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The purpose of this talk is to introduce DX−schemes (and the particular
example of jets) and then link them to comformal blocks. In this talk, all
algebras will be commutative and Sym will always denote SymOX

. However,
all Hom and ⊗ will be understood over the base field k.

1 DX−schemes

Fix a base field k and a smooth scheme X over k. A DX−scheme is a
scheme equipped with a flat connection over X. For an affine scheme, this
is equivalent to being the spectrum of a DX−algebra. For example, affine
DX−schemes of finite type have the form:

Spec((Sym DX ⊗OX
F)/I), (1)

for some coherent OX−sheaf F and some DX−ideal sheaf I. Throughout
this talk, we will often pass freely from DX−algebras to affine DX−schemes
and vice-versa (the two categories are opposite in the usual sense).

A very important example of an affine DX−scheme is the following:

Spec(Sym M),

for any DX−moduleM. This suggests that DX−algebras are generalizations
of DX−modules, which is supported by the following fact: DX−modules
parametrize solutions of linear differential equations, while DX−algebras
parametrize solutions of nonlinear differential equations.
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More precisely, suppose we take the DX−scheme (Sym DnX)/I, where the
ideal I is generated (locally) by “polynomials” P1, ..., Pk ∈ Sym DnX . Then
giving a map of DX−modules:

(Sym DnX)/I −→ OX

is the same as giving a collection of functions f1, ..., fn which satisfy the
system of nonlinear differential equations:

Pi(f1, ..., fn) = 0.

A map of DX−schemes is one which is a morphism of DX−algebras at
the level of coordinate rings. A more involved notion is the following:

Definition 1 Given a morphism of DX−schemes Y → Z, the functor of
horizontal sections HorSect(Z,Y) is given by:

S ∈ Sch −→ HorHomZ(Z × S,Y).

HorHom consists of horizontal morphisms, i.e. morphisms of DX−schemes.

The above definition is completely analogous to that of the functor Sect
defined by Dennis in his Sep 17 lecture, by replacing OX with DX . Note
that for a morphism of OX−algebras to be a morphism of DX−algebras is
a closed condition. Since the functor of sections is representable (proved on
Sep 17), it follows that the functor of horizontal sections is also representable.
Moreover HorSect(Z,Y) ↪→ Sect(Z,Y) is a closed embedding.

2 Jets

In this section, we will show that the forgetful functor DX-sch −→ OX-sch
has a right adjoint, which is called the Jet functor:

J : OX-sch −→ DX-sch, HomDX
(Z,JY) = HomOX

(Z,Y), (2)

for any OX−scheme Y and any DX−scheme Z. At the level of algebras, this
functor will be a left adjoint to the forgetful functor:

J : OX-alg −→ DX-alg, HomDX
(JA,B) = HomOX

(A,B), (3)
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for any OX−algebra A and any DX−algebra B. Naturally, Spec JA =
J (Spec A). Basically, there is only one natural construction which will make
J into a left adjoint:

JA = Sym(DX ⊗OX
A)/I, (4)

where I is the DX−ideal generated by Ker(Sym A → A). In other words,
JA is the DX−algebra generated by A. Setting Z = X in (2) gives us the
following:

Proposition 1 For any OX−scheme Y, we have:

HorSect(X,JY) = Sect(X,Y).

Example 1 For any OX−module N , we have:

J (Sym N ) = Sym(DX ⊗OX
N ).

Example 2 Let X be a smooth projective curve, C = Spec((Sym g)G) as
in our previous talks, and consider the fiber bundle CωX

= C ×k∗ ωX on X.
Then we have:

HorSect(X,JCωX
) = Hitch(X),

and

(JCωX
)x = Hitchx(X),

for any closed point x ∈ X. The first equality follows from Proposition 1,
while the second one follows from Proposition 2 below.

Let us now prove that the definition of jets in (4) is the correct one, i.e.
that it satisfies property (3). For this, consider the following constructions:

(φ : JA → B) −→ (φ′ : A → B), φ′(a) = φ(1⊗ a),

(φ′ : A → B)←− (φ : JA → B), φ(d⊗ a) = d · φ′(a),

where φ denotes any map of DX−algebras, while φ′ denotes any map of
OX−algebras. It’s easy to check that the assignments φ → φ′ and φ′ → φ
are well-defined, are inverses to each other and are natural in A and B.
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3 Why are they called Jets?

