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1. Affine Springer fibers

The goal of the talk is to introduce affine Springer fibers and explain
the relation to the fibers of the Hitchin map.

1.1. Finite dimensional Springer map and fibers. We start by
recalling the usual Springer fibers, see [CG] and references therein.

Let G be a reductive algebraic group over C, B = TU ⊂ G be a Borel
subgroup, g = Lie(G). The flag variety B = G/B can be thought of as
the variety of Borel subalgebras; define

Ñ = {(b, x) | b ∈ B, x ∈ rad(b)} ⊂ g̃ = {(b, x) |b ∈ B, x ∈ b}.

The Springer map π′ : Ñ → g and Grothendieck-Springer map π :
g̃ → g are defined by (b, x) 7→ x. The fibers of π′ are called Springer
fibers, and fibers of π are Grothendieck-Springer fibers or generalized
Springer fibers (notice that a Springer fiber is not a generalized Springer
fiber, though the reduced variety of a Springer fiber is the reduced
variety of a generalized Springer fiber).

One also has parabolic versions for a partial flag variety P = G/P
where P = LUP is a parabolic subgroup with a Levi factor L and
radical UP :

ÑP = {(p, x) |p ∈ P , x ∈ rad(p)} ⊂ g̃P = {(p, x) |p ∈ B, x ∈ p}
and maps π′P , πP .

The map π factors through g̃ → g ×t/W t which is an isomorphism
on the regular locus. In particular, the action of the centralizer of a
regular element x acts trivially on π−1(x). This also applies to the map
πP factoring through πP : g̃P → g×t/W t/WL.

1.2. Orbital integrals and point counting. Notice that

π−1
P (x) = {p ∈ P | x ∈ p} = {g | Adg−1(x) ∈ p}/P.

Thus the fibers of πP appear in the following important construction.
There is a map Ind from class functions on l = Lie(L) to class functions
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on g (say, work over a finite field and consider C valued functions on the
set of Fq-points): pull-back under the projection p → l then average
with respect to the adjoint action of G/P . (This is a Lie algebra
analogue of the parabolic induction of characters). Values of Ind(f)
are integrals over the fibers of πP ; in particular, when f = 1 is the
constant function, Ind(f)(x) = #(π−1

P (x))(Fq).
In the theory of p-adic groups one is interested in conjugation aver-

aging of compactly supported functions or in their orbital integrals:

Ox(f) =
∫

G/ZG(x)

f(gxg−1)dg,

where (say) G = G(Fq((t))). The integral makes sense provided that f
is locally constant with compact support and x is regular semisimple.
E.g. when f is the δ-function of G(Fq[[t]]) ⊂ G = G(Fq((t))) then
Ox(g) is the measure of {g | gxg−1 ∈ G(Fq[[t]])}/ZG(x). A similar
expression makes sense in the Lie algebra. For ξ ∈ g(Fq((t))) the
variety Grξ = {g | Adg−1(x) ∈ g(Fq[[t]])}/G(Fq((t))) appearing in that
expression is the affine analogue of a parabolic Springer fiber. See e.g.
[K, §9] for elementary examples of computation of such an integral.

1.3. Affine Springer map. Set K = C((t)) ⊃ O = C[[t]]. As was
discussed earlier, there exists a canonically defined group ind-scheme
GK such that GK(C) = G(C((t))). The analogue of the (standard)
Borel subgroup B ⊂ G is the (standard) Iwahori subgroup I ⊂ GK .
Recall that I ⊂ GO is the preimage of B under the reduction map
GO → G. The group GO belongs to the class of subgroups (called
parahoric subgroups) analogous to parabolic subgroups in the finite
dimensional group G. We will only consider parahoric subgroups con-
jugate to GO (though a part of the theory goes through in the more
general case).

Recall that GO, I are group schemes of infinite type. We have the
affine flag variety Fl = GK/I and affine Grassmannian Gr = GK/GO.
These are ind-proper ind-schemes of ind-finite type (direct limits of a
system of varieties with connecting maps being closed embeddings).

