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In last week’s lecture, we discussed the Hecke category Sph of spherical, or G(Ô)-equivariant D-modules
on the affine grassmannian GrG and constructed a convolution product on it. We also introduced the
factorizable monoidal categories Sphn of spherical D-modules on the relative grassmannians GrG,Xn = Grn,
and stated the geometric Satake equivalence:

Theorem 1. The convolution ∗ admits a commutativity constraint making Sph into a rigid tensor category.
There exists a faithful, exact tensor “fiber” functor Sat : Sph → Vect inducing an equivalence (modulo a
sign in the commutativity constraint) of Sph with Rep(LG) as tensor categories, where LG is the Langlands
dual group of the reductive group G, whose weights are the coweights of G and vice versa.

More generally, there is an equivalence Satn : Sphn → Repn(LG) which is monoidal for each n, respects
the factorizable structures on both sides as n varies (including the Sn-equivariance), and for n = 1, agrees
with Sat when restricted to each point of X.

We proved the claim that ∗ sends D-modules to D-modules and constructed its commutativity constraint
by establishing that it coincided with the fusion product on the relative grassmannian GrG,X . This time we
will describe the structure of Sph as a tensor category, identifying its identity object and duals and showing
that it is in fact semisimple, so that every object is a direct sum of irreducibles, and we will describe those
irreducible objects. Finally, we will construct the fiber functor and deduce Theorem 1 from the “Tannakian
formalism”. Before proceeding to this proof, we describe its significance for the Hecke operations.

Hecke eigensheaves

Recall the Hecke stack Hn having two projections:

BunG
←−
h n←−−Hn

−→
h n−−→ Xn × BunG

described as the stack parametrizing pairs of G-torsors on X with an isomorphism away from n points of X.
It is a bundle over BunG with fiber GrG,Xn , the relative grassmannian introduced last time. As we did for
the Grn-bundle G̃r2n over Grn in the appendix to last week’s notes, we may construct a twisted product of
M∈ D-mod(BunG) and F ∈ Sphn, giving a D-module M �̃F on Hn. Then we may define

HFn (M) = (
−→
h n)!(M �̃F).

Thus, we have an action of the monoidal category Sphn sending D-mod(BunG) to D-mod(Xn × BunG).
Individually, each action is associative for the convolution product on the former; taken together, they are
compatible with the factorizable structure in the following sense:

• For any partition p of n into m parts, and denoting ∆∗ the pushforward along the diagonal determined
by p, we have for M∈ Sphm an isomorphism in D-mod(Xn × BunG):

H∆∗F (M) ∼= ∆∗HF (M).
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These isomorphisms are of course compatible with refinement of p.

• Suppose for simplicity that p is the partition n = n1 + n2, determining a complement of divi-
sors Xn

n1,n2
⊂ Xn. Recall the category Sphn1,n2 of (G(Ô)n1 × G(Ô)n2)-equivariant D-modules on

Grn |Xn
n1,n2

. There are two additional actions

Sphn1 × Sphn2 ×D-mod(BunG)→ D-mod(Xn × BunG)
Sphn1,n2 ×D-mod(BunG)→ D-mod(Xn

n1,n2
× BunG)

defined similarly to the action of Sphn, and all three actions agree after restriction to Xn
n1,n2

on the
right and using the factorization maps

Sphn → Sphn1,n2 ← Sphn1 × Sphn2 .

• Sn acts on Sphn via the equivariance of Grn, and acts on D-mod(Xn × BunG) via the natural
equivariance of Xn; the action map is then Sn-equivariant for these structures.

Let E be an LG-local system on X; i.e. an LG-torsor on X with a connection or, equivalently, a crystal
of LG-torsors over X. We will associate to it a functor Repn(LG) → D-mod(Xn) as follows. Recall that
an LG-torsor is the same as an exact tensor functor Rep(LG) → Vect, and so an LG-local system on X
sends Rep1(LG) to D-mod(X).

Now let F ∈ Rep2(LG); here is how to get the associated D-module FE ∈ D-mod(X2).

• On X2\∆, we define FE to be the bundle with fiber F associated to the (LG)2-torsor E2 = pr∗1 E×pr∗2 E ,
where by definition of Rep2(LG), there is an action of this group on F over X2 \∆.

• Now let U be a tubular neighborhood of ∆ (in the analytic topology; we leave to the imagination the
algebraic analogue of this construction), and c : U → X the contraction map. We define FE |U to be
the bundle with fiber F|U associated to the LG-torsor c∗E , which makes sense since LG acts on F on
all of X2.

• On U ∩X2 \∆, E2 is the induction of c∗E from LG to (LG)2 along the diagonal inclusion, since the
cross-section of U about ∆ is contractible. Thus, we have a natural isomorphism of FE |X2\∆ with
FE |U on the intersection, and we glue.

