Overview and recap of Dustin’s talk on
quantization

February 15, 2010

As throughout the last semester, let us begin by fixing a smooth projective
curve X of genus g > 1 over a field k, and let G be a reductive group. Our
discussion started from the classical Hitchin map:

T*Bung — Hitch(X) = Sect(X, C xg,, wx).

The actors here are Bung (the moduli stack of principal G—bundles over X),
C = g*//G (the affine quotient of g* with respect to the adjoint action of G)
and wx (the sheaf of regular differentials on X). Passing to the level of rings
of functions, we get a map:

5/(X) == O(Hitch(X)) 25 T(T*Bung, O). (1)

The connected components of Bung are Bun/,, indexed by elements v €
m1(G). In Andrei’s Oct 22 lecture, we proved the following:

Proposition 1 The map h¢ becomes an isomorphism when we restrict it to
any connected component Bun/, C Bung.

Proposition 2 The algebra I'(T* Bung, O) has trivial Poisson bracket.

Our main focus last semester was to quantize the map h®, i.e. to prove
the following theorem:

Y

Theorem 1 There ezists a filtered commutative algebra 3(X) such that gr 3(X) =
3°(X), and a map:
3(X) - D(Bung, D),

1



such that the vertical maps in the following diagram are isomorphisms, and
the following diagram commutes:

gr 3(X) ok, gr I'(Bung, D')
% l (2)

54X) s (T Bung, O)

In the above, D' denotes the sheaf appropriately twisted differential operators
on the stack Bung.

Of course, one can restrict the above to any connexted component Bun/,:

rest

hy 1 3(X) - T(Bung, Djy,,.) =% T(Buny, D),

and:

rest

gr hy :gr 3(X) =% gr T(Bung, D) —=% gr I'(Buny, D)

*| J J

er b 59(X) 5 T(TBung, 0) —=% T(T*Bun}, O)
Then we have the following corollaries:
Corollary 1 The morphism gr h, is an isomorphism.

Corollary 2 The morphism h., is a filtered isomorphism (the quantization
of Proposition 1).

Corollary 3 The algebra I'(Bung, D) is commutative (the quantization of
Proposition 2).

Corollary 4 The vertical morphism on the right in (2), while a priori just
injective, 1s actually an isomorphism.

The Theorem was ultimately proved in Dustin’s Dec 3 talk, and today
we will review both the construction of 3(X) and the proof of the theorem.
First, we will recall how we proved the “classical” Propositions 1 and 2, via



the local-to-global principle.

Take any closed point z € X, and consider the ind-scheme Bung™ of
principal G—bundles on X with level structure at x (i.e. with a fixed trivial-
ization on the formal neighborhood Spec O,). The group ind-scheme G(K,)
acts on Bung™* by changing the trivialization.

Whenever we have an action of a group scheme H on a stack ), this
induces an “infinitesimal action” h = Lie H — Vect()). Taking the dual
of this, we get a “moment map” T*)Y — b*. In our case, this construction
provides a map:

T*Bun” — (9@ K,)" = g" ® wy, - (3)
On the rings of functions, this corresponds to a map:

Sym(g @ Ky) 25 D(T*Bun™, 0). (4)

Modding out by the G(O,) action means forgetting the trivialization, and
therefore Bun;™/G(0O,) = Bung. This implies that the subscheme:

* 00,T * o,
T"Bung Xgun, Bung™ — T"Bung

consists of cotangent vectors that are killed by the G(O,)—action. Therefore,
the restriction of (3) gives:

T"Bung X pung BunoGoyx — (g® OI)L =2 (RK,/0,)" =g Quwo,. (5)
Passing to rings of functions, we get:

Sym(g @ Ky /Oy) 5 D(T*Bung X pune, Bunl”, 0), (6)

Now we take G(O,)—invariants in the above, which corresponds to the fol-
lowing map on spaces:

T*Bung — (g®K,/0,)"//G(O,) — Sect(Spec O,, C Xg,, wo,) =: Hitch,.
(7)



The second map was proved to be an isomorphism in the lectures. Then, the
above gives rise to the following morphism on rings:

3¢ = Sym(g ® K,/0,)¢) LN ['(T"Bung, O). (8)

The map (7) is called the local Hitchin map. The natural inclusion
Hitch(X) < Hitch, has the property that the following composition is pre-
cisely the local Hitchin map:

T*Bung — Hitch(X) < Hitch,.

At the level of functions, we just reverse all arrows:

hel 5 = 59(X) 25 D(TBung, O). 9)

As x varies, the local Hitchin maps can be “glued” together, by means of the
Dy —scheme:

HltCh p— JetS(C XGm CUX)

|

X
The fiber of Hitch over x is just the local Hitch,, while the scheme of all
horizontal sections HorSect(X, Hitch) coincides with the global Hitch(X).
We will write 3 = O(Hitch), and then the compositions (9) patch up over
all x to give a global morphism:

B3 = 5%(X) ® Ox 2% T(T"Bung, 0) ® Ox. (10)

The above composition merely reflects the properties of conformal blocks:
recall that for a Dx—algebra B, there exists an algebra Hy (X, B) of con-
formal blocks and a horizontal morphism:

gbg . B - Hv(X, B) ® Ox,

which is universal in the following sense: any horizontal surjection B —»
B ® Ox factors through ¢p. In other words, the functor Hy (X, ) is left
adjoint to the functor - ® Ox. Last semester, we proved the following:



Lemma 1 The map 3* — 3(X) @ Ox of (10) is horizontal, and

Hy(X,3%) = 34(X).
Therefore, (10) merely reflects the left-adjointness of the functor Hy.

