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The geometric Langlands correspondence conjectures a correspondence

Qco(loc-sysLG(x)) ∼= D-mod(BunG(X))

on the level of derived categories. As remarked previously in the seminar, to each

local system over X we associate the skyscraper sheaf over it. In this talk we

shall discuss a subspace1 of loc-sysLG(X) for whom the RHS counterpart (of the

corresponding skyscraper sheaves) is known and consists of Hecke eigensheaves.

1. Definitions

Let G be a connected reductive group over C, a G-oper will be defined shortly as

a G- local system on X with extra structure. Fix a Borel subgroup B ⊆ G. This

choice induces a descending filtration on g of length twice the rank + 1 for which

g−r = g and gi+1 = [gi, n] (so g0 = b, g1 = n etc.), which is preserved by b. We

also denote H = B/N , which acts on grg via ad.

Let FB be B torsor on X, and let (FG,∇) be a local system on the induced G torsor.

Let EFG
= TFG/G, this is the vector bundle over X whose sections are G-invariant

vector fields on FG
2; think of the connection as a map ∇ : TX → EFG

(which is

a section to the projection EFG
→ TX). Composing TX

∇
−→ EFG

→ EFG
/EFB

=

(g/b)F we obtain a section c(∇) ∈ Γ(X, (g/b)F ⊗ ΩX), which measures to which

extent FB is preserved by the connection; ∇ preserves FB if and only if c(∇) = 0.

We start by defining opers for groups of adjoint type, let g be a semi-simple Lie

Algebra, let G denote it’s adjoint group.

Definition 1.1. A g-oper on X is a pair (FB,∇) where FB is a B torsor over X ,

and ∇ is a G-connection on the induced G-torsor, FG := FB ×B G, such that:

(1) c(∇) actually lands in Γ(X, (g−1/b)F) .

Date: March 8, 2010.
1At least morally, in our definitions it won’t allways be a subspace.
2I.e. the Lie algebroid of infinitesimal symmetries of FG. It a vector bundle over X equipped with
a Lie Bracket satisfying an appropriate Leibnitz rule. It’s fiber is non-canonically g× TxX.
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(2) For each simple negative root α, the composition

c(∇)α : TX
c(∇)
−−−→ (g−1/b)F → (g−1/b)α

is an isomorphism.

Often we shall think of a G-oper as a G-local system (FG,∇) with the extra data of

a specified reduction of the structure of the torsor to B 3 satisfying the connection

conditions above.

Example 1.2. If X is a curve with a coordinate dx, and G = PGLn (with usual

upper triangular Borel) we can give an oper structure to the trivial torsor X × B

by using a connection of the form ∇ = d + dx⊗







0 ∗ ∗

1 0 ∗

1 0






(where d is the flat

connection on the trivialized torsor X × G). In fact any choice of matrix with non

vanishing sub-diagonal will do, however we shall show that locally every oper is

isomorphic to a unique oper with this form (which of course depends on the choice

of coordinate, dx).

Remark 1.3. If (FB,∇) is a G-oper then for any η ∈ Γ(X, bF ⊗ ΩX) we can form

a new oper ∇ + η.

When G is of non-adjoint type we give a definition which differs from that in [1].

In their definition a G-oper (for an arbitrary reductive, connected G) has Z(G) as

it’s automorphism group, the effect of our change is to eliminate these as well as

restrict the admissible opers.

When G is of adjoint type the oper conditions imply ∇ induces an isomorphism

FH ×H g1/g2 φ̃
−→ Ω⊕r

X
∼= ΩX ×ρ̌ H ×H g1/g2

here ΩX is identified with the underlying Gm torsor, and ρ̌ is the co-character

associated sum of the fundamental co-weights (which is a character since G is of

adjoint type). In the adjoint case there exists a unique isomorphism

FH
φ
−→ Fcan

H := ΩX ×ρ̌ H

inducing φ̃. When G is not necessarily of adjoint type ρ̌ might not be a co-character,