Likewise, but in a more complicated way, we may twist any object of Repn(LG) by an LG-local system.
This construction has the important property that it is a monoidal functor Repn(LG) → D-mod(Xn)

and is also compatible with the structures of factorizable categories on both sides. Employing the Satake
equivalence, each LG-local system induces a factorizable monoidal functor

SatE,n : Sphn → D-mod(Xn).

Now we make the following definition.

Definition 2. Let E be a LG-local system. A Hecke eigensheaf with eigenvalue E is a D-module M ∈
D-mod(BunG) together with natural isomorphisms

HFn (M) ∼= SatE,n(F) �M

with the following properties:

• The isomorphisms are compatible with the monoidal structure: we have a commutative diagram

HF1∗F2
n (M) SatE,n(F1 ∗ F2) �M

HF1
n HF2

n (M) (SatE,n(F1)⊗ SatE,n(F2)) �M

//

����
//
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and another one expressing the trivial action of the unit objects in Sphn. This works as well in the
derived category of spherical sheaves, but for D-modules themselves it is an application of the fusion
product to the factorizable structure:

• For any partition p with corresponding diagonal ∆, this isomorphism is compatible with application
of ∆∗ to both sides.

• For a partition n = n1 +n2 with corresponding open subset Xn
n1,n2

⊂ Xn, there is a functor SatE,n1,n2 ,
analogous to SatE,n, on Sphn1,n2 , and isomorphisms on Xn

n1,n2
filling in the bottom rows of commu-

tative diagrams involving F ∈ Sphn, Fi ∈ Sphni
,

HFn (M)|Xn
n1,n2

SatE,n(F)|Xn
n1,n2

�M

H
F|Xnn1,n2
n (M) SatE,n1,n2(F|Xn

n1,n2
) �M

//

����

//

• The isomorphisms are compatible with the Sn-equivariance structures up to the sign in the Satake
equivalence.

Now we proceed to the proof of Theorem 1 (for n = 0 only).

Structure of the Hecke category

We begin by stating the rigidity of the convolution product. Let 1 ∈ GrG be the image of G(Ô) ⊂ G(K̂),
and thus obviously a closed orbit of G(Ô), and in the following definition we denote by inv : G(K̂)→ G(K̂)
the inversion morphism.

Definition 3. The delta function δ1 is 1∗(C), the skyscraper sheaf (D-module) supported at 1. For F ∈ Sph,
its contragradient F∨ is defined by the equation q∗F∨ = D inv∗(q∗F). Note that the right G(Ô)-equivariance
of q∗F induces right equivariance of q∗F∨, so that it does indeed descend along q, justifying the notation
and the definition.

We leave to the appendix the verification that these are, indeed, identity and dual objects in Sph with
respect to the convolution product, meaning that for any F ,G,H ∈ Sph, we have

δ1 ∗ F ∼= F ∼= F ∗ δ1 Hom(G ∗ F ,H) ∼= Hom(G,F∨ ∗ H).

We turn now to the question of desribing the irreducible objects in Sph, in preparation both for proving
that it is semisimple, and for describing the structure of LG. By general principles, every such object F is of
the form j!∗L, where j is the inclusion of a smooth, locally closed subspace of GrG and L is an irreducible,
locally free D-module on it. Since for us, F must be G(Ô)-equivariant, the support of L is a union of
G(Ô)-orbits. However, in GrG, every finite-dimensional subscheme has only finitely many orbits in it, so
that one of them must be open in the support of L; we may assume, therefore, that L is supported on a
single orbit of G(Ô).

Further analysis of the irreducibles requires more discussion of the orbits themselves. These have a nice
description based on the representation theory of G. We simply assert the properties we will need; in them,
we fix for the first time a maximal torus T of G and a Borel subgroup B containing T , with W the Weyl
group of G with respect to T . As usual, X∗(T ) and X∗(T ) are the coweights and weights of G. We specify
simple roots αi and coroots α̌i, and let 2ρ be the sum of the αi. We denote the partial ordering on X∗(T )
corresponding to the α̌i by ≤.

Proposition 4. There is a bijection between the orbits of G(Ô) in GrG and the set of W -orbits in X∗(T ),
and each is denoted Grλ̌G, where λ̌ is the dominant weight in each orbit. They have the following properties:
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1. Their dimensions are dim Grλ̌G = 〈2ρ, λ̌〉. Grλ̌G contains the image in GrG of tλ̌, where identifying
K̂ ∼= C((t)) and λ̌ : Gm → G, we have tλ̌ = λ̌(t) ∈ G(K̂).

2. We have Gr
λ̌

G =
⋃
µ̌<λ̌ Grµ̌G (these are not smooth).

3. The stabilizer of tλ̌ in G(Ô) is connected.

4. q−1Gr
λ̌

G admits the following representation-theoretic description: g ∈ q−1Gr
λ̌

G if and only if for any
dominant weight µ and its highest-weight representation V µ, and for any ~v ∈ V µ ⊗ Ô, we have

t〈µ,λ̌〉g(~v ⊗ 1 bK) ⊂ V µ ⊗ Ô.

