
The Hitchin map, local to global

Andrei Negut

Let X be a smooth projective curve of genus g > 1, G a semisimple group
and BunG = BunG(X) the moduli stack of principal G−bundles on X.

In this talk, we will present Hichin’s construction of a “middle-dimensional”
family of Poisson commuting functions on T ∗BunG. This construction will
be quantized in subsequent lectures to a “middle-dimensional” family of
(twisted) differential operators on BunG.

Let C = Spec(Sym g)G, the affine quotient of g∗ with respect to the ad-
joint G−action. Note that (Sym g)G ∼= (Sym h)W , which is non-canonically
isomorphic to a polynomial ring over C. Therefore, our C is non-canonically
isomorphic to affine space.

There is a natural C∗−action on C, induced from scalar multiplication
on the vector space g∗. Therefore, we can construct the fiber bundle on X

CΩX
:= ΩX ×C∗ C,

where the C∗−torsor ΩX is just the canonical line bundle of X. Define the
Hitchin variety to be the space of global sections of this fiber bundle:

Hitch(X) = Γ(X,CΩX
).

This is an affine space of dimension (g − 1) · dim G, so we can associate to
it its ring of global functions zcl. This ring will be precisely the family of
Poisson commuting functions on T ∗BunG we are looking for.
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Example 1 When G = GLn, any G−invariant function on elements g ∈ g∗

is completely determined by the coefficients of the characteristic polynomial
of g. Therefore,

(Sym g)G = C[e1, ..., en],

where ei = Tr(gi). Therefore, C = An with a basis e1, ..., en, and λ ∈ C∗ acts
on C by the diagonal matrix (λ, λ2, ..., λn) in this basis. This implies that

CΩX
= ΩX ⊕ Ω⊗2

X ⊕ ...⊕ Ω⊗nX ,

and therefore

Hitch(X) = Γ(X,ΩX)× Γ(X,Ω⊗2
X )× ...× Γ(X,Ω⊗nX ).

Thus we recover the definition that Dennis presented in the first lecture.

Given a principal bundle F on X, the quotient map g∗ → C induces a
map

g∗F = g∗ ×G F → C ×C∗ OX
of bundles on X (note that the affine space C does not get twisted by F).
Twisting this by ΩX we obtain the map

g∗F ⊗ ΩX → C ×C∗ ΩX = CΩX
,

and passing to global sections we get the map

µF : Γ(X, g∗F ⊗ ΩX) −→ Hitch(X).

This is very important, because the space on the left is nothing but H0 of
the fiber of the tangent complex T BunG above F . To see this, recall that
H0(TFBunG) = H1(X, gF), which is dual to our Γ(X, g∗F ⊗ ΩX) by Serre
duality. Therefore, the above map patches over all F to the global Hitchin
map:

µ : T ∗BunG −→ Hitch(X). (1)

Passing to global sections, we get the map:

hcl : zcl −→ Γ(T ∗BunG,O).

The image of hcl will be our desired family of Poisson commuting functions
on T ∗BunG, as stated in Theorem 1 below.
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Note that we have only constructed the Hitchin map µ on C−points.
To prove that it is a map of functors, we should construct it on S−points,
where S is any smooth scheme. This extra construction does not present any
conceptual difficulties, but for the sake of completeness let’s make it rigorous
this one time. Given a scheme S and F a principal G−bundle on X×S, the
Hitchin map is

T ∗FBunG(S) = Γ(X × S, g∗F ⊗ ΩX)→ Γ(X × S,CΩX
) = Hitch(X)(S).

Example 2 Let us again look at G = GLn. A point on Bunn is nothing
but a rank n vector bundle M on X, which corresponds to the G−principal
bundle FU = Isom(On,M). Then we have the following isomorphism

g∗F = g∗ ×G Isom(On,M) ∼= Hom(M,M),

where the isomorphism is given by

(a ∈ g∗, φ : On →M) ∼= φ ◦ a ◦ φ−1 :M→M. (2)

Then, we have

g∗F ⊗ ΩX
∼= Hom(M,M⊗ ΩX)⇒ Γ(X, gF ⊗ ΩX) ∼= Hom(M,M⊗ ΩX).

