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1 Bunr(X) Is Not Of Finite Type

The goal of this lecture is to find a smooth atlas locally of finite type for the
stack Bunr(X) of rank-r vector bundles on a smooth projective curve X. Let’s
see first that it is impossible to find an atlas of finite type:

Theorem 1.1. thm:no.global.atlas There is no surjection from a scheme of
finite type to Bunr(X).

Actually, there are two reasons for this. The first is that the determinant of a
vector bundle varies continuously in families, and since there are infinitely many
components of Pic(X), it follows that Bun2(X) has infinitely many components.
On top of that, I’ll show now that each connected component is not of finite
type.

Denote the structure sheaf of X by O. Fix an ample line bundle O(1)
on X. For a vector bundle E, we denote E(n) = E ⊗ O(1)⊗n. If S is a
scheme, let XS = X × S, and let ES be the pullback of E by the projection
XS → X. Consider the rank-2 vector bundles O(n) ⊕ O(−n) as points of
Bun2(X). Theorem 1.1 follows from the following two theorems:

Theorem 1.2. thm:connected.SL For every n, there is a connected variety Y
(actually, an affine space), a map Y → Bun2(X), and two points y0, y1 ∈ Y ,
such that y0 is mapped to O ⊕O, and y1 is mapped to O(n)⊕O(−n).

After constructing an atlas, this means that all the O(n) ⊕ O(−n)’s are in
the same connected component.

Theorem 1.3. thm:infinite.type There is no map Y → Bun2(X) from a scheme
of finite type Y and points yn ∈ Y , n = 0, 1, 2, . . ., such that yn is mapped to
O(n)⊕O(−n).

I am going to use the following theorem of Serre:

Theorem 1.4. Let F be a sheaf on a curve X, and let O(1) be an ample line
bundle on X.

1. (absolute version) If n is big enough then E(n) is generated by global
sections, and H1(X,E(n)) = 0.
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2. (relative version) For every scheme S of finite type, if n is big enough,
then ES(n) is generated by global sections, and R1p∗E(n) = 0, where
p : XS → S is the projection.

Proof of Theorem 1.2. I want to show first that F = OX⊕OX is an extension of
OX(−n) by OX(n). F (n) is globally generated by Serre’s theorem. Therefore,
there is a never-zero section s ∈ Γ(F (n)). This gives a short exact sequence

0→ OX → F (n)→ F (n)/OX = L→ 0.

Note that L must be a line bundle. By untwisting, we get

0→ OX(−n)→ F → L(−n)→ 0.

By looking at the determinant, the last term must be OX(n).
Finally, the space of extensions of OX(n) by OX(−n) is the affine space

Ext(OX(n), OX(−n)).

Proof of Theorem 1.3. A map Y → Bun2X is a rank 2 vector bundle E on
XY . By Serre, there is n such that E(n) is globally generated, and hence Ey is
globally generated for all y. But Eyn+1(n) = O(−1)⊕O(2n+ 1) is not globally
generated.

2 Bunr(X) Is Locally Of Finite Type

On the other hand, it turns out that Bunr(X) is an increasing union of Artin
stacks of finite type. More precisely,

Theorem 2.1. thm:loc.fin.atlas There are open sub-functors Un ↪→ Bunr(X),
varieties Yn of finite type, and smooth surjective maps Yn → Un, such that Un
are a cover of Bunr(X).

As said in the beginning, the degree of the vector bundle is constant in each
connected component. Let’s fix this degree, and consider only vector bundles of
a given degree. For every vector bundle E on X, if n is large enough then E(n)
is generated by global sections and H1(X,E(n)) = 0. Let Un be the moduli
stack of bundles that satisfy these two conditions. More precisely, for every
scheme T , let Un(T ) be the full sub-groupoid of Bunr(X) whose objects are
vector bundles E on XT that are generated by global sections and such that
R1p∗(E(n)) = 0 (p is the projection X × T → T ). By the theorem of Serre (in
the version that applies to families), Un, as n runs over N, cover Bunr(X).

Lemma 2.2. Un is an open sub-functor of Bunr(X).

Proof. The claim is that, for every scheme S and every vector bundle E on
XS , the set of points s in S such that Es (which is the restriction of E to the
fiber X×{s}) is globally generated and has zero first cohomology, is open. The
subset of S for which Es is globally generated is clearly open. The subset of S
for which H1(Es) = 0 is the complement of the support of R1p∗E, and hence
open.
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Suppose that T is affine and connected, and let E ∈ ObUn(T ). For every
t ∈ T , the Euler characteristic of the restriction Et(n) of E(n) to X × {t} is
χ(Et(n)) = dimH0(Et(n)) − dimH1(Et(n)) = dimH0(Et(n)). By flatness,
χ(Et(n)) is constant. This means that the sheaf p∗Hom(OT , E(n)) is a vector
bundle. To compute its rank, note that, for every t ∈ T

deg(Et ⊗O(n)) = r deg(O(n)) + deg(Et),

and so the dimension of H0(Et(n)), which is the rank of p∗Hom(OT , E(n)), is

d = deg(Et(n)) + r(g − 1) = r deg(O(n)) + deg(E) + r(g − 1).

For every T , let Zn(T ) be the groupoid whose objects are pairs (E, φ), where
E ∈ ObUn(T ) and φ : O(n)d → E is an epimorphism, and the morphisms
between (E, φ) and (E′, φ′) are maps f : E → E′ such that f ◦ φ = φ′. Note
that Zn is actually an equivalence relation, rather than a groupoid (i.e. the
stabilizers of objects are trivial).

Lemma 2.3. Zn is representable by an open subscheme of the Quot-scheme.

