THE GLOBAL NILPOTENT CONE

XINWEN ZHU

The goal of this note is to reproduce Ginzburg’s proof (cf. [G]) that the dimension of the
global nilpotent cone is the same as the dimension of Bung. In what follows, everything is
over a base field k, algebraically closed of characteristic zero!. We assume that X is a smooth
projective curve, and G is a semisimple group. We will use w to denote the cotangent sheaf
of X, or its corresponding G,,-torsor.

Recall that we have the Hitchin map

(1) p: T*Bung — Hitch(X),

where Hitch(X) = T'(X,w x®= tJW). There is a natural G,,-action on Hitch(X), with a
unique fixed point, denoted by 0.

Definition 0.1. The global nilpotent cone is
Nilp = p~(0).
We will prove that
Theorem 0.1. Notations are as above. Then
dim Nilp = dim Bung.
We have the following corollaries, in which we assume that the genus of X is > 1.

Corollary 0.2. The stack T*Bung is good (in the sense of [BD, §1.1.1]) and therefore is a
locally complete intersection.

Remark 0.1. In [BD], it is proved that T*Bung is indeed very good.

Proof. For any point n € Hitch(X), the closure of the G,,-orbit contains 0. Therefore,
dimp~!(n) < dimp~!(0) = dim Bung. This implies that

dim T*Bung < dim Bung + dim Hitch(X) = 2 dim Bung.

On the other hand, it is the general fact that dim T*Bung > 2dim Bung. This implies that
dim T*Bung = 2dim Bung, and T*Bung is good, which in term implies that T*Bung is
locally a complete intersection. ([

Corollary 0.3. The morphism p is flat.

Remark 0.2. Recall that p is called flat if for any flat morphism f : U — T*Bung, po f :
U — Hitch(X) is flat.

Proof. Since T*Bung is l.c.i., Hitch(X) is regular, and p has the relative dimension dim 7*Bung—

dim Hitch(X), the assertion follows from the local criterion of flatness. O

Theorem 0.1 is a consequence of the following theorem.

Theorem 0.4. The stack Nilp is an isotropic substack of T*Bung.

1Maybe one can only require the characteristic of k is good w.r.t. the group G.
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We have to explain the meaning of the above sentence. First, let (M, w) be a symplectic
variety. A locally closed subscheme N C M is called isotropic if every smooth subvariety
V C N is isotropic in M (i.e. w|y = 0). Equivalently, this means (Ny.q)"® is isotropic in
M. In this case 2dim N < dim M (if dim M < o0).

If Y is a smooth (equidimensional) algebraic stack, then a locally closed substack N° C
T*Y is called isotropic if for some (and therefore any) smooth surjective map S — Y (we
always assume that S is locally of finite type), S xy N C S xy T*Y C T*S is isotropic.
In this case dimAN < dim). (Proof: Assume that S/) is of relative dimension d, then
dimN +d = dim(S xy N) < dim S = dim Y +d.)

Now, we show that Theorem 0.4 implies Theorem 0.1. Observe the natural morphism
Bung — T*Bung given by the zero section realizes Bung as a closed substack of Nilp.
Therefore, dim Nilp > dim Bung.

Now we prove Theorem 0.4, following the argument of Ginzburg (cf. [G]). We have the
following obvious lemma.

Lemma 0.5. Let (My,w1),(Ma,ws) be symplectic varities, and T' be a symplectic cor-
respondence, (i.e. T is isotropic in My x My with respect to the symplectic structure
—priwy + praws ). Then for any L C M isotropic, prg(prl_lL NT) is isotropic in Ms.

Corollary 0.6. Let f : X — Y be a representable morphism of smooth algebraic stacks of
finite type. Let N C T*Y be a closed substack. Let

M =X X+ x (N Xy X),

where the morphism X — T*X is given by the zero section, and N xy X — T*X is the
composition N xy X — T*Y xy X — T*X. If the natural projection M — N is surjective,
then N is isotropic in T*Y.