The full flag variety and corresponding affine Springer fibers are re-
lated to a version of the Hitchin map where BunG is replaced by the
moduli stack of G-bundles with reduction to a Borel at a given point
(or at a finite number of points), it will not be mentioned any more in
the talk.

We set g̃K = {(g, ξ) | g ∈ Gr, ξ ∈ Adg(gO) 3 ξ}, this is an ind-scheme
of ind infinite type. We have the map πaff : g̃K → g, (g, ξ) 7→ ξ. For
ξ ∈ gK the fiber (πaff )−1(ξ) will be denoted Grξ and called an affine
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Springer fibers (a proper name would be parabolic affine Grothendieck-
Springer fibers).

It is clear that the centalizer of ξ, ZGK (ξ) acts on Grξ.

Remark 1.1. For G = GL(n) the space Gr parameterizes lattices in
Kn (i.e. O submodules of rank n), hence an affine Springer fiber Grξ

is the moduli space of lattice in Kn which are preserved by ξ.

Scheme-theoretically affine Springer fibers are schemes of infinite
type, however, we have

Lemma 1.2. [KL] If ξ is regular semi-simple then the reduced vari-
ety Grξ is a countable union of finite dimensional components. More
precisely, it carries a free action of Zr ⊂ ZGK (ξ) (0 ≤ r ≤ rank(G))
where the quotient is finite dimensional projective variety.

This is proved by methods borrowed from finite dimensional Springer
theory.

We will ONLY consider regular semi-simple ξ.

1.4. Examples for G = SL(2). Let us describe all finite dimensional
affine Springer fibers for G = SL(2) → G′ = PGL(2). Recall that
Gr(G′) parametrizes lattices, i.e. O submodules of rank 2 in the 2-
dimensional vector space K ⊕ K, taken modulo dilations. Gr(G) ⊂
Gr(G′) is the component parametrizing lattices having even relative
dimension with the standard lattice O ⊕O.

Fix ξ ∈ sl(2). Assume first that val(det(ξ)) = 2k + 1, k ≥ 0. Set
ξ0 = t−kξ.

Exercise: There exists a unique subgroup Iξ conjugate to
I = {(aij) ∈ SL(2, O) | a12 ∈ tO} (such a subgroup is called an
Iwahori subgroup) such that Lie(Iξ) 3 ξ0.

The variety (Grξ)red is the closure of the (unique) k-dimensional
I-orbit. In particular, for k = 0 it’s a point and for k = 1 it is P1.

[Hint: look at the field K ′ = K[ξ], identify it with the vector space
K ⊕K, the group Iξ0 is the stabilizer of the collection of its fractional
ideals.]

Now assume that val(det(ξ)) = 2k, so ξ is diagonalizable.
Exercise: Now there are countably many Iwahori subgroups Iξ,n,

n ∈ Z whose Lie algebra contains x0 = t−kξ; they are transitively
permuted under the conjugation action of ZG′(ξ) (also by the subgroup
Z ⊂ ZGL(2)(ξ) generated by a matrix with eigenvalues t, t−1).

We have (Grξ)red = ∪Zi, i ∈ Z, where Zi is the closure of the
(unique) k-dimensional orbit of Ii. The components Zi are permuted
by the above copy of Z.
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In particular, for k = 0 we get a discrete set of points and for k = 1 an
infinite union of projective lines, with the North Pole of P1

i coinciding
with the South Pole of P1

i+1.

We do not give a full description of the actual scheme structure of
Grξ, see the end of subsection 2.1.4 for partial information.

1.5. Affine Springer fibers and Higgs fields on the disc. We
have moduli interpretations. Let D = SpecC[[t]] be the formal disc and
◦
D = Spec(C((t))) be the punctured formal disc. Then Gr = {(E, γ)}
where E is a G-bundle on D and γ is its trivialization on

◦
D.

