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1. Introduction

1.1. Let G be a simply connected semisimple group with Borel subgroup B, N =
[B,B] and let H = B/N . Let g, b, n and h be the respective Lie algebras of these
groups. Let LG be the Langlands dual group with dual Borel LB, etc. Let X be a
smooth curve or the formal disc D or the formal punctured disc D×.

1.2. Recall that a Lg-oper over X is a LG-bundle FLG = F with a reduction FLB

to LB and a connection ∇ on F satisfying a property that we recall. There is an
obstruction c(∇) ∈ (Lg/Lb)FLB

⊗ ωX to the preservation of ∇ under the reduction

FLB and we demand that 1) c(∇) ∈ (Lg/Lb)−1
FLB
⊗ωX with (Lg/Lb)−1 = ⊕α̌(Lg/Lb)α̌

the space spanned by the negative simple coroots of g and 2) the projection of c(∇)
to (Lg/Lb)α̌FLB

is nowhere vanishing on X for each negative simple coroot α̌.

1.3. This definition can be said in D-families, i.e., for a DX-scheme Y , there is
a notion of a LG-oper on Y which is a LG-torsor on Y with a connection along
the vector fields coming from X with a reduction to LB satisfying some properties.
We denote by DOpLG(X) the (affine) D-scheme of opers on X and let OpLG(X) =
H∇(DOpLG(X)).

1.4. Let ĝcrit be the Kac-Moody algebra at critical level, i.e., with κ = −1
2
κkilling.

The Feigin-Frenkel isomorphism says that the space of opers OpLG(D) on D is
isomorphic to the spectrum of the (commutative) algebra zg = z of endomorphisms
of the vacuum module Vcrit.

The goal for this lecture is to formulate a theorem of [BD1] describing this iso-
morphism in terms of the affine Grassmannian. We will more or less construct a
map from Spec(z) to OpLG(D) and the theorem (which we do not address) will say
that this map is the Feigin-Frenkel isomorphism.

1.5. To construct a map from Spec(z) to OpLG(D), it suffices to construct a LG-
bundle Fz,LG = Fz on Spec(z)×̂D with a reduction Fz,LB to LB and a connection ∇
along D which satisfies the oper properties. In Section 2 we will construct (modulo
Theorem 2.1) a LG-bundle F0

z on Spec(z) corresponding to the pull-back of Fz,LG

along the zero map Spec(z) −→ Spec(z)×̂D. In Section 3, we discuss how to recover
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Fz with its connection from the infinitesimal symmetries of F0
z and we give a means

to check the oper property. In Section 4 we formulate Lemma 4.1 which will allow
us to construct the LB-reduction and check the oper property. In Section 5 we prove
Lemma 4.1.

2. Construction of the LG-bundle

2.1. We want to construct an LG-bundle F0
z on Spec(z) via geometric Satake. Recall

that an LG-bundle is given by assigning to any (always finite-dimensional) repre-
sentation V of LG a vector bundle F0

z (V ) in a tensor-functorial way. Therefore, we
concern ourselves now with the construction of z-modules.

2.2. Let GrG be the affine Grasmmannian. By a Dcrit-module on GrG, we will
mean a right twisted D-module on GrG (compactly supported) with twisting given
by 1

2
the determinant line bundle, i.e., −1

2
the Kac-Moody line bundle. The action

of ĝcrit on this (virtual) line bundle induces an action of ĝcrit on Γ(GrG,M) for any
Dcrit-module M .

2.3. We will not need this section but include it for completeness.
The center Z of the twisted enveloping algebra U ′(ĝcrit) has a natural map to

z given its action on the vacuum module. In fact, this map can be shown to be
surjective by realizing Spf(Z) as the space of opers on the formal punctured disc.
We claim that for any Dcrit-module M , Z acts through z. First, observe that this is
true for the δ Dcrit-module at the distinguished point e in GrG. Indeed, Γ(GrG, δe)
is the vacuum module Vcrit and by definition of the map Z −→ z, Z acts through the
quotient z. Similarly, for any g ∈ GrG, the ĝcrit-module Γ(GrG, δg) is the vacuum
module but with the choice of “maximal compact” the conjugate of G(O) by a lift of
g to G(K) (O = C[[t]], K = C((t))). However, because Z is fixed under conjugation,
the same argument goes through. Because this is true for the δ Dcrit-module at any
point, the action of Z on global sections of any Dcrit-module is through z.

The format of this proof is convolution, to be expanded upon later in the seminar.

2.4. Let us collect a few facts about the geometric Satake equivalence that we will
need. Let Hsph be the spherical Hecke category, i.e., the category of compactly sup-
ported G(O)-equivariant D-finitely generated right (untwisted) D-modules on GrG.
Recall that geometric Satake gives an equivalence between Hsph and the category
Rep LG of finite dimensional representations of LG.

Recall that the G(O)-orbits of GrG are indexed by the dominant coweights of G,

where for such a coweight λ̌ : Gm −→ G the corresponding orbit Grλ̌G is the orbit
containing λ̌(t) where t ∈ Gm(K) is any uniformizer of D. This description of the
orbits does not depend on the choice of t.
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Recall that the irreducible representations of LG are classified by the dominant
coweights of G where the representation V λ̌ is the representation of LG of highest
weight λ̌.