Proof. The assertion is true for X, ) being symplectic varieties by the above lemma. Now,
let V' — Y be smooth surjective and U = X x3 V. We want to show that A xy V is isotropic
in T*V. But the surjectivity of M — N implies the surjectivity of M x3 V — N xy V.
On the other hand,

M Xy VU XT*xXx x»U (U Xy (/\f Xy V)) =U Xy (U Xy (N Xy V))
Therefore, the stack case follows from the scheme case. O

Remark 0.3. This corollary can be generalized a little bit provided k is uncountable. We
can allow that X has countable many connected components, and f is of finite type when
restricted to each connected component of X.

We want to plug in the above lemma with X = Bunp, ) = Bung and N/ = Nilp. The
representability of the morphism Bunp — Bung is shown in Dennis’ early notes. Further-
more, it is locally of finite type. Therefore, it remains to show that

Proposition 0.7. The natural morphism
Bung X7+Bung (Nilp XBun, Bung) — Nilp
18 surjective.

Proof. Let F be the universal G-bundle on X x Bung. Let

B/N\/\/’

be the Springer correspondence between the flag variety B of g and the nilpotent cone A/. The
whole diagram is G X G,,-equivariant. Let NVilp = T'(X x Bung, Nrx,) be global Springer
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resolution, where F x w denotes the (G x G,,)-torsor F x (wXOpup,; ). More precisely, m
is the functor that associates every Bung-scheme S the set I'(X x S, Nrxw|xxs). According

to Dennis’ note, m — Bung is representable. We thus have the following commutative
diagram

(2) Nzlp

T T,

Bung 2 T'(X x Bung, Brx.) Nilp 2 T'(X x Bung, Nrxe)

\/

Bung
The proposition is the direct consequence of the following two lemmas.
Lemma 0.8. The map m — Nilp is surjective.

Lemma 0.9. The map /\//_';l/p — Nilp factors as
m = Bung X7 Bung (Nilp XBune Bung) — Nilp.

We begin with the proof of Lemma 0.8. It is enough to prove m(k) — Nilp(k)
is surjective. Let (£,m) € Nilp(k) be a k-point, where £ is a G-bundle on X and n €
I'(X,Nexw). The G-bundle £ can be trivialized at the generic point £ of X. We fix such
a trivialization of &, together with a trivialization of w at the generic point. so that the
restriction of 1 to the generic point gives rise to a point in N (K), where K = k(X) is the
function field of X. We claim that A'(K) maps surjectively to A'(K) so that 7 can be lifted
to a section of Ny, at the generic point of X. Then by the properness of the map N” — N/,
1 can be lifted to a section of ./\7ng over the whole X.

That N (K) — N(K) is surjective is equivalent to the fact that every nilpotent element
x € g(K) is contained in a Borel subalgebra defined over K. One first observes that x
is indeed contained in the nilpotent radical of a K-parabolic subalgebra p C gg. This
is because by the Jacobson-Morosov theorem, there is a sly-triple (z,h,y) C gx defined
over K. Then h defines a grading on gx = Y g% such that z € g%, and p = >, g%-
So it remains to show that p contains a Borel subalgebra defined over K. Let P be the
variety of parabolic subalgebras of g of type p. Then the lemma follows from the fact that
G(K) — B(K) — P(K) is surjective, which in turn follows from the fact that the fibration
G — P is Zariski locally trivial.

Finally, we prove Lemma 0.9. Recall that there is a short exact sequence of G x G-
equivariant vector bundles

0-N=GxPn-Bxg=GxPg—aGxP(g/n) —o.
Denote the last vector bundle by g+. In other words, we have the following diagram

NHBXNHNa

|

B 0 it
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with the Cartesian square. By twisting the above diagram by F X w and taking the global
sections, we therefore obtain that

Nilp Bung Xpgung Nilp

| |

Bung 0. I'(X x Bung, g7,,,) = T*Bung

Nilp |

with the Cartesian square. The lemma follows. 1
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