THE GLOBAL NILPOTENT CONE

XINWEN ZHU

The goal of this note is to reproduce Ginzburg's proof (cf. [G]) that the dimension of the global nilpotent cone is the same as the dimension of Bun_G . In what follows, everything is over a base field k, algebraically closed of characteristic zero¹. We assume that X is a smooth projective curve, and G is a semisimple group. We will use ω to denote the cotangent sheaf of X, or its corresponding \mathbb{G}_m -torsor.

Recall that we have the Hitchin map

(1)
$$p: T^* \operatorname{Bun}_G \to \operatorname{Hitch}(X),$$

where $\operatorname{Hitch}(X) = \Gamma(X, \omega \times \mathbb{G}_m \mathfrak{t}/\!\!/ W)$. There is a natural \mathbb{G}_m -action on $\operatorname{Hitch}(X)$, with a unique fixed point, denoted by 0.

Definition 0.1. The global nilpotent cone is

$$\mathcal{N}ilp = p^{-1}(0).$$

We will prove that

Theorem 0.1. Notations are as above. Then

 $\dim \mathcal{N}ilp = \dim \operatorname{Bun}_G.$

We have the following corollaries, in which we assume that the genus of X is > 1.

Corollary 0.2. The stack T^*Bun_G is good (in the sense of [BD, §1.1.1]) and therefore is a locally complete intersection.

Remark 0.1. In [BD], it is proved that T^*Bun_G is indeed very good.

Proof. For any point $\eta \in \text{Hitch}(X)$, the closure of the \mathbb{G}_m -orbit contains 0. Therefore, $\dim p^{-1}(\eta) \leq \dim p^{-1}(0) = \dim \text{Bun}_G$. This implies that

 $\dim T^* \operatorname{Bun}_G \le \dim \operatorname{Bun}_G + \dim \operatorname{Hitch}(X) = 2 \dim \operatorname{Bun}_G.$

On the other hand, it is the general fact that $\dim T^* \operatorname{Bun}_G \ge 2 \dim \operatorname{Bun}_G$. This implies that $\dim T^* \operatorname{Bun}_G = 2 \dim \operatorname{Bun}_G$, and $T^* \operatorname{Bun}_G$ is good, which in term implies that $T^* \operatorname{Bun}_G$ is locally a complete intersection.

Corollary 0.3. The morphism p is flat.

Remark 0.2. Recall that p is called flat if for any flat morphism $f: U \to T^*Bun_G$, $p \circ f: U \to Hitch(X)$ is flat.

Proof. Since T^*Bun_G is l.c.i., Hitch(X) is regular, and p has the relative dimension dim T^*Bun_G – dim Hitch(X), the assertion follows from the local criterion of flatness.

Theorem 0.1 is a consequence of the following theorem.

Theorem 0.4. The stack $\mathcal{N}ilp$ is an isotropic substack of T^*Bun_G .

¹Maybe one can only require the characteristic of k is good w.r.t. the group G.

We have to explain the meaning of the above sentence. First, let (M, ω) be a symplectic variety. A locally closed subscheme $N \subset M$ is called isotropic if every smooth subvariety $V \subset N$ is isotropic in M (i.e. $\omega|_V = 0$). Equivalently, this means $(N_{red})^{reg}$ is isotropic in M. In this case $2 \dim N \leq \dim M$ (if $\dim M < \infty$).

If \mathcal{Y} is a smooth (equidimensional) algebraic stack, then a locally closed substack $\mathcal{N} \subset T^*\mathcal{Y}$ is called isotropic if for some (and therefore any) smooth surjective map $S \to \mathcal{Y}$ (we always assume that S is locally of finite type), $S \times_{\mathcal{Y}} \mathcal{N} \subset S \times_{\mathcal{Y}} T^*\mathcal{Y} \subset T^*S$ is isotropic. In this case dim $\mathcal{N} \leq \dim \mathcal{Y}$. (Proof: Assume that S/\mathcal{Y} is of relative dimension d, then dim $\mathcal{N} + d = \dim(S \times_{\mathcal{Y}} \mathcal{N}) \leq \dim S = \dim \mathcal{Y} + d$.)

Now, we show that Theorem 0.4 implies Theorem 0.1. Observe the natural morphism $\operatorname{Bun}_G \to T^*\operatorname{Bun}_G$ given by the zero section realizes Bun_G as a closed substack of $\mathcal{N}ilp$. Therefore, $\dim \mathcal{N}ilp \geq \dim \operatorname{Bun}_G$.

