
SEMINAR NOTES: HIGGS BUNDLES, KOSTANT SECTION, AND LOCAL
TRIVIALITY OF G-BUNDLES (OCT. 27, 2009)

DENNIS GAITSGORY

1. Local triviality (Steinberg’s theorem)

1.1. Let k be an algebraically closed field of char. 0, and let G be a connected affine algebraic
group over k.

The goal of this talk is to prove the following theorem:

Theorem 1.1.1. (Steinberg) Let K be a field of rational functions of an algebraic curve over
k. Then any G-bundle over K is trivial.

In particular, this implies the following:

Corollary 1.1.2. Let X be a smooth curve over k. Then any G-bundle on X admits a reduction
to B (the Borel subgroup).

Proof. Choose a reduction to B at the generic point of X, which is possible by Theorem 1.1.1.

Exercise 1.1.3. Use the valuative criterion of properness to show that this reduction extends
onto the entire curve.

�

Corollary 1.1.4. Let X be a smooth curve over k. Then any G-bundle on X is locally trivial
in the Zariski topology.

Exercise 1.1.5. Deduce it from the previous corollary.

1.2. Later in the seminar we’ll see that Theorem 1.1.1 can be strengthened as follows:

Theorem 1.2.1. (Drinfeld-Simpson) Let X be a complete curve over some field k. Let PG be
a G-bundle on S × X, where S is a k-scheme. (For point (3) let x ∈ X be a k-point.) Then
there exists an etale base change S′ → S, such that the pull-back P ′G of PG to S′ ×X satisfies:
(1) P ′G admits a reduction to B.
(2) The restriction of P ′G to S′ × Spec(K) is locally trivial in the Zariski topology.
(3) If the radical of G is unipotent, then the restriction of P ′G to S′ × (X − x) is trivial.

1.3. Let us briefly indicate the general strategy of the proof of Theorem 1.1.1. Evidently, we
can (and from now on we will) assume that G is reductive (since a G-bundle with G unipotent
is trivial on any affine scheme).

The main step, which is valid for any field K, is that given a G-bundle on Spec(K), we can
always find its reduction to a certain group subscheme JK ⊂ GK := G × Spec(K), such that
JK is a non-split torus, i.e., after an etale base change K → K ′, we have JK ⊗

K
K ′ ' (Gm)×r

for some integer r.
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Having such a reduction, we’ll show that when K is as in the theorem and JK as above, any
JK-torsor over Spec(K) is trivial. This would be an easy consequence of Tsen’s theorem.

Thus, we have to find JK , and obtain a reduction. This will be done using a geometric device
known as Higgs bundles.

2. Higgs bundles

2.1. Let Y be any scheme. We introduce a new functor Schop/k → Groupoids, denoted
Higgs(Y ) that assigns to a scheme S the category of pairs (PG, f), where PG is a G-bundle
on S × Y , and f is a section of the associated bundle gPG

of Lie algebras.

We call points of Higgs(Y ) ”Higgs bundles on Y ”, or ”G-bundles on Y with a Higgs field”,
the latter being the data of f .

Exercise 2.1.1. Show that Higgs(Y ) is nothing but Maps(Y, g/G).1

Notation Maps(Y,−) in the above exercise is as in [Sept17].

Let greg ⊂ g be the open subscheme of regular elements (recall that an element of g is called
regular, if the dimension of its centralizer equals the rank of g).

We let Higgsreg(Y ) be the corresponding subfunctor of Higgs(Y ). Let
◦
g ⊂ greg be the subset of

regular semi-simple elements. We let
◦

Higgs(Y ) be the corresponding subfunctor of Higgsreg(Y ).

We’ll call points of Higgsreg(Y ) (resp.,
◦

Higgs(Y )) regular (resp., regular semi-simple) Higgs
bundles.

Exercise 2.1.2. Show that if Y is a proper scheme, then the maps

◦
Higgs(Y ) ↪→ Higgsreg(Y ) ↪→ Higgs(Y )

are open embeddings of functors.

2.2. Let c denote the Chevalley space, i.e., Spec(Sym(g∗)G), the GIT quotient of g by G, i.e.,

c = g//G ' t//W,

where t is the Cartan subalgebra and W is the Weyl group. (As was mentioned several times
at the seminar, c is actually isomorphic to the affine space Ar, where r is the rank of g.)

