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1 Conformal blocks for a chiral algebra.

Recall that in Andrei’s talk [4], we studied what it means to take conformal
blocks for a DX -algebra. Namely the functor from k-alg → DX -alg sending
a k-algebra C to the constant DX -algebra OX⊗C, has a left adjoint functor:

H∇(X, ·) : DX−alg→ k−alg Hom(H∇(X,B), C) ' HomDX
(B,OX⊗kC)

and this is the functor of conformal blocks. Also recall that we had a
more concrete description of H∇(X,B) in terms of H0

dR(X − x,B). In fact
the short exact sequence

0→ B→ j∗j
∗(B)→ i∗i

∗(B)→ 0

induces a long exact sequence

0→ H0
dR(X,B)→ H0

dR(X − x,B)→ Bx → H1
dR(X,B)→ 0

and in Andrei’s talk we have seen that H∇(X,B) ' Bx/Bx · (Im(H0
dR(X −

x,B)→ Bx)). We want now to introduce the concept of conformal blocks in
the setting of Chiral algebras, and show that in the case of a commutative
chiral algebra, you obtain what we already know.

Definition 1.1. For a unital chiral algebra A, the vector space

H∇(X,A) := H2
dR(X ×X,A(2))

is called the space of conformal blocks. Where A(2) denotes the kernel of the
map

j∗j ∗ (A � A)→ ∆∗(A)
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We now want to give a description of H∇(X,A) similar to the one we had
for commutative DX -algebras. For this purpose we will need the following
lemma.

Lemma 1.1. The space of conformal blocks H∇(X,A) is isomorphic to the
following:

H∇(X,A) = H2
dR(X×X,A(2)) ' Coker(H1

dR(X×X−∆(X), j∗(A�A))→ H1
dR(X,A)).

Proof. Consider the short exact sequence 0 → A(2) → j∗j
∗(A � A) →

∆∗(A)→ 0. This gives rise to the following long exact sequence:

· · · → H1
dR(X ×X −∆(X), j∗(A � A))→ H1

dR(X,A)→

→ H2
dR(X ×X,A(2))→ H2

dR(X ×X −∆(X), j∗(A � A))→ 0.

We claim that H2
dR(X ×X −∆(X), j∗(A � A)) is zero. In fact, in general,

for any DX module F we have H2
dR(X ×X −∆(X),F) by considering the

projection p : X ×X −∆(X)→ X. Hence we obtain

H∇(X,A) = H2
dR(X×X,A(2)) ' Coker(H1

dR(X×X−∆(X), j∗(A�A))→ H1
dR(X,A)).

Let now x be a point of the curve, and recall that Ax is naturally a H0
dR(X−

x,A)-module. We are ready to show the following proposition.

Proposition 1.2. The space H∇(X,A) is isomorphic to the space of coin-
variants

Coker(H0
dR(X − x,A)⊗Ax → Ax)

Proof. Consider the following maps: x
ix
↪−→ X

jx←−↩ X −x. These give rise
to the long exact sequence

0→ H0
dR(X,A)→ H0

dR(X − x,A)→ Ax → H1
dR(X,A)→ 0 (1)

We can also consider the maps

(X − x)× x id×ix
↪−→ X ×X −∆(X)

k←−↩ (X × (X − x))−∆(X)

which would give as the sequence

· · · → H0
dR(X − x,A)⊗Ax → H1

dR(X ×X −∆(X), j∗(A � A))→ 0
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where the last 0 is because (X× (X−x))−∆(X) is affine. Hence we obtain
a commutative diagram

H0
dR(X − x,A)⊗Ax

��

// Ax

��
H1
dR(X ×X −∆(X), j∗(A � A)) //

��

H1
dR(X,A)

��

// H∇(X,A)

0 0

Surjectivity is clear since the left verical arrow is surjective. To prove the
injectivity it is enough to show that if an element a ∈ Ax is mapped to zero,
then it comes from an element in H0

dR(X − x,A) ⊗ Ax. However by the
construction of the left vertical arrow given in (1) a must be the image of an
element a

′
under the map H0

dR(X − x,A)→ Ax. Now recall that our chiral
algebra was unital, hence there is a canonical element unitx ∈ Ax. Now if
we consider the element a

′ ⊗ unitx we see that it maps to a as desired.

There is actually a more general definition of conformal blocks that in-
volves chiral modules supported at some point x ∈ X. If M is such a module
and M = H0(i!(M)), then we define the space of conformal blocks with co-
efficients in the module M to be:

H∇(X,A,M) = M/Im(H0
dR(X − x,A)⊗M →M)

as you can see, this is exactly H∇(X,A) when we take M = Ax. There is
another way to compute conformal blocks with coefficients in a module M
in the case our chiral algebra happens to be of the form A = U(L), for a
Lie∗-algebra L. This construction will be very useful in the future.

