is a projective limit of discrete, finite-dimensional vector
spaces.

The canonical example is C((t)) with C[[t]] as the the choice of subspace in the
definition. The notion of a Tate vector space is self-dual, so that Tate vector spaces
are the smallest category of topological vector spaces closed under duality and con-
taining the discrete vector spaces. There are many fine expositions of this notion.

Then in our infinite dimensional setting, g is a Lie algebra in the category of Tate
vector spaces. For example, this is true of g0((t)), where g0 is a finite dimensional
Lie algebra. By a Harish-Chandra pair (g, K) in this setting we mean that we have
k ↪→ g with K acting on g preserving k and such that the induced action on k is
the adjoint action, and so that for each open K-invariant subspace V ⊂ g, the
action of K on g/V is “algebraic,” i.e., it is a union of representations each of which
factors through some (possibly varying) finite-type quotient K. For example, this
condition holds with the larger algebra being the loop algebra g0((t)) of some finite
dimensional algebra g0 and K = G0(C[[t]]).

The algebras Sym· g and Ug are topologized by taking the (left) ideals generated
by open subalgebras of g as a neighborhood basis around 0, so we can form the
completions Symg and Ug. As above, we take K invariants of these algebras modded
out by the closure of the (left) ideal generated by k in these completions to get
algebras Pg,K and Dg,K .

The sheaf TX is a projective limit of vector bundles such that its bracket is
continuous, where we define for U ⊂ X open affine a neighborhood basis of 0 in
TX(U) to be the annihilator of a finitely generated subalgebra of Γ(U,O).8 Then
Sym TX obtains a topology and we denote its completion by SymTX . This is a sheaf
of complete Poisson algebras. Then we take PX is given by taking global sections

8This is the topology inherited by considering TX as endomorphisms.
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of the K-invariants of the quotient of SymTX by the closure of the ideal generated
by k. Similarly, DX is a sheaf of complete associative algebras where a basis around
0 is given by the annihilators of finite type subalgebras of the sheaf of functions.
And again, Γ(X , DX ) = Γ(X ,DX ) is the K-invariants of the the quotient by the
closure of the left ideal generated by k in DS.

With these definitions, we again have symbol maps and local to global maps, and
there is no difficulty in discussing the local and global quantization conditions.
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