
INFINITE-DIMENSIONAL LINEAR ALGEBRA, ETC.

DUSTIN CLAUSEN

Thanks to Dennis for explaining this stuff to me.

Orientation. Let’s start by remembering where we are and where we’re going.
Let X be a smooth, proper, connected curve over C and G a connected reductive
group over C. In the past few talks we heard about the Hitchin map

T ∗ BunG(X)
p−→ Hitch(X).

We noted a cool property of p: its induced map on functions hcl : Acl → Γ(T ∗ BunG,O)
is Poisson when Acl has the trivial Poisson structure and Γ(T ∗ BunG,O) has the
natural one. This raises the possibility of quantizing hcl, that is, finding filtered
algebras A and D with A commutative and a map h : A → D whose associated
graded recovers hcl. This is what we’ll be doing in the next little bit.

To get started, let’s recall what we used to prove that cool property. First, we
picked a point x ∈ X, and then we noted that the composition (the local Hitchin
map)

px : T ∗ BunG(X)
p−→ Hitch(X) ↪→ Hitchx(X),

which uniquely determines p, admits a purely formal description in terms of the
action of the group G(K̂x) on BunG,x(X). Using this description, we showed that
actually, if hclx : Aclx → Γ(T ∗ BunG,O) denotes the induced map on functions of px,
then this local hclx is Poisson with trivial bracket on the source.

So it makes sense to start by quantizing hclx – even more so because, just as
in the classical case, the local hx will uniquely determine the global h. And in
fact, we learned in one of Sam’s talks that this kind of quantization can be done
purely formally any time we have a central extension G̃(Kx) of G(K̂x) by Gm, a

line bundle L on BunG,x(X), and an extended action of G̃(Kx) on L satisfying the
nice “quantization conditions”.

Unfortunately, we won’t be able to get away with taking the trivial extension of
G(K̂x), and L won’t be trivial either; so actually, the goal for the rest of this talk
is to introduce this central extension, this line bundle, and the action of the one on
the other. Later we will return to the details of the local quantization, in particular
to the verification of the quantization conditions.

Infinite-Dimensional Linear Algebra. We’ll start with the construction of
the central extension of G(K̂x) ' G((t)). This will come from the fact that if
V is an infinite-dimensional vector space — in the right context — then GL(V )
automatically gets a canonical central extension by Gm. Then, for instance, taking
V = g((t)) and pulling back by the adjoint action G((t))→ GL(V ) we will get the
desired extension.

Date: wha.
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2 DUSTIN CLAUSEN

To explain this picture, we need to introduce the right category of infinite-
dimensional vector spaces for V to live in, and be able to construct GL(V ) at
least as a group sheaf on AfffppfC .

The right category will be that of locally linearly compact vector spaces, also
known as Tate vector spaces. Here is the definition:

Definition 1. A locally linearly compact vector space over a field k is a vector
space V over k together with a nonempty family Gr of vector subspaces L ⊆ V ,
called lattices, satisfying the following conditions:

(1) Gr filters down to 0 and up to V ;
(2) Any L1 and L2 in Gr are commensurable;
(3) Gr is closed under sandwiches;
(4) V is complete: the natural map V → lim

←−
L∈Gr

V/L is an isomorphism.

The third property isn’t essential: we can always pass to the sandwich closure.

Example 1. If V is any vector space, we can take Gr to be the family of its finite-
dimensional subspaces. This kind of example is called discrete. Equivalently, V is
discrete if and only if 0 ∈ Gr.

Example 2. If {Vi}i∈I is any pro-system of finite-dimensional vector spaces, we
can let V be its inverse limit and call a lattice anything containing the kernel of a
projection V → Vi. This kind of example is called linearly compact. Equivalently,
V is linearly compact if and only if V ∈ Gr.

Example 3. There is only one possible structure of a locally linearly compact
space on a finite dimensional V , and it is both discrete and linearly compact.
Conversely, a discrete and linearly compact space is finite dimensional.