but 2ρ̌ is and if we fix a square root of the canonical bundle Ω1/2
X then ∇ would

still induce

FH ×H g1/g2 φ̃
−→ Ω⊕r

X
∼= Ω1/2

X ×2̌ρ H ×H g1/g2

3recall every G-bundle on a smooth curve admits a reduction to B.
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Definition 1.4. Fix a square root of the canonical bundle, Ω1/2
X . For G not nec-

essarily adjoint, in addition to the contents of definition 1.1, we require the data of

an isomorphism

FH
φ
−→ Ω1/2

X ×2̌ρ H

which is compatible with φ̃ as above. We call φ the marking.

As mentioned above, for G of adjoint type such a φ exists and is unique. In

general the data of 1.1 does not imply the existence of φ, hence relative to [1] we

are indeed limiting our collection of opers. Moreover, φ̃ determines φ only up to

an automorphism of the underlying torsor given by multiplication with a central

element; fixing φ eliminates these automorphisms.

Example 1.5. In the case of Gln or SLn, an oper an be described in terms of a

rank n vector bundle as follows: it consists of the data (E , (Ei),∇, φ) where E is a

rank n vector bundle over X , (Ei)n
i=1 is a complete flag for E , φ : E1

∼=−→ Ω⊗(n−1)/2

is an isomorphism, and finally ∇ : E → E ⊗ ΩX is connection which satisfies.

(1) ∇(Ei) ⊆ Ei+1⊗ΩX , thus induces morphisms between the invertible sheaves

griE → gri+1E ⊗ ΩX .

(2) For each i the morphism above is an isomorphism.

2. Opers as a functor

Next we proceed to collect opers into a functor on DX -schemes. Indeed if Y
f
−→ X is

a DX -scheme, then the notion of a G-torsor over Y with connection along X makes

sense: it is a G-torsor FG
p
−→ Y for which FG is compatibly a G-equivariant DX -

scheme, i.e. the map p is horizontal. For a G-oper on Y along X we additionally

provide the data of a reduction of the torsor structure to the Borel, as well as an

isomorphism FH
φ
−→ f∗Ω1/2

X ×2ρ̌ H which satisfy:

(1) c(∇), which is the composition ∇ : f∗TX → EFG
→ (g/b)F, actually lands

in (g−1/b)F (note these are all vector bundles over Y ).

(2) For each negative simple root α, the composition f∗TX → (g−1/b)F →

(g−1/b)α
F is an isomorphism. Thus we have an induced map (g1/g2)F

∇
−→

(f∗ΩX)⊕r.

(3) The map induced by φ ,

(g1/g2)F = FH ×H g1/g2 φ
−→ f∗Ω1/2

X ×2ρ̌ H ×H g1/g2 = (f∗ΩX)⊕r

agrees with the map induced by ∇ above.

For any two such objects the notion of an isomorphism is evident and we can form

the groupoid OpG(Y ), whose objects are G-opers over Y → X . Lastly, pullback
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of such opers along horizontal maps is defined (and has the same underlying G-

local system as the pullback in that category) and we end up with a functor on

DX-schemes, OpG, which is a sheaf at least in the Zariski topology.

In particular, we may endow Y = S × X with the flat connection and obtain the

notion of an S family of opers on X. Abusing notation we use OpG(X) to denote

the functor on schemes whose S-points are Op(S × X); thus OpG(X) is a functor

over schemes.

In the next secion we shall show that Opg is representable by a DX -scheme which

is (non-canonically) isomorphic to the Hitchin jet bundle J etsX(cLg ×Gm
ΩX).

It’s horizontal sections, Opg(X) will thus be represented by HitchLg(X), hence

naturally be an affine space whenever X is complete.

For now we show that OpG is fibered over DX -schemes in sets, i.e. opers have no

automorphisms.

Proposition 2.1. A G-oper, (FB,∇, φ), over a DX-scheme Y → X has no (non

trivial) automorphisms.