Proposition 1.3. Let U(L) be the enveloping algebra of a Lie∗-algebra L
and M a U(L)-module supported at x.Then the map

Mx/(H0
dR(X−x, L)⊗M)→M/(H0

dR(X−x,U(L))⊗M) = H∇(X,U(L),M)

is an isomorphism.

Proof. For the proof we first need the following lemma, whose proof can be
found in [5].
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Lemma 1.4. U(L) has a filtration U(L) '
⋃
n U(L)n such that if we consider

j∗j
∗(L� U(L))→ ∆∗(U(L)) then

a) Im(L� U(L)n) = ∆∗(U(L)n)

b) Im(j∗j∗(L� U(L)n)) = ∆∗(U(L)n+1)

We will prove that the surjection

Mx/(H0
dR(X − x, L)⊗M)→M/(H0

dR(X − x,U(L)n)⊗M)

is an isomorphism for every n ≥ 1. Suppose that it is an isomorphism
when we consider U(L)n. If we take a section a ∈ Γ(X − x,U(L)n+1) (re-
call that Γ(X/x, h(A)) = H0

dR(X − x,A) for every chiral algebra A, where
h(M) = M/MΘX) and an element m ∈ M , it is enough to show that
h(a).m is not just in Im(H0

dR(X − x,U(L)n+1)⊗M) but that it belongs to
Im(H0

dR(X − x,U(L)n) ⊗M). By point b) of the previous lemma, we can
find a section b� a

′ · f(x, y) of Γ(X −x×X −x, j∗j∗(L� U(L)n)) such that
(h� id)(

{
b� a

′ · f(x, y)
}

) = a. Now we can use the Jacobi identity and we
have

(h� h� h)(a
′
.b.(m · f(x, y))− b.a′ .m · f(y, x)) = a.m.

But now these terms belong to Im(H0
dR(X − x,U(L)n)⊗M) as desired.

The case of a commutative chiral algebra Z.

As we have seen so far, at the level of vector spaces, the expression in 1.2
is indeed equal to the one Andrei defined in his talk. However for a chiral
algebra A the space of conformal blocks will not in general have any structure
of an algebra. Nonetheless we have seen that a commutative chiral algebra
Z is the same as a DX -scheme, and we will see shortly that in this particular
case H∇(X,Z) inherits a structure of commutative algebra. Before that,
let’s recall what it means for a chiral algebra to be commutative.

Definition 1.2. A commutative chiral algebra Z is a chiral algebra such
that the map

Z � Z→ j∗j
∗(Z � Z)→ ∆∗(Z)

vanishes. From the natural short exact sequence below, we have that
this is equivalent to the fact that the bracket factors as follow:
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Z � Z

%%KKKKKKKKKKK
// j∗j

∗(Z � Z) //

��

∆∗(Z
!
⊗ Z)

xxppppppppppp

∆∗(Z)

hence we have a map Z
!
⊗ Z→ Z.

Proposition 1.5. Fora chiral commutative algebra Z the space H∇(X,Z)
has a stucture of an algebra.

Proof. By 1.2 we have H∇(X,Z) = Zx/Im(H0
dR(X − x,Z) ⊗ Zx → Zx).

However the map H0
dR(X − x,Z) ⊗ Zx → Zx was obtained from the map

j∗j
∗(Z � Z) → ∆∗(Z) by taking De Rham cohomology, and because of the

commutative diagram above, we have that the map factors through Zx⊗Zx

H0
dR(X − x,Z)⊗ Zx

can⊗id
��

// Zx

Zx
!
⊗ Zx

88ppppppppppppp

where can is the canonical map we have seen in 1. The diagram shows
that Im(H0

dR(X − x,Z) ⊗ Zx → Zx) = Im(H0
dR(X − x,Z) → Zx) · Zx, or

in other words that the image of that map is the ideal in Zz generated
by Im(H0

dR(X − x,Z) → Zx. From this it follows that H∇(X,Z) is an
algebra.

The center of a chiral algebra.

Definition 1.3. The center of chiral algebra A is the maximal DX -submodule
Z ⊂ A such that the map

Z � A→ j∗j
∗(Z � A)→ ∆∗(A)

vanishes. Equivalently, it is the maximal subalgebra for which we have the
following:

Z � A

%%KKKKKKKKKKK
// j∗j

∗(Z � A) //

��

∆∗(Z
!
⊗ A)

wwppppppppppp

∆∗(A)
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which implies the existence of a map Z
!
⊗ A → A. In other words Z is the

DX -submodule spanned by all the section z, such that {z � a} = 0 for all
sections a ∈ A.