The category of G(Ô)-equivariant D-modules on any G(Ô)-orbit is equivalent to the category of repre-
sentations of the group of connected components of the stabilizer of any point, which by (3) is trivial. Thus,
there is a unique G(Ô)-equivariant, irreducible local system on Grλ̌G. It follows from this and the comments
preceding the proposition that every irreducible object of Sph is of the form

J (λ̌) = j!∗O

where j is the inclusion of Grλ̌G and O is the trivial D-module on it. Its support is the singular, finite-

dimensional space Gr
λ̌

G. Note that what we have denoted δ1 is also J (0). By point (2) of the above
proposition, the connected components of GrG are identified with X∗(T )/Λr = π1(G), where Λr is the
coroot lattice of G; the identity component is that all of whose G(Ô)-orbits are indexed by Λr.

Finally, we state the following structure theorem, whose proof is deferred to the appendix.

Proposition 5. Sph is semisimple.

Based on this, the following proposition makes sense; it is easy to verify by direct computation in G(K̂):

Proposition 6. The product J (λ̌) ∗ J (µ̌) is a sum of J (ν̌)’s with ν̌ ≤ λ̌+ µ̌ and λ̌+ ν̌ appearing exactly
once.

The fiber functor and weights

We have already shown that Sph formally resembles the category of representations of a reductive group: it
is a rigid tensor category which is also a semisimple abelian category. According to the Tannakian duality
theorem, in order to actually produce such a reductive group all we need is a faithful, exact tensor functor
F : Sph → Vect. We will produce this using the cohomology functors and GrT . The central diagram here
is:

GrG
b←− GrB

t−→ GrT (1)

in which the arrows are induced by the inclusion B → G and projection B → T (we do not ever consider
T as a subset of G for this purpose). We will, effectively, take F to be t!b∗, with some important technical
modifications. The first is to describe the target.

Lemma 7. Let SphT be the Hecke category for T . Then there is a natural equivalence of SphT with the
category of graded vector spaces VectX∗(T ), sending convolution to tensor product.

Proof. Topologically, GrT ∼= X∗(T ) as a discrete group, so a D-module is identified merely with its component
on each Grλ̌T for λ̌ ∈ X∗(T ) (since T is a torus, every weight is dominant), which is identified with just a
vector space (this is equally true for T (Ô)-equivariant D-modules, since we have already classified those
supported on a single orbit).

For convolution, the action of T (Ô) on GrT is trivial since T is commutative, so ConvT ∼= GrT ×GrT
and F1 �̃F2 = F1 � F2 on it. Given that GrT = X∗(T ), this box product is just the tensor product, and
the multiplication map is the identity on each component.
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There is a technicality associated to the grading here which is related to the way the fiber functor is
defined and we will need to impose a supersymmetry on the tensor product in SphT in order to make things
work out, but that is for later.

Observe that t induces a bijection between connected components of GrB and of GrT , so that the former
are again indexed by X∗(T ). For any coweight λ̌, let Sλ̌ be the corresponding component. It is obvious that
b is an injection of topological spaces, so Sλ̌ is a subset of GrG. These have the following properties:

Proposition 8. Sλ̌ is an orbit for N(K̂), where N is the unipotent radical of B, and is characterized by
containing tλ̌. In addition:

1. Sλ̌ has infinite dimension, but for any dominant µ̌, each irreducible component of Sλ̌ ∩ Grµ̌G has
dimension 〈ρ, λ̌+ µ̌〉, with the intersection empty if and only if the number is negative or larger than
dim Grµ̌G (see Proposition 4(1)). The intersection Sλ̌ ∩ Grλ̌G is open and dense in the latter, and
Sw0(λ̌) ∩Grλ̌G is a single point.

2. We have S
λ̌ ⊂ Sµ̌ if and only if λ̌ ≤ µ̌, and Sµ̌ = S

µ̌ \
⋃
λ̌<µ̌ S

λ̌.

3. The S
λ̌

have the following representation-theoretic description: for any dominant µ and denoting by

`µ the highest-weight line in V µ, we have g ∈ q−1S
λ̌

if and only if for all µ, we have

t〈λ̌,−µ〉g(`µ ⊗ 1G( bK)) ⊂ V
µ ⊗ K̂.

Definition 9. For any F ∈ Sph, let

F (F)λ̌ = F (F)
∣∣∣
Grλ̌T

= H〈2ρ,λ̌〉
(
t!b
∗(F)

∣∣∣
Grλ̌T

)
.

Then F : Sph→ SphT is the fiber functor.

Proposition 10. F is an exact monoidal functor F : Sph→ SphT , compatible with the braidings on each
side. Furthermore, each F (F)λ̌ is the top cohomology of the corresponding complex.

Proof. That F is exact is tautological since Sph is semisimple and F is additive (maps in a semisimple
category are pure linear algebra, which F preserves).