Example 4. We can take V = k((t)) and call a lattice any subspace sandwiched
between tnk[[t]] and t−nk[[t]] for some n ∈ N. This k((t)) is neither discrete nor
linearly compact.

Now it’s time to make llcvs into a category. But actually, we should do more:
we need to be able to talk about, not just morphisms of llcvs, but families of
morphisms of llcvs parametrized by an arbitrary base scheme; we will recover the
ordinary category structure by taking k-valued points. Here is the definition:

Definition 2. Let V and V ′ be llcvs over a field k. Define an fppf sheaf Hom(V, V ′)
on Affk by letting its value on A ∈ Affk be the set

lim
←−

L′∈Gr′

lim
−→

L∈Gr

HomA((V/L)⊗A, (V ′/L′)⊗A).

Equivalently, Hom(V, V ′) is the set of continuous A-module maps f : V ⊗̂A →
V ′⊗̂A, where

V ⊗̂A := lim
←−

L∈Gr

((V/L)⊗A)

gets its inverse limit topology.

These Hom sheaves admit composition laws making llcvs into a category enriched
in fppf sheaves on Affk.

We can also define an fppf sheaf Gr; essentially, we pick up new lattices over A
by taking the sandwich closure of the old lattices L⊗̂A. Here is the definition:
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Definition 3. Let V be a llcvs over k. Define an fppf sheaf Gr on Affk by letting
its value on A ∈ Affk be defined by

Gr(A) := lim
−→

L0⊆L1

Summ((L1/L0)⊗A),

where for an A-module M we let Summ(M) denote the set of summands of M .
Equivalently Gr(A) is the set of co-flat submodules N of V ⊗̂A for which there

exists a lattice L such that L⊗̂A ⊆ N with N/(L⊗̂A) finitely presented.

Henceforth Gr will refer to the sheaf and Gr(k) will be the original set of lattices
in V . With this definition we have that if L ⊆ L′ are lattices in Gr(A) then L′/L
is finitely-presented flat (the in-families analog of finite-dimensional), and that any
two L1, L2 ∈ Gr(A) are commensurate in a similar sense.

The reason for introducing this Grassmannian sheaf Gr instead of just working
with the lattices L⊗̂A is that Gr is functorial: it carries a natural action of the
group sheaf GL(V ) := Isom(V, V ). This fact will be crucial for the proof of the
following fundamental proposition:

Proposition 1. Let V be a llcvs. Then there is a canonical homomorphism of
group stacks

det : GL(V )→ BGm.

Let me explain the statement a little bit. Gm is an abelian group sheaf; this
means that the multiplication map Gm ×Gm → Gm is actually a group homomor-
phism, and so we can apply B to it to get BGm×BGm ' B(Gm×Gm)→ B(Gm).
This then gives a “commutative group stack” structure on BGm, that is, it makes
each BGm(A) a symmetric monoidal groupoid and each pullback a symmetric
monoidal functor. In familiar terms, this symmetric monoidal structure is just
given by tensor product of line bundles, or, even more explicitly, by multiplying
transition functions.

Then what we are requiring of det is that it be a monoidal functor on each
A-valued point, compatible with pullbacks (where GL(V ) is a discrete monoidal
stack). Note that this is more data than just an ordinary map of stacks GL(V )→
BGm, since there are isomorphisms to be specified proving that our functor is
monoidal (namely, the det(gg′) ' det(g) ⊗ det(g′)). In fact, while a map of stacks
G→ BGm just corresponds to a Gm-bundle on G, a map of group stacks G→ BGm

corresponds to giving a group law on that Gm-bundle, compatibly with the one on
G and the action of Gm. More precisely,

Exercise 1. Let G be a group sheaf and E an abelian group sheaf. Show that
taking the kernel gives rise to an equivalence between homomorphisms G → BE
and central extensions E → G′ → G of G by E.

So, in fact, Proposition 1 will give us a canonical central extension GL(V )′ of
GL(V ) by Gm, as we were shooting for.

