An Atlas For $\operatorname{Bun}_r(X)$

As told by Dennis Gaitsgory to Nir Avni

October 28, 2009

1 $\operatorname{Bun}_r(X)$ Is Not Of Finite Type

The goal of this lecture is to find a smooth atlas locally of finite type for the stack $\operatorname{Bun}_r(X)$ of rank-*r* vector bundles on a smooth projective curve X. Let's see first that it is impossible to find an atlas of finite type:

Theorem 1.1. thm:no.global.atlas There is no surjection from a scheme of finite type to $\operatorname{Bun}_r(X)$.

Actually, there are two reasons for this. The first is that the determinant of a vector bundle varies continuously in families, and since there are infinitely many components of Pic(X), it follows that $Bun_2(X)$ has infinitely many components. On top of that, I'll show now that each connected component is not of finite type.

Denote the structure sheaf of X by O. Fix an ample line bundle O(1)on X. For a vector bundle E, we denote $E(n) = E \otimes O(1)^{\otimes n}$. If S is a scheme, let $X_S = X \times S$, and let E_S be the pullback of E by the projection $X_S \to X$. Consider the rank-2 vector bundles $O(n) \oplus O(-n)$ as points of $\operatorname{Bun}_2(X)$. Theorem 1.1 follows from the following two theorems:

Theorem 1.2. thm:connected.SL For every n, there is a connected variety Y (actually, an affine space), a map $Y \to \text{Bun}_2(X)$, and two points $y_0, y_1 \in Y$, such that y_0 is mapped to $O \oplus O$, and y_1 is mapped to $O(n) \oplus O(-n)$.

After constructing an atlas, this means that all the $O(n) \oplus O(-n)$'s are in the same connected component.

Theorem 1.3. thm:infinite.type There is no map $Y \to \text{Bun}_2(X)$ from a scheme of finite type Y and points $y_n \in Y$, n = 0, 1, 2, ..., such that y_n is mapped to $O(n) \oplus O(-n)$.

I am going to use the following theorem of Serre:

Theorem 1.4. Let F be a sheaf on a curve X, and let O(1) be an ample line bundle on X.

1. (absolute version) If n is big enough then E(n) is generated by global sections, and $H^1(X, E(n)) = 0$.

2. (relative version) For every scheme S of finite type, if n is big enough, then $E_S(n)$ is generated by global sections, and $R^1p_*E(n) = 0$, where $p: X_S \to S$ is the projection.

Proof of Theorem 1.2. I want to show first that $F = O_X \oplus O_X$ is an extension of $O_X(-n)$ by $O_X(n)$. F(n) is globally generated by Serre's theorem. Therefore, there is a never-zero section $s \in \Gamma(F(n))$. This gives a short exact sequence

$$0 \to O_X \to F(n) \to F(n)/O_X = L \to 0.$$

Note that L must be a line bundle. By untwisting, we get

$$0 \to O_X(-n) \to F \to L(-n) \to 0.$$

By looking at the determinant, the last term must be $O_X(n)$.

Finally, the space of extensions of $O_X(n)$ by $O_X(-n)$ is the affine space $\operatorname{Ext}(O_X(n), O_X(-n))$.

Proof of Theorem 1.3. A map $Y \to \operatorname{Bun}_2 X$ is a rank 2 vector bundle E on X_Y . By Serre, there is n such that E(n) is globally generated, and hence E_y is globally generated for all y. But $E_{y_{n+1}}(n) = O(-1) \oplus O(2n+1)$ is not globally generated.

2 $\operatorname{Bun}_r(X)$ Is Locally Of Finite Type

On the other hand, it turns out that $\operatorname{Bun}_r(X)$ is an increasing union of Artin stacks of finite type. More precisely,

Theorem 2.1. thm:loc.fin.atlas There are open sub-functors $\mathcal{U}_n \hookrightarrow \operatorname{Bun}_r(X)$, varieties Y_n of finite type, and smooth surjective maps $Y_n \to \mathcal{U}_n$, such that \mathcal{U}_n are a cover of $\operatorname{Bun}_r(X)$.

As said in the beginning, the degree of the vector bundle is constant in each connected component. Let's fix this degree, and consider only vector bundles of a given degree. For every vector bundle E on X, if n is large enough then E(n)is generated by global sections and $H^1(X, E(n)) = 0$. Let \mathcal{U}_n be the moduli stack of bundles that satisfy these two conditions. More precisely, for every scheme T, let $\mathcal{U}_n(T)$ be the full sub-groupoid of $\operatorname{Bun}_r(X)$ whose objects are vector bundles E on X_T that are generated by global sections and such that $R^1p_*(E(n)) = 0$ (p is the projection $X \times T \to T$). By the theorem of Serre (in the version that applies to families), \mathcal{U}_n , as n runs over \mathbb{N} , cover $\operatorname{Bun}_r(X)$.