To show that F is a tensor functor, we generalize the fiber functor slightly. Replacing the diagram (1)
by its analogue with GrG,Xn , etc. in place of GrG, we define “fiber functors”

Fn : SphG,n → SphT,n

in the obvious notation, with the same form as Definition 9. Some care must be devoted to the proof that
they preserve D-modules, but this is true.

These functors are compatible with the factorizable structures on both categories in that (in the specific
cases relevant for us)

F2(F)|∆[−1] ∼= F1(F|∆[−1]) F2|X2\∆

(
(F1 � F2)|X2\∆

)
= (F1(F1) � F2(F2))|X2\∆.

where F ∈ Sph2 and Fi ∈ Sph1. These two expressions are connected by the fusion product of F1 and F2,
where

F1 ∗ F2 = ∆∗j!∗(F1 � F2)|X2\∆[−1].

To show that F1 (and hence F , by restriction to a single point of x) is compatible with ∗, therefore, it suffices
to prove the assertion

F2

(
j!∗(F1 � F2)|X2\∆

)
= j!∗F2|X2\∆

(
F1 � F2)|X2\∆

)
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and restrict to ∆. This claim can be established either by showing that the sheaf on the left is acyclic about
∆ (as the outer convolution was when we proved the fusion product in the previous lecture notes, but the
same proof does not apply) or by directly showing that ∆∗F2(. . . )[−1] and ∆!F2(. . . )[1] are D-modules,
which characterizes the minimal extension. The former can be justified by introducing a more general form
of acyclicity which F2 does preserve, and the latter by direct computation on the convolution grassmannian
G̃r2.

By Proposition 5, it suffices to show the last claim when F = J (µ̌) for some µ̌. Since Sλ̌ is an N(K̂)-
orbit, it is ind-affine, and its intersection I with Gr

µ̌

G is a closed subspace, hence also affine. If bλ̌ is the
inclusion of I in Grµ̌G, then (bλ̌)∗[− codim I] is right-exact, and since I is affine, (t|I)![dim I] is right-exact.
Thus, t!b∗[dim I − codim I] is right-exact on Grλ̌G. Here dim I − codim I = 2 dim I − dim Grµ̌G = 〈2ρ, λ̌〉 by
Proposition 8(1).

Because we define F by ignoring the degree of the cohomology, the commutativity constraint in SphT
must be modified by a sign in order for the functor of Lemma 7 to preserve the braiding.

F does not depend on the choice of B, since those are permuted by conjugation by G, and G ⊂ G(Ô),
with respect to which Sph is equivariant. It is also obviously faithful: if λ̌ is dominant, then w0(λ̌) is

anti-dominant and in particular, it follows from Proposition 8(1) that Sw0(λ̌) ∩ Gr
λ̌

G is just one point and
is contained in Grλ̌G. By definition of J (λ̌), it has a nonzero stalk at any point there, so its cohomology
F (J (λ̌))w0(λ̌) does not vanish.

We conclude the following theorem from the Tannakian formalism:

Proposition 11. F induces an equivalence of tensor abelian categories between Sph and Rep(Ǧ)′ for some
reductive group Ǧ, where the prime means the modified commutativity constraint on tensor products of
vector spaces. Ǧ has a maximal torus Ť ∼= LT , where X∗(LT ) = X∗(T ), and a Borel subgroup B̌ containing
Ť with respect to which the dominant coweights of G are identified with the dominant weights of Ǧ.

That the dominant weights of Ǧ are the dominant coweights of G follows from Proposition 6 and a
classical criterion on Borel subgroups: to specify a Borel subgroup of a reductive group H is the same as
to specify a highest-weight line in each irreducible representation of H, such that these lines are compatible
with tensor product (these are the “Plücker relations”). Here, that line is F (J (λ̌))λ̌, as justified by the
computation showing that F is faithful and Proposition 6, together with the fact that F is a tensor functor.

To identify the maximal torus of B̌, we apply the following description: if H is a reductive group and
C a Borel subgroup specified as above, and if the forgetful functor Rep(H) → Vect factors (as a tensor
functor) through VectΛ for a finitely-generated “weight” lattice Λ, then the torus S with X∗(S) = Λ is a
closed subgroup of H if and only if every weight occurs, is contained in C if and only if the weights of the
“highest-weight lines” specified for C are compatible with tensor products, and is maximal in C if and only
if those weights have multiplicity one in their corresponding representation. By construction, this is true
with Λ = X∗(T ) = X∗(LT ).

Identifying the dual group

In this section we describe the structure of the dual group Ǧ and show that it is isomorphic to LG. We
already know it is reductive. To see that it is connected, by the Tannakian formalism it suffices to show
that the abelian (not monoidal) category generated by finitely many objects of Sph is not closed under
convolution (such a tensor category would be the representations of a finite quotient group of Sph). We
may assume the objects are of the form J (λ̌), in which case their convolutions all contain summands of the
form J (

∑
λ̌i) by Proposition 6, whereas their direct sums only contain the λ̌i individually. It remains only

to identify the root systems. Our strategy for doing this will rely on the following group-theoretic lemma:

Lemma 12. Let H and H ′ be reductive groups with maximal tori U,U ′ that are isomorphic; suppose further
that C and C ′ are Borel subgroups containing these tori, the choice of which identifies the dominant weights
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in X∗(U) with those in X∗(U ′) under this isomorphism. Suppose that for every simple root α of H, with
corresponding Levi factor L (whose only simple root is α), there is a commutative diagram

L H ′

U U ′

//
OO OO

(2)

Then there is a unique isomorphism H → H ′ extending these maps.