Proof. This is a local question so we may assume that FB = Y × B is trivialized,

and X has a local coordinate dx. We can write ∇ = d + η ⊗ dx, where d is the

“flat connection” on Y × B → X induced by the connection on Y and the trivial-

ization, and η : Y → g−1 has non-vanishing entries for each simple negative root.

Considering the underlying torsor FB = Y ×B as a right torsor, an automorphism

consists of left translation by a map σ : Y → B. Since σ must preserve φ it must

act trivially on FH , this forces the image of σ to actually fall in N , so σ : Y → N .

Conversely any such automorphism will be trivial mod N , have no effect on FH

and will preserve φ. The effect of such a map on the connection is

σ.(d + η) = d + dσ · lσ−1 + Ad(σ)η ⊗ dx

Assume σ induces an automorphism of the oper, i.e. preserves the connection. Note

that dσ · lσ−1 ∈ Γ(X, g1 ⊗ ΩX) (recall n = g1) so

Ad(σ)η ≡ η modg1

In N we can take logarithms so let σ = log n for some n ∈ n, let gi be the smallest

term of the filtration containing n, we show i = r and hence σ = 1. Indeed

dσ · lσ−1 = d log σ = dn ∈ Γ(X, gi ⊗ ΩX) = Γ(X, g1 ⊗ ΩX) so that

Ad(σ)η ≡ η modgi.



OPERS 5

Choose a Cartan subalgebra h ⊆ b, and write η = η−1 + β with η−1 : Y → g−1

having non vanishing coordinates in each simple negative root space, and β : Y → b.

gi + Ad(σ)(η−1 + β) − (η−1 + β) =

= Ad(exp(n))(η−1 + β) − (η−1 + β)

= [n, η−1 + β] + 1/2[n, [n, η−1 + β]] + · · ·

∈ [n, η−1] + gi

hence [η−1, n] ∈ gi.

We show this implies n ∈ gi+1 which is a contradiction to the choice of i unless n = 0

(implying σ = 1). Let {e0, h0, f0} the standard basis of sl2, let b0 = span{e0, h0}

denote the standard Borel. At every point of Y the map η−1 determines a principal

embedding 4 sl2 → g , which carries b0 to b and for which η−1 is a scalar multiple of

the image of f0. Considering g as an sl2 representation via this principle embedding,

our filtration corresponds to the weight space filtration and for a positive weight i,

hence adf0 : gi/gi+1 ↪→ gi−1/gi. !

Opers were introduced as living within local systems, this is true to the following

extent. The forgetful functor from OpG(X) → loc-sysG(X) is always faithful.

However, under our definition an oper cannot have non-trivial automorphism while

the underlying local system might the issue is that a local system isomorphism may

not preserve the flag or the marking). Nonetheless less we do have the following.

Proposition 2.2. Let X be a complete curve of genus g ≥ 2, G semi-simple of

adjoint type, and (FG,∇) a G-local system on X which admits an oper structure.

Then the oper structure is unique.

We use the Harder Narasimhan flag:

Lemma 2.3. Let FG be a be torsor over a complete curve X of genus g ≥ 2. Let FB

be a reduction to the Borel such that for each simple positive root α, the Gm-torsor

FH ×α Gm has positive degree for. Then FB is unique.

proof of 2.2. Let FB be a reduction to the Borel which makes (FG,∇) an oper, we

show that FB is the Harder Narasimhan flag, hence is unique. Indeed for every

positive simple root FH ×α Gm
∼= ΩX ;since g ≥ 2, it has positive degree. !

4A principal embedding is one in which e0, f0 map to principal nilpotents in g; such an embedding
determines a Cartan subalgebra relative to which e0 and f0 map to sums of basis elements of the
positive/negative root spaces respectively.
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Corollary 2.4. When X is a complete curve and g ≥ 2 and g is semi-simple then

Opg(X) is a full and faithful subcategory of loc-sysG(X) (where G is the adjoint

group of g).