KEY POINT: the bundle g̃K parametrizes Higgs fields on D with a

trivialization of the bundle on
◦
D.

The affine Springer fiber Grξ parametrizes pairs (E, γ) as before such
that γ−1(ξ) extends to a section of gE on the whole of D. (Here by
γ−1(ξ) we mean the section of gE| ◦

D
obtained from ξ via the isomor-

phism induced by γ).
In other words, Grξ is the moduli space of Higgs bundles (E, f) on

D together with an identification of Higgs bundles (E, f)| ◦
D

∼= (E0, ξ);

here E0 is the trivial G-bundle on
◦
D and ξ is thought of as an element

of g⊗ C((t)) = Γ(
◦
D, gE0).

1.6. Twisting by a line bundle. Recall that for a line bundle L on
X one considers Higgs bundles twisted by L, i.e. pairs (E , φ) where
E ∈ BunG and φ ∈ Γ(X, gE ⊗ L). Given a point x ∈ X we have
the affine Grassmannian ”at x” Grx = G(Kx)/G(Ox) where Ox is the
completed local ring of x and Kx is its fraction field. We have the
moduli interpretation Grx = {(E , γ)} where E is a G-bundle on Dx =

Spec(Ox) and γ is its trivialization on
◦
Dx = Spec(Kx). One can also

define a twisted version of the affine Springer map πaffL : g̃x,L → gx,L

where gx,L = g⊗C Γ(
◦
Dx,L) and g̃x,L parametrizes the data of (E , γ) ∈

Grx and ξ ∈ gx,L such that the isomorphism Γ(
◦
Dx,L)⊗Cg ∼= Γ(

◦
Dx,L⊗

gE) induced by γ sends ξ to an element in Γ(Dx,L⊗gE) ⊂ Γ(
◦
Dx,L⊗gE).

For ξ ∈ Γ(
◦
Dx,L⊗g) we have the twisted version of the affine Springer

fiber Grξx,L = (πaffx,L )−1(ξ).
A choice of a coordinate at x and a trivialization of L|Dx yields an

isomorphism between the twisted affine Springer fiber and an affine
Springer fiber introduced above.
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Below we work in the twisted setting, though we will omit the sub-
scripts x, L when no confusion is likely.

2. Product formula for Hitchin fibers

Recall the notation c = t/W ⊃ ◦c = treg/W . The Hitchin base for a
scheme Y parametrizes sections of the fiber bundle cL over Y where L
is a fixed line bundle over Y and cL is the associated bundle over Y with
fiber c. For a point σ in the Hitchin base Higgsσ = Higgs(Y )σ denotes
the space of all Higgs bundles (E , ξ | V ∈ Bunn(Y ), ξ ∈ Γ(Y, gE ⊗ L))
on Y compatible with σ.

The main objective in the rest of the notes is to present a ”product
formula” connecting (for Y = X being a curve) the global Hitchin fiber
to the local affine Springer fibers. We first treat separately the group
GL(n).

2.1. The case of GL(n).

2.1.1. Spectral covers and compactified Picard varieties. For

G = GL(n) we have σ ∈
n⊕
i=1

Γ(Y,L⊗i) and Higgsσ parametrizes pairs

(E, ξ) as above such that the characteristic polynomial of ξ equals σ.
For such a σ one defines the spectral cover Y ′σ ⊂ Tot(L), where

Tot(L) is the total space of L; it is the preimage of the zero section
under the map Tot(L)→ Tot(L⊗n), s 7→ σ(s). The projection Y ′σ → Yσ
is finite flat of degree n.

Lemma 2.1. Let Y be an integral scheme and σ : Y → c be a point

in the Hitchin base. Assume that the preimage of the open locus
◦
cL

is non-empty. Let
◦
Y ⊂ Y denote this preimage. Then Higgs(Y )σ

is isomorphic to the space of coherent sheaves M on Y ′σ, whose direct

image to Y is a rank n vector bundle, and whose restriction to
◦
Y ′σ :=

Y ′σ ×Y
◦
Y is a line bundle.