To prove this, we need an even smaller lemma on algebraic groups, which proves itself.

Lemma 13. Let K,L be reductive groups with maximal tori S,U . Let f : L → H be an algebraic group
homomorphism such that f |S is an isomorphism of S with U . Let α be a root of L and in the Lie algebra
l, let v be a weight vector for the adjoint action of L, with weight α ∈ X∗(U) = X∗(S). Then df(v) is a
weight vector with weight α for the adjoint action of K on k, so α is a root of K.

Proof of Lemma 12. We apply Lemma 13 to H ′ and L, concluding that α is a root of H ′ for any simple
root α of H. The collection of all the α determine the set of dominant weights in X∗(U) = X∗(U ′) as those
weights λ such that 〈λ, α̌〉 ≥ 0 for every α which is a simple root of H. But that means that {α} determines
the Weyl chamber of weights corresponding to C ′, and therefore to the basis determined by C ′. Since {α}
is a basis for the weight lattice, it is in fact the basis for the root sytem corresponding to C ′.

Thus, H and H ′ have the same simple roots; we claim that they have the same coroots as well. Indeed,
each Levi L corresponding to α has α̌ as a simple coroot, and the map L → H ′ sends α̌ to some coroot of
H ′ (which is of course equal to α̌, since the tori in L and H ′ are identified). By definition of the simple
reflections, α̌ is negated by sα, which means that it is a multiple of the coroot β̌ of H ′ dual to α, and since
〈α, α̌〉 = 2 = 〈α, β̌〉, that multiple must be 1.

Thus, H and H ′ have the same weights, the same coweights, and inside them the same roots and coroots,
with the simple roots identified and the simple coroots identified. Since a reductive group is determined by
this “root data” up to isomorphism, there is an isomorphism of H with H ′ identifying the Levi factors for the
simple roots. This isomorphism is unique, since in fact any automorphism of a reductive group which fixes
a maximal torus is a diagram automorphism, determined only by its induced automorphism of the Dynkin
diagram, which by the assumption that it fixes the simple roots, is the identity map.

By Proposition 11, we have already established all the ingredients necessary to apply Lemma 12 other
than the maps of Levi factors. To obtain these, we make a further generalization of (1). Let P be any
parabolic subgroup of G and L its Levi quotient, yielding a diagram

GrG
p←− GrP

l−→ GrL (3)

with respect to which we may define a fiber functor FL (not depending on the containing P ) in the same
way as F (one must be careful about which degree to take). The relevant properties are:

Proposition 14. Each FP is a monoidal functor from Sph to SphL. Furthermore, if P1 ⊂ P2 there is a
natural factorization of FP1 through FP2 .

Proof. The first statement is proven in precisely the same way as for F , and the second is a simple argument
based on diagram (3).

By Tannakian formalism, this means that FP induces maps Ľ → Ǧ which factor through each other
according to the inclusions of the Levi quotients L. In particular, they all contain the maximal torus
Ť = LT of Ǧ, so that diagram (2) commutes. Let α be a simple root of G, α̌ its dual simple coroot, hence a
simple root of LG, and let Mα and LMα be the corresponding Levi factors, which have semisimple rank 1.
In order to apply Lemma 12, we must show that M̌α

∼= LMα, for which the following lemma suffices:
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Lemma 15. When G has semisimple rank 1, then so does the dual group Ǧ; the roots of Ǧ in X∗(T ) =
X∗(LT ) are the coroots of G. Therefore Ǧ ∼= LG.

Proof. The D-module J (λ̌) corresponds to a highest-weight representation whose highest weight is in the
root lattice if and only if its weight space of weight 0 is nonempty, and this certainly can only occur if Grλ̌G
is in the connected component, so that λ̌ is in the coroot lattice of G. Thus, Ǧ has semisimple rank at most
1. Its rank is not zero, because (for example) J (α̌) has at least two nonzero weight spaces, of weights α̌ and
−α̌, and is irreducible (of course, it actually has the weight 0 as well).

To identify the root lattices precisely, we consider first the groups SL2 and PGL2. The map SL2 → PGL2

induces a map GrSL2 → GrPGL2 identifying the former with the connected component of the identity in
the latter. The corresponding map SL2(Ô) → PGL2(Ô) is again surjective (the one with K̂-coordinates is
not, though) and if F ∈ SphSL2

, then the equivariance of F for SL2(Ô) is trivial on the kernel of this map,
because it is central. Therefore, any D-module which is supported on the connected component and invariant
for the former is also a fortiori invariant for the latter. There also exist on GrPGL2 elements of Sph which
are not supported on the connected component, so that the inclusion SphSL2

→ SphPGL2
induces a map

ˇPGL2 → ŠL2 whose corresponding map on weights, in the other direction, has index 2. Since it must send
the simple root of one to that of the other, we find that the only possibility is that the simple root of the
former is 2 and of the latter is 1 (identifying their weight spaces each with Z), which are exactly the simple
coroots of PGL2 and SL2, respectively.