Let us present the general strategy for quantizing the above discussion
(as in Sam’s third lecture), emphasizing the places where we run into trou-
ble. Back up to the group G(IC;) acting on Buni™*. From this, we get an
infinitesimal action:

g ® K, — I'(Bung™, Vect) — I'(Bung™, Dpyye),

where Dg e denotes the sheaf of differential operators on Bun/™. Since
Dg e is a sheaf of algebras, we get a map:

U(g ® Ky) = D(Bung™”, D). (11)
Modding out by the G(O,) vector fields gives us a map:

V, =UgekK,) & C L= 1y (Bun®y™”, 7* D, ) (12)
U(g®0z)

o0,T

where m : Bun;™ — Bung is just the map that quotients out the G(O,)
action. Here, V, denotes the vacuum module, defined by the property:

Homgec, (V,, M) = M),
Therefore, take G(O,)—invariants in (12):

Vg((’)z) i} F(BUHG, DBunG)' (13)

One would like this map to be the quantization of (8), but alas! It turns out
that both the left and the right hand side of (13) are trivial: they are equal
to C. To get some non-trivial objects, we must twist both V, and Dpyy,,, as
in Dustin’s first talk. Let’s describe how this works.

Take the canonical line bundle L4¢¢ of Bung, whose fiber over a principal
G—bundle Py is canonically:



Edet’PG = det(RF(Xa gPG))'

On the representation-theoretic side, take the central extension:

1—>Gm—>®—>G(K$)—>1.

The line bundle 7*L4et on Bung™ is not G(K,)— equivariant, but it is

—

G(K,)— equivariant, where the central G,, acts fiberwise by homotheties.
Taking Lie algebras, we obtain a map:

@K, — I'(Bung™, D(7* Laes, T Laet ) (14)

But this is not exactly what we need. In Sam’s talk, we showed how to define
the sheaf D(L},,, £3.;) for any complex number \. It is called the algebra of
twisted differential operators. We will use A = %, so define:

1 1
crit . __ 2 2
Bung " D( det? det)

Together with this, we also define the Kac-Moody extension g« to be “half”

—

of the extension g ® K, i.e. constructed using % times the Killing form. As
in (14), we obtain a map:

- 1 1

U@ = D(Bung ™, D(x" Ly 7 L))
This is the correct twist of the map (11). Now it’s time to go through the
usual story: mod out by the G(O,,) directions:

V;rit — U(/g\cm't) ® C E) F(Bungo’x, W*D]%rjrtlc)-
U(g20,aC)

The critical twisted vacuum g*—module V<% is defined by the property:

Homgerst (V" M) 22 M),

Therefore taking G(O,)—invariants, we obtain:
30 1= Endgers (VE™) = (V)60 L2, D (Bung, DG ). (15)

This is the correct quantization of the map (8). As in the classical case, these
maps can be glued as x ranges over X. Namely, there exists a commutative



D x—algebra 3 whose fiber over z € X is just 3, defined above. Moreover,
the morphisms (15) glue and give rise to a morphism:

5 2% P(Bung, DI ) @ Ox. (16)

Bung

We claim (and will later argue) that this morphism is horizontal. Therefore,
we are led to define:

3(X) = Hy(X,3),
which is the correct quantization of the Poisson algebra 3%(X) of (1). From
the left-adjointness of Hy and the horizontality of the map h, we deduce the
existence of an algebra morphism:

3(X) 25 M(Bung, DZ ), (17)

Bung

which is the correct quantization of the map h¢ from (1), as stated in Theo-
rem 1. Now let us try to justify the claim we just made: why is the morphism
hg from (16) horizontal? This can be sketched in several sentences:

1. The assignment x — V' ® K, defines a crystal of Ll.c.v.s over X, for
any finite-dimensional vector space V.

2. The assignment © — g® K, defines a crystal of Lie algebras of 1.1.c.v.s
over X.

3. The assignment x — V¢ defines a crystal of g® K, modules over X .

4. The assignment © — Endgerit (VE™) = 3, defines a crystal of associa-
tive algebras over X. In particular, Jacob’s talk on crystals implies the
existence of the Dy —algebra 3.

5. The assignment © — Bun/"* defines a crystal of schemes over X.

6. The assignment ©+ — G(K,) defines a crystal of group ind-schemes
over X, and its action on Bung"* is compatible with the crystal struc-
ture.

7. The assignment xr — @g”'t defines a crystal of group ind-schemes over
X, and its action on 7} Lget is compatible with the crystal structure.



8. The maps 71;, ﬁ;, h, are compatible with the crystal structure. In other
words, the morphism (16) is horizontal.

9. Finally, the filtration on the vacuum modules V¢ and the filtration on
the algebras 3, are compatible with the crystal structure. Therefore, we
obtain a filtration on the Dy —algebra 3 and on its algebra of conformal

blocks 3(X).

The canonical injections gr 3, — 3¢ are also compatible with the crystal
structure, so they induce an injection gr 3 < 3. It was proved by Feigin
and Frenkel that this injection is actually an isomorphism:

or 32 3% = Ho(X, gr 3) = He(X,3%).

Moreover, the canonical morphism 3 - Hy (X, 3) ® Ox induces a surjection:

grj — gr Hy(X,3) ® Ox = gr 3(X) ® Ox.

By the left-adjointness of conformal blocks, this yields a surjection:

Hy(X,gr3) — gr 3(X).

So let’s see where we stand: the map (17) induces the commutative diagram:

ar3(X) =% gr [(Bung, DZ )

Bung
| s

Hy(X,gr3) ['(T*Bung, O)
gl ThCl(X)
Hy(X,3!) ——= 3(X)

As we previosuly said, a is surjective and b is injective, while the map h(X) is
an injection (it becomes an isomorphism only when we restrict to a connected
component). Therefore, we deduce that a must be injective, and thus an
isomorphism. This proves Theorem 1.