Remark 1. We see immediately that the Jacobi identity implies that Z is
actually a chiral subalgebra of A.

Note that in particular Z is commutative, hence (from 1.5) H∇(X,Z) is an
algebra. This algebra acts on the space H∇(X,A) according to the following
proposition.

Proposition 1.6. The algebra of conformal blocks H∇(X,Z) of the center
of chiral algebra A, acts on the space H∇(X,A).

Proof. As we have seen before, the diagram above implies the following:

H0
dR(X − x,Z)⊗Ax

can⊗id
��

// Ax

Zx
!
⊗ Ax

77ppppppppppppp

and therefore from the map Zx⊗Ax → Ax we obtain an action of H∇(X,Z)
on
Ax/Im(H0

dR(X −x,Z)→ Zx) ·Ax. This action indeed descends to an action
on
Ax/Im(H0

dR(X − x,A)⊗Ax → Ax). In fact this follows from the following
commutative diagram:

H0
dR(X − x,A)⊗Ax

// Ax

H0
dR(X − x,A)⊗Ax ⊗ Zx

OO

// Ax ⊗ Zz

OO

which tells us that the map H0
dR(X − x,A) ⊗ Ax → Ax is a map of Zx

modules. The commutativity of the above diagram follows from the Jacobi
identity applied to j∗j∗(A�A�Z)→ ∆x1=x2=x3

∗ (A) where j is the inclusion
of the complement of the three diagonals in X × X × X. In fact we have
µ1,(23) = µ(12)3 + µ2(13) where

µ1(23) : j∗j∗(A � A � Z)→ ∆x2=x3
∗ (jx1 6=x2

∗ j∗,x1 6=x2(A � A))

µ(12)3) : j∗j∗(A � A � Z)→ ∆x1=x2
∗ (jx3 6=x1

∗ j∗,x3 6=x1(A � Z))
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µ2(13) : j∗j∗(A � A � Z)→ ∆x1=x3
∗ (jx2 6=x1

∗ j∗,x2 6=x1(A � A)).

Now we can consider the open set U = {x2 6= x3, x2 6= x1}
j̃

↪−→ X ×X ×X
and we obtain

j̃∗j̃
∗(A � A � Z) k→ j∗j

∗(A � A � Z)→ ∆x1=x3
∗ (jx2 6=x1

∗ j∗,x2 6=x1(A � A))

and this composition is zero by the definition of Z. Hence we have that
µ1,(23) ◦k = µ(12)3 ◦k and if we now restrict to X×x×x we get the diagram
above.

The center Z as the chiral algebra of endomorphisms of A.

Recall that in Nick’s talk, we have seen that End(A) is a commutative chiral
algebra that parametrizes the endomorphisms of A. Hence we have a map
End(A)⊗A→ A. Note that the fact the fact that End(A) is commutative
allows as to define a chiral action of this algebra on A, by composition:

j∗j
∗(End(A) � A)→ ∆∗(End(A)

!
⊗ A)→ ∆∗(A)

in other words we have that the action factors through a map j∗j∗(End(A)�
A)→ ∆∗(End(A)⊗A), and that End(A) is the universal commutative chiral
algebra with this property. However also the center Z ⊂ A had the same
property, hence we obtain a map Z→ End(A). Moreover we also have that

Z is preserved under End(A), hence we obtain a map End(A)
!
⊗ Z → Z.

Consider now the composition with the unit map of Z:

End(A) = End(A)
!
⊗ ΩX → End(A)

!
⊗ Z→ Z.

This map provides an inverse to the previous one, showing that Z ' End(A).

2 Group DX-scheme acting on a chiral algebra and
conformal blocks as a quasi-coherent sheaf on
BunG

In this section we want to make clear what it means for a group DX -scheme
to act on a chiral algebra A. First of all note that if G̃ is a group DX -scheme,
then its coordinate ring OG̃ is a commutative chiral algebra endowed with a
map

δ : OG̃ → OG̃ ⊗ OG̃
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of chiral algebras, i.e. a map such that the following diagram is commutative

j∗j
∗(OG̃ � OG̃)

��

// ∆∗(OG̃)

��
j∗j
∗(OG̃ ⊗ OG̃ � OG̃ ⊗ OG̃) // ∆∗(OG̃ ⊗ OG̃)