This just says that a cotangent vector to T ∗Bunn at M is merely a global
sheaf homomorphism f :M→M⊗ ΩX . To see where is f mapped via the
Hitchin map, one must just compute Tr(ai) in the left hand side of (2). This
locally equals Tr(f i), and when we pass to global sections we must take the
twist by ΩX into account. Therefore,

µ(f) = Tr(f)× ...× Tr(fn) ∈ Γ(X,ΩX)× ...× Γ(X,Ω⊗nX ) = Hitch(X),

where f i denotes the composition

M f−−−→ M⊗ ΩX
f⊗Id−−−→ M⊗ Ω⊗2

X −−−→ ... −−−→ M× Ω⊗iX .

We thus recover Dennis’ description from the first lecture.

The connected components of BunG are indexed by π1(G) (for example,
when G = C∗ this means that line bundles in Pic(X) are distributed among
the connected components according to their degrees). For γ ∈ π1(G), let
BunγG denote the connected component of BunG corresponding to γ, and let
µγ : T ∗BunγG → Hitch(X) denote the restriction of the Hitchin map. The
main point of this lecture is the following theorem.
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Theorem 1 The following hold:

1. The image of hcl consists of Poisson commuting functions.

2. Each map µγ is surjective, and the morphism it induces on the structure
rings

hclγ : zcl −→ Γ(T ∗BunγG,O)

is an isomorphism.

In this talk, I will prove statement 1 of the theorem. The method of proof
will be different from Hitchin’s original one, and will involve a local-to-global
principle. This principle will be used to prove the analogous statament for
the quantization in future lectures.

Fix a closed point x ∈ X. The local picture means replacing the curve X
by the formal neighborhood of x in X. More explicitly, let Ox be the local
ring of X at x, and mx ⊂ Ox be the maximal ideal. Define

Ôx = lim←−
n

Ox/mn
x.

The space Spec Ôx is called the formal neighborhood of x. The complex an-
alytic intuition behind this is that when X = C and x = 0, then Ôx = C[[t]]

and Spec Ôx is the formal disk centered at the origin.

For each n, we have a natural inclusion Spec Ox/mn
x ↪→ X as a closed

subscheme, which induces a map of schemes Spec Ôx → X. Recalling the
bundle CΩX

over X, we then obtain a map on sections:

Hitch(X) = Γ(X,CΩX
)→ Γ(Spec Ôx, CΩ) =: Hitchx(X). (3)

Here we denote by Ω the sheaf of differentials on Spec Ôx. The above map
is an embedding of affine spaces, because any section of the bundle CΩX

on
the smooth curve X is completely determined by its restriction to the for-
mal neighborhood Spec Ôx (just like any homolorphic function is completely
determined by its Taylor series at 0). Let zclx be the ring of functions on
Hitchx(X). Then the above embedding gives us a surjective morphism:

θcl : zclx � zcl.
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Composing the global Hitchin map (1) with (3), we obtain the local Hitchin
map:

µx : T ∗BunG → Hitchx(X).

This induces a map on rings of functions:

hclx : zclx → Γ(T ∗BunG,O),

which naturally factors through zcl:

hclx = hcl ◦ θcl. (4)

Proof of Theorem 1, Statement 1: Since θcl is a surjection, by (4)
it is enough to prove that the image of hclx consists of Poisson commuting
functions. For this we will place a trivial Poisson structure on zclx and show
that hclx is a morphism of Poisson algebras.

Recall from Sam’s lecture that Harish-Chandra pair (h, L) consists of an
algebraic group L acting on the Lie algebra h, and an embedding l = Lie L ↪→
h that intertwines the adjoint action of L on l and the given action on h. The
Lie bracket on h induces a Poisson bracket on Sym h. We define:

Icl = (Sym h)l , P̃ cl = {x ∈ Sym h|{x, Icl} ⊂ Icl} ⊃ Icl.