Proof A quasicoherent sheaf F on Y together with a fixed map
ξ : F → F ⊗ L is the same as a quasicoherent sheaf F̃ on Tot(L). If
F = E is a vector bundle of rank n then the characteristic polynomial σ
of ξ is defined, and by Cayley-Hamilton Theorem Ẽ is in fact supported
on the closed subscheme Y ′σ ⊂ Tot(L). It is clear that Ẽ | ◦

Y ′σ
is a line

bundle (etale locally on Y this reduces to the situation when Y ′σ is a
disjoint union of n copies of Y when the statement is obvious).

Conversely, given a sheaf Ẽ on Y ′σ we let E be its direct image to Y ,
then E comes equipped with ξ : E → E ⊗ L.
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It remains to check that the two constructions are inverse bijections.
The only non-tautological point is that for a sheaf Ẽ on Y ′σ as above the
characteristic polynomial of the corresponding (E , ξ) equals σ. This is

clear over
◦
Y , since Y is integral it follows that this is also true over Y .

�
Remark. It is easy to see that for Y as in the Lemma the condition

that the image of σ maps generically to
◦
cL is equivalent to Y ′σ being

reduced (equivalently, generically reduced).

Corollary 2.2. Assume that Y is either a smooth curve or a formal
disc. Then for σ as above, Higgsσ is identified with the moduli space
of torsion free generic rank 1 sheaves on Y ′σ.

Lemma 2.3. In the situation of the previous Lemma, the Higgs field
is regular at every fiber iff the torsion free sheaf is locally free of rank
one (i.e. iff it is a line bundle).

Proof. By Cayley-Hamilton Theorem an n × n matrix A with a
characteristic polynomial PA defines a structure of C[u]/(PA) a module
on the n-dimensional space. This module is free iff the matrix is regular.
This implies the claim. �

Remark 2.4. The moduli space of torsion free generic rank 1 sheaves on
a proper curve X appearing in Corollary 2.2 is called the compactified
Picard variety of X. It contains Pic(X) as an open subscheme (as seen
e.g. from Lemma 2.3).

2.1.2. The structure of Picard variety of a singular curve. To clarify
the picture we recall some basic information about the Picard variety
of a singular curve. This is not needed for the product formula.

The group Pic(X ′σ) fits into the exact sequence

0→ Γ((O′Nm)×/(O′)×)→ Pic(X ′σ)→ Pic(Nm(X ′σ))→ 0;

here Nm denotes normalization, O′Nm = O(D ×X Nm(X ′σ)) ⊂ K ′x.
Clearly, Pic(Nm(X ′σ)) is an extension of Zr (where r is the number
of components of Nm(X ′σ)) by an abelian variety (more precisely,
a quotient of such a variety by the trivial action of Gm), while
Γ((O′Nm)×/(O′)×) is an affine commutative group scheme, a product
of several copies of the multiplicative and the additive groups.

The embedding (O′Nm)×/(O′)× ↪→ Pic(X ′σ) extends canonically to a
homomorphism (K ′)×/(O′)× → Pic(X ′σ).

2.1.3. Affine Springer fibers for G = GL(n). We now return to the
local situation.
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For a regular semisimple ξ ∈ gl(n)x,L its conjugacy class is deter-
mined by the characteristic polynomial σ = σ(ξ). We fix a particular
representative in each conjugacy class. Namely, consider the spectral

cover (
◦
D)′σ ⊂ Tot(L)×X

◦
Dx and let ξσ denote the element correspond-

ing to the Higgs bundle pr∗(O) where pr stands for the projection

(
◦
D)′σ →

◦
Dx.

The following is an immediate consequence of Corollary 2.2 above.