Let $ denote the Chevalley map g → c. Recall (Kostant’s theorem) that $ is flat, and its
restriction to greg is smooth.

Let
◦
c ⊂ c be the open subscheme equal to the image of

◦
g under c. We call the closed subset

c− ◦c the discriminant locus.

Exercise 2.2.1. Take G = GLn. Identify c with the variety of monic polynomials of degree n,
and explain the terminology ”discriminant locus”.

1Here and elsewhere, the notation Z/H means ”the stack-theoretic quotient”. This is to distinguish it from
the GIT quotient Z//H, which for Z affine means Spec(Γ(Z, OZ)H).
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2.2.2. For Y as above we set Hitch(Y ) be the functor Schop/k → Sets that we earlier denoted
Maps(Y, c). I.e., Hom(S,Hitch(Y )) = Hom(S × Y, c).

Let
◦

Hitch(Y ) be the subfunctor corresponding to maps to
◦
c.

If Y is a scheme, we’ll consider another subfunctor, denoted Hitch](Y ) ⊂ Hitch(Y ) that
corresponds to those maps S × Y → c, such that for any point s ∈ S, the corresponding map
Ys → c generically maps to

◦
c (i.e., the preimage of

◦
c is a dense subset). We won’t use Hitch](Y )

in this talk, but it will be important for the next one describing the work of Ngo.

2.2.3. The map $ : g → c factors through a map $/G : g/G → c, and hence gives rise to a
map h : Higgs(Y )→ Hitch(Y ), which we’ll refer to as the Hitchin map.

For a fixed k-point σ ∈ Hitch(Y ), we let Higgs(Y )σ be its preimage in Higgs(Y ), i.e.,

pt ×
Hitch(Y )

Higgs(Y ).

2.2.4. Since
◦
g −−−−→ gy y
◦
c −−−−→ c

is Cartesian, so is
◦

Higgs(Y ) −−−−→ Higgs(Y )y y
◦

Hitch(Y ) −−−−→ Hitch(Y ).

In addition, we’ll denote by Higgs](Y ) the pull-back of Hitch](Y ) under h.

2.2.5. Twisting. We’ll now discuss variants of the above constructions in the presence of a line
bundle. So, let L be a line bundle on Y . Again, we won’t need this for the purposes of proving
Theorem 1.1.1, but we’ll need it for the next talk.

Note that both g and c acted on by Gm with the map $ being equivariant. Therefore, we
can make sense of HiggsL(Y ) so that

Hom(S,HiggsL(Y )) = (PG, f ∈ Γ(S × Y, gPG
⊗ L)).

We shall denote by
◦

HiggsL(Y ) ⊂ Higgsreg
L (Y ) ⊂ HiggsL(Y )

the corresponding subfunctors.

We define HitchL(Y ) by

Hom(S,HitchL(Y )) = HomY (S × Y, cL),

where cL is the twist of c by L, i.e., c
Gm

× (L − 0), where L − 0 is the Gm-torsor over Y
corresponding to L.

Note that when Y is a complete smooth curve X, and L := ΩX , we have an isomorphism

HiggsΩ(X) ' T ∗ BunG,

once we choose a G×Gm-invariant identification g ' g∗.
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As above, we have a map hL : HiggsL(Y ) → HitchL(Y ). For Y being a complete smooth
curve X and L := ΩX , the map hL is the Hitchin map discussed in the previous talks.

2.3. Let us explain what is the relevance of Higgs bundles to the proof of Theorem 1.1.1. The
idea is that if for a given G-bundle PG on Y we supplement it with a structure of regular Higgs
bundle, i.e., Higgs field f ∈ Γ(Y, gPG

⊗ L), so that (PG, f) ∈ Higgsreg(Y ), this would allow to
reduce PG to a commutative group sub-scheme JY of GY := G × Y . If moreover, (PG, f) is
regular semi-simple, then the group-scheme JY is etale-locally isomorphic to a torus. This will
allow to carry out the main step in the proof of Theorem 1.1.1, see Section 1.3.