The object of interest will be the Poisson algebra

P cl := (P̃ cl/Icl)π0(L) = (Sym (h/l))L. (5)

We say that a Harish-Chandra pair (h, L) acts on a scheme Y if we are given
an action of L on Y and a L−equivariant map of Lie algebras h→ Γ(Y, TY )
which restricts to the infinitesimal action on l ⊂ h. This map of Lie algebras
induces the following commutative diagram, where the horizontal arrows are
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maps of Poisson algebras:

Sym(h)
Ã−−−→ Γ(T ∗Y,O)y y

Sym(h/l)
B̃−−−→ Γ(T ∗Y ×Y Y,O)x x

P cl = (Sym(h/l))L
C̃−−−→ Γ(T ∗Y ,O)

The vertical maps are the standard inclusions/projections. Geometrically,
the above induces the following commutative diagram:

T ∗Y
A−−−→ Spec(Sym(h))x x

T ∗Y ×Y Y
B−−−→ Spec(Sym(h/l))y y

T ∗Y C−−−→ Spec(Sym(h/l))L

We will seek apply the above framework to h = g ⊗ K̂x, L = G(Ôx), Y =

Bun
(∞x)
G and Y = BunG. Then we have the map of Poisson algebras:

C̃ : P cl = (Sym(g⊗ K̂x/Ôx))G(Ôx) −→ Γ(T ∗BunG,O).

Our theorem then reduces to the following two claims:

1. There exists an map χ̃ : zclx → P cl such that

C̃ ◦ χ̃ = hclx . (6)

2. The Poisson bracket on Im(χ̃) ⊂ P cl is trivial.

This would conclude the proof, since then Im(hcl) = C̃(Im(χ̃)) and C̃
preserves the Poisson bracket. Since this bracket is trivial on Im(χ̃), it is
also trivial on Im(hclx ).
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To decipher what the maps A,B,C look like in our situation, take a
point F ∈ BunG. By definition, a tangent vector (deformation) to BunG at
F is a principal G−bundle Fε on X × Spec (C[ε]/ε2), which restricts to F
when ε = 0. If we take a faithfully flat affine cover {Ui → X}, then Fε is
determined by the glueing data:

ϕij : Uij → gF , (7)

satisfying the appropriate cocycle condition. Note that the we twist the
vector space g by F in order to eliminate any non-canonical choices in the
trivializations of F itself. This gives us a Cech cocycle in Z1(X, gF), which
is a coboundary in B1(X, gF) precisely when the deformation is trivial. This
implies that:

TFBunG = H1(X, gF)⇒ T ∗FBunG = Γ(X, g∗F ⊗ ΩX),

by Serre duality. Recall that:

Bun
(∞x)
G = {(F , ψ)} = lim←−

n

{(F , ψ(n))} = lim←−
n

Bun
(nx)
G ,

where ψ (respectively ψ(n)) is a trivialization of F on Spec Ôx (respectively
Spec Ox/mn

x). By a similar argument with the previous paragraph, the tan-

gent space to Bun
(nx)
G at (F , ψ(n)) is H1(X, gF(−nx)). Taking the projective

limit, we obtain a description for the tangent space to Bun
(∞x)
G at the point

(F , ψ):

T(F ,ψ)Bun
(∞x)
G = lim←−

n

H1(X, gF(−nx))⇒

⇒ T ∗(F ,ψ)Bun
(∞x)
G = (lim←−

n

H1(X, gF(−nx)))∗ ∼=

∼= lim−→
n

Γ(X, g∗F(nx)⊗ ΩX) = Γ(X − x, g∗F ⊗ ΩX),

again by Serre duality.

There is a natural action of G(K̂x) on Bun
(∞x)
G : trivialize F on the cover

X−x
⊔

Spec Ôx, then F will be determined by a cocycle Spec K̂x → G, and
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let G(K̂x) act on this cocycle by multiplication. As in the general framework
discussed earlier, we have the commutative diagram:

T ∗Bun
(∞x)
G

A−−−→ Spec(Sym(g⊗ K̂x))x x
T ∗BunG ×BunG

Bun
(∞x)
G

B−−−→ Spec(Sym(g⊗ K̂x/Ôx))y y
T ∗BunG

C−−−→ Spec(Sym(g⊗ K̂x/Ôx))G(Ôx).