Lemma 2.5. For ξ ∈ gl(n)x,ξ the Springer fiber Grξ is canonically
isomorphic to the moduli space of torsion free sheaves on D′ = D′σ(ξ)

together with an isomorphism of the restriction to (
◦
D)′ = D′×D

◦
D with

the line bundle arising from ξ.
In particular, the affine Springer fiber Grξσ is canonically isomorphic

to the moduli space of torsion free sheaves on D′σ together with an

isomorphism of the restriction to (
◦
D)′ = D′ ×D

◦
D with the structure

sheaf. �

Remark 2.6. This description of an affine Springer fiber provides a
convenient way to describe its symmetries. Namely, recall that the
quotient of the multiplicative group (K ′x)

×/(O′x)
× is the moduli space

of line bundles on D′x trivialized on (
◦
D)′. In the view of the last Lemma

this commutative group ind-scheme acts on Grξ for any ξ with σ(ξ) =
σ.

The following description of the centralizers follows from the fact that
the centralizer of a regular matrix A ∈ Matn(R) where R is a com-
mutative ring (in our case R = O or K) is the subalgebra in Matn(R)
generated by A which is isomorphic to R[u]/(PA) (notations of the
proof of Lemma 2.3).

Lemma 2.7. a) The centralizer ZGKx (ξ) is canonically isomorphic to
(K ′σ)×.

b) If ξ ∈ g⊗CΓ(D,L) and the reduction of ξ modulo the maximal ideal
of Ox is regular, then the centralizer ZGOx (ξ) is canonically isomorphic
to (O′σ)×. �

Remark 2.8. Combining the Lemma with the previous Remark, for ξ
which is regular at x we get an action of ZGKx (ξ)/ZGOx (ξ) on Grξ. One
can show that for such ξ the resulting action of ZGKx (ξ) coincides with
the natural conjugation action mentioned in section 1.3. In particular,
the conjugatioin action of ZGOx (ξ) on Grξ is trivial for such ξ.
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2.1.4. More on affine Springer fibers. In this subsection we present
some additional information on affine Springer fibers, it is not needed
for the proof of the product formula.

The following statement is true for any G, we sketch the proof in the
current setting G = GL(n).

Lemma 2.9. a) [KL] The centralizer ZGLn(K)(ξ) acts transitively on

the set Grξ0 of lattices L ∈ Grξ such ξ induces a regular element in
L/tL.

b) Assume ξ ∈ gO is such that the reduction ξ ∈ gC is regular. Then

the space Grξ0 ∼= (K ′)×/(O′)× is an open orbit of (K ′)× on Grξ.

Proof. a) By Lemma 2.7 we have ZGLn(K)(ξ) = (K ′)× where K ′ :=

O((
◦
D)′)×. Thus the claim follows from all line bundles being locally

isomorphic.
b) follows from (a) since (O′)× ⊂ (K ′)× clearly acts trivially on Grξ

and coincides with the stabilizer of a point in Grξ0. �
Remark. a) It can be deduced (as shown by Ngo) from the Theorem

below (thus by using a global curve) that the open subscheme Grξ0 ∼=
(K ′)×/(O′)× is dense in Grξ.

b) The Corollary allows one to partly understand the scheme struc-
ture of an affine Springer. E.g. for ξ = ξ0 ∈ sl(2, K) with det(ξ) ∈ O×
(notations of 1.4) we see that Grξ ∼= K×/O× which is a countable
union of infinite type nilpotent schemes, with tangent space at each
point identified with K/O.

2.1.5. Product formula for GL(n). Fix σ in the Hitchin base subject to
the above regularity assumption, and let x1, . . . , xk be a finite collection
of points in X containing the set of ramification points for the map
X ′σ → X. Let Di be the formal disc around xi, notations Oi, Ki,
O′i, K

′
i are self-explanatory. Fix ξi ∈ gl(n,Ki) whose characteristic

polynomial equals σ| ◦
Di

.

Proposition 2.10. There exists a map

Pic(X ′σ)×
∏

(K′i)
×/(O′i)

×∏
Grξi → Pic(X ′σ) = Higgsσ

inducing a bijection between the sets of field-valued points.