Now we prove Theorem 0.4, following the argument of Ginzburg (cf. [G]). We have the following obvious lemma.

Lemma 0.5. Let $(M_1, \omega_1), (M_2, \omega_2)$ be symplectic varities, and Γ be a symplectic correspondence, (i.e. Γ is isotropic in $M_1 \times M_2$ with respect to the symplectic structure $-\mathrm{pr}_1^*\omega_1 + \mathrm{pr}_2^*\omega_2$). Then for any $L \subset M_1$ isotropic, $\mathrm{pr}_2(\mathrm{pr}_1^{-1}L \cap \Gamma)$ is isotropic in M_2 .

Corollary 0.6. Let $f : \mathcal{X} \to \mathcal{Y}$ be a representable morphism of smooth algebraic stacks of finite type. Let $\mathcal{N} \subset T^*\mathcal{Y}$ be a closed substack. Let

$$\mathcal{M} := \mathcal{X} \times_{T^*\mathcal{X}} (\mathcal{N} \times_{\mathcal{Y}} \mathcal{X}),$$

where the morphism $\mathcal{X} \to T^*\mathcal{X}$ is given by the zero section, and $\mathcal{N} \times_{\mathcal{Y}} \mathcal{X} \to T^*\mathcal{X}$ is the composition $\mathcal{N} \times_{\mathcal{Y}} \mathcal{X} \to T^*\mathcal{Y} \times_{\mathcal{Y}} \mathcal{X} \to T^*\mathcal{X}$. If the natural projection $\mathcal{M} \to \mathcal{N}$ is surjective, then \mathcal{N} is isotropic in $T^*\mathcal{Y}$.

Proof. The assertion is true for \mathcal{X}, \mathcal{Y} being symplectic varieties by the above lemma. Now, let $V \to \mathcal{Y}$ be smooth surjective and $U = \mathcal{X} \times_{\mathcal{Y}} V$. We want to show that $\mathcal{N} \times_{\mathcal{Y}} V$ is isotropic in T^*V . But the surjectivity of $\mathcal{M} \to \mathcal{N}$ implies the surjectivity of $\mathcal{M} \times_{\mathcal{Y}} V \to \mathcal{N} \times_{\mathcal{Y}} V$. On the other hand,

$$\mathcal{M} \times_{\mathcal{Y}} V \cong U \times_{T^*\mathcal{X} \times_{\mathcal{X}} U} (U \times_V (\mathcal{N} \times_{\mathcal{Y}} V)) \cong U \times_{T^*U} (U \times_V (\mathcal{N} \times_{\mathcal{Y}} V)).$$

Therefore, the stack case follows from the scheme case.

Remark 0.3. This corollary can be generalized a little bit provided k is uncountable. We can allow that X has countable many connected components, and f is of finite type when restricted to each connected component of X.

We want to plug in the above lemma with $\mathcal{X} = \operatorname{Bun}_B$, $\mathcal{Y} = \operatorname{Bun}_G$ and $\mathcal{N} = \mathcal{N}ilp$. The representability of the morphism $\operatorname{Bun}_B \to \operatorname{Bun}_G$ is shown in Dennis' early notes. Furthermore, it is locally of finite type. Therefore, it remains to show that

Proposition 0.7. The natural morphism

 $\operatorname{Bun}_B \times_{T^*\operatorname{Bun}_B} (\mathcal{N}ilp \times_{\operatorname{Bun}_G} \operatorname{Bun}_B) \to \mathcal{N}ilp$

is surjective.

Proof. Let \mathcal{F} be the universal *G*-bundle on $X \times \operatorname{Bun}_G$. Let

be the Springer correspondence between the flag variety \mathcal{B} of \mathfrak{g} and the nilpotent cone \mathcal{N} . The whole diagram is $G \times \mathbb{G}_m$ -equivariant. Let $\widetilde{\mathcal{N}ilp} = \Gamma(X \times \operatorname{Bun}_G, \widetilde{\mathcal{N}}_{\mathcal{F} \times \omega})$ be global Springer

 $\mathbf{2}$

resolution, where $\mathcal{F} \times \omega$ denotes the $(G \times \mathbb{G}_m)$ -torsor $\mathcal{F} \times (\omega \boxtimes \mathcal{O}_{\operatorname{Bun}_G})$. More precisely, $\mathcal{N}ilp$ is the functor that associates every Bun_G -scheme S the set $\Gamma(X \times S, \tilde{\mathcal{N}}_{\mathcal{F} \times \omega}|_{X \times S})$. According to Dennis' note, $\widetilde{\mathcal{N}ilp} \to \operatorname{Bun}_G$ is representable. We thus have the following commutative diagram

The proposition is the direct consequence of the following two lemmas.