Now let G be any group of semisimple rank 1 and let G = G/Z(G)0 be the semisimple quotient. Then
the induced map GrG → GrG identifies the former with the product of the latter and GrZ(G)0 , and we
identify GrG as a subset of GrG via the zero section. Since G→ G is the quotient by a central subgroup, the
structure of G(Ô)-equivariance on a D-module on GrG is equivalent to a G(Ô)-equivariance structure, so we
identify SphG ⊂ SphG as those objects supported on GrG. As in the previous paragraph, this inclusion is
a tensor functor and so induces a map Ǧ→ Ǧ.

The inclusion of GrG in GrG identifies the weight lattice of Ǧ with a sublattice of that of Ǧ and the map
Ǧ→ Ǧ identifies the roots of Ǧ with some (hence all, by rank 1) of those of Ǧ. Since G is semisimple of rank
1, the previous paragraph applies, and those roots are exactly the coroots of G. But the quotient G → G
identifies the coroots of G with those of G, so the roots of Ǧ are the coroots of G, as desired.

This completes the proof of the geometric Satake equivalence.

Appendix: rigid tensor structure

In this appendix we prove that Sph is indeed a rigid tensor category with the identity and dual objects
defined in the main text.

Proposition 16. The delta function is an identity for the convolution ∗ and the contragradient of F is its
dual, in the sense that there is a natural isomorphism of functors

Hom(F ∗ G, δ1) ∼= Hom(G,F∨).

Furthermore, (F∨)∨ ∼= F , so that Sph is a rigid tensor category.

Proof. That δ1 is an identity follows easily from the definition, so we consider only the contragradient. It is
clear that (F∨)∨ ∼= F :

(F∨)∨ = D inv∗D inv∗ F ∼= D inv∗ inv! DF ∼= D2F ∼= F

where inv∗ ∼= inv! since inv is an isomorphism, and where inv2 = id by definition. Finally, we prove that it
is a dual for the convolution product. Recall that convolution is defined via the diagram

ConvG = G(K̂)×G( bO) GrG
m−→ GrG
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and let π : G(K̂) × G(K̂) → ConvG be the quotient map. The inverse image m−1(1) is identified with the
embedding i : GrG → ConvG sending q(g) to (q(g), q(g)−1) for g ∈ G(K̂), which is well-defined after applying
π. It is a section of the projection map pr: ConvG → GrG. By definition, for F ∈ Sph, q∗i∗F̃ = inv∗(q∗F),
so F∨ = Di∗F̃ . Then:

Hom(G ∗ F , δ1) = Hom(m∗(pr∗ G ⊗ F̃), δ1) = Hom(pr∗ G ⊗ F̃ ,m!δ1) = Hom(pr∗ G,Hom(F̃ ,m!δ1)).

Since δ1 is supported on 1, we have m!δ1 = i∗D, where D = m!C is the dualizing sheaf on the image of i.
Then

Hom(F̃ ,m!δ1) = Hom(F̃ , i∗D) = i∗Hom(i∗F̃ ,D) = i∗Di∗F̃ = i∗F∨

where we insert i∗ because, technically, the computation is on ConvG and not on GrG. Thus, finally,

Hom(G ∗ F , δ1) = Hom(pr∗ G, i∗F∨) = Hom(i∗ pr∗ G,F∨) = Hom(G,F∨)

since i is a section of pr.

Appendix: semisimplicity

In this appendix we prove that Sph is semisimple. The proof proceeds by an incremental analysis of the
properties of convolutions J (λ̌)∗J (µ̌) of irreducibles in Sph, beginning with the following basic observation:

Lemma 17. We have Ext1(J (λ̌),J (λ̌)) = 0; i.e. there are no nontrivial extensions of J (λ̌) by itself.

Proof. Let F be such an extension, and denote by j : Grλ̌G → Gr
λ̌

G the inclusion map, i the inclusion of the
complement. By definition, J (λ̌) = j!∗(O), so we have

H0(i∗J (λ̌)) = 0 = H0(i!J (λ̌)).

We take the sequence 0 → J (λ̌) → F → J (λ̌) → 0 and apply i∗,! to it, obtaining long exact sequences of
cohomology living below and above degree 0, respectively, with the degree zero terms reading

· · · → H0(i∗J (λ̌))→ H0(i∗F)→ H0(i∗J (λ̌)→ 0

0→ H0(i!J (λ̌))→ H0(i!F)→ H0(i∗J (λ̌))→ . . .

and concluding that
H0(i∗F) = 0 = H0(i!F).