Geometric Satake interchanges these two pictures as follows. The D-module on
GrG which corresponds to V λ̌ via the Satake equivalence is given as the intersection

cohomology D-module of the orbit Grλ̌G, i.e., for jλ̌ : Grλ̌G ↪→ GrG, the D-module
j!∗(OGrλ̌G

).

2.5. LetHcrit be the category ofG(O)-equivariantD-finitely generatedDcrit-modules
on GrG. As in the case of Hsph, this is naturally a tensor category via the factoriza-
ton structure on the determinant line bundle. According to [BD1] Section 4, there
is a canonical identification of Hcrit with Hsph as tensor categories. We fix such an
identification for the rest of these notes. Note that this identification amounts to
giving a square root Lcrit of the determinant bundle.

By geometric Satake, this defines an equivalence of categories between Hcrit and
the category Rep LG. For V ∈ Rep LG, letMV,crit be the correspondingDcrit-module
on GrG.

2.6. We will need to appeal to the following theorem from [BD1]:

Theorem 2.1. For any V ∈ Rep LG, the ĝcrit-module RΓ(GrG,MV,crit) is a direct
sum of copies of Vcrit concentrated in cohomological degree 0.

The formalism of groups acting on categories defines a monoidal action Hcrit on
the derived version of the category ĝcrit−modG(O).1 The general convolution format

implies that RΓ(GrG,MV,crit)
'−→MV,crit ∗ Vcrit.

2.7. Now let us construct the LG-bundle F0
z on Spec(z). We consider F0

z as a
tensor functor (i.e., monoidal and commuting with commutativity constraints) F0

z :

Rep LG −→ z−mod.
Define F0

z (V ) = Hombgcrit(Vcrit,Γ(GrG,MV,crit)) = (MV,crit ∗ Vcrit)
G(O). Theorem

2.1 implies that F0
z (V ) ⊗z Vcrit considered as a ĝcrit-module via the action on Vcrit

is isomorphic to MV,crit ∗ Vcrit. Therefore, we have:

MV1⊗V2∗Vcrit ' (MV1∗MV2)∗Vcrit 'MV1∗(F0
z (V2)⊗zVcrit) ' F0

z (V2)⊗z(MV1∗Vcrit)

Here the last equality is true because convolving with a direct sum of copies of the
vacuum module is exact and then by functoriality. The last term is isomorphic to
F0

z (V1)⊗z F0
z (V2)⊗z Vcrit. Therefore, applying Hombgcrit(Vcrit,−) we get:

F0
z (V1 ⊗ V2)

'−→ F0
z (V1)⊗z F0

z (V2)

1Let us give a moral argument why it acts, at least in the untwisted setting. Given a group
ind-scheme acting on a category in an appropriate sense and given a subgroup, the corresponding
Hecke category acts on the “invariants” of the action, i.e., the corresponding equivariant category.
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as desired. It’s direct to check the compatibility with associativity constraints, so
our functor F0

z is monoidal.

2.8. Next, let us indicate the proof that this monoidal functor is compatible with
the commutativity constraint. Our argument uses chiral algebras, which will be
formally introduced later in the seminar. The reference for chiral algebras is [BD2].

Why do we need to appeal to chiral algebras? Recall that the definition of the
commutativity constraint on the affine Grassmannian, which is central to this theo-
rem, is constructed most naturally by considering the factorization affine Grassman-
nian and looking at what happens as two different points collide. To compare our
monoidal functor with this, we need a version of the Kac-Moody algebra which lives
not only at a single point on the curve, but which interpolates these different alge-
bras just as the global affine Grassmannian interpolates the affine Grassmannians
living at each point. Chiral algebras are designed to do this.

2.9. Let us collect a few facts about chiral algebras.
First, a chiral algebra is a D-module on a curve X equipped with extra structure.

A DX-algebra is equally well labelled as a commutative chiral algebra.
For a chiral algebra A, there are associated DXi-modules A(i) forming the factor-

ization algebra structure of A, where A(1) = A and i is any non-negative integer.
For A commutative, A(i) is a DXi-algebra.

For a chiral algebra A, there is a notion of chiral module over A which is in

particular a D-module on X. More generally, there is a category C(i)
A of modules

of A on X i for all i which are DXi-modules. Then C(i)
A has A(i) as a distinguished

object. As i varies, the C(i)
A form a chiral category which we sometimes abbreviate,

however unfairly, CA.

2.10. There is a Kac-Moody chiral algebra Ag,crit such that modules over this chiral
algebra supported at a closed point x ∈ X are equivalent to modules over the cor-
responding Kac-Moody algebra. An important fact about this chiral algebra is that
the fiber of Ag,crit over such a point x is the vacuum module for the corresponding
Kac-Moody algebra.

The center of this chiral algebra is denoted zX . One has HomAg,crit
(Ag,crit,Ag,crit) =

zX . By the way, this proves that endomorphisms of the vacuum module is a com-
mutative algebra.