In the non-adjoint case the ambiguity in the oper structure on (FG,∇) is only due

to the choice of marking (i.e. the flag is uniquely determined). It follows the the

fiber of OpG (X) → loc-sysG (X) is a naturally torsor for the ’automorphisms of φ

over ∇” (see 1.4); evidently this is Z =the center of G.

3. A description of the space of g-opers

We now restrict ourselves to the adjoint case of g-opers with g semi-simple, and

show that Opg is a torsor for (the jet scheme of) a certain vector bundle over X .

Passing to global sections we obtain an isomorphism of Opg(X) with an affine space

which we shall identify with HitchLg(X). Recall that in Andrei’s talk D-algebras

were heuristically introduced as being to non-linear PDE’s what D-mod’s are to

linear PDE’s. That opers are a torsor for a vector bundle corresponds to the fact

that solutions to a non-linear PDE are a torsor for the solutions of it’s homogeneous

counterpart.

It turns out that for any g this torsor structure may be obtained from the torsor

structure of Opsl2 , and we start by considering this case.

3.1. sl2-opers.

Lemma 3.1. Opsl2 is naturally a torsor for5 Ω⊗2
X .

Proof. Let (FB,∇, φ) be any oper on a DX -scheme Y
f
−→ X . We start by noting in

our case n = g1/g2 so the that by ∇ induces nF
∼= f∗ΩX , thus nF ⊗f∗ΩX

∼= f∗Ω⊗2
X

and Ω⊗2
X both a-priori act on Opsl2(Y ) and Opsl2 (respectively) by modifying the

connection.

To prove the action is simply transitive we may work locally. Replacing X and Y

by appropriate Zariski opens we may assume that X has a local coordinate dx, and

FB
∼= Y × B is trivial (since B is solvable FB, is Zariski locally trivial). As in the

proof of lemma 2.1, a choice of coordinate and trivialization gives

∇ = d + dx ⊗ η

5There is some abuse of notation going on here, we are actually considering Ω⊗2

X
as a func-

tor on DX -schemes (rather than X-schemes). We could say instead that Opsl2 is a torsor for

J etsX(Ω⊗2

X
), since this is the DX -scheme representing the functor.
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where d is the flat connection w.r.t the trivialization and η : Y → sl2 does not

vanish mod b. Recall that a change of the trivialization given by left multiplication

by σ : Y → B has the effect of modifying the connection to

d + dσσ−1 + Ad(σ)η

Computing directly (this is where PSL2 being of adjoint type comes in) we see

that every coordinate determines a unique canonical trivialization which brings the

connection to canonical form (both relative to the choice of coordinate)

∇ = d + dx ⊗

(

0 α

1 0

)

thus the action of f∗ΩX ⊗ nF(Y ) on Opsl2(Y ) is free and transitive. Note also

the the uniqueness implies that the underlying B torsor of any oper is trivialized

whenever we have a coordinate. !

Corollary 3.2. All sl2- torsors all have isomorphic underlying B-torsors. Denote

this torsor F0
B0

.

Remark 3.3. For a complete curve X sl2-opers always exist, hence Opsl2 is a trivial

torsor for Ω⊗2
X :

When g ≥ 2, this is implied by the fact that H1(X, Ω⊗2
X ) = 0.

When g = 1 there is a global coordinate and the trivialized torsor X × B with

∇ = d + dx ⊗

(

0 α

1 0

)

is an oper.

When g = 0 one can either compute directly and see there is a unique oper (unique-

ness is implied by the fact that H0(P1, Ω⊗2
P1 ) = 0). Alternatively, note

that an oper is equivalent to the data of a P1 bundle with connection

and a section with non-vanishing co-variant derivative; take P1 × P1

with the trivial connection and diagonal section.

3.2. g-opers. Let g be an arbitrary semi-simple lie algebra, with a chosen Borel b.

Construction 3.4. Let {e0, h0, f0} the standard basis of sl2, let b0 = sp{e0, h0}

denote the standard Borel, and choose a principal embedding sl2 → g , which carries

b0 to b. To the map of Lie algebras corresponds a map of groups PSL2
ιG−→ G,

where G is the adjoint group of g.