Definition 2.1. An action of a group DX - scheme G̃ on a chiral algebra A

is a coaction on OG̃ on A. In other words it is a map A
π→ A⊗OG̃ of chiral

algebras, such that (π ⊗ id) ◦ π = (id⊗ δ) ◦ π

The condition about π being a map of chiral algebras translates into the
following diagramm:

j∗j
∗(A � A)

��

// ∆∗(A)

��
j∗j
∗(A⊗ OG̃ � A⊗ OG̃) // ∆∗(A⊗ OG̃)

where the bottom arrow is the bracket of the Chiral algebra A⊗OG̃ defined
by using the chiral bracket of A and OG̃, i.e. for f(x, y)a�h1 and g(x, y)b�
h2 sections of A ⊗ OG̃ , {f(x, y)a� h1 g(x, y)b� h2} = {f(x, y)a� b}A ⊗
{g(x, y)h1 � h3}OG̃

We will denote with AG̃ the set

AOG̃ = {a ∈ A |π(a) = a⊗ 1} . (2)

Twisting of a chiral algebra by a G-torsor.
Now suppose that our group G̃ is of the form JG and let P be a G-torsor.
Then we can make sense to the concept of twisting a chiral algebra A by
P . Before going into that, note that from our G-torsor P , we can form a
DX -scheme JG-torsor by taking JP . This actually gives us an equivalence
of category{

G-torsors on X
} e→ {

DX -schemes JG-torsors
}
.

where the inverse is given by push forward functor along the canonical map
JG→ G. Now if we are given a G-torsor P , then the coordinate ring of JP
will be a commutative chiral algebra OJP , endowed with an action of JG
as a chiral algebra. Moreover for any chiral algebra A we can consider the
tensor product A⊗ OJP as a chiral algebra.
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Definition 2.2. Given a chiral algebra A acted on by JG and a G-torsor P
on X, the twisted chiral algebra AP is defined to be the space of invariants
for the action of JG on the chiral algebra A⊗ OJP . i.e. using the notation
as in (2)

AP = (A⊗ OJP )JG.

Remark 2. There is a more concrete way of constructing the twisted algebra
AP that will be used later rather than the one just mentioned. Recall that
in Dennis’s talk [3] we have seen that a G-torson on a curve X is locally
trivial in the Zarisky topology. Let X =

⋃n
i=1 Ui be a covering of X where

the G-torsor P is locally trivial and let ψi,j be the gluing datum of P on
Ui ∩Uj . Then we can define AP locally in the following way: AP |Ui = A|Ui ,
and on Ui ∩ Uj we identify

AP |Ui∩Uj = (A|Ui)|Ui∩Uj = AP |Ui∩Uj

ψi,j' (A|Uj )|Ui∩Uj = AP |Ui∩Uj

using the gluing datum ψi,j : Ui ∩ Uj → JG of JP composed with the map
given by the action of JG from JG to the automorphism of A. Note that in
fact this orizontal section of JG (by definition of Jets) corresponds to the
gluing datum ψi,j : Ui ∩Uj → G of P . The last thing that we have to check
now, is that the bracket is still well defined. Since ∆(X) is covered by the
open sets of the form Ui × Ui, we actually have to check that the following
diagram commutes:

j∗j
∗((A|Ui)|Ui∩Uj � A|ui)|Ui∩Uj ) //

j∗j∗(ψi,j�ψi,j)

��

∆∗((A|Ui)|Ui∩Uj )

∆∗(ψi,j)

��
j∗j
∗((A|Uij )|Ui∩Uj � A|Uj )|Ui∩Uj ) // ∆∗((A|Uj )|Ui∩Uj )

The commutativity of this diagram follows directly from the definition of
action of a group DX -scheme on a chiral algebra.

Conformal blocks as a quasi-coherent sheaf on BunG.
Now we are ready to see how we can regard the assignment {P → H∇(X,AP )}
as a quasi-coherent sheaf on BunG. As we have seen before, it make sense to
twist a chiral algebra A acted upon by JG by the JG-torsor JP . This means
that for every point of BunG, taking conformal blocks, we get a vector space
H∇(X,AP ). This can also be done in families. In fact if we have S

f→ X, and
P a G-torsor on X×S, then we can consider p∗1(A) (where p1 : X×S → X)
and twist this by JP . Moreover recall that taking De-Rham cohomology
of A, is the same as taking the cohomology of the complex p∗(A), where
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p : X → {pt}. Hence, if we consider the map p : X × S → {pt} × S, we
can form the group H2(p∗((p∗1(A)(2)))), which would be equal to the vector
space H∇(X,A) if S were a point. From this we see that the assignment

P ∈ BunG(S)→ H2(p∗((p∗1(A)(2)
P )))

define a quasi-coherent sheaf on BunG.
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