Proof. Let E be a coherent sheaf over X. Recall that the Quot functor sends a
scheme S to

QuotE/X(S) = {(G,φ)|G is a sheaf over XS which is flat over S, and φ : ES → G is an epimorphism}.

Let F be the following functor:

F (S) = {(G,φ)|G is a sheaf over XS which is flat over XS , and φ : ES → G is an epimorphism}.

Zn is an open sub-functor of F , so it is enough to prove that F is repre-
sentable by an open sub-scheme of Quot.

Suppose we have a map S → QuotE/X , i.e. a coherent sheaf G over XS and
a surjection φ : ES → G. We need to show that the set of points s ∈ S such
that Gs is flat over Xs is open. Let p : XS → S be the projection. Let A ⊂ XS

be the locus where G is non-flat. A is closed, and so S \ p(A), which is the set
we are after, is open (note that X, and so p, is proper).

If (E, φ) ∈ Z(T ), then φ gives a map between OdT and p∗(E(n)). Let Yn(T ) ⊂
Zn(T ) be the collection of such (E, φ) such that this last map is an isomorphism.
It is clear that Yn is open in Zn, and hence in the Quot scheme. In particular,
it is representable.

Finally, we want to show that the natural map Yn → Un is a smooth surjec-
tion. In fact,

Lemma 2.4. The map Yn → Un is a GLd-torsor.

Proof. Let S → Un be an S-valued point. This is a vector bundle E over XS .
Lifting this point to Yn is, by definition, choosing an identification between OdS
and p∗(E). This set of identifications is a GLd torsor, as these are vector bundles
of degree d.
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3 Level Structure

Pick x ∈ X. For every n, let (nx) ↪→ X be the n’th infinitesimal neighborhood
of x in X, and let Bun(nx)

r X be the following functor:

Bun(nx)
r X(S) = {(E, φ)|E is a rank r vector bundle on XS and φ : E(nx)T

∼=→ Or(nx)T
}

Proposition 3.1. If n > m, then the map Bun(nx)
r X → Bun(mx)

r X is repre-
sentable.

Proof. Let S → Bun(mx)
r X be a map, i.e. a pair consisting of a vector bundle E

on XS together with an isomorphism φ : E(mx)S
→ Or(mx)S

. Let F be the fiber
product. For every scheme T , F(T ) is an equivalence relation, whose objects
are triples of

1. A map T → S.

2. A vector bundle F on XT and an isomorphism ψ : F(nx)T
→ Or(nx)T

.

3. An isomorphism ξ : ET → F .

such that φT = ψ(mx)T
◦ ξ(mx)T

. Equivalently, the objects are pairs consisting
of

1. A map T → S.

2. An isomorphism ψ : E(nx)T
→ Or(nx)T

.

such that the restriction of ψ to E(mx)T
is equal to φT . We want to show that this

functor is representable. For any k, consider the group scheme GL(E(kx)S
)—a

group scheme over (kx)S—and its restriction of scalars, Gk, to S. Denote the
kernel of the map Gn → Gm by Gnm. The functor F is a torsor over the group
scheme Gnm, and, therefore, representable.

Let pn : Bun(nx)
r X → BunrX be the projection.

Proposition 3.2. For every n there is N such that p−1
N Un ⊂ Bun(Nx)

r X is a
scheme.

Proof. Take n = 0 for example (the proof in general is the same). We want to
show that, if N is large enough, the functor

F (S) = {(E, φ)|E ∈ U0(S), φ : E(Nx)S

∼=→ Or(Nx)S
as O(Nx)S

-modules}

is representable.

Lemma 3.3. If N is large enough, then, for all E ∈ U0, global sections are
determined by their restriction to (Nx). More precisely, for every S and every
E ∈ U0(S), the restriction map p∗(E) → p∗(E(Nx)S

) is injective as a bundle
map.
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Proof. W.l.o.g we can assume that S is local. If N is large enough, then, by
Riemann Roch, dimH0(Es(−Nx)) = 0 for every s ∈ S, so any global section of
Es that vanishes to order N at x must be zero.

Suppose that N is as in the lemma. Given (E, φ) ∈ F (S), we map it to
(E, η), where η is the composition

η : p∗(E) res→ p∗(E(Nx)S
)
p∗φ→ p∗(On(Nx)S

) = ONrS .

The range of the map (E, φ) → (E, η), which we denote by f , is the following
functor:

G(S) = {(E, η)|E ∈ U0(S), η : p∗(E) ↪→ ONrS such that ONrS /η(p∗(E)) is flat}.

The representability of F follows from the following lemmas:

Lemma 3.4. G is representable.

Proof. G is isomorphic to the product of Y0 from the last lecture, and the Grass-
mannian of d-planes in CNr, twisted by the Isom(OdS , O

d
S)-torsor Isom(OdS , p∗(E)).

Lemma 3.5. f is a composition of an open embedding and a closed embedding.
In particular, it is representable.

Proof. It is enough to test the claim on local rings S. In this case, the claim
is that, for any vector bundle E ∈ U0(S) and any inclusion η : p∗(E) → ONrS ,
there is at most one isomorphism φ : p∗(ENx) → On(Nx)S

inducing η, and the
set over which there is such φ is locally closed. The uniqueness is clear, since
p∗(E) generates p∗(E(Nx)S

) as an O(Nx)S
-module. To prove the locally closed

condition, note that η is in the image if and only if it factors through the map
p∗(E) → p∗(ENx). Since the image of this map generates p∗(ENx) over ONx,
the requirements are

1. η(p∗(E)) generates Or(Nx) as a module over ONx.

2. The kernel of η coincide with the kernel of p∗(E)→ p∗(E(Nx).

The first condition is open by Nakayama’s lemma. The second condition is
clearly closed.
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