2.11. Recall that we have group factorization schemes G(K)X and G(O)X such
that G(K)X/G(O)X is the factorization affine Grassmannian. This defines the chiral
critical Hecke category Hcrit,X . Because G(K)X acts on the chiral category CAg,crit

,

the chiral critical Hecke category acts on CG(O)X
Ag,crit

. Because the objects V of Hcrit are

Aut-equivariant (see Section 3.1 and Section 4.1), we have induced objects MV,X of

H(1)
crit,X .
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2.12. For M ∈ H(i)
X , define F0

zX
(M) to be HomC(i)

Ag,crit

(A(i)
g,crit,M ∗A

(i)
g,crit). Note that

this is a module over z
(i)
X . A generalization of Theorem 2.1 says that for V ∈ H(i)

X ,
we have:

F0
zX

(M)⊗
z
(i)
X
A(i)

g,crit
'−→M ∗ A(i)

g,crit

Consideration of the convolution picture implies that for i = 2, we have:

F0,(2)
zX

(j!∗(MV1,X �MV2,X))
'−→ (F0

zX
(MV1,X) � F0

zX
(MV2,X))⊗z�z z(2)

Applying ∆∗ and restricting to a point on our curve, we see that our functor F0
z

is compatible with commutativity constraints because both arise from switching
coordinates on X2 and then pulling back.

3. Automorphisms of the Formal Disc

3.1. We fix a coordinate t of the formal disc D.
Let2 Aut be the group scheme of automorphisms of D which preserve the point

0. This is a group scheme (of infinite type) whose points are power series without
constant term and with invertible t-coefficient with group law the composition of
power series, i.e., for a C-algebra A:

Aut(A) = {
∑
i>0

ait
i|ai ∈ A, a1 ∈ A×}

There is a canonical homomorphism Aut −→ Gm given by considering how any
uniformizer is scaled under the action of Aut. We refer to this as the “standard
character.” Any uniformizer defines a splitting of this character.

Let Aut+ be the group scheme of all automorphisms of D. This is a group ind-
scheme whose points are power series with nilpotent constant term and invertible
t-coefficient and group law the composition of power series, i.e., for a C-algebra A,
we have:

Aut+(A) = {
∑
i≥0

ait
i|ai ∈ A, a1 ∈ A×, aN0 = 0 for N >> 0}

By this description, we see that Aut+ acts on D× as well.
There is a natural embedding of Aut into Aut+ which realizes Aut as the reduced

part of Aut+. Therefore, giving an action of Aut+ is equivalent3 to giving an action of
the Harish-Chandra pair (Lie(Aut+),Aut). The quotient Aut+ /Aut is canonically
isomorphic to D in an Aut+-equivariant way.

2Our notation differs from that of [BD1]. Our Aut is their Aut0 and our Aut+ is their Aut.
Probably their notation is better because of the compatibility with the notation Der, c.f. Section
3.3.

3This is a generalization of a familiar fact from formal groups: to give an action of a formal
group is the same thing as giving an action of its Lie algebra.
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3.2. Note the crystalline nature of the action of Aut+ on D: this action identifies
0 with infinitesimally close points.

3.3. The Lie algebra Lie(Aut+) is denoted Der. The action of Der on D realizes
Der as the Lie algebra of derivations on the disc, i.e., expressions a∂t with a ∈ C[[t]]
and with the usual Lie bracket of vector fields. The Lie algebra of Aut is given by
t ·Der the vector fields vanishing at the origin.

Let Li = −ti+1∂t ∈ Der for i ≥ −1. Observe that [L0, Ln] = −nLn and that the
span of L−1, L0 and L1 forms a copy of sl2 inside of Der.

3.4. Let K1 ⊂ K2 be affine group ind-schemes with K1 a group scheme (Aut ⊂
Aut+ for our purposes) such that K2/K1 a formally smooth ind-scheme of ind-
finite type and let S be a scheme over C equipped with an action of K2. Let
i : S −→ S×̂K2/K1 be the embedding given by the identity in K2.

By a quasi-coherent sheaf on a ind-scheme, we mean in the ∗-sense, i.e., a com-
patible family of sheaves on some realization of the ind-scheme with respect to the
∗-pull-back.

Proposition 3.1. The functor i∗ is an equivalence between coherent sheaves on
S×̂K2/K1 equivariant with respect to the diagonal action of K2 and K1-equivariant
coherent sheaves on S. This functor lifts to an equivalence between K2-equivariant
coherent sheaves on S×̂K2/K1 with (weakly)4 equivariant connection along K2/K1

and coherent sheaves on S equivariant with respect to the action of the Harish-
Chandra pair (k2, K1).

Proof. Consider the map S×̂K2 −→ S which at the level of points is (s, k) 7→ k−1 ·s.
This is equivariant with respect to the K1-action on S×̂K2 via its right action on the
second coordinate and the natural action on S, and K2-equivariant for the diagonal
action on the first term and the trivial action on the second. Therefore, this induces
an isomorphism S×̂(K2/K1) −→ (S×̂K2)/K1 in a K2-equivariant way. This gives
the result.

Let us try to imitate the formalism of the argument above for the second part.
To do this, we need the de Rham space5 of a scheme Z, which we recall is defined
by DR(Z)(R) = lim

←−
Z(R/I) where I ranges over all nilpotent ideals of R (for R

Noetherian, this is just Z(Rred)). A coherent sheaf over DR(Z) is equivalent to a
D-module on Z. Note that for a group K with formal completion at the identity

K̂, we have DR(K) = K/K̂.