Now let’s actually prove Proposition 1. Here is the idea: just as the ordinary
determinant map GL(V )→ Gm (for V finite-dimensional) is perhaps best seen as
a consequence of the existence of a canonical Gm-torsor attached to any V (namely
the top exterior power), our det : GL(V )→ BGm will be explained by the fact that
any llcvs has a canonical BGm-torsor attached to it. Then the required det will
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come from functoriality: since BGm is abelian, the automorphisms of any BGm-
torsor are canonically identified with BGm itself (acting via the structural action
of the torsor).

The reason we get a BGm-torsor out of V is basically the following: we can
“subtract” two lattices L ⊆ L′ in Gr(A) and get a line bundle on A, namely
Λtop(L′/L) =: d(L′/L), and this operation comes with a canonical identification
d(L′′/L′)⊗ d(L′/L) ' d(L′′/L) when L ⊆ L′ ⊆ L′′.1 Formally, though, we proceed
as follows:

Definition 4. Let V be a llcvs. Define an fppf sheaf (of groupoids) on Affk,
the determinant torsor D(V ), by having its sections on A be maps of sheaves d :
Gr|A → BGm|A together with, for all B over A and L ⊆ L′ ∈ Gr(B), isomorphisms
d(L)⊗ d(L′/L) ' d(L′), satisfying a compatibility for L ⊆ L′ ⊆ L′′.

In this definition it is in fact equivalent to consider just the global sections
d : Gr(A) → BGm(A) and not the whole map of sheaves; this is because, for
A → B, the sandwich-closure of the image of Gr(A) in Gr(B) is all of Gr(B),
and so we can uniquely formally extend the definition of d to Gr(B) using the
compatibilities we already have. We will work with this alternate description of
D(V )(A) because it lets us carry less baggage around, but one should remember
the original definition to see the presheaf structure.

Now, D(V ) was called the determinant torsor, so we should say why it’s a torsor.
Well, there is a pointwise action of BGm onD(V ), and actually I claim that it makes
D(V ) into a trivial torsor, a trivialization being determined by choosing a lattice.
Indeed, given a lattice L, we have a map D(V )→ BGm given by evaluation at L;
it is clearly BGm-equivariant, and one can check that it is both fully faithful and
essentially surjective (i.e. that such a d is uniquely determined by what it does on
L) using the fact that any two lattices are commensurate.

So D(V ) is a BGm-torsor, and by functoriality we do get the desired det :
GL(V )→ Aut(D(V )) ' BGm; this finishes the proof of Proposition 1.

Note that in the above proof we showed that choosing a lattice in V gives a
trivialization of D(V ). There is also another way to get a trivialization, by choosing
what’s called a co-lattice in V . Basically, a co-lattice is just something that’s nearly
a complementary summand to all lattices:

Definition 5. Let V be a llcvs and A ∈ Affk. A co-lattice in V over A is a
flat submodule Γ ⊆ V ⊗̂A such that for some (equivalently, all sufficiently small)
L ∈ Gr(A) we have that Γ ∩ L = 0 and V ⊗̂A/(Γ + L) is finitely-presented flat.

Note that co-lattices form a presheaf on Affk, via Γ 7→ Γ⊗A B.
Now, why do these guys also trivialize D(V )? Well, since D(V ) is a torsor, to

trivialize is just to give a section; so the claim is that any co-lattice Γ gives rise to
a dΓ : Gr(A) → BGm(A) as in Definition 4. Well, for sufficiently small lattices L
we will set

dΓ(L) = d(V ⊗̂A/(Γ + L))−1.

This has the right compatibilities for L ⊆ L′, and one can argue that it then extends
uniquely to a dΓ defined for all lattices2; instead, however, we will give an alternate

1these identifications moreover satisfying various natural compatibilities; we should really be

working in K≤1(A)...
2for symmetry’s sake, I’ll mention that for all sufficiently large lattices L we’ll have dΓ(L) =

d(Γ ∩ L)
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formula which works for every lattice L, namely,

dΓ(L) = d(Γ→ V ⊗̂A/L).