We now describe how ιG may be used to construct a g-opers out of an sl2-opers. Let

(F0
B0

,∇0) be an sl2-oper on Y
f
−→ X 6. Let FB , FG respectively be the B , G torsors

which F0
B0

induces via ιG. The connection ∇0 naturally induces a connection on

6Recall that for a g-oper the isomorphism φ is uniquely determined by the rest of the data, hence
we ignore it.
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FG which satisfies the oper condition because the map ιG is principal. In fact, if

locally in an appropriate trivialization

∇0 = d + dx ⊗

(

0 α

1 0

)

then

∇ = d + dx ⊗ (f + αe))

In particular global g-opers always exist.

We wish to present g-opers as a torsor for an appropriate vector bundle.

Relative to a principal embedding, let ge07 be the stabilizer of e0 in g. As in the sl2

case, on a curve X with coordinate dx, lemma 3.6 will state that every g-oper has

a canonical trivialization and that, locally, opers are a torsor for maps Y → ge0 .

However, B doesn’t act on ge0 so we can’t a-priori twist by FB (as in the sl2 case)

to immediately get an action on the space of opers.

None the less, since B0 does act on ge0 we can form

ge0

F0 := F0
H0

×H0 ge0 = F0
B0

×B0 ge0

Using Ω⊗2
X = ΩX ⊗ n0F0 → ΩX ⊗ ge0

F0 we construct an ΩX ⊗ ge0

F0-torsor

Opsl2 ×Ω⊗2
X

(

ΩX ⊗ ge0

F0

)

Lemma 3.5. Every principal embedding gives rise to an isomorphism

(3.1) Opsl2 ×Ω⊗2
X

(

ΩX ⊗ ge0

F0

)

−→ Opg

Proof. The map is defined by sending
(

F0
B0

,∇; ν
)

to
(

ιF0
B0

, ι∇ + ν
)

. Where
(

F0
B0

,∇
)

is an sl2-oper which induces a g-oper
(

ιF0
B0

, ι∇
)

, and for ν ∈ ΩX ⊗ ge0

F0 we define

ι∇ + ν using ge0

F0 = F0
B0

×B0 ge0 → F0
B0

×B0 b = bF0 . The image consists of opers

whose underlying B-torsor is F0
B := F0

B0
×ι B. To see this is an isomorphism is

suffices to check locally, whence this is implied by lemma 3.6. !

Lemma 3.6. Let X be a curve with a coordinate dx. Fix a principle embedding

sl2 → g as above. For any g-oper on X, the underlying B-torsor admits a unique

trivialization relative to which the connection has the form

∇ = d + dx ⊗ (f + η)

where η : Y → ge0 .

7n0 ⊆ ge0 ⊆ n. In the case of sln with the standard Principal embedding, ge consists of all strictly
upper triangular matrices with constant super-diagonals.
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Proof. The proof uses Kostant’s lemma (see [2]) and we defer it to the appendix. !

Corollary 3.7. Global g-opers exist and all g-opers have isomorphic underlying

B-torsors. Given a Principal embedding ι, this B-torsor is naturally identified with

as the pushforward F0
B := F0

B0
×ι B.

Every principal embedding gives rise , via lemma 3.5, to a ΩX ⊗ge0
F -torsor structure

on Opg. However, any two principal embedding are uniquely conjugate by an

element of B. Thus, neither the vector space ge0 , nor the torsor structure depend

on the Principal embedding:

Lemma 3.8. Opg is naturally a torsor for ΩX ⊗ ge0
F . Thus Opg (X) is naturally a

torsor for Γ
(

X, ΩX ⊗ ge0
F

)

. Both are trivial torsors.

As for the representability of the space of opers, any choice of a global oper on X

gives rise to:

Corollary 3.9. Opg is representable by a DX-scheme isomorphic to J etsX(ΩX ⊗

ge0
F ). When X is complete, Opg (X) is representable by a scheme isomorphic to

Γ (X, ΩX ⊗ ge0) (for which it is naturally an affine space).