4Note that it does not make sense to speak of strongly equivariant bundles with connection over
the first coordinate when a connected group acts non-trivially on the second coordinate.

5“Space” means merely a functor from the category of commutative rings to pro-sets.
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Now we can imitate the proof above. We have the following equality, where all
quotients are understood in the stack sense:

K2\S×̂DR(K2/K1)
'−→ K2\S×̂DR(K2)/DR(K1)

'−→ K2\(S×̂(K̂2\K2))/DR(K1)

But the last expression is isomorphic to DR(K1)\(K̂2\S) as before. Coherent
sheaves on K2\S×̂DR(K2/K1) of the above isomorphisms are (weakly, of course)
K2-equivariant coherent sheaves on S×̂K2/K1 with connection along the second co-

ordinate, while coherent sheaves on DR(K1)\(K̂2\S) are K̂2-equivariant coherent
sheaves which are stronglyK1-equivariant, i.e., they have a k2-action and are strongly
K1-equivariant, i.e., they have an action of the Harish-Chandra pair (k2, K1). �

3.5. Note that the Proposition 3.1 implies similar equivalences with torsors for
some affine algebraic group Γ replacing coherent sheaves. Therefore, because Aut+

equivariance is equivalent to an action of the Harish-Chandra pair (Der,Aut), we
obtain the following corollary, which is [BD1] 3.5.3.:

Corollary 3.2. Let Aut+ act on S. The functor i∗ is an equivalence between Aut+-
equivariant Γ-bundles on S×̂D and Aut-equivariant Γ-bundles on S. The functor
i∗ is an equivalence between Aut+-equivariant Γ-bundles on S×̂D with connection
along D and Aut+-equivariant Γ-bundles on S.

Remark 3.3. Roman Travkin has suggested the following proof of the second state-
ment. First, forgetting the symmetries, pull-back is an equivalence between coherent

sheaves on S and coherent sheaves on SD̂ with connection along the second coor-
dinate. Indeed, this is immediate from the crystalline perspective. This functor is
Aut+-equivariant and therefore induces an equivalence between Aut+-equivariant
objects. A similar proof works in the general setting of Proposition 3.1.

3.6. Suppose that S = OpLG(D). Then Corollary 3.2 says that the Aut-equivariant
LG-bundle F0

Op on OpLG(D) obtained by pull-back of the tautological bundle on

OpLG(D)×̂D admits a natural Aut+-equivariant structure which incorporates the
connection of the tautological bundle. Furthermore, F0

Op has a Aut-equivariant

reduction F0
Op,LB to LB. These structures recover the LG-bundle with connection

and reduction to LB on OpLG(D)×̂D entirely!

3.7. Given a scheme S = Spec(A) with an action of Aut+ and an Aut+-equivariant
LG-bundle F0 with Aut-equivariant reduction F0

LB of F0 to LB, we would like to

characterize when the induced bundle with connection on S×̂D comes from a map
S −→ OpLG(D).

3.8. We will do this in a convenient way under assumptions of the action of Der on
A which are satisfied when A = z (see Section 4.2). Note that L0 (see Section 3.3)
acts on A diagonalizably with integer eigenvalues. We assume that these eigenvalues
are all non-negative with the eigenvalue 0 occurring with multiplicity one and the
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eigenvalue 1 occurring with multiplicity 0. Note that the unit 1 of A must be the
unique up to scaling eigenvector with eigenvalue 0.

In this case, Spec(A) has a distinguished closed point ∗ ∈ Spec(A) defined by the
maximal ideal consisting of the span of the eigenvectors with positive eigenvalue.
This maximal ideal is preserved by sl2 ⊂ Der (see Section 3.3) because of the
assumptions on the action.

One way to check that the eigenvalues are non-negative is to see that the action
of Aut on A extends to an action of the algebraic semigroup of all endomorphisms of
the disc as an ind-scheme. In this case, the action of Gm ⊂ Aut extends to an action
of the semigroup A1 where 0 in A1 corresponds to the composition D −→ 0 −→ D.
However, if the action extends to A1, then the only characters of Gm which can
appear look as z 7→ zn for n ≥ 0 as desired. One should note that this is not true
for z, but we will use this in Section 5.

3.9. The following is [BD1] 3.5.8.

Proposition 3.4. Let A be an algebra with an action of Aut+ satisfying the condi-
tions of Section 3.8 and equipped with an Aut+ equivariant LG-bundle F0 with a Aut-
equivariant reduction F0

LB to LB. Then this bundle comes from a map Spec(A) −→
OpLG(D) if and only if the induced Aut-equivariant LH-bundle is obtained by pull-
back from C of the Aut-equivariant bundle ρ(ωD/tωD).

The proof will occupy Sections 3.10-3.13.

3.10. First, let us show the necessity of this condition on LH. Recall the following
general property of opers.

For an oper on X, the LH-bundle induced by the LB-bundle is canonically de-
scribed as follows. Take ρ : Gm −→L H (which exists because LG is adjoint) and
push forward the line bundle ωX to get a LH-bundle ρ(ωX). More generally, for
a Y -family of opers on X (Y a DX-scheme), the induced LH-bundle on Y is the
pull-back of ρ(ωX) to Y along the structure map Y −→ X.