Remark. In the expression appearing on the left-hand side of the
proposition we’re taking a quotient with respect to a group ind-scheme.
What we mean is, by definition, taking the naive quotient groupoid,
and then sheafify it in the fppf topology.
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Proof: In view of Lemma 2.5 and Beauville-Laszlo Theorem,
∏
Grξi

is identified with the space of extensions of the structure sheaf of
◦
X
′

to a torsion free sheaf on X ′σ, thus we get a map
∏
Grξi → Pic(X ′σ).

Twisting a torsion free generic rank 1 sheaf with a line bundle we
again get a torsion free generic rank 1 sheaf, hence Pic(X ′σ) acts on
Pic(X ′σ), and we get a map Pic(X ′σ)×∏Grξi → Pic(X ′σ).

An isomorphism between Higgs bundles attached to (L1, s1)
and (L2, s2) ∈ Pic(X ′σ) × ∏

Grξi → Pic(X ′σ) amounts to a
nonvanishing section of L1 ⊗ L−1

2 | ◦
X
′ such that the corresponding

element in
∏

(K ′i)
×/(O′i)

× sends s2 to s1. Thus we get a morphism

Pic(X ′σ) ×
∏
K̃×i /Õ

×
i
∏
Grξi → Pic(X ′σ) inducing an injective map on

the set of points.
It remains to see that the map is surjective on the set field-valued

points. It suffices to see that for every torsion free rank 1 sheaf F on X ′σ
there exists a line bundle L on X ′σ with an isomorphism L| ◦

X
′

σ

∼= F| ◦
X
′

σ

.

This is obvious (although the similar statement withX, X ′σ etc replaced
by XS, (X ′σ)S etc. for some base S are not obvious).

Corollary 2.11. Fix σ in the Hitchin base and let ξi ∈ gLOi be regular
elements whose characteristic polynomials coincide with σ|Di. Then we
have a morphism of stacks∏

Grξi/
∏(

ZGKxi
(ξi)/ZGOxi

(ξi)
)
→ Pic(X ′σ)/P ic(X ′σ)

inducing a bijection on field-valued points.

The quotient on the left-hand side is understood in the same sense
as in Proposition 2.10.

2.2. The case of a general group. Our goal is to describe an ana-
logue of this for a general group.

2.2.1. The universal centralizer. Let pr : g → c = g//Ad(G) be the
projection. Let Zg denote the sheaf of groups on g whose fiber at x ∈ g
is the centralizer ZG(x).

Lemma 2.12. There exists a unique (up to a canonical isomorphism)
sheaf of abelian groups J on c together with a homomorphism φ :
pr∗(J )→ Zg of group schemes over g which is

i) G × Gm equivariant where G acts by conjugation and the action
of Gm on g is given by t : x 7→ t2x.

ii) an isomorphism over greg.
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Sketch of proof. We first consider the case G = GL(n). In this
case the fiber of J ×c g at ξ ∈ g is the group of invertible elements in
the ring C[u]/Pξ(u). In view of Cayley-Hamilton Theorem this group
maps canonically to Z(ξ) by the map Q 7→ Q(ξ). The map is manifestly
equivariant and it is an isomorphism when x is regular.

For a general group one uses a different argument. We have Kostant
section κ : c→ greg of the map pr. Recall that κ is defined as follows:
fix a principal sl(2) triple e, h, f ∈ g, then κ is uniquely defined by
requiring that its image coincides with e + z(f) where z denotes the
centralizer in g. If ϕ : SL(2)→ G is the corresponding homomorphism,
then Gm acts on the image of κ by t : x 7→ t2Ad(ϕ(diag(t−1, t)))x
making κ a Gm equivariant map. [It is this point which forces the choice
of a Gm action of c factoring through the homomorphism t 7→ t2]. We
set J = κ∗(Zg).

