D x—schemes, jets and comformal blocks
(the commutative case)

Andrei Negut

The purpose of this talk is to introduce Dy —schemes (and the particular
example of jets) and then link them to comformal blocks. In this talk, all
algebras will be commutative and Sym will always denote Sym,, . However,
all Hom and ® will be understood over the base field k.

1 Dy—schemes

Fix a base field k¥ and a smooth scheme X over k. A Dy—scheme is a
scheme equipped with a flat connection over X. For an affine scheme, this
is equivalent to being the spectrum of a Dx—algebra. For example, affine
Dx —schemes of finite type have the form:

Spec((Sym Dx @oy F)/1), (1)

for some coherent Ox—sheaf F and some Dy—ideal sheaf Z. Throughout
this talk, we will often pass freely from Dy —algebras to affine Dy —schemes
and vice-versa (the two categories are opposite in the usual sense).

A very important example of an affine Dx—scheme is the following:
Spec(Sym M),

for any Dx—module M. This suggests that Dx—algebras are generalizations
of Dx—modules, which is supported by the following fact: Dxy—modules
parametrize solutions of linear differential equations, while Dy —algebras
parametrize solutions of nonlinear differential equations.



More precisely, suppose we take the Dx —scheme (Sym D% )/Z, where the
ideal Z is generated (locally) by “polynomials” P, ..., P, € Sym D%. Then
giving a map of Dx—modules:

(Sym D) /T —s Oy

is the same as giving a collection of functions fi,..., f, which satisfy the
system of nonlinear differential equations:

Pi(fla 7fn) = 0.

A map of Dx—schemes is one which is a morphism of Dyx—algebras at
the level of coordinate rings. A more involved notion is the following:

Definition 1 Given a morphism of Dx—schemes Y — Z, the functor of
horizontal sections HorSect(Z,Y) is given by:

S € Sch — HorHomz(Z x S, ).
HorHom consists of horizontal morphisms, i.e. morphisms of Dx—schemes.

The above definition is completely analogous to that of the functor Sect
defined by Dennis in his Sep 17 lecture, by replacing Ox with Dx. Note
that for a morphism of Ox—algebras to be a morphism of Dx—algebras is
a closed condition. Since the functor of sections is representable (proved on
Sep 17), it follows that the functor of horizontal sections is also representable.
Moreover HorSect(Z,)) < Sect(Z,)) is a closed embedding,.

2 Jets

In this section, we will show that the forgetful functor Dx-sch — Ox-sch
has a right adjoint, which is called the Jet functor:

J : Ox-sch — Dx-sch, Homp, (Z,JY) = Home, (Z,)), (2)

for any Oy —scheme ) and any Dx—scheme Z. At the level of algebras, this
functor will be a left adjoint to the forgetful functor:

J : Ox-alg — Dx-alg, Homp, (J A, B) = Home, (A, B), (3)
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for any Ox—algebra A and any Dy—algebra B. Naturally, Spec 7 A =
J (Spec A). Basically, there is only one natural construction which will make
J into a left adjoint:

JA = Sym(Dx ®o, A)/Z, (4)

where Z is the Dx—ideal generated by Ker(Sym A — A). In other words,
J A is the Dx—algebra generated by A. Setting Z = X in (2) gives us the
following:

Proposition 1 For any Ox—scheme Y, we have:

HorSect(X, JY) = Sect(X, ).
Example 1 For any Ox—module N', we have:

J(Sym N) = Sym(Dx ®o, N).

Example 2 Let X be a smooth projective curve, C = Spec((Sym g)%) as
in our previous talks, and consider the fiber bundle C,,, = C X wx on X.
Then we have:

HorSect(X, JC,,, ) = Hitch(X),

and

(JCuy )z = Hitch, (X),

for any closed point x € X. The first equality follows from Proposition 1,
while the second one follows from Proposition 2 below.