Therefore, the tautological LB-bundle FOp,LB on OpLG(D)×̂D induces the LH-
bundle which is the pull-back along the second coordinate of ρ(ωD). Pulling back
along OpLG(D)→ OpLG(D)×̂D implies necessity.

3.11. Now we aim to show sufficiency. We have the bundle F on Spec(A)×̂D with
connection ∇ over D corresponding to F0 via Corollary 3.2 and with reduction to
FLB. We need to show that the connection satisfies the oper properties, i.e., that in
the notation of Section 1.2 c(∇) ∈ (Lg/Lb)−1

FLB
⊗ ωD and that the non-degeneracy

condition on the projection of c(∇) to (Lg/Lb)αFLB
for all simple coroots α. Let us

show this first condition.
Let (Lg/Lb)−k be the −kth associated graded piece of the natural Lb-module

filtration on Lg/Lb as in [BD1] 3.1.1 so that Lb acts on (Lg/Lb)−k through Lh and
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the characters are sums of k negative simple roots. Then (Lg/Lb)−kFLB
is explicitly

computed as an Aut+-equivariant bundle to be π∗2ω
⊗−k
D ⊗ (Lg/Lb)−k as follows. The

action of LB on (Lg/Lb)−k is through LH and the induced action of Gm through
ρ is given as the diagonal action through the −k-power of the standard character.
Therefore, by the condition on the induced LH-bundle we get this computation.

But c(∇) is an Aut-invariant section of (Lg/Lb)FLB
⊗π∗2ωD and since (Lg/Lb)−kFLB

⊗
π∗2ωD

'−→ π∗2ω
⊗−k+1
D ⊗ (Lg/Lb)−k we see that c(∇) lies in (Lg/Lb)−1

FLB
⊗ π∗2ωD as

desired.

3.12. To proceed we will need the following observation. Trivialize (however non-
canonically) the bundle F0 over ∗ ∈ Spec(A). Because sl2 ⊂ Der acts on F0 and
preserves the point ∗, sl2 acts on this fiber. The trivialization of F0 defines an
embedding sl2 ↪→L g. A different choice of trivialization of F0 would conjugate this
embedding by an element of LG so we have an embedding of sl2 into g canonically
defined modulo conjugacy. We claim that this is the principal embedding.

Because F0
LB is preserved by Aut, L0 and L1 map to Lb. On D, L0 acts on the

fiber of ωD as multiplication by −1 and therefore acts on the induced LH-bundle by
−ρ after trivializing ωD by dt and using the induced trivialization on our LH-bundle.
This implies that the conjugacy class of L0 is the same is −ρ, which implies that
our embedding is principal.

3.13. Now we can prove the non-degeneracy condition. As in Section 3.11, c(∇)
lies in the Aut-invariant part of (Lg/Lb)−1

FLB
⊗π∗2ωD, and this bundle is isomorphic to

the constant vector bundle for the space (Lg/Lb)−1. Therefore, its Aut+-invariants

are isomorphic to the vector space (Lg/Lb)−1 '−→ ⊕α̌C. Therefore, to check the
non-degeneracy, it suffices to do this at a single point of Spec(A)×̂D.

Consider the restriction of our data to ∗ × D. We have seen in Section 3.12 that
the embedding of sl2 ⊂ Der into Lg induced by taking a trivialization of the pull-
back of F is a principal embedding. In particular, L−1 maps to a principal nilpotent
element f . Therefore, since −L−1 = ∂t we see that c(∇) ∈ (Lg/Lb)−1

FLB
⊗ ωD must

be −fdt which implies the desired result.

4. Construction of the LB-bundle

4.1. Note that Aut+ acts on GrG and in fact, the semi-direct product of Aut+ with
G(O) acts on GrG. The orbits of GrG are preserved under the action of Aut because
they are of the form G(O) · λ̌(t) which reduces us to the case G = Gm where this
is clear. The square root Lcrit of the determinant bundle is a Aut+-equivariant
square root, i.e., it is Aut+-equivariant and the natural isomorphism L ⊗2

crit −→ Ldet

is Aut+-equivariant. Therefore, by the explicit description of the category Hcrit, we
see that every object of this is Aut+-equivariant. By construction of the functor F0

z ,

the LG-bundle on Spec(z) constructed in Section 2 is Aut+-equivariant.
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According to Section 3.4, we should check that z satisfies the conditions of Section
3.8 and construct an Aut-equivariant reduction of this bundle to LB which induces
the correct Aut-equivariant LH-bundle.

4.2. Let us show that z satisfies the conditions of Section 3.8. The associated graded
of z with respect to its natural Aut+-equivariant filtration is6 (Sym(g⊗K/O))G(O).
However, on this space L0 clearly has non-negative eigenvalues and a unique 0-
eigenspace. Furthermore, if it had any eigenvectors with eigenvalue 1, we see that
these would have to live in g⊗K/O and in particular in g⊗ 1/t for a uniformizer t.
However, there are no G-invariant elements in g besides 0 because g is semi-simple.

