
THE GLOBAL NILPOTENT CONE

XINWEN ZHU

The goal of this note is to reproduce Ginzburg’s proof (cf. [G]) that the dimension of the
global nilpotent cone is the same as the dimension of BunG. In what follows, everything is
over a base field k, algebraically closed of characteristic zero1. We assume that X is a smooth
projective curve, and G is a semisimple group. We will use ω to denote the cotangent sheaf
of X, or its corresponding Gm-torsor.

Recall that we have the Hitchin map

(1) p : T ∗BunG → Hitch(X),

where Hitch(X) = Γ(X,ω ×Gm t//W ). There is a natural Gm-action on Hitch(X), with a
unique fixed point, denoted by 0.

Definition 0.1. The global nilpotent cone is

N ilp = p−1(0).

We will prove that

Theorem 0.1. Notations are as above. Then

dimN ilp = dim BunG.

We have the following corollaries, in which we assume that the genus of X is > 1.

Corollary 0.2. The stack T ∗BunG is good (in the sense of [BD, §1.1.1]) and therefore is a
locally complete intersection.

Remark 0.1. In [BD], it is proved that T ∗BunG is indeed very good.

Proof. For any point η ∈ Hitch(X), the closure of the Gm-orbit contains 0. Therefore,
dim p−1(η) ≤ dim p−1(0) = dim BunG. This implies that

dimT ∗BunG ≤ dim BunG + dim Hitch(X) = 2 dim BunG.

On the other hand, it is the general fact that dimT ∗BunG ≥ 2 dim BunG. This implies that
dimT ∗BunG = 2 dim BunG, and T ∗BunG is good, which in term implies that T ∗BunG is
locally a complete intersection. �

Corollary 0.3. The morphism p is flat.

Remark 0.2. Recall that p is called flat if for any flat morphism f : U → T ∗BunG, p ◦ f :
U → Hitch(X) is flat.

Proof. Since T ∗BunG is l.c.i., Hitch(X) is regular, and p has the relative dimension dimT ∗BunG−
dim Hitch(X), the assertion follows from the local criterion of flatness. �

Theorem 0.1 is a consequence of the following theorem.

Theorem 0.4. The stack N ilp is an isotropic substack of T ∗BunG.

1Maybe one can only require the characteristic of k is good w.r.t. the group G.
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We have to explain the meaning of the above sentence. First, let (M,ω) be a symplectic
variety. A locally closed subscheme N ⊂ M is called isotropic if every smooth subvariety
V ⊂ N is isotropic in M (i.e. ω|V = 0). Equivalently, this means (Nred)reg is isotropic in
M . In this case 2 dimN ≤ dimM (if dimM <∞).

If Y is a smooth (equidimensional) algebraic stack, then a locally closed substack N ⊂
T ∗Y is called isotropic if for some (and therefore any) smooth surjective map S → Y (we
always assume that S is locally of finite type), S ×Y N ⊂ S ×Y T ∗Y ⊂ T ∗S is isotropic.
In this case dimN ≤ dimY. (Proof: Assume that S/Y is of relative dimension d, then
dimN + d = dim(S ×Y N ) ≤ dimS = dimY + d.)

Now, we show that Theorem 0.4 implies Theorem 0.1. Observe the natural morphism
BunG → T ∗BunG given by the zero section realizes BunG as a closed substack of N ilp.
Therefore, dimN ilp ≥ dim BunG.

Now we prove Theorem 0.4, following the argument of Ginzburg (cf. [G]). We have the
following obvious lemma.

Lemma 0.5. Let (M1, ω1), (M2, ω2) be symplectic varities, and Γ be a symplectic cor-
respondence, (i.e. Γ is isotropic in M1 × M2 with respect to the symplectic structure
−pr∗1ω1 + pr∗2ω2). Then for any L ⊂M1 isotropic, pr2(pr−1

1 L ∩ Γ) is isotropic in M2.

Corollary 0.6. Let f : X → Y be a representable morphism of smooth algebraic stacks of
finite type. Let N ⊂ T ∗Y be a closed substack. Let

M := X ×T∗X (N ×Y X ),

where the morphism X → T ∗X is given by the zero section, and N ×Y X → T ∗X is the
composition N ×Y X → T ∗Y ×Y X → T ∗X . If the natural projection M→N is surjective,
then N is isotropic in T ∗Y.