Here on the right we are taking d of a complex; what does that mean? Well, to make
sense of it requires the complex to be perfect3. For a perfect complex C ·, by d(C ·)
one means, represent C · as a bounded complex of finitely-presented flats, then take
the alternating tensor power of the terms. This d of a complex is well-defined and
is multiplicative in distinguished triangles, with suitable compatibilities (briefly, it
factors through K≤1(Perf(A)), where here by Perf(A) we mean the right kind of
enhancement of the triangulated category of perfect complexes...).

We should then explain why Γ → V ⊗̂A/L is perfect. Well, certainly if L is
sufficiently small it is so, being quasi-isomorphic to just V ⊗̂A/(Γ + L) sitting in
degree 1; then I claim that Γ→ V ⊗̂A/L is perfect for all lattices L if and only if it
is so for one lattice L. Indeed, this follows from the distinguished triangle

(Γ→ V ⊗̂A/L)→ (Γ→ V ⊗̂A/L′)→ (V ⊗̂A/L→ V ⊗̂A/L′)→

for L ⊆ L′ and the fact that any two lattices are commensurate. (Note that the
last term in this triangle is quasi-isomorphic to just L′/L).

The last thing we need to explain is why we get the right compatibilities with
this extended definition of dΓ. But this also follows from the above distinguished
triangle, and the multiplicativity of d in distinguished triangles.

Oh, and another important technical point is that this dΓ commutes with pull-
backs; this is what necessitated Γ being flat.

Thus we have explained why co-lattices also trivialize D(V ). Now, what’s the
upshot of all of this? Well, the fact that either a lattice or a co-lattice can trivialize
D(V ) translates into the following:

Claim 1. Let V be a llcvs and A ∈ Affk. If V0 is either a lattice or a co-lattice in V
over A, then the homomorphism det : GL(V )→ BGm admits, over A, a canonical
trivialization when restricted to GL(V ;V0), the subgroup sheaf of automorphisms g
satisfying gV0 = V0.

Now let’s apply this stuff to get our action.

The action. From now on, for simplicity of notation I won’t write as if I’m
working over arbitrary A, even though subtextually I am. Recall x ∈ X our pointed
curve, and let n ∈ N. The important llcvs for us will be V := K̂x

⊕n
, where we

call each Lm := {f ∈ V | the pole orders of f are no worse than m} a lattice, and

then take the sandwich closure (c.f. Example 4). For instance, L := L0 = Ôx
⊕n

is
a canonical lattice. But moreover, any E ∈ Bunn,x(X) (viewed as a vector bundle
of rank n with formal trivialization at x) gives rise to a co-lattice in V , namely
Γ := Γ(X \ x, E), mapping in via

Γ(X \ x, E) ↪→ Γ(K̂x, E) ' V,

the last isomorphism coming from the formal trivialization at x.

3i.e. to satisfy any of the following equivalent conditions: 1. To be quasi-isomorphic to a

bounded complex of finitely-presented flat modules; 2. To be in the smallest triangulated subcat-
egory of D(A) containing A and closed under shifts and retracts; 3. To be dualizable in the tensor

structure on D(A); 4. To be a compact object of D(A).
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Why is this a co-lattice? Well, we need to find a lattice L for which Γ ∩ L = 0
and V/(L+Γ) is finite-dimensional, but let me leave that aside for the moment, and
calculate what dΓ(L) would be if Γ were a co-lattice. For this I ought to identify the
complex Γ→ V/L; and indeed I claim that it is simply RΓ(E), the total cohomology
complex of E . To check this, let j : X \x→ X be the open inclusion and i : x̂→ X
the inclusion of the formal neighborhood of x in X, and consider the short exact
sequence of quasi-coherent sheaves on X

0→ E → j∗j
∗E → i∗(V/L)→ 0

(regular functions go to functions with pole at x go to “what pole was that, ex-
actly?”), the map j∗j