(8)

The diagram is naturally commutative. The two top vertical arrows are
closed embeddings, whereas the bottom two vertical arrows are dominant
maps. The map A is explicitly given by:

A(F , ψ, f) = (z → Resx〈f |Spec K̂x
, z〉) ∈ (g⊗ K̂x)∗,

for any (F , ψ) ∈ Bun
(∞x)
G and f ∈ Γ(X − x, g∗F ⊗ ΩX). To make sense of

the above pairing, note that any z ∈ g ⊗ K̂x can be perceived as a function
Spec K̂x → g. This can further be perceived as a function Spec K̂x → gF
via the trivialization ψ. Then pairing this with f |Spec K̂x

gives an element

in Γ(Spec K̂x,ΩX), i.e. a differential on the punctured formal disk whose
residue we can take.

The diagram (8) can be completed with the following:

Spec(Sym(g⊗ K̂x))
χ′′−−−→ Γ(Spec K̂x, g∗Ω)x x

Spec(Sym(g⊗ K̂x/Ôx))
χ′−−−→ Γ(Spec Ôx, g∗Ω)y y

Spec(Sym(g⊗ K̂x/Ôx))G(Ôx) χ−−−→ Γ(Spec Ôx, CΩ) = Hitchx(X).

(9)

The vertical maps are the standard inclusions/projections. To define the
maps χ, χ′, χ′′, note that Ω is the sheaf of differentials. The bilinear form
(f, ω) → Resx(fω) represents a perfect pairing between elements f ∈ K̂x
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and global differentials ω ∈ Γ(Spec K̂x,Ω) on the punctured formal disk.
This produces a canonical isomorphism:

Γ(Spec K̂x,Ω) ∼= K̂∗x ⇒ Γ(Spec K̂x, g∗Ω)
χ′′∼= (g⊗ K̂x)∗. (10)

The isomorphism χ′ is defined similarly (it turns out to be G(Ôx) equivari-
ant), and χ is the map canonically induced on the GIT quotient. We will
soon show that it is also an isomorphism. As in diagram (8), the upper two
vertical maps in (9) are closed embeddings, while the lower two vertical maps
are dominant.

By unraveling the definitions, we note that:

χ′′ ◦ A(F , ψ, f) = f |Spec K̂x
,

where g ∼= gF via the trivialization ψ. Since the top vertical maps are all
closed embeddings, it follows that:

χ′ ◦B(F , ψ, f) = f |Spec Ôx
,

since f has no more poles at x now. Finally, since the lower vertical maps
are dominant, we obtain:

χ ◦ C(F , f) = (f |Spec Ôx
)//G(Ôx)⇒ χ ◦ C = µclx .

Passing to rings of global functions, we obtain statement (6).

Remark 1 Let’s actually show that χ is an isomorphism. It is easy to see
that it is dominant. To show it is a closed embedding, we need to show that
any G(Ôx) invariant function on Γ(Spec Ôx, g∗Ω) comes from a function on

Γ(Spec Ôx, CΩ). But restricting to an open subset whose complement has
codimension > 1 does not affect rings of global functions. Therefore, one can
replace g with greg (the codimension 3 locus of regular elements of g) and C
by greg/G. Then the desired statement is immediate, since the G action on
greg is smooth and transitive on fibers.

Finally, we need to prove that the Poisson bracket on Im(χ̃) is trivial.
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This follows from the commutative diagram:

Spec(Sym(g⊗ K̂x/Ôx))G(Ôx) −−−→ Spec(Sym(g⊗ K̂x)
g⊗K̂x

)π0(G)

χ

y y
Γ(Spec Ôx, CΩ) −−−→ Γ(Spec K̂x, CΩ)

The lower horizontal arrow is just the restriction map from the closed disk to
the punctured disk, obviously a closed embedding. The vertical right mor-
phism is the analogue of χ for K̂x, defined by pushing the completion of χ′′

down to the affine G(K̂x) quotient. The upper horizontal map is induced by
the quotient map. The diagram is naturally commutative.

Passing to rings of global functions in the above diagram, the bottom
horizontal map becomes a surjection. Therefore Im(χ̃) is contained in the
image of the top horizontal map:

D := Sym(g⊗ K̂x)
g⊗K̂x

−→ Sym(g⊗ K̂x/Ôx)G(Ôx) = P cl.

But the above is just the natural quotient map, and thus a map of Poisson
algebras. So it is enough to show that the Poisson bracket on D is trivial.
This is clear, because the Poisson bracket is trivial on the non-completed
Sym(g⊗ K̂x)g⊗K̂x , which is dense in D. This concludes our proof.
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