For x ∈ greg the centralizer ZG(x) is commutative. It is easy to
deduce that J does not depend (up to a canonical isomorphism) on
the choice of an sl(2) triple, and also that there exists a unique map φ
with the required properties over the open set greg ⊂ g. It then extends
to g since a map from a smooth (or even normal) irreducible algebraic
variety to an affine variety extends from the complement to a set of
codimension at least two. �

Remark 2.13. Notice that φ induces trivial map J |0 → G on the fibers
at 0 ∈ g.

Since c is Gm equivariant it defines a sheaf of abelian groups on the
stack c/Gm which will also be denoted by J .

2.2.2. The twisting construction. Recall the action of Pic(X ′σ) on the
compactified Picard variety which was used in the proof of Proposi-
tion 2.10. Our goal in this section is to introduce its analogue for an
arbitrary group.

Let σ be a point in the Hitchin base for an arbitrary algebraic variety
Y . Thus σ is a section of the bundle cL on Y where L is a line bundle on
Y . One can view it as a map Y → c/Gm such that the composed map
Y → pt/Gm corresponds to L. Thus σ defines a sheaf Jσ of abelian
groups on Y which is the pull-back of J from c/Gm.

Let Tors(Jσ) denote the group stack of Jσ torsors (in the flat, equiv-
alently, in etale topology).

Proposition 2.14. a) There exists a natural action of Tors(Jσ) on
Higgsσ.

b) The open set Higgs0
σ ⊂ Higgsσ parametrizing Higgs fields which

are regular at every point is a free orbit of this action.
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Proof a) Let F be a sheaf of groupoids on Y (say, in etale topology)
and H a sheaf of abelian groups on Y , equipped with a map H →
End(IdF). Thus for every Y1 over Y , the group H(Y1) acts on objects
of F(Y1) by functorial automorphisms. Then we can twist an object in
F(Y ) by an H-torsor.

We apply it to: H = Jσ, F = Higgs(Y )σ. We need to define the
map Jσ → End(IdHiggsσ), i.e. an action of sections of Jσ on Higgs
bundles in Higgsσ by automorphisms.

The sheaf of groupoids Higgs(Y )σ is associated with the presheaf of
groupoids, whose value over Y1/Y is the groupoid consisting of Higgs
bundles in Higgsσ such that the corresponding G-bundles is trivial.
Such a bundle amounts to a map f : Y1 → gL ×

c/Gm
Y . A morphism

between two such objects is a map Y1 → G which conjugates one Higgs
field into the other.

It is enough to construct the action of Jσ on this presheaf. The latter
is given by φ◦f . The conjugation-invariance property of φ insures that
this action intertwines the morphisms in our groupoid.

b) Composing σ : X → c/Gm with the Kostant section κ : c/Gm →
g/(G×Gm) (see the proof of Lemma 2.12) we get a preferred element
in Higgs0

σ, thus Higgs0
σ is nonempty.

Two objects (E1, ξ1), (E2, ξ2) ∈ Higgs0
σ are locally isomorphic: lo-

cally both E1 and E2 are isomorphic, so the statement follows the fact
that each fiber of the projection greg → c is a single G-orbit. �

Remark. (This remark is not needed for the proof of the product
formula). We have the cameral cover Yσ ⊂ cL. Let TYσ be the constant
sheaf of algebraic groups on Yσ. We have a homomorphism Jσ →
pr∗(TYσ)W which has finite kernel and cokernel (see Dennis’s notes).

It induces a map Tors(Jσ) → Tors(pr∗(TYσ)W ) = [Pic(Yσ) ⊗ Λ]W

where Λ denotes the coweight lattice. One can extend this observation
to a description of Tor(Jσ) in terms of Pic(Yσ) [DG].

2.2.3. The product formula. Given σ in the Hitchin base as above and
x ∈ X set σx = σ|Dx . We can use Kostant section as in the proof of
Proposition 2.14(b) for Y = Dx and to get a preferred Higgs bundle
(Eσx , ξσx) on the disc Dx.