4.3. Fix a uniformizer t of D, which in particular defines an operator L0 = −∂t ∈
Der. Let ICcrit,λ̌ be the twisted intersection cohomology Dcrit-module on GrG cor-

responding to the locally closed subset Grλ̌G.
The LB-reduction comes from the following lemma, which will be proved by ex-

plicit calculations in Section 5.

Lemma 4.1. The lowest eigenvalue of L0 acting on Γ(GrG, ICcrit,λ̌) is −λ̌(ρ). This
eigenspace is one-dimensional over C.

We assume this lemma for the remainder of this section.

4.4. Let Lλ̌ ⊂ Γ(GrG, ICcrit,ľa) be the eigenspace described by the lemma. First,
we claim that this line is independent of the choice of uniformizer t. It suffices to
show that this line is fixed by the kernel Ker(Aut −→ Gm) of the standard character
because then Aut acts on such invariants through Gm and the operator L0 becomes
canonical.

But this is clear: because [L0, Li] = −iLi, L0 acts on LiLλ̌ with eigenvalue−λ̌(ρ)−
i so this line must be 0 by Lemma 4.1.

4.5. Next, we prove that Lλ̌ lies in Γ(GrG, ICcrit,λ̌)
G(O) = Γ(GrG, ICcrit,λ̌)

g(O).
An argument similar to the one above goes through. Namely, L0 acts on g(O)

with non-positive eigenvalues and with Ker(g(O) → g) having strictly negative
eigenvalues. Therefore, by the argument above, this kernel acts by 0 on this line.
Because L0 acts with the eigenvalue 0 on g ⊂ g(O), g preserves the eigenspaces of L0

and in particular acts on on Lλ̌ because this eigenspace is 1-dimensional. However,
g has no characters because it is semisimple, so g acts on Lλ̌ trivially. Since the
embedding of g ↪→ g(O) induces an isomorphism with the quotient g of g(O), this
implies that g(O) acts on Lλ̌ and trivially so.

6Actually, all we need is that there is an Aut+-equivariant (or even just Aut-equivariant) em-
bedding, which is easier to show than the “is” statement.
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4.6. With these two observations, let us construct the LB reduction. We will do this
using the Plucker relations. Recall that the Plucker relations say that to construct
a reduction of a LG-torsor F to LB, it is enough to give the following data. For each
dominant coweight λ̌ of G, we are required to specify a line bundle L λ̌ ⊂ F(V λ̌) with

vector bundle quotient, where V λ̌ is as in Section 2.4. This line bundle corresponds
to the natural LB-submodule of V λ̌ given by the highest weight line. We require

that we have isomorphisms L λ̌+λ̌′ '−→ L λ̌ ⊗ L λ̌′ making the following diagram
commute:

L λ̌+λ̌′

��

// L λ̌ ⊗L λ̌′

��

F(V λ̌+λ′) // F(V λ̌ ⊗ V λ̌′) // F(V λ̌)⊗ F(V λ̌′)

Here we are taking the natural map V λ̌+λ′ ↪→ V λ̌ ⊗ V λ̌′ .

4.7. We have constructed C-lines Lλ̌ inside of F0
z (V λ̌) by the definition of F0

z and
the compatibility between the geometric Satake and highest weight representations
spelled out in Section 2.4. Take the z-modules generated by them, which are free
submodules by Theorem 2.1 and because z is a polynomial algebra. Furthermore,
comparing the L0 eigenvalues and using Lemma 4.1, we see that these lines satisfy the
Plucker relations automatically. These line bundles are evidently Aut-equivariant
and therefore we have an Aut-equivariant reduction to LB.

Let us show that the quotients of these vector bundles by these line bundles
are projective z-modules. Because z is graded after a choice of uniformizer by the
map Gm ⊂ Aut and is in non-positive7 degrees with C as the degree 0 part, it
suffices to show that Tor1(C,F0

z (V λ̌)/Lλ̌) = 0 where C is realized as the degree 0

quotient z � C. To show this Tor vanishes, we need to show that Lλ̌ ↪→ Fz(V
λ̌)

remains an injection after tensoring with C. But this is the inclusion of Lλ̌ into

Fz(V
λ̌)/z<0 · Fz(V

λ̌) which is non-zero because Lλ̌ is the highest graded line.

4.8. Finally, let us check that the LH reduction is what we expect. Indeed, for
a coweight λ̌ of G, the line bundle induced from our LH-bundle is the trivial line
bundle on Spec(z) with Aut-action the λ̌(ρ)-th power of the standard character
because of Lemma 4.1. Because of Proposition 3.4, this completes the construction
of the oper on Spec(z)×̂D.

5. Proof of Lemma 4.1

5.1. We fix the following notational convention. For a map f : Z −→ Z ′ of schemes,
we will use f sh∗ to denote the sheaf-theoretic push-forward of a sheaf, fD∗ to denote
the D-module push-forward, and similarly for the pull-back functors f ∗sh and f ∗D.

7Note that the Gm grading is opposite to the L0 eigenvalue.
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5.2. Let Uλ̌ be GrG \
(

Grλ̌G\Grλ̌G

)
. That is, Uλ̌ the complement in the affine Grass-

mannian of the boundary of the orbit Grλ̌G. Let j : Uλ̌ ↪→ Grλ̌G be the corresponding

open embedding and let i : Grλ̌G ↪→ Uλ̌ be the corresponding closed embedding.