This property uniquely characterizes F ∼= j!∗(j∗F). However, j∗F is an extension of O by itself on Grλ̌G,
and therefore j∗F = O ⊕O. Applying j!∗, F = j!∗(O)⊕ j!∗(O) = J (λ̌)⊕ J (λ̌) as well, as desired.

The properties of the minimal extension used in the above proof easily give another lemma as well:

Lemma 18. Let F ∈ Sph have composition factors J (λ̌i) for various dominant coweights λ̌i; then the
orbits Grλ̌iG are precisely those such that (denoting by j their inclusions into GrG) we have H0(j∗F) 6= 0. In
particular, F has a factor supported on Gr

ν̌

G if and only if for i : {tν̌} → GrG, we have

H0(i∗F [−dim Grν̌G]) 6= 0. (4)

Proof. The first statement, as noted, follows formally from the properties of j!∗. For the second, we know
that the sheaf H0(j∗F) is G(Ô)-equivariant and therefore constant on Grν̌G, so vanishes if and only if its
stalk at tν̌ does. Accounting for the dimension Proposition 4(1), this gives (4).

We also state a technical lemma which can be proved by general reasoning. Here, to be precise, we use the
convention on cohomological degrees that when f : S → pt a proper scheme and F a holonomic D-module
on S, Hi(f∗F) vanishes for |i| > dimS.
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Lemma 19. Let Y be a proper scheme of dimension d, f : Y → pt the structure map, and A• a complex of
(holonomic) D-modules on Y such that the zeroth cohomology sheaf of A•[−d] is generically nonzero. Then
H0(f∗A•) 6= 0 as well.

We begin to analyze the composition factors of a convolution. First, for any subvariety V of GrG and
dominant µ̌, we define V ∗Grµ̌G ⊂ ConvG so that if π : G(K̂)×G(K̂)→ ConvG and q : G(K̂)→ GrG, we have

π−1(V ∗Grµ̌G) = q−1(V )× q−1(Grµ̌G).

In particular, we write
Convλ̌,µ̌G = Grλ̌G ∗Grµ̌G .

We recall the maps pr,m : ConvG → GrG, the latter descending the multiplication map along π. Finally, to
save space, we set

l = dim Grλ̌G m = dim Grµ̌G n = dim Grν̌G

when we introduce the latter orbit.

Lemma 20. Convλ̌,µ̌G is smooth and irreducible of dimension l +m.

Proof. To prove this, we use the convolution grassmannian G̃r2 over X2, which is a Gr1-bundle over Gr1

and whose restriction to ∆ is, at every point of X, isomorphic to ConvG. For convenience we take X to be
small enough that Gr1

∼= GrG×X, and let Grλ̌1 be the extension of the orbit Grλ̌G along this product. Since
these are G(Ô)-stable, there is a twisted product

Grλ̌1 ∗Grµ̌1 = G̃r
λ̌,µ̌

2 ⊂ G̃r2

which is a Grµ̌1 -bundle over Grλ̌1 and whose restriction to ∆ is, at every point of X, isomorphic to Convλ̌,µ̌G .
In particular, Convλ̌,µ̌G is a Grµ̌G-bundle over Grλ̌G, hence irreducible of dimension l +m.

Now we recall the definition
J (λ̌) ∗ J (µ̌) = m∗(J (λ̌) �̃J (µ̌)),

where
π∗(J (λ̌) �̃J (µ̌)) = q∗J (λ̌) � q∗J (µ̌).

Therefore, if j is the inclusion of Convλ̌,µ̌G in ConvG, we have

J (λ̌) �̃J (µ̌) = j!∗(L)

where L is a local system (= locally free D-module) on Convλ̌,µ̌G .

Lemma 21. For any dominant ν̌, let F = m−1(tν̌) ∩ Convλ̌,µ̌G . Then

dimF ≤ 1
2

(l +m− n), (5)

with equality if and only if J (ν̌) is a composition factor of J (λ̌) ∗ J (µ̌).

Proof. Note that the extremal case of (5) is equivalent, using Proposition 4(1) and Lemma 20, to:

codimF − dimF = n.

For brevity, let F = J (λ̌) �̃J (µ̌). To evaluate (4) for m∗(F), we apply the proper base change theorem and
then Lemma 19. Since F|F [− codimF ] lives in sharply nonpositive cohomological degrees on F , we conclude
that the above equation is the precise condition necessary for Lemma 18 to apply. If the left side were
decreased, then Lemma 19 would produce positive-degree cohomology sheaves of i∗m∗(F)[−n] and therefore
of m∗(F) and, finally, of J (λ̌) ∗ J (µ̌), in contradiction to the fact that this is a D-module. This gives the
inequality of (5).
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At this point it would be desirable to insert a more elementary proof, based on the preceding results, of
the following lemma:

Lemma 22. Every convolution J (λ̌) ∗ J (µ̌) is a direct sum of irreducibles.