∗E → i∗(V/L) being explained just like the inclusion Γ ⊆ V
above. Since j is both flat and affine and i is affine, we can also read this as a
distinguished triangle (with all the operations being derived); then taking RΓ and
using the fact that X \ x and x̂ are affine we find a distinguished triangle

RΓ(E)→ Γ(X \ x; E)→ V/L→,

the last two complexes just sitting in degree zero; this proves the claim.
Now, what happens here if use an element g ∈ GLn(K̂x) to change the gluing

data of E in the puncured disk at x? All that changes in the above is that the co-
lattice Γ gets replaced by g−1Γ; therefore, we find quasi-isomorphisms of complexes

(ΓE → V/gL) ' (g−1ΓE → V/L) ' (ΓgE → V/L) ' RΓ(gE).

Here we can draw two consequences: first of all, Γ is indeed a co-lattice (and
hence all of these complexes are perfect): choosing g to be multiplication by a
sufficiently high power m of a uniformizer at x and looking at cohomology in the
above complexes, we find Γ ∩ gL ' H0(X; gE) = H0(X; E(−m)) = 0 by Serre
vanishing, and then similarly V/(Γ+gL) ' H1(X; E(−m)) will be finitely-presented
flat by cohomology and base-change, as required. But secondly, taking determinants
on both sides of this quasi-isomorphism we find dΓ(gL) ' dRΓ(gE); on the other
hand, though, dΓ(gL) ' det(g)⊗dΓ(L) ' det(g)⊗dRΓ(E) by definition of det, and
hence we find (and here is the fundamental isomorphism)

dRΓ(gE) ' det(g)⊗ dRΓ(E),

with compatibilities when g and g′ multiply and under pullback.
Now, what does this mean in terms of our central extension GLn(K̂x)′, which,

recall, formally came from the det : GLn(K̂x)→ BGm which appears in the above
formula? Well, it precisely means that GLn(K̂x)′ acts on the determinant line
bundle dRΓ on Bunn,x defined by

(E , trivx) 7→ d(RΓ(E)).

Note that the trivialization does not enter into the definition here, so actually dRΓ
is pulled back from just Bunn; we’ll also give it the same name there.

Here we can remark the necessity of working with perfect complexes instead of
just sheaves: the individual cohomology sheaves H0(E) and H1(E) are not neces-
sarily finitely-presented flat, since their ranks can jump in families. It is only the
object RΓ(E) that behaves like a real family over Spec(A) (formally, it is compatible
with the formation of pullbacks), and which we can legitimately take d of.
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So we have some kind of action of a central extension on a line bundle, namely
GLn(K̂x)′ acts on dRΓ over the space Bunn,x. Now, though, let’s bring our reduc-
tive group G into play. We have the adjoint map

G→ GL(g),

which induces maps BunG → BunGL(g) and BunG,x → BunGL(g),x, as well as
G(K̂x) → GL(g)(K̂x), all of these being compatible in the evident sense; therefore
we can pull back our action of GL(g)(K̂x) on BunGL(g),x along these maps, and we
obtain the following:

Proposition 2. Let x ∈ X be our pointed curve and G our reductive group. Let L
denote the line bundle on BunG,x(X) defined by (P, trivx) 7→ d(RΓ(X;P ×G g)),

and let G̃(Kx) → G(K̂x) denote the pullback of the Gm-extension GL(g ⊗ K̂x)′ →
GL(g ⊗ K̂x) (gotten from the determinant homomorphism of Proposition 1) along
the adjoint action.

Then there is a canonical extension of the action of G(K̂x) on BunG,x to an

action of G̃(Kx) on L, for which the central Gm acts as it should.

Note that L is actually pulled back from a bundle ω on BunG; in fact, ω is noth-
ing but the canonical bundle of BunG, that is, the determinant of the cotangent
complex of BunG.

More explicitly. So we have our action of G̃(Kx) on the line bundle L on

BunG,x. Now, we can call g̃⊗Kx the Lie algebra of G̃(Kx); it is a central extension
of g ⊗ K̂x by the one-dimensional Lie algebra. What we’re actually going to be
concerned with is not so much the action of the group G̃(Kx) on L, but the induced
map from the universal enveloping algebra of g̃⊗Kx to Diff(L,L). Therefore it
behooves us, at least morally, to get a more explicit description of this Lie algebra
extension.