Let us now prove that the definition of jets in (4) is the correct one, i.e.
that it satisfies property (3). For this, consider the following constructions:

(¢0:TA—B)— (¢ : A— B), @' (a) = ¢(1 ® a),

(¢ A—=B)«— (¢: TA— B), pld®a)=d-¢(a),
where ¢ denotes any map of Dx—algebras, while ¢’ denotes any map of

Ox—algebras. It’s easy to check that the assignments ¢ — ¢’ and ¢’ — ¢
are well-defined, are inverses to each other and are natural in A and B.



3 Why are they called Jets?

This section is not just motivated by ethymological questions, but will actu-
ally be very useful for us. Our purpose will be to prove the following result:

Proposition 2 Pick a closed point x € X, and let Y be any Ox—scheme.
Then the fiber of JY over x is given by:

(TY)s = Sect(Spf O, V). (5)

where (/9\33 is the completed local ring of X at x.

Let us recall that for any k—scheme S, we define:
(Spf O,) x S = lim((Spec O, /m]) x S) # (Spec O,) x .
Therefore, the structure ring of Spf 69[: x Spec C'is
0,&8C = 1im((0y/m}) ® C) # O, @ C.
The above proposition makes the terminology clear, since a section from the
formal disk to ) is, by definition, an Y—jet at x. By naturality, it will
be enough to prove the proposition in the affine case )V = Spec A. In the
following, C' will denote any algebra and B will denote any Dx— algebra. I

claim the the following functorial bijections hold:

Hom(Spec C, Spec B,) = Hom(B,,C), (6)
Hom(B,, C) = Homp, (B, 0,&C). (7)

Specialize B = JA, and we have:
Homyp  (JA, 0,&C) = Homop, (A, 0,&C), (8)

Homop, (A, 0,2C) = Hom(Spf O, x Spec C, Spec A). (9)



This sequence of identifications proves (5) on the level of C'—points, and
since they hold naturally in C', they are enough to establish Proposition 2.

e Relation (6) is just the bijection between morphisms of affine schemes
and morphisms of algebras.

e To prove relation (7), it is enough to verify it in the bigger category of
vector spaces and Dx—modules. Then, we need to verify that for any
Dx—module M and any vector space V', we have

Hom(M,,V) = Homp, (M, 6x®v)

The map going from right to left is just evaluation at z. Let’s now define
the map going from left to right: given any morphism of vector spaces
¢+ M, — V, what does it mean to assign to it a morphism M —
O,®V? Tt merely means to give morphisms ¢, : M — O,/m” ® V for
all n, which satisfy the inverse limit compatibilities. We start off with
¢1 = ¢, and then there is a unique way to inductively define each ¢,
such that the inverse limit is a morphism of Dx—algebras.

e Relation (8) is just property (3).

e Relation (9) is just the bijection between morphisms of affine schemes
and morphisms of algebras.

4 Conformal Blocks

The functor k-sch — Dx-sch sending a k—scheme S to the “constant”
Dx—scheme X x S (which has coordinate ring Ox ®; Og) has a right adjoint
functor:

Hy(X,-) : Dx—sch — k—sch, Hom(S, Hy(X, Z)) = Homp, (X xS, Z),

for any Dx—scheme Z and any k—scheme S. Alternatively, we can define
this functor for algebras:

Hy(X,:): Dx—alg — k—alg, Hom(Hy (X, B),C) = Homp, (B, Ox®;(C),
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for any Dx—algebra B and any k—algebra C. Obviously, Spec Hy (X, B) =
Hy (X, Spec B). The scheme Hy (X, Z) is called the scheme of conformal
blocks of Z, and it is tautologically the largest constant Dy —subscheme of
Z.

Example 3 For any Dx—scheme Z, we have:
Hvy (X, Z) = HorSect(X, 2).
This follows easily by unraveling the definitions.

Example 4 Setting Z2 = JY in the above for some Ox—scheme Y, and
combining with Proposition 1 gives us:

Hy(X,JY) = Sect(X,)).