Lemma 0.8. The map $\widetilde{\mathcal{N}ilp} \to \mathcal{N}ilp$ is surjective.

Lemma 0.9. The map $\widetilde{\mathcal{N}ilp} \to \mathcal{N}ilp$ factors as

$$\mathcal{N}ilp \xrightarrow{\simeq} \operatorname{Bun}_B \times_{T^*\operatorname{Bun}_B} (\mathcal{N}ilp \times_{\operatorname{Bun}_G} \operatorname{Bun}_B) \to \mathcal{N}ilp.$$

We begin with the proof of Lemma 0.8. It is enough to prove $\widetilde{\mathcal{Nilp}}(k) \to \mathcal{Nilp}(k)$ is surjective. Let $(\mathcal{E}, \eta) \in \mathcal{Nilp}(k)$ be a k-point, where \mathcal{E} is a G-bundle on X and $\eta \in \Gamma(X, \mathcal{N}_{\mathcal{E} \times \omega})$. The G-bundle \mathcal{E} can be trivialized at the generic point ξ of X. We fix such a trivialization of \mathcal{E} , together with a trivialization of ω at the generic point. so that the restriction of η to the generic point gives rise to a point in $\mathcal{N}(K)$, where K = k(X) is the function field of X. We claim that $\widetilde{\mathcal{N}}(K)$ maps surjectively to $\mathcal{N}(K)$ so that η can be lifted to a section of $\widetilde{\mathcal{N}}_{\mathcal{E} \times \omega}$ at the generic point of X. Then by the properness of the map $\widetilde{\mathcal{N}} \to \mathcal{N}$, η can be lifted to a section of $\widetilde{\mathcal{N}}_{\mathcal{E} \times \omega}$ over the whole X.

That $\mathcal{N}(K) \to \mathcal{N}(K)$ is surjective is equivalent to the fact that every nilpotent element $x \in \mathfrak{g}(K)$ is contained in a Borel subalgebra defined over K. One first observes that x is indeed contained in the nilpotent radical of a K-parabolic subalgebra $\mathfrak{p} \subset \mathfrak{g}_K$. This is because by the Jacobson-Morosov theorem, there is a \mathfrak{sl}_2 -triple $(x, h, y) \subset \mathfrak{g}_K$ defined over K. Then h defines a grading on $\mathfrak{g}_K = \sum \mathfrak{g}_K^i$ such that $x \in \mathfrak{g}_K^2$, and $\mathfrak{p} = \sum_{i\geq 0} \mathfrak{g}_K^i$. So it remains to show that \mathfrak{p} contains a Borel subalgebra defined over K. Let \mathcal{P} be the variety of parabolic subalgebras of \mathfrak{g} of type \mathfrak{p} . Then the lemma follows from the fact that $G(K) \to \mathcal{B}(K) \to \mathcal{P}(K)$ is surjective, which in turn follows from the fact that the fibration $G \to \mathcal{P}$ is Zariski locally trivial.

Finally, we prove Lemma 0.9. Recall that there is a short exact sequence of $G \times \mathbb{G}_m$ -equivariant vector bundles

$$0 \to \tilde{\mathcal{N}} = G \times^B \mathfrak{n} \to \mathcal{B} \times \mathfrak{g} = G \times^B \mathfrak{g} \to G \times^B (\mathfrak{g}/\mathfrak{n}) \to 0.$$

Denote the last vector bundle by $\tilde{\mathfrak{g}}^{\perp}$. In other words, we have the following diagram

XINWEN ZHU

with the Cartesian square. By twisting the above diagram by $\mathcal{F} \times \omega$ and taking the global sections, we therefore obtain that

with the Cartesian square. The lemma follows.

References

[BD] The book of Beilinson and Drinfeld.

[G] Ginzburg, Victor The global nilpotent variety is Lagrangian. Duke Math. J. 109 (2001), no. 3, 511–519.