In order to see how a structure of Higgs bundle on a given PG allows to obtain such a
reduction, we shall first consider the case of G = GLn. However, of course, in this case
Theorem 1.1.1 is evident, as it is just Hilbert’s 90 (a.k.a. faithfully flat descent for vector
bundles).

3. The case of G = GLn

3.1. For GLn, we have c = (A1)(n) the symmetric power of A1. Let c′ → c be the canonical
n-sheeted cover 2 of c. I.e., if c ' Spec

(
(k[a1, ..., an])Sn)

)
, then

c′ := Spec
(
k[a1, ..., an, b])Sn/ Π

i=1,...,n
(b− ai)

)
.

3.1.1. Let us fix a k-point σ ∈ Hitch(Y ), i.e., a map Y → c. Set

Y ′ := Y ×
c

c′.

We call Y ′ ”the spectral cover” of Y corresponding to σ. Let p denote the map Y ′ → Y .

By the definition of c′, we have:

Proposition 3.1.2. For a scheme S the groupoid Hom(S,Higgsreg(Y )σ) is equivalent to that
of line bundles on S × Y ′.

Exercise 3.1.3. Deduce this proposition from the Cayley-Hamilton theorem.

3.1.4. To explain the terminology ”spectral cover” assume that σ ∈
◦

Hitch(Y ); in this case Y ′σ
is etale over Y .

Let (M,f : M →M) be a point in Higgs(Y )σ. Let y be a k-point of Y .

Exercise 3.1.5. Deduce from Prop 3.1.2 that the set p−1(y) identifies with the set of eigenvalues
of fy : My →My.

3.2. Note that we can rephrase the above exercise as follows: if for a fixed M we have chosen

an f : M → M corresponding to a σ ∈
◦

Hitch(Y ), then for each y ∈ Y , we can canonically
decompose the fiber My into a direct sum of 1-dimensional subspaces (the eigenspaces of fy).
However, this decomposition is unordered. In particular, we cannot do it globally over M : we
don’t know which line bundle is the first and which is the second, and so on.

For a vector bundle M , to decompose it as a direct sum of line bundles M 'M1 ⊕ ...⊕Mn

means to reduce its structure group from GLn to its Cartan subgroup Gm × ...×Gm.

However, what does our ability to decompose every fiber of M into an unordered sum of
lines mean?

2By a cover here we mean a finite flat (but necessarily etale) map
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3.2.1. We claim that the data of an etale spectral cover Y ′ → Y defines a group subscheme
JY ⊂ (GLn)Y = GLn × Y , such that etale-locally JY is isomorphic to the Cartan group TY .
And we claim that M ∈ Higgs(Y )σ admits a canonical reduction to this group subscheme.

3.2.2. Namely, by Prop 3.1.2, the structure sheaf OY ′ gives rise to a k-point of Higgs(Y )σ,
which we shall denote by (M0

σ , f
0
σ). Note also that by construction M0

σ is the trivial vector
bundle M0.

We define JY as follows: for a scheme Y1 over Y ,

HomY (Y1, JY ) := Aut((M0, f0
σ)Y1) ⊂ Aut(M0)Y1 .

Now, for (M,f) ∈ Hom(S,Higgs(Y )σ), the desired reduction to JY is given by:

IsomS×Y
(
(M0, f0

σ), (M,f)
)
⊂ IsomS×Y

(
M0,M

)
.

3.2.3. Let us now describe the sheaf of groups JY more explicitly.

Note that by construction, for Y1 → Y , the group Hom(Y1, JY ) identifies with the group of
invertible elements in the ring Γ(Y1 ×

Y
Y ′,O). Thus, we can write

JY ' ResY
′

Y (Gm),

where ResY
′

Y is Weil’s restriction of scalars functor (by the definition of the latter).

However, this description of JY is specific for GLn. For a general G it will have a different
flavor, which for GLn plays out as follows:

3.2.4. Let c̃ := (A1)n = An, which is an n!-sheeted ramified cover of c ' (A1)(n). In fact, we
have that c′ is the GIT quotient c̃//Sn−1, where Sn−1 ⊂ Sn.

In the above situation, set

Ỹ := Y ×
c

c̃.

We have a natural Sn-action on Ỹ , which make it an Sn-etale cover of Y if σ ∈
◦

Hitch(Y ).