We denote by L λ̌
crit the restriction of Lcrit to Grλ̌G and L λ̌,r

crit the corresponding

right Dcrit-module L λ̌
crit ⊗ ωGrλ̌G

on Grλ̌G.

5.3. Note that jD!∗L
λ̌,r
crit

'−→ R0jD∗ L λ̌,r
crit. Indeed, because L λ̌,r

crit is a simple Dcrit-

module on Grλ̌G, the natural inclusion realizes jD!∗L
λ̌,r
crit as the unique simple submod-

ule of R0jD∗ L λ̌,r
crit and the semisimplicity of Hcrit then implies the result.

Because j is an open embedding, the composition of the functor R0jD∗ with
the forgetful functor from Dcrit-modules to sheaves is equal to R0jsh∗ . Therefore,

Γ(GrG, ICcrit,λ̌) = Γ(Uλ̌, i
D
∗ L λ̌,r

crit).

5.4. We claim that L λ̌,r
crit = L λ̌

crit ⊗ ωGrλ̌G
is a trivial G(O)-equivariant line bundle

on Grλ̌G.
We will demonstrate this using the following general setup: let Z be a scheme

with an action of an algebraic group K and equipped with a K-equivariant line
bundle L . To see that this line bundle is trivial as an equivariant, one only needs
to check that at a fixed point z ∈ Z(C) the action of Stabz(K) on Lz is through
the trivial character.

Fix a Cartan H of G so that we can make sense of the point λ̌(t). We will compute
the character of Stabλ̌(t)(G(O)) on the fibers of ω

Grλ̌G
and on Lcrit, or equivalently,

L ⊗2
crit the determinant line bundle. We largely follow [BD1] Sections 8 and 9.

5.5. The following observation will be of repeated use for us. Let α be a root of G
for the Cartan subgroup H and fix a non-zero root vector yα ∈ g for each root α.
Then Adλ̌(t)(yα) = yαt

λ̌(α) ∈ g((t)). Similarly, Adλ̌(t)(yαt
i) = yαt

λ̌(α)ti

5.6. Let G ↪→ G(O) be the natural embedding via constant jets and let G(O) be
the natural splitting given by evaluation of a jet at 0. We wish to compare the
stabilizers of λ̌(t) in G(O) and in G (where G acts via G ↪→ G(O)). Let us denote
the former group by SG(O) and the later by SG so that there is an induced embedding
SG ↪→ SG(O) with splitting SG(O) −→ SG. Explicitly, these stabilizers are the groups

of points g in G(O) or G such that λ̌(t)−1gλ̌(t) ∈ G(O).
We will show that H maps onto the maximal toric quotient of SG(O), which will

in turn allow us to compute the character.

5.7. Observe that SG contains the group B−. Indeed, clearly H is contained in
G because H(K) is commutative. To see that N− ⊂ SG, note that N− is gen-
erated by gα = exp(yα) where α is a negative root. Then by Section 5.5, we
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have λ̌(t)−1gαλ̌(t) = exp(yαt
−λ̌(α)) and because α is negative −λ̌(α) ≥ 0 so that

yαt
−λ̌(α) ∈ n−(O) ⊂ g(O) as desired.

A fortiori, SG is parabolic and contains H. Therefore, H maps onto the maximal
toric quotient of SG.

5.8. We claim that the kernel of the map SG(O) −→ SG is pro-unipotent. This
would then complete the proof that H maps onto the maximal toric quotient of
SG(O).

More generally, the kernel of G(O) −→ G is pro-unipotent. Indeed, it suffices to
check this claim when G = GLn where this kernel is the space of matrices of the
form 1 + tMn(C[[t]]).

5.9. Now let us compute the relevant characters of H. Observe that the tangent

space of Grλ̌G at λ̌(t) is:
g(O)

g(O) ∩ Adλ̌(t) g(O)

Decompose g(O) as n−(O)⊕ h(O)⊕ n(O). By Section 5.5, Adλ̌(t) is the identity on

h(O), expands n−(O) inside of n−(K), and contracts n(O) into itself. Therefore, we
have the natural isomorphism:

n(O)

Adλ̌(t) n(O)

'−→ g(O)

g(O) ∩ Adλ̌(t) g(O)

By Section 5.5, the character α of H appears with dimension λ̌(α). Indeed, this

space has basis yα, yαt, . . . , yαt
λ̌(α)−1.

Since the fiber of ω
Grλ̌G

at λ̌(t) is the determinant of the dual of this space, the

character of H acting on there is −
∑

α>0 λ̌(α) · α.

5.10. Now let us compute the character of H acting on the fiber of the determinant
line bundle at λ̌(t). To compute this, note that the fiber is the determinant of the
vector space:

g(O)

g(O) ∩ Adλ̌(t) g(O)
⊗

(
Adλ̌(t) g(O)

g(O) ∩ Adλ̌(t) g(O)

)∗
'−→

g(O)

g(O) ∩ Adλ̌(t) g(O)
⊗

(
g(O)

Adλ̌(t)−1 g(O) ∩ g(O)

)∗
Here the isomorphism comes from conjugating by λ̌(t) and is thus H-equivariant.