And in fact this can be done:

Proposition 3. g̃⊗Kx is a Kac-Moody extension of g⊗K̂x: it carries a canonical
splitting (as vector spaces) for which the corresponding 2-cocycle is

(X ⊗ f, Y ⊗ g) 7→ 〈X,Y 〉 · res(fdg),

where the pairing on the right is the Killing form.

To make this calculation we first retreat back to the generality of an arbitrary
llcvs V and try to understand the central extension of Lie algebras gl(V )′ → gl(V )
induced by GL(V )′ → GL(V ). The first thing to say is that, as expected, gl(V )
identifies with End(V )(k), and is a Lie algebra in llcvs; this is the context we’ll be
working in from now on.

Now, if we let gl(V )` (resp. gl(V )γ) denote the subset of gl(V ) consisting of opera-
tors whose image is contained in a lattice (resp. a co-lattice), we see that our central
extension gl(V )′ → gl(V ) is canonically trivialized on both gl(V )` and gl(V )γ : in-
deed, if for instance X ∈ gl(V )` has image contained in L, then X ∈ Lie(GL(V ;L)),
and one sees that the image of X in Lie(GL(V )′) under the canonical trivializing
section GL(V ;L)→ GL(V )′ is independent of L.
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To get mileage from these two trivializations we should assume that V admits
some decomposition V = L⊕Γ into a lattice plus a co-lattice4; then we will further-
more have gl(V ) = gl(V )` + gl(V )γ , and so the k-central extension gl(V )′ → gl(V )
is uniquely determined by the two above canonical trivializations together with the
“gluing datum” gl(V )` ∩ gl(V )γ → k which is the difference between them on the
intersection.

What is this difference? Well, gl(V )` ∩ gl(V )γ is just the operators with finite-
dimensional image, and I claim that the map is just the ordinary trace. Indeed,
this is just the derivative of the easy-to-check fact that if g ∈ GL(V ;L)∩GL(V ; Γ),
then the difference between the two canonical trivializations of det(g) is det(g|Γ∩L) ·
det(g|V/(Γ+L))−1 (here, ordinary determinant of an operator on a finite-dimensional
vector space).

Now we should use this information to calculate a 2-cocycle. Let V = K̂x
⊕n

as above, and choose a uniformizer t to get a decomposition V = L ⊕ Γ, where
L = Ôx

⊕n
and Γ consists of Laurent tails. Then we can decompose gl(V ) =

gl(V )L ⊕ gl(V )Γ where gl(V )W denotes the operators with image contained in W ,
and the canonical splittings of gl(V )′ → gl(V ) on gl(V )L and gl(V )Γ combine
to split gl(V )′ → gl(V ) itself as a map of vector spaces; furthermore, the above
considerations imply that the corresponding 2-cocycle is given by

(X,Y ) 7→ tr([AL, BL]− [A,B]L),

where by AL we mean the projection of A to gl(V )L, etc.
It is not difficult to calculate the above expression when we pull back to gln⊗K̂x:

we find that there the 2-cocycle is given by

(X ⊗ f, Y ⊗ g) 7→ tr(XY ) · res(fdg),

where, recall, res(fdg) stands for the coefficient of t−1 in f(t)g′(t). Under the ad-
joint action, this pulls back to the statement of Proposition 3, moduli the claim of
canonicity; but the canonicity follows from the fact that the adjoint action factors
through sln, where the splitting giving the cocycle is automatically unique because
sln is perfect, and hence has no characters.

Fun stuff with llcvs and curves. Above we shot straight for the action of
G̃(Kx) on L; but if we linger a little bit along the way, we come across some fun
stuff. N.B. As far as I know what follows has no real bearing on the rest of the
seminar.