5 Why do we denote conformal blocks by Hy?

In this section we restrict to X projective of dimension n, and to affine
Dx —algebras. The reason why we denote algebras of conformal blocks by
Hy (X, B) is that they turn out to be some sort of “cohomology algebras”
of the Dx—algebra B. In fact, Verdier duality implies the following natural
bijection for Dx—modules:

Homp, (M, Ox ®; V) = Hom(H (X, M), V), (10)

for any Dx—module M and any vector space V. By definition, HJ,(X, M)
are the cohomology groups of the complex of sheaves of k—vector spaces:

e M®oy NT*X — M ®p, NT*X — ...

These cohomology groups coincide with R*m.(M), where 7 : X — pt is the
projection to a point. Note that (10) implies that

Hy(X,Sym M) = Sym Hjp(X, M). (11)
This can be further reinterpred as follows. Pick a closed point z € X,

let ¢ : x — X be the closed embedding and j : X — 2 < X be the open
embedding. Then for any Dx—module M we have the exact triangle:
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i Ma|—n] — M — j,j*M.

The shift by n happens when we pass from Dx—modules to quasicoherent
Ox—modules, as we will be doing now. This induces a long exact sequence
on cohomology:

o H' (X =2, M) =25 My, — HIG(X, M) — Hi(X—2, M), (12)

We claim that the last group is 0. To see this, recall that Lichtenbaum’s
theorem says that the Cech cohomological dimension of X — x is at most
n—1,1ie. H"(X —z,F) =0 for any quasicoherent F. As the Dx—module
M is a quotient of the form:

Dx ®(9Xf—»./\/l,

for some quasicoherent F, and

HZlLR(X - JI,DX ®0X f) = Hn(X - I,f) = 0,
it also follows that H}(X — x, M) = 0. Therefore, (11) and (12) imply:

Hy(X,Sym M) = Sym(M,/Im ¢).
The above description applies equally well to Dy —algebras, so we infer:
Corollary 1 For any Dx—algebra B, we have:
Hy(X,B) = B, /(Im ¢),
where (Im ¢) denotes the ideal generated by the image of the coboundary map
¢: H" Y (X —x,B) — B,.

We can actually do all of this with any finite number of closed points
x1,...,2, € X. The analogoue of the coboundary map is ¢’ given by:

o H™Y X — {21, ey a1 1, B) 25 By, @ ... ® By, — H'o(X,B) — 0

We will need an algebra, not just a vector space, so define the map:

7



b H" Y X —{z1, .., 21}, B) — By, ® ... ® By,

M) =¢ M R1®. .1+ ..+1®..011 ).
In the above, ¢ denotes the projection of the map ¢ to the i—th factor.

Proposition 3 We have the following natural isomorphism:

B,,/(Im ¢) = B, © ... ® By, /(Im §), (13)
where (Im gg) denotes the ideal generated by the image of the map .

To prove the proposition, take the natural morphism from left to right
sending by € B,, to by ® 1 ® ... ® 1. Its injectivity is immediate, and its
surjectivity follows readily from the k = 2 case. Since it will also make the
explanation clearer, let’s just do k& = 2. We have the following commutative
diagram:

H Y X —21,B) —%5 B, —— H"(X,B) —— 0

HNX — {1, 2}, B) —2 By, @ By, —— H'(X,B) —— 0
Take any by € B,,, and look at 7/(by) € H"(X, B). By the above diagram,

there exists a € B; such that w(a) = 7'(by). This means that (—a,by) €
Ker 7’ < (—a,by) = ¢'(h) for some h. Take any by € B,,, and we have:

b1 @by = b1 @ ¢y (h) = (bl @ 1)(1 @ ¢y(h)) = (b1 @ 1)(¢ (h) @ 1+ 1@ ¢h(h))—
—(b1- ¢1(h) © 1) € (Im ¢) + By.

This implies that the map (13) is surjective, and concludes the proof of
Proposition 3. Therefore, Corollary 1 implies the following:

Corollary 2 For any Dx—algebra B, we have:
Hy(X,B) = B,, ®...® B, /(Im ¢).