This section is not just motivated by ethymological questions, but will actu-
ally be very useful for us. Our purpose will be to prove the following result:

Proposition 2 Pick a closed point x ∈ X, and let Y be any OX−scheme.
Then the fiber of JY over x is given by:

(JY)x = Sect(Spf Ôx,Y). (5)

where Ôx is the completed local ring of X at x.

Let us recall that for any k−scheme S, we define:

(Spf Ôx)× S = lim−→
n

((Spec Ox/mn
x)× S) 6= (Spec Ôx)× S.

Therefore, the structure ring of Spf Ôx × Spec C is

Ôx⊗̂C := lim←−
n

((Ox/mn
x)⊗ C) 6= Ôx ⊗ C.

The above proposition makes the terminology clear, since a section from the
formal disk to Y is, by definition, an Y−jet at x. By naturality, it will
be enough to prove the proposition in the affine case Y = Spec A. In the
following, C will denote any algebra and B will denote any DX− algebra. I
claim the the following functorial bijections hold:

Hom(Spec C, Spec Bx) ∼= Hom(Bx, C), (6)

Hom(Bx, C) ∼= HomDX
(B, Ôx⊗̂C). (7)

Specialize B = JA, and we have:

HomDX
(JA, Ôx⊗̂C) = HomOX

(A, Ôx⊗̂C), (8)

HomOX
(A, Ôx⊗̂C) = Hom(Spf Ôx × Spec C, Spec A). (9)
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This sequence of identifications proves (5) on the level of C−points, and
since they hold naturally in C, they are enough to establish Proposition 2.

• Relation (6) is just the bijection between morphisms of affine schemes
and morphisms of algebras.

• To prove relation (7), it is enough to verify it in the bigger category of
vector spaces and DX−modules. Then, we need to verify that for any
DX−module M and any vector space V , we have

Hom(Mx, V ) ∼= HomDX
(M, Ôx⊗̂V )

The map going from right to left is just evaluation at x. Let’s now define
the map going from left to right: given any morphism of vector spaces
φ : Mx → V , what does it mean to assign to it a morphism M →
Ôx⊗̂V ? It merely means to give morphisms φn :M→Ox/mn

x ⊗ V for
all n, which satisfy the inverse limit compatibilities. We start off with
φ1 = φ, and then there is a unique way to inductively define each φn
such that the inverse limit is a morphism of DX−algebras.

• Relation (8) is just property (3).

• Relation (9) is just the bijection between morphisms of affine schemes
and morphisms of algebras.

4 Conformal Blocks

The functor k-sch −→ DX-sch sending a k−scheme S to the “constant”
DX−scheme X×S (which has coordinate ring OX⊗kOS) has a right adjoint
functor:

H∇(X, ·) : DX−sch −→ k−sch, Hom(S,H∇(X,Z)) ∼= HomDX
(X×S,Z),

for any DX−scheme Z and any k−scheme S. Alternatively, we can define
this functor for algebras:

H∇(X, ·) : DX−alg −→ k−alg, Hom(H∇(X,B), C) ∼= HomDX
(B,OX⊗kC),
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for any DX−algebra B and any k−algebra C. Obviously, Spec H∇(X,B) =
H∇(X, Spec B). The scheme H∇(X,Z) is called the scheme of conformal
blocks of Z, and it is tautologically the largest constant DX−subscheme of
Z.

Example 3 For any DX−scheme Z, we have:

H∇(X,Z) ∼= HorSect(X,Z).

This follows easily by unraveling the definitions.

Example 4 Setting Z = JY in the above for some OX−scheme Y, and
combining with Proposition 1 gives us:

H∇(X,JY) ∼= Sect(X,Y).

5 Why do we denote conformal blocks by H∇?

In this section we restrict to X projective of dimension n, and to affine
DX−algebras. The reason why we denote algebras of conformal blocks by
H∇(X,B) is that they turn out to be some sort of “cohomology algebras”
of the DX−algebra B. In fact, Verdier duality implies the following natural
bijection for DX−modules:

HomDX
(M,OX ⊗k V ) ∼= Hom(Hn

dR(X,M), V ), (10)

for any DX−module M and any vector space V . By definition, H•dR(X,M)
are the cohomology groups of the complex of sheaves of k−vector spaces:

... −→M⊗OX
ΛiT ∗X −→M⊗OX

Λi+1T ∗X −→ ...