To simplify notations choose a trivialization of Eσx ; then we get ξσx ∈
gOx,L ⊂ gKx,L and the affine Springer fiber Grξσx .

In this context by Grξσx we understand the moduli space of Higgs
bundle (E, ξ) on Dx together with an isomorphism of Higgs bundles
(E, ξ)| ◦

Dx

∼= (Eσx , ξσx)| ◦
Dx

. In view of section 1.5, choosing a trivializa-

tion of Eσx we get ξσx ∈ gOx,L ⊂ gKx,L and an identification of Grξσx
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with the affine Springer fiber considered above (and denoted in the
same way).

Using Proposition 2.14(a) we get an action of the abelian group
scheme Grx(Jσ) on Grξσx . Here Grx(Jσ) denotes the affine Grass-
mannian for the group scheme Jσ at x, i.e. the moduli space of Jσ
torsors on Dx trivialized on

◦
Dx. We have

Grx(Jσ) = Γ(
◦
Dx,Jσ)/Γ(Dx,Jσ) ∼= ZG(Kx)(ξσx)/ZG(Ox)(ξσx).

It is not hard to show that the natural action of ZG(Kx)(ξσx) on Grξσx

factors through the above action of Grx(Jσ) = ZG(Kx)(ξσx)/ZG(Ox)(ξσx).

Theorem 2.15. Let x1, . . . , xn ∈ X be a finite collection of points such
that σ : (X \ {xi})→ c0

L.
We have a canonical map:

Tors(Jσ)×
∏

Γ(
◦
Dxi ,Jσ)/Γ(Dxi ,Jσ)

∏
Gr

ξσxi
xi → Higgsσ.

The map induces an isomorphism on the set of field valued points.

Proof The group Tors(Jσ) acts on Higgsσ by Proposition 2.14(a).
Recall the interpretation of Grξσxi as the moduli space of Higgs bundles
on the disc Dxi together with an isomorphism of the restriction to the

punctured disc
◦
Dxi with the restriction of the standard Higgs bundle

on X \ {xi} constructed in the proof of Proposition 2.14(b). In view of

Beauville-Laszlo Theorem this interpretation gives a map
∏
Gr

ξσxi
xi →

Higgsσ. Thus the desired map is constructed.
The fact that it is an isomorphism on the set of field-valued points

follows from every Jσ torsor on the punctured disc
◦
Dxi being trivial.

[Though there may be nontrivial torsors over the pull-back of Jσ to

(
◦
Dxi)S for some base S, thus it is not clear if the map is an isomor-

phism]. �

Corollary 2.16. We have a canonical map∏
Grξσxi /(Γ(

◦
Dxi ,Jσ)/Γ(Dxi ,Jσ)→ Higgsσ/Tors(Jσ)

inducing an isomorphism on the sets of field valued points.

We finish by sketching an alternative way to prove Theorem 2.15.
Let Torsc(Jσ) denote the moduli space of Jσ torsors on the open

curve
◦
X = X \{x1, . . . , xn} together with a trivialization on the formal

neighborhood of {x1, . . . , xn}. We have a homomorphism Γ(
◦
Dxi ,Jσ)→

Torsc(Jσ) and Tors(Jσ) = Torsc(Jσ)/
∏

Γ(Dxi ,Jσ).
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By Proposition 2.14(b), Torsc(Jσ) is identified with the space of

Higgs fields on
◦
X whose restriction to the formal punctured neigh-

borood of {xi} is identified with the standard (Kostant section) Higgs
field compatible with σ.

Similarly, Gr
ξσxi
xi is the moduli space for Higgs fields on the formal

disc Dxi whose restriction to the formal punctured disc is identified
with the above standard Higgs field.

The Beauville-Laszlo type argument yields a canonical map

Torsc(Jσ)×Γ(
◦
Dxi ,Jσ)

∏
Gr

ξσxi
xi → Higgsσ.

Taking into account that Γ(Dxi ,Jσ) acts trivially on Gr
ξσxi
xi we get the

result.
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