As in Section 5.9, the character of H acting on the determinant of this vector
space is: ∑

α>0

λ̌(α) · α−
∑
α>0

−λ̌(α) = 2
∑
α>0

λ̌(α) · α
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Since this is twice the character of H acting on the fiber of Lcrit, comparing with
the computation from Section 5.9 we see that we have completed the plan outlined
in Section 5.4 and therefore see that L λ̌

crit ⊗ ωGrλ̌G
is a trivial G(O)-equivariant line

bundle.

5.11. Because Aut acts on L λ̌
crit⊗ωGrλ̌G

in a way compatible with its action on G(O),

Lie(Aut) acts on the line Γ(Grλ̌G,L
λ̌
crit ⊗ ωGrλ̌G

)G(O). Let us compute the eigenvalue

of L0 on this line.
Because L0yαt

i = −iyαti, the decomposition from Section 5.9 implies that L0 acts
on the fiber of ω

Grλ̌G
as multiplication by:

−
∑
α>0

λ̌(α)−1∑
i=0

−i =
1

2

∑
α>0

λ̌(α)(λ̌(α)− 1)

By the same computation, L0 acts on the fiber of the determinant line bundle
by the sum of −1

2

∑
α>0 λ̌(α)(λ̌(α)− 1) and minus (because of duality) the determi-

nant of the action on
(

Adλ̌(t) g(O)

g(O)∩Adλ̌(t) g(O)

)
. As in the computation in Section 5.9, the

decomposition of this space induced by g = n− ⊕ h ⊕ n induces an isomorphism of
it with:

Adλ̌(t) n−(O)

g(O) ∩ Adλ̌(t) n−(O)

This has a basis given by yαt
−i where α ranges over negative roots and where i

ranges from 1 to −λ̌(α). Therefore, L0 acts on this space as multiplication by (note
it doesn’t matter whether α runs over negative or positive roots in the sum):

∑
α>0

λ̌(α)∑
i=1

i =
1

2

∑
α>0

λ̌(α)(λ̌(α) + 1)

Therefore, L0 acts on the determinant line bundle as −1
2

∑
α>0 λ̌(α)(λ̌(α) − 1) −

1
2
λ̌(α)(λ̌(α)+1) = −

∑
α>0 λ̌(α)2 and therefore on the fiber of Lcrit as−1

2

∑
α>0 λ̌(α)2.

Finally, adding this to the computation from the canonical sheaf on our orbit, we
see that L0 acts on our line bundle as multiplication by:

1

2

∑
α>0

λ̌(α)(λ̌(α)− 1)− 1

2

∑
α>0

λ̌(α)2 =
−1

2

∑
α>0

λ̌(α) = −λ̌(ρ)

5.12. Let us put everything together towards the proof of Lemma 4.1. We have seen

that Γ(GrG, ICcrit,λ̌) = Γ(Uλ̌, i∗L
λ̌
crit). On the other hand, clearly Γ(Grλ̌G,L crit ⊗

ω
Grλ̌G

) embeds into this space. We have seen that the corresponding line bundle is

trivial as a G(O)-equivariant line bundle, so there is a unique distinguished G(O)-
equivariant line in these global sections. Furthermore, this line is fixed by L0 and to
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compute the eigenvalue of L0 on this line we only need to compute how L0 scales the
fiber of our line bundle at a point fixed by L0. We have seen that L0 has eigenvalue
−λ̌(ρ) on this fiber.

Therefore, to complete the proof of Lemma 4.1, we need to see that this is the
lowest eigenvalue of L0 acting on Γ(Uλ̌, i∗L

λ̌
crit) and that its eigenspace has dimension

1. It’s clear that every other section of this module differs from our given section as

multiplication by a function or by a vector field normal to Grλ̌G. Therefore, we need

to compute the action of Der on the normal bundle to Grλ̌G Uλ̌ and on functions on

Grλ̌G and show that L0 has non-negative eigenvalues with the only zero eigenvalue
being constant functions.

5.13. We follow [BD1] Section 9. Let us show that L0 acts on O
Grλ̌G

with non-

negative eigenvalues. Indeed, the action of Aut extends on here extends to an action
of the algebraic semigroup End of all endomorphisms of the disc by construction of
the action of Aut. Therefore, as in Section 3.8, the eigenvalues must be non-negative.

One can prove this alternatively as follows while deducing the 1-dimensionality of

the 0-eigenspace. We have seen that Grλ̌G maps to a (partial) flag variety and that
Ker(G(O) −→ G) acts transitively on the fibers. Since L0 acts on functions on this
kernel with non-negative eigenvalues and its only 0-eigenvalue is constant functions,
and because the only global functions on the base are constants, we see that L0 must
act with non-negative eigenvalues and unique 0-eigenspace the constant functions.

Finally, note that we can explicitly compute the sheaf of normal vectors. Indeed,
it admits a Aut-equivariant surjection from:

O
Grλ̌G
⊗ g(K)

g(O)

given by the action of G(K) on GrG and sections of this sheaf obviously have strictly
positive eigenvalues by the above and by explicit computation on g(K)/g(O).

This completes the proof of Lemma 4.1.
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