Proof. We have J (λ̌) ∗ J (µ̌) = m∗(F) in the notation of the previous proof, where F = j!∗(L) with L a
local system of rank 1 on Convλ̌,ν̌G . Therefore F is simple of “geometric origin” and so the decomposition
theorem applies to its direct image under m, proving the lemma.

The preceding results allow us to prove the analogue for D-modules of the following proposition, true for
representations of any reductive group H; in combination with the rigidity of the convolution product and
Lemma 22, this provides a slick demonstration of the semisimplicity of Sph.

Lemma. If λ is a dominant weight in the root lattice of H, then there is some µ such that V λ is a direct
summand of (V µ)∨ ⊗ V µ.

Lemma 23. Let λ̌ be dominant and a sum of simple roots. Then there exists a µ̌ such that J (λ̌) is a direct
summand of J (µ̌)∨ ∗ J (µ̌) (in fact, this is true for any coweight µ̌ such that µ̌− λ̌ is dominant).

Proof. Since the convolution is semisimple, this is equivalent to

0 6= Hom(J (λ̌),J (µ̌)∨ ∗ J (µ̌)) = Hom(J (µ̌) ∗ J (λ̌),J (µ̌))

and therefore to finding a copy of J (µ̌) as a summand of J (µ̌) ∗J (λ̌), for some µ. We apply the criterion of
Lemma 21 and proceed by locating an irreducible component of the fiber of Convµ̌,λ̌G over tµ̌ with dimension
at least (hence equal to) l/2.

To do so, we find such a component in a more amenable subspace. We claim that for µ̌ sufficiently large,
we have

m−1(tµ̌) ∩ (Sµ̌ ∗Grλ̌G) ⊂ m−1(tµ̌) ∩ (Grµ̌G ∗Grλ̌G).

Granting this, the following additional equality is obtained by multiplying by tµ̌

m−1(1) ∩ (S0̌ ∗Grλ̌G) = m−1(tµ̌) ∩ (Sµ̌ ∗Grλ̌G)

and identifying m−1(1) ∼= GrG via pr, the former is identified with S0̌ ∩Grλ̌G, which has pure dimension l/2
since λ̌ is in the coroot lattice, as desired.

Thus, we need only prove the claim; since (pr,m) identifies m−1(tµ̌) ∼= GrG, we need only identify the
first coordinates. We pull back via π and consider pairs (g, h) with g ∈ q−1(Sµ̌) = N(K̂)tµ̌ and h ∈ q−1(Grλ̌G)
such that gh ∈ tµ̌G(Ô), or

g ∈ tµ̌G(Ô)t−λ̌G(Ô) ∩N(K̂)tµ̌G(Ô).

We claim that for µ̌ sufficiently large, this implies that g ∈ q−1(Grµ̌G), for which we apply Proposition 4(4).
It suffices to show that t〈ω,µ̌〉g(eν) ∈ V ω ⊗ Ô for any weight vector eν in any highest-weight representation
V ω of G, and with g ∈ tµ̌G(Ô)t−λ̌. Since g is in N(K̂)tµ̌G(Ô), we have

g(eν) ∈
∑
ν≤ν′
K̂eν

′

with g(ew(ω)) = t〈w(ω),µ̌〉ew(ω) + . . . for any w ∈W . On the other hand, we have

t−λ̌(eν) = t〈ν,−λ̌〉eν

and so for u ∈ G(Ô) with u(eν) =
∑
ν′ uν,ν′e

ν′ (uν,ν′ ∈ Ô), if g = tµ̌ut−λ̌, we have

g(eν) =
∑
ν′

t〈ν
′,µ̌〉−〈ν,λ̌〉uν,ν′e

ν′ .
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By virtue of the previous expression we may assume ν′ ≥ ν, so the exponent is at least

〈ν, µ̌− λ̌〉.

If µ̌− λ̌ is dominant, this in turn is minimized when ν = w0(ω), when it is equal to 〈w0(ω), µ̌〉 = −〈ω, µ̌〉, as
desired.

Now we have all the ingredients to prove the semisimplicity of Sph.

Proof of Proposition 5. It suffices to show that there are no nontrivial extensions of the irreducible objects,
so we must show that Ext1(J (λ̌),J (µ̌)) = 0 always. Since Ext1 is a derived functor of Hom, by the properties
of the dual we have

Ext1(J (λ̌),J (µ̌)) = Ext1(δ1,J (λ̌)∨ ∗ J (µ̌)).

By Lemma 22, latter D-module is semisimple, so we may assume it is just of the form J (λ̌). If λ̌ /∈ Λr,
then J (λ̌) and δ1 are supported on different connected components of GrG, so of course have no nontrivial
extensions. Otherwise, Lemma 23 applies and it suffices to replace the right-hand side with J (µ̌)∨ ∗ J (µ̌).
Then:

Ext1(δ1,J (µ̌)∨ ∗ J (µ̌)) = Ext1(J (µ̌),J (µ̌)) = 0,

by Lemma 17.
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