These cohomology groups coincide with R•π∗(M), where π : X → pt is the
projection to a point. Note that (10) implies that

H∇(X, Sym M) = Sym Hn
dR(X,M). (11)

This can be further reinterpred as follows. Pick a closed point x ∈ X,
let i : x ↪→ X be the closed embedding and j : X − x ↪→ X be the open
embedding. Then for any DX−module M we have the exact triangle:
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i∗Mx[−n] −→M→ j∗j
∗M.

The shift by n happens when we pass from DX−modules to quasicoherent
OX−modules, as we will be doing now. This induces a long exact sequence
on cohomology:

... −→ Hn−1
dR (X−x,M)

φ−→Mx −→ Hn
dR(X,M) −→ Hn

dR(X−x,M). (12)

We claim that the last group is 0. To see this, recall that Lichtenbaum’s
theorem says that the Cech cohomological dimension of X − x is at most
n− 1, i.e. Hn(X − x,F) = 0 for any quasicoherent F . As the DX−module
M is a quotient of the form:

DX ⊗OX
F �M,

for some quasicoherent F , and

Hn
dR(X − x,DX ⊗OX

F) = Hn(X − x,F) = 0,

it also follows that Hn
dR(X − x,M) = 0. Therefore, (11) and (12) imply:

H∇(X, Sym M) = Sym(Mx/Im φ).

The above description applies equally well to DX−algebras, so we infer:

Corollary 1 For any DX−algebra B, we have:

H∇(X,B) ∼= Bx/(Im φ),

where (Im φ) denotes the ideal generated by the image of the coboundary map
φ : Hn−1(X − x,B) −→ Bx.

We can actually do all of this with any finite number of closed points
x1, ..., xk ∈ X. The analogoue of the coboundary map is φ′ given by:

... −→ Hn−1(X − {x1, ..., xk},B)
φ′−→ Bx1 ⊕ ...⊕ Bxk −→ Hn

dR(X,B) −→ 0

We will need an algebra, not just a vector space, so define the map:
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φ̃ : Hn−1(X − {x1, ..., xk},B) −→ Bx1 ⊗ ...⊗ Bxk ,
φ̃(h) = φ′1(h)⊗ 1⊗ ...⊗ 1 + ...+ 1⊗ ...⊗ 1⊗ φ′k(h).

In the above, φ′i denotes the projection of the map φ′ to the i−th factor.

Proposition 3 We have the following natural isomorphism:

Bx1/(Im φ) ∼= Bx1 ⊗ ...⊗ Bxk/(Im φ̃), (13)

where (Im φ̃) denotes the ideal generated by the image of the map φ̃.

To prove the proposition, take the natural morphism from left to right
sending b1 ∈ Bx1 to b1 ⊗ 1 ⊗ ... ⊗ 1. Its injectivity is immediate, and its
surjectivity follows readily from the k = 2 case. Since it will also make the
explanation clearer, let’s just do k = 2. We have the following commutative
diagram:

Hn−1(X − x1,B)
φ−−−→ Bx1

π−−−→ Hn(X,B) −−−→ 0y y =

y
Hn−1(X − {x1, x2},B)

φ′−−−→ Bx1 ⊕ Bx2
π′−−−→ Hn(X,B) −−−→ 0

Take any b2 ∈ Bx2 , and look at π′(b2) ∈ Hn(X,B). By the above diagram,
there exists a ∈ B1 such that π(a) = π′(b2). This means that (−a, b2) ∈
Ker π′ ⇔ (−a, b2) = φ′(h) for some h. Take any b1 ∈ Bx1 , and we have:

b1⊗ b2 = b1⊗ φ′2(h) = (b1⊗ 1)(1⊗ φ′2(h)) = (b1⊗ 1)(φ′1(h)⊗ 1 + 1⊗ φ′2(h))−

−(b1 · φ′1(h)⊗ 1) ∈ (Im φ̃) + B1.
This implies that the map (13) is surjective, and concludes the proof of
Proposition 3. Therefore, Corollary 1 implies the following:

Corollary 2 For any DX−algebra B, we have:

H∇(X,B) ∼= Bx1 ⊗ ...⊗ Bxk/(Im φ̃).
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