4. Opers and the classical Hitchin space

Next we discuss the relation to the Hitchin space, which will be further developed

in the next section. Identify, via the Ad action, H0
∼= Autn0 = Gm to obtain a Gm

action on ge0 which we also denote Ad. FH0
∼= ΩX and so

ΩX ⊗ ge0
F = ΩX ⊗ (FH0 ×H0 ge0) = ΩX ×tAd(t) ge0

where tAd(t) denotes the action of t ∈ Gm on ge0 . There are natural isomorphisms

cLg := spec(symLg)
LG = spec(symLh)W = spec(symh∗)W = g//G

and these identifications are Gm equivariant w.r.t. the the action on the quotients,

which is pushed forward from scalar multiplication on g and Lg respectively. Recall

Kostant’s section of the Chevalley map g → g//G has f0 + ge0 as it’s image. This

section induces an isomorphism of varieties cLg → ge0 which intertwines the Gm

action on cLg with the tAd(t) action on ge0 . Finally we obtain an identification

schemes over X

(4.1) cΩX

Lg
= ΩX ×Gm

cLg

∼=−→ ΩX ⊗ ge0
F

The LHS, which is not a-priori a vector bundle, is now considered as such via this

isomorphism.
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The punch line is that corollary 3.9 now reads: every global g-oper over X gives

rise to an isomorphism of DX -schemes

Opg
∼= J etsX(cΩX

Lg
) = HitchLg = specX

(

zclLg

)

Passing to functors of horizontal sections we get

(4.2) Opg(X) ∼= SectX

(

cΩX

Lg

)

∼= HitchLg(X)

Next assume X is complete, then Opg (X) is representable by a scheme, which is

naturally an affine space for Γ(X, ΩX ⊗ ge0
F ).

Let Ag denote the coordinate algebra of Opg, and let Ag (X) denote the coordinate

algebra of Opg (X). Recall that zclLg and zclLg (X) are the coordinate rings of HitchLg

and HitchLg (X) respectively, and that they are naturally graded. By the discussion

above Ag and zclLg are non-canonically isomorphic (as are Ag (X) and zclLg (X)), but

the following is canonical:

Proposition 4.1. There exists a canonical filtration of Ag and a canonical iso-

morphism of graded rings grAg
σA−−→ zclLg

.

Proof. Identify zclLg with the coordinate ring of J etsX

(

ΩX ×tAdt ge0
)

via 4.1. Note

that the natural grading on zclLg corresponds to the action of Gm on ΩX ×tAdt ge0

opposite to tAdt.

As Opg is naturally an affine space for J etsX

(

ΩX ×tAdt ge0
)

over X , on the level

of coordinate rings, the grading on the latter induces a filtration on the former

which yields the desired isomorphism. !

Corollary 4.2. Let X be a complete curve. There exists a canonical filtration of

Ag (X) and a canonical isomorphism of graded rings (grAg) (X) - gr (Ag (X))
σA(X)
−−−−→

zclLg (X).

5. The Feigin-Frenkel isomorphism

This section is the quantization of the previous, and relates opers to the quantum

Hitchin space. Let X be a complete curve. Recall that zLg (defined rather ab-

stractly) was a filtered algebra and we had the following theorem (of Feigin and

Frenkel, dicussed in Dustin’s talk) and accompanying results which related the

various Hitchin algeras.

Theorem 5.1 (first Feigin-Frenkel). The natural map grzg

σz
−→ zclg is an isomor-

phism of graded DX-algebras.

Proposition 5.2. The natural surjection
(

grzg

)

(X) −→ gr
(

zg (X)
)

is an isomor-

phism.
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Corollary 5.3. We have the following isomorphisms

(

grzg

)

(X) −→ gr
(

zg (X)
) σz(X)
−−−→ zclg (X)

As promised, the following theorem due to Feigin and Frenkel as well relates the

Hitchin spaces to opers:

Theorem 5.4 (second Feigin-Frenkel). There exists an isomorphism of filtered

algebras

Ag
φ
−→ zLg

which quantizes the map σAg of proposition 4.1, i.e. σz ◦ grφ = σAg .