Firstly, above we singled out a point x ∈ X; it’d be much better not to make
such a choice. Actually we should also let ourselves have finitely many points
in play, because we can’t always trivialize a bundle over X \ x. The canonical
llcvs to consider when we allow ourselves to select finitely many points of X for
consideration is the llcvs of adeles:

Definition 6. Let X be our curve. For a finite subset S ⊆ X, define the vector
space of partial adeles

ÂS :=
∏
x∈S
K̂x ×

∏
x6∈S

Ôx,

4This is no assumption under the axiom of choice; one simply splits off a lattice. In practice,

though, we’ll get such a splitting by choosing a uniformizer at x, so we don’t need this abstract
existence argument.
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and the llcvs of adeles
Â := lim

−→
S

ÂS ,

where we make each
∏
x∈S Ln×

∏
x6∈S Ôx (as S and n vary) a lattice. For an f ∈ Â,

we denote by fx ∈ K̂x its xth component.

Now, as always we have our determinant map det : GL(Â⊕n) → BGm, and we
can pull it back to GLn(Â)→ BGm. The first claim is then that for f ∈ GLn(Â),
we have a canonical identification

det(f) ' ⊗x∈Xdet(fx).

Now, this will be true and trivial as long as we can say what we mean in the right
way. The infinite tensor product makes sense because fx ∈ GLn(Ôx) for almost all
x, and so det(fx) is canonically trivialized. But there’s still an issue, which is how
to make sure that the ordering of the tensor product canonically doesn’t matter.

And indeed this is a real issue: as we’ve set it up, we can only get an isomorphism
which is canonical up to sign. The problem is basically that if you have V = V1⊕V2

(finite-dimensional here), then the identification d(V ) ' d(V1)⊗ d(V2) depends on
which order we consider V1 and V2 in. To fix this, we need to remember at least
the Z/2-graded dimension of our line bundles and to use the Z/2-graded sign rule
in our symmetric monoidal structure. But actually we might as well remember the
whole Z-graded dimension of our line bundles, since the formalism will still work
out with that extra information.

So here’s the deal: instead of the symmetric monoidal stack BGm of ordinary
lines, from now on we’ll consider the symmetric monoidal stack BGgr

m of graded
lines: its value over A ∈ Affk is the groupoid of pairs (L, n) where L is a line
bundle on Spec(A) and n is a locally constant function on Spec(A) with values
in Z, and the symmetric monoidal structure incorporates the sign rule. Given a
finitely-presented flat module M (or a perfect compex...), we redefine d(M) as an
element of BGgr

m by d(M) = (ΛtopM, rk(M)); we still have all the compatibilities,
and so we get a canonical group homomorphism

det : GL(V )→ BGgr
m

for any llcvs V . Note that there are canonical maps BGgr
m → Z and BGgr

m → Gm;
the former is symmetric monoidal, but the latter is merely monoidal.

Then we do have the canonical isomorphism det(f) ' ⊗x∈Xdet(fx) in BGgr
m .

The next claim is that k(X)⊕n is a co-lattice in Â⊕n; this is checked as before,
with a little cohomology argument. This implies that det : GLn(Â) → BGgr

m is
canonically trivialized when restricted to GLn(k(X)). Similarly det is canonically
trivialized on GLn(

∏
x∈X Ôx); hence it descends to give a graded line

Bunn ' GLn(k(X))\GLn(Â)/GLn(
∏
x∈X
Ôx)→ BGgr

m .

What is this graded line? Well, a first guess would be that it’s just the (graded)
determinant of the cohomology. But this can’t be, because det(id) is trivial and so
our graded line is trivial on O⊕n. But it’s the next best thing: one can easily check
as before that it just sends

E 7→ d(RΓ(E))⊗ d(RΓ(O⊕n))−1.
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This formula tells us a way of computing the right-hand side purely locally: given
a vector bundle E of rank n, we first trivialize it over k(X) and formally trivialize
it at every x ∈ X; then the difference between E and O⊕n is given by a “transition
function” g ∈ GLn(Â), and we just take the determinant of g, a process which can
be done locally by the above product formula.