Exercise 3.2.5. Show that Ỹ ×
Y
JY identifies as a group-scheme with (G×nm )Ỹ .

3.3. Now the question is, how should we generalize the above discussion so that it makes sense
for any group G?

3.3.1. Our basic ingredients would be as follows:

For any Y and any σ : Y → c we’ll want to find a ”model” element (P 0
G, f

0
σ) ∈ Higgsreg(Y )σ,

with P 0
G being as usual the trivial G-bundle, i.e., f0

σ ∈ Hom(Y, greg).

If we require that the assignment σ 7→ f0
σ behave functorially in Y , the above amounts to a

map between schemes

υ : c→ greg,

which is a section of $ : greg → c.
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3.3.2. Now, given σ : Y → c, what would the group subscheme JY ⊂ GY be? This is just as
in the GLn-case: for Y1 → Y

HomY (Y1, JY ) := Aut((P 0
G, f

0
σ)Y1) ⊂ Aut((P 0

G)Y1) = HomY (Y1, GY ).

We’ll see that when σ maps to
◦
c, such JY is indeed a non-split torus, i.e., it will become

isomorphic to the constant group scheme corresponding to the Cartan T after an etale base
change.

Finally, for any Higgs bundle (PG, f) ∈ Hom(S,Higgsreg(Y )σ), we consider

IsomS×Y
(
(P 0
G, f

0
σ), (PG, f)

)
⊂ IsomS×Y

(
P 0
G, PG

)
,

which is a torsor with respect to JY , by construction. This provides the required reduction of
PG as a G-bundle to JY .

3.3.3. This is the untwisted story (i.e., when there is no line bundle L present), and it will be
sufficient for the purposes of this talk (i.e., proving Theorem 1.1.1). However, for Ngo’s work
[Ngo], we’ll need to discuss also the twisted version.

Harking back at the definitions, this would mean that we’ll need to choose υ so that it is
Gm-equivariant. However, it is easy to see that this is impossible.

However, we can ask for less: we can ask for an existence of a section

sL : HitchL(Y )→ Higgsreg
L (Y ),

of the map hL, and which behaves functorially in (Y,L). In other words, for σ ∈ HitchL(Y )
we’ll want to construct a distinguished pair (PG,σ, f0

σ), but without insisting that PG,σ be the
trivial G-bundle.

Such a datum would be equivalent to constructing a map of stacks

c→ greg/G,

which is an inverse to $/G : greg/G→ c, and which is equipped with an equivariant structure
with respect to Gm, acting on both sides. However, even this is not always possible for all
groups G (although it is possible for, say, GLn). Instead, we’ll have a map

(υ/Gm)′ : (c/Gm) ×
pt /Gm

pt /Gm → greg/(G×Gm),

where pt /Gm → pt /Gm is the map corresponding to Gm
x 7→x2

−→ Gm. In other words, we’ll be
able to construct a section sL as long as we choose a square root of L on Y , i.e., a line bundle
L′, such that L′⊗2 ' L.

4. The Kostant section

4.1. In this section we’ll construct the sought-for section υ : c→ greg.

4.1.1. Let φ : SL2 → G be a map, such that φ(e) is a regular nilpotent element (and, hence,
φ(f) is also regular nilpotent). Here (e, h, f) is the standard basis for the Lie algebra sl2. Let b+

(resp., b−) be the Borel Lie subalgebra corresponding to positive (resp., negative) eigenvalues
of h.

Consider the affine subspace (φ(f) + b+) ⊂ g. It is clearly preserved by the adjoint action of
N+ on g.
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Lemma 4.1.2. (Kostant)
(1) The subvariety φ(f) + b+ is contained in greg.
(2) The restriction of the map $ to φ(f) + b+ makes

(φ(f) + b+)→ c

into an N+-torsor. (I.e., the map (φ(f) + b+)/N+ → c is an isomorphism of stacks, in
particular, the LHS is a scheme.)

Proof. Exercise. �

4.1.3. Let now a be the affine subspace of φ(f) + b+ equal to φ(f) + ker(adφ(e)).

Proposition 4.1.4. (Kostant) The restriction of $ to a is an isomorphism.

Proof. Exercise. �

Thus,
c→ a ↪→ (φ(f) + b+) ↪→ greg

provides a section of the torsor (φ(f) + b+) → c, and also the desired map υ. It’s called the
Kostant section.