Corollary 5.5. φ induces an isomorphism of filtered algebras

Ag (X)
φX−−→ zLg (X)

which quantizes the map σAg(X) of corollary 4.2, i.e. σz(X) ◦ grφX = σAg(X).

From the perspective of spaces we have an isomorphisms

specX

(

zg

)

- OpLg and spec
(

zg (X)
)

- OpLg (X)

(of DX -schemes and schemes respectively) providing a moduli description of the

quantum Hitchin space.

Let us summarize this Hitchin quantization business so far:

ALg(X)
∼=

!!

gr

""
!"
!"
!"

zg(X) !!

gr

""
!"
!"
!"

Γ(Bunγ
gX,D′)

gr

""
!"
!"
!"

grALg(X) !!

∼=
""

gr(zg(X)) !!

∼=
""

grΓ(Bunγ
gX,D′)

∼=

""

Acl
Lg(X)

∼=
!! zclg (X)

∼=
!! Γ(T ∗Bunγ

gX,O)

Where Acl (X) is the coordinate ring of Γ
(

X, ΩX ⊗ ge0

F0

)

and is introduced for the

sake of symmetry. The marked isomorphisms are the ones we proved, they imply

the rest of the maps are isomorphisms as well.

Finally the geometric Langlands correspondence for opers should play out as follows:

starting from a Lg-local system on X , σ, which admits a (unique) oper structure

we get a maximal ideal mσ ⊆ ALg (X) whose residue field we denote kσ. Thus we

get a twisted D-mod Dσ := D′ ⊗ALg
(X) kσ (on BungX).This will be shown to be a

Hecke Eigensheaf .
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6. Appendix - Kostant’s lemma and it’s application

In this appendix we state a lemma of Kostant and prove lemma 3.6. This has

already been discussed in the seminar to some extent, see [2]. Choose a principal

embedding sl2
ι
−→ g, and let e, h, f denote the images of the (standard) same named

elements in sl2. e and f are contained in unique, opposite Borels; so ι determines a

Borel, Cartan and root system. Let PSL2
ιG−→ G be the induced map on the group

level.

Lemma 6.1. N acts on f + b freely via Ad. f + ge is a section for this action,

and moreover N i.(f + ge) = f + ge + ni.

With this in hand we prove lemma 3.6 :

proof of lemma 3.6. Let X have a coordinate dx, and let

∇ = d + η−1 ⊗ dx η−1 : X → g−1

be the connection of a g-oper on a trivialized B-torsor. !

(1) We must show there exist a unique change of trivialization, σ : X → B

such that the transformed connection

d + dσσ−1 + Ad (σ) η−1 ⊗ dx

has the desired form. Because G is of adjoint type Ad induces an isomor-

phism H −→ ×GL (g−α). Since η : X → g−1 has non-vanishing entries in

every simple negative root space, there exists a unique X
σH−−→ H s.t. that

Ad (σ) η = f mod b. σ−1
H dσ−1

H ∈ b so that after changing the trivialization

using σH it has the form

d + (f + η0) ⊗ dx η0 : X → b

Let σ1 : X → N be the unique map, promised by Konstant’s lemma, such

that Ad (σ)
(

f + η0
)

∈ f +ge. If it weren’t for the σ−1dσ term, which pops

up when the trivialization is changed we’d be done. Nonetheless we get an

approximation mod n, i.e. after changing the trivialization again using σ1

the connection has the forms

d + (f + η1) ⊗ dx η1 : X → n

Note that σ1σH with this property is unique mod N2. We proceed in the

same fashion inductively, noting at the i’th stage that if f +ηi ∈ f +ge+ni,

then the unique σi such that Ad(σi)(f + ηi) ∈ f + ge in fact lies in N i+1

, hence σ−1
i dσ ∈ ni+1. After rankg steps we get σr · · ·σ1σH which is the

required map.
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