Even for n = 1, this tells us a lot: it has three very classical consequences: the
Riemann-Roch formula, Weil’s reciprocity law, and the sum of residues formula.
Let’s see why.

The Riemann-Roch formula comes about when we forget about the line bundle
part of BGgr

m and just remember the dimension: then we have det(gx) = ordx(gx),
and so

det(g) =
∑
x∈X

ordxgx;

then the fact that this is trivial on GL1(k(X)) is just the fact that the zeros minus
the poles of a rational function is trivial; and the above “line bundle” is just L 7→
χ(L)− χ(O), and the above calculation gives the Riemann-Roch formula

χ(L)− χ(O) = deg(L),

since the degree of a line bundle is just the zeros minus poles of any rational
trivialization.

To deduce Weil Reciprocity, we need to remember the graded lines. Here’s how
it goes: the determinant map det : GL1(K̂x)→ BGgr

m is, recall, a monoidal functor
on k-valued points; however, both the source and target are in fact symmetric
monoidal, so one can ask what the obstruction is to det being symmetric monoidal.

Here is the setup: let C and D be symmetric monoidal groupoids, and F :
C → D a monoidal functor between them. Recall that a symmetric monoidal
groupoid has exactly three invariants: there is π0, the abelian group of isomorphism
classes of objects; π1, the abelian group of automorphisms of the unit object (or the
automorphisms of the identity functor, or the automorphisms of any object; there
are canonical identifications), and finally a “Postnikov invariant” k : π0⊗Z/2→ π1

connecting them, which sends the isomorphism class of X to the automorphism of
X ⊗ X given by the braiding on our category. For instance, for GL1(K̂x)(k) we
have π0 = K̂x

∗
and π1 = 0, whereas for BGgr

m (k) we have π0 = Z and π1 = k∗ and
k(n) = (−1)n.

Now, what is the obstruction to F : C → D being symmetric monoidal? Well, to
be symmetric monoidal means that for anyX,X ′ ∈ C, we have F (bX,X′) = bFX,FX′ ,
where b stands for the braiding; so the obstruction is just a pairing

〈·, ·〉 : π0(C)× π0(C)→ π1(D)

given by (X,X ′) 7→ F (bX,X′) ◦ (bFX,FX′)−1.
But what properties does 〈·, ·〉 have? Well, certainly

〈X,X〉 = k(FX)− Fk(X);

but I furthermore claim that 〈·, ·〉 is bilinear and anti-symmetric. To see these
facts, it is convenient to make the following construction: given any X1, . . . , Xn ∈
C and any σ ∈ Sn, we can let 〈X1, . . . , Xn;σ〉 ∈ π1(D) measure the difference
between applying σ to X1 ⊗ . . . ⊗ Xn and then applying F , or going the other
way around. Then we can see that this extended form is multiplicative in σ and
satisfies another multiplicative compatibility (relating different n’s) if σ = σI

∐
σJ
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along some partition {1, . . . , n} = I
∐
J ; then we have 〈X,X ′〉 = 〈X,X ′; flip〉, and

the bilinearity and anti-symmetry follow easily from the relations of the extended
form.

Applied to det, this gives an antisymmetric bilinear form

〈·, ·〉 : K̂x
∗
⊗ K̂x

∗
→ k∗;

it is called the tame symbol, and can be explicitly given by

〈f, g〉 = (−1)ord(f)ord(g) f
ord(g)

gord(f)
(x).

This is actually a simple calculation given the formal properties we’ve etablished:
one can choose a uniformizer t and remember that we knew a priori that our pairing
is trivial when both f and g stabilize Ôx to essentially reduce to the case f ∈ Ôx

∗
,

g = t−1, which can be done by hand.
Then the fact that the adelic det is trivial when restricted to the function field

gives us Weil’s formula: for f, g ∈ k(X), we have∏
x∈X
〈fx, gx〉x = 1.

As for the residue theorem, one can make a similar deduction using gl1 instead of
GL1.
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