4.1.5. Here is a surprise, however:

Exercise 4.1.6. Identify explicitly the Kostant section c → greg in the case G = GLn, and
convince yourself that it’s actually different from the one used in Section 3.2.1.

So, for an arbitrary G, our ”canonical” representative of a Higgs bundle for a given point of
Hitch(Y ) is such that when specialized to G = GLn, it’s different from the one we used before.
But this is OK: for what we are about to do, it doesn’t matter what choice of a map υ we use.

Remark. It is shown in [Ngo] that any two choices of υ are conjugate by means of a map c→ G,
which implies that whatever constructions we perform, all choices of υ are equivalent.

4.2. For the purposes of the next talk, let us discuss the equivariant properties of the map υ
with respect to Gm, and, in particular, comment on the construction of the map (υ/Gm)′, see
Section 3.3.3.

4.2.1. Consider the standard torus Gm ⊂ SL2. The following results from the definitions:

Lemma 4.2.2.
(1) The action of Gm on g given by (λ, x) 7→ λ2 ·Adφ(λ)(x) preserves the subscheme a.
(2) The map $|a is equivariant with respect to the action of Gm on a given by point (1) above,
and the square of the natural action of Gm on c.

Exercise 4.2.3.
(1) Show that the above lemma implies that the composition

c
υ→ greg → greg/G

is naturally equivariant with respect to the action of Gm on both sides, equal to the square of
the natural action.
(2) Deduce from point (1) the existence of a map

(υ/Gm)′ : (c/Gm) ×
pt /Gm

pt /Gm → greg/(G×Gm),

where pt /Gm → pt /Gm is the squaring map.
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5. Regular centralizers and reduction

5.1. Thus, to complete our program, it remains to show that for Y and a map σ : Y → ◦
c, the

composed map
f0
σ : Y σ→ ◦

c
υ→ ◦

g

is such that the functor on the category of schemes over Y

(Y1 → Y ) 7→ {g ∈ HomY (Y1, G) | Adg(f0
σ |Y1) = f0

σ |Y1}
is representable by a group-sceme JY , which is etale-locally isomorphic to the Cartan group T .

We shall accomplish this in a slightly greater generality, as it will be necessary also for the
next talk.

5.2. Let Zg be the group sub-scheme of Gg = G× g of centarlizers. I.e.,

Hom(S,Zg) = {x : S → g, g : S → G | Adg(x) = x}.

Let Zgreg (resp., Z◦
g
) be the restriction of Zg to the open subset greg (resp.,

◦
g).

Lemma 5.2.1. The group-scheme Zgreg is commutative, and smooth over greg.

Proof. Exercise. �

Proposition 5.2.2. (B.C. Ngo) There exists a smooth group-scheme Jc over c endowed with
an isomorphism Jc×

c
greg ' Zgreg , as group-schemes over greg, which is equivariant with respect

to G acting on greg by conjugation.

Proof. Exercise. �

5.2.3. Thus, for any Y and σ : Y → c and f0
σ defined as above, we obtain that the functor

(Y1 → Y ) 7→ {g ∈ Hom(Y1, G) | Adg((f0
σ)|Y1) = f0

σ |Y1}
is representable by JY := Jc ×

c
Y .

Thus, in order to show that whenever σ lands in
◦
c, the group-scheme JY is etale locally

isomorphic to T , it is enough to show the corresponding fact for Jc.

5.3. Identification of Jc–the regular semi-simple case. Let t be the Lie algebra of the
Cartan subgroup T , and recall that we have a canonical map

t→ c,

which is an etale cover
◦
c with structure group W–the Weyl group of G. Let

◦
t denote the

preimage of
◦
c, i.e., the complement to the root hyperplanes in t.

Lemma 5.3.1.

(1) J◦
c
×
◦
c

◦
t ' T◦

t
.

(2) The W -equivariant structure on J◦
c
×
◦
c

◦
t corresponds to the canonical W -action on T .

Proof. This follows from the definition of Jc: the left-hand side is Zg|◦
t
, and we know that the

centralizer of a regular element of a given Cartan subalgebra t is the corresponding Cartan
subgroup T .