Lemma 2.2. \mathcal{U}_n is an open sub-functor of $\operatorname{Bun}_r(X)$.

Proof. The claim is that, for every scheme S and every vector bundle E on X_S , the set of points s in S such that E_s (which is the restriction of E to the fiber $X \times \{s\}$) is globally generated and has zero first cohomology, is open. The subset of S for which E_s is globally generated is clearly open. The subset of S for which $H^1(E_s) = 0$ is the complement of the support of R^1p_*E , and hence open.

Suppose that T is affine and connected, and let $E \in Ob \mathcal{U}_n(T)$. For every $t \in T$, the Euler characteristic of the restriction $E_t(n)$ of E(n) to $X \times \{t\}$ is $\chi(E_t(n)) = \dim H^0(E_t(n)) - \dim H^1(E_t(n)) = \dim H^0(E_t(n))$. By flatness, $\chi(E_t(n))$ is constant. This means that the sheaf $p_* \operatorname{Hom}(O_T, E(n))$ is a vector bundle. To compute its rank, note that, for every $t \in T$

$$\deg(E_t \otimes O(n)) = r \deg(O(n)) + \deg(E_t),$$

and so the dimension of $H^0(E_t(n))$, which is the rank of $p_* \operatorname{Hom}(O_T, E(n))$, is

 $d = \deg(E_t(n)) + r(g-1) = r \deg(O(n)) + \deg(E) + r(g-1).$

For every T, let $\mathcal{Z}_n(T)$ be the groupoid whose objects are pairs (E, ϕ) , where $E \in \operatorname{Ob} \mathcal{U}_n(T)$ and $\phi : O(n)^d \to E$ is an epimorphism, and the morphisms between (E, ϕ) and (E', ϕ') are maps $f : E \to E'$ such that $f \circ \phi = \phi'$. Note that \mathcal{Z}_n is actually an equivalence relation, rather than a groupoid (i.e. the stabilizers of objects are trivial).

Lemma 2.3. \mathcal{Z}_n is representable by an open subscheme of the Quot-scheme.

Proof. Let E be a coherent sheaf over X. Recall that the Quot functor sends a scheme S to

 $\operatorname{Quot}_{E/X}(S) = \{(G, \phi) | G \text{ is a sheaf over } X_S \text{ which is flat over } S, \text{ and } \phi : E_S \to G \text{ is an epimorphism} \}.$

Let F be the following functor:

 $F(S) = \{(G, \phi) | G \text{ is a sheaf over } X_S \text{ which is flat over } X_S, \text{ and } \phi : E_S \to G \text{ is an epimorphism} \}.$

 \mathcal{Z}_n is an open sub-functor of F, so it is enough to prove that F is representable by an open sub-scheme of Quot.

Suppose we have a map $S \to \operatorname{Quot}_{E/X}$, i.e. a coherent sheaf G over X_S and a surjection $\phi : E_S \to G$. We need to show that the set of points $s \in S$ such that G_s is flat over X_s is open. Let $p : X_S \to S$ be the projection. Let $A \subset X_S$ be the locus where G is non-flat. A is closed, and so $S \setminus p(A)$, which is the set we are after, is open (note that X, and so p, is proper).

If $(E, \phi) \in \mathcal{Z}(T)$, then ϕ gives a map between O_T^d and $p_*(E(n))$. Let $\mathcal{Y}_n(T) \subset \mathcal{Z}_n(T)$ be the collection of such (E, ϕ) such that this last map is an isomorphism. It is clear that \mathcal{Y}_n is open in \mathcal{Z}_n , and hence in the Quot scheme. In particular, it is representable.

Finally, we want to show that the natural map $\mathcal{Y}_n \to \mathcal{U}_n$ is a smooth surjection. In fact,

Lemma 2.4. The map $\mathcal{Y}_n \to \mathcal{U}_n$ is a GL_d -torsor.

Proof. Let $S \to \mathcal{U}_n$ be an S-valued point. This is a vector bundle E over X_S . Lifting this point to \mathcal{Y}_n is, by definition, choosing an identification between O_S^d and $p_*(E)$. This set of identifications is a GL_d torsor, as these are vector bundles of degree d.

3 Level Structure

Pick $x \in X$. For every n, let $(nx) \hookrightarrow X$ be the *n*'th infinitesimal neighborhood of x in X, and let $\operatorname{Bun}_r^{(nx)} X$ be the following functor:

 $\operatorname{Bun}_r^{(nx)} X(S) = \{(E,\phi) | E \text{ is a rank } r \text{ vector bundle on } X_S \text{ and } \phi : E_{(nx)_T} \xrightarrow{\cong} O_{(nx)_T}^r \}$

Proposition 3.1. If n > m, then the map $\operatorname{Bun}_r^{(nx)} X \to \operatorname{Bun}_r^{(mx)} X$ is representable.