Proof. The assertion is true for X ,Y being symplectic varieties by the above lemma. Now,
let V → Y be smooth surjective and U = X ×Y V . We want to show that N×Y V is isotropic
in T ∗V . But the surjectivity of M → N implies the surjectivity of M×Y V → N ×Y V .
On the other hand,

M×Y V ∼= U ×T∗X×XU (U ×V (N ×Y V )) ∼= U ×T∗U (U ×V (N ×Y V )).

Therefore, the stack case follows from the scheme case. �

Remark 0.3. This corollary can be generalized a little bit provided k is uncountable. We
can allow that X has countable many connected components, and f is of finite type when
restricted to each connected component of X.

We want to plug in the above lemma with X = BunB , Y = BunG and N = N ilp. The
representability of the morphism BunB → BunG is shown in Dennis’ early notes. Further-
more, it is locally of finite type. Therefore, it remains to show that

Proposition 0.7. The natural morphism

BunB ×T∗BunB
(N ilp×BunG

BunB)→ N ilp
is surjective.

Proof. Let F be the universal G-bundle on X × BunG. Let

Ñ

����
��

��
�

  @
@@

@@
@@

@

B N
be the Springer correspondence between the flag variety B of g and the nilpotent coneN . The
whole diagram is G×Gm-equivariant. Let Ñ ilp = Γ(X × BunG, ÑF×ω) be global Springer
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resolution, where F×ω denotes the (G×Gm)-torsor F× (ω�OBunG
). More precisely, Ñ ilp

is the functor that associates every BunG-scheme S the set Γ(X×S, ÑF×ω|X×S). According
to Dennis’ note, Ñ ilp → BunG is representable. We thus have the following commutative
diagram

(2) Ñ ilp

uukkkkkkkkkkkkkkkk

))RRRRRRRRRRRRRRRR

BunB
∼= Γ(X × BunG,BF×ω)

))SSSSSSSSSSSSSSS
N ilp ∼= Γ(X × BunG,NF×ω)

uukkkkkkkkkkkkkkk

BunG

.

The proposition is the direct consequence of the following two lemmas.

Lemma 0.8. The map Ñ ilp→ N ilp is surjective.

Lemma 0.9. The map Ñ ilp→ N ilp factors as

Ñ ilp '→ BunB ×T∗BunB
(N ilp×BunG

BunB)→ N ilp.

We begin with the proof of Lemma 0.8. It is enough to prove Ñ ilp(k) → N ilp(k)
is surjective. Let (E , η) ∈ N ilp(k) be a k-point, where E is a G-bundle on X and η ∈
Γ(X,NE×ω). The G-bundle E can be trivialized at the generic point ξ of X. We fix such
a trivialization of E , together with a trivialization of ω at the generic point. so that the
restriction of η to the generic point gives rise to a point in N (K), where K = k(X) is the
function field of X. We claim that Ñ (K) maps surjectively to N (K) so that η can be lifted
to a section of ÑE×ω at the generic point of X. Then by the properness of the map Ñ → N ,
η can be lifted to a section of ÑE×ω over the whole X.

That Ñ (K) → N (K) is surjective is equivalent to the fact that every nilpotent element
x ∈ g(K) is contained in a Borel subalgebra defined over K. One first observes that x
is indeed contained in the nilpotent radical of a K-parabolic subalgebra p ⊂ gK . This
is because by the Jacobson-Morosov theorem, there is a sl2-triple (x, h, y) ⊂ gK defined
over K. Then h defines a grading on gK =

∑
gi

K such that x ∈ g2
K , and p =

∑
i≥0 gi

K .
So it remains to show that p contains a Borel subalgebra defined over K. Let P be the
variety of parabolic subalgebras of g of type p. Then the lemma follows from the fact that
G(K)→ B(K)→ P(K) is surjective, which in turn follows from the fact that the fibration
G→ P is Zariski locally trivial.

Finally, we prove Lemma 0.9. Recall that there is a short exact sequence of G × Gm-
equivariant vector bundles

0→ Ñ = G×B n→ B × g = G×B g→ G×B (g/n)→ 0.

Denote the last vector bundle by g̃⊥. In other words, we have the following diagram

Ñ //

��

B ×N

��

// N

B 0 // g̃⊥

,
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with the Cartesian square. By twisting the above diagram by F × ω and taking the global
sections, we therefore obtain that

Ñ ilp //

��

BunB ×BunG
N ilp

��

// N ilp

BunB
0 // Γ(X × BunG, g̃

⊥
F×ω) ∼= T ∗BunB

,

with the Cartesian square. The lemma follows. �
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