�
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5.3.2. For a map σ : Y → ◦
c let Ỹ denote

Ỹ :=
◦
t ×
◦
c

Y.

This is an etale W -cover of Y .

By Lemma 5.3.1 above, we obtain that the pull-back of JY to Ỹ indeed identifies with TỸ ,
with the W -equivariant structure given by the the canonical W -action on T .

This recovers the picture for JY that we had for GLn in Section 3.2.4.

5.4. Identification of Jc–the general case. For the next talk, let us say a few words how
the group-scheme Jc looks like over the entire c, i.e., outside the open subset

◦
c.

5.4.1. Consider the following group-scheme over c:

J ′c :=
(
Rest

c(Tt)
)W

,

i.e., for S → c,

Homc(S, J ′c) = {φ ∈ Homc(S ×
c

t, T ) |φ is W − equivariant}.

Note that by Lemma 5.3.1, we have an isomorphism:

J◦
c
' J ′◦

c
:= J ′c|◦c.

Proposition 5.4.2. ([DonGa], Theorem 11.6) The above isomorphism over
◦
c extends to a

homomorphism of group-schemes over c:

Jc → J ′c.

Moreover, the latter map is an open embedding.

This proposition implies that the difference between J ′c and Jc is given by a finite sheaf of
groups in the etale topology, which vanishes over

◦
c.

Remark. In fact, using Sect. 6 of [DonGa] a complete description of Jc can be given as a
subfunctor of J ′c

5.4.3. For an arbitrary Y and a map σ : Y → c we let

Ỹ := t×
c
Y.

We call Ỹ ”the cameral cover” corresponding to σ. We let J ′Y be the pull-back of J ′c by
means of σ.

Note that for a scheme S, a J ′Y -torsor on S × Y is the same as a W -equivariant T -torsor on
S × Ỹ . Using [DonGa] one can give a complete description of JY -torsors on S × Y in terms of
W -equivariant T -torsors on S × Ỹ .

6. Summary and proof of Theorem 1.1.1

6.1. Let Y be a scheme and σ : Y → c be a map. Let JY be the corresponding group-scheme
over Y .

Let JY -Tors denote the functor Schop/k → Groupoids that assigns to a scheme S the (Picard)
groupoid of JY -torsors on S × Y .

Exercise 6.1.1. Deduce from the work we have done that the exists an isomorphism of functors

Hitch(Y )reg
σ ' JY -Tors,
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6.2. Assume now that Y = Spec(K), where K is a field containing k. We claim that any

G-bundle PG on Spec(K), i.e., a k-point of BunG(Y ), can be lifted to a k-point of
◦

Higgs(Y ).

Indeed, we consider Γ(Spec(K), gPG
) as a K-vector space. This is the set of all liftings

of PG to a k-point of Higgs(Y ). Now,
◦

Higgs(Y ) ⊂ Higgs(Y ) corresponds to a Zariski open
subvariety of Γ(Spec(K), gPG

), considered as an affine space over K, and, since K is infinite, it
is non-empty.

Thus, by the above, any G-bundle on Spec(K) admits a reduction to a group subscheme
JK ⊂ GK , such that JK becomes isomorphic to (Gm)×r after an etale base change K 7→ K̃.

6.3. Finally, we claim:

Lemma 6.3.1. Let K be a field such that H2(Gal(K), F ) vanishes for any (continuous, dis-
crete) Gal(K)-module F . Then for any JK as above, any JK-torsor over Spec(K) is trivial.

The lemma will imply Theorem 1.1.1. Indeed, we have Tsen’s theorem that says that for K
being the field of rational functions on an algebraic curve over an algebraically closed ground
field, Gal(K) has cohomological dimension 1, i.e., that it satisfies the condition of Lemma 6.3.1
above.

Proof. (of Lemma 6.3.1)
Note that if JK was a split torus, i.e., a product of copies of Gm, the group H1(Spec(K), JK)
would vanish with no other assumptions on K, by Hilbert’s 90.

Exercise 6.3.2. Show that for an separable field extension K1/K and JK a group scheme over
K, we have a surjection of etale sheaves:

ResK1
K (JK |K1) � JK .

Exercise 6.3.3. Finish the proof of the lemma, and therefore, theorem.

�
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