Proof. Let $S \to \operatorname{Bun}_r^{(mx)} X$ be a map, i.e. a pair consisting of a vector bundle E on X_S together with an isomorphism $\phi : E_{(mx)_S} \to O_{(mx)_S}^r$. Let \mathcal{F} be the fiber product. For every scheme T, $\mathcal{F}(T)$ is an equivalence relation, whose objects are triples of

- 1. A map $T \to S$.
- 2. A vector bundle F on X_T and an isomorphism $\psi: F_{(nx)_T} \to O^r_{(nx)_T}$.
- 3. An isomorphism $\xi : E_T \to F$.

such that $\phi_T = \psi_{(mx)_T} \circ \xi_{(mx)_T}$. Equivalently, the objects are pairs consisting of

- 1. A map $T \to S$.
- 2. An isomorphism $\psi: E_{(nx)_T} \to O^r_{(nx)_T}$.

such that the restriction of ψ to $E_{(mx)_T}$ is equal to ϕ_T . We want to show that this functor is representable. For any k, consider the group scheme $\operatorname{GL}(E_{(kx)_S})$ —a group scheme over $(kx)_S$ —and its restriction of scalars, G_k , to S. Denote the kernel of the map $G_n \to G_m$ by G_m^n . The functor \mathcal{F} is a torsor over the group scheme G_m^n , and, therefore, representable.

Let $p_n : \operatorname{Bun}_r^{(nx)} X \to \operatorname{Bun}_r X$ be the projection.

Proposition 3.2. For every *n* there is *N* such that $p_N^{-1}\mathcal{U}_n \subset \operatorname{Bun}_r^{(Nx)}X$ is a scheme.

Proof. Take n = 0 for example (the proof in general is the same). We want to show that, if N is large enough, the functor

$$F(S) = \{ (E, \phi) | E \in \mathcal{U}_0(S), \phi : E_{(Nx)_S} \xrightarrow{\cong} O^r_{(Nx)_S} \text{ as } O_{(Nx)_S} \text{ -modules} \}$$

is representable.

Lemma 3.3. If N is large enough, then, for all $E \in \mathcal{U}_0$, global sections are determined by their restriction to (Nx). More precisely, for every S and every $E \in \mathcal{U}_0(S)$, the restriction map $p_*(E) \to p_*(E_{(Nx)s})$ is injective as a bundle map.

Proof. W.l.o.g we can assume that S is local. If N is large enough, then, by Riemann Roch, dim $H^0(E_s(-Nx)) = 0$ for every $s \in S$, so any global section of E_s that vanishes to order N at x must be zero.

Suppose that N is as in the lemma. Given $(E, \phi) \in F(S)$, we map it to (E, η) , where η is the composition

$$\eta: p_*(E) \xrightarrow{\operatorname{res}} p_*(E_{(Nx)_S}) \xrightarrow{p_*\phi} p_*(O_{(Nx)_S}^n) = O_S^{Nr}.$$

The range of the map $(E, \phi) \to (E, \eta)$, which we denote by f, is the following functor:

$$G(S) = \{ (E,\eta) | E \in \mathcal{U}_0(S), \eta : p_*(E) \hookrightarrow O_S^{N_r} \text{ such that } O_S^{N_r} / \eta(p_*(E)) \text{ is flat} \}.$$

The representability of F follows from the following lemmas:

Lemma 3.4. G is representable.

Proof. G is isomorphic to the product of \mathcal{Y}_0 from the last lecture, and the Grassmannian of d-planes in \mathbb{C}^{N_r} , twisted by the Isom (O_S^d, O_S^d) -torsor Isom $(O_S^d, p_*(E))$.

Lemma 3.5. *f* is a composition of an open embedding and a closed embedding. In particular, it is representable.

Proof. It is enough to test the claim on local rings S. In this case, the claim is that, for any vector bundle $E \in \mathcal{U}_0(S)$ and any inclusion $\eta : p_*(E) \to O_S^{Nr}$, there is at most one isomorphism $\phi : p_*(E_{Nx}) \to O_{(Nx)_S}^n$ inducing η , and the set over which there is such ϕ is locally closed. The uniqueness is clear, since $p_*(E)$ generates $p_*(E_{(Nx)_S})$ as an $O_{(Nx)_S}$ -module. To prove the locally closed condition, note that η is in the image if and only if it factors through the map $p_*(E) \to p_*(E_{Nx})$. Since the image of this map generates $p_*(E_{Nx})$ over O_{Nx} , the requirements are

- 1. $\eta(p_*(E))$ generates $O_{(Nx)}^r$ as a module over O_{Nx} .
- 2. The kernel of η coincide with the kernel of $p_*(E) \to p_*(E_{(Nx)})$.

The first condition is open by Nakayama's lemma. The second condition is clearly closed. $\hfill \Box$