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In this lecture and the next, we will describe the “Hecke category”, namely, the thing which acts on
D-modules on BunG and with respect to which action the notion of Hecke eigensheaves is defined. In
fact, almost none of this content actually concerns BunG, so before we move into talking about something
apparently completely different, we will give a general description of the goal and indicate why the context
must change. Throughout this lecture, our D-modules are assumed to be holonomic.

The Hecke stack; motivation

Back in the very first lecture, Dennis described some particular examples of Hecke functors for Bunn =
BunGLn

(X) (as always, X is the smooth projective curve we are using). They all concerned diagrams

Bunn

←−
h std

x←−−−H std
x

−→
h std

x−−−→ Bunn

where x ∈ X(C) and the middle object is a stack

H std
x (S) =

(V1,V1, α)

∣∣∣∣∣∣∣
Vi are vector bundles of rank n on XS = S ×X

α : V1 → V2 is an injective map of coherent sheaves
coker(α) is flat over S, supported on {x}S , and has length 1

 .

He also gave other examples of possible “Hecke stacks” with progressively elaborate conditions on α, and
defined corresponding “Hecke functors”

Hstd
x : D-mod(Bunn)→ D-mod(Bunn), Hstd

x (F) = (
−→
h std

x )!(
←−
h std

x )∗F [n− 1]

(or with other shifts, for the other stacks). He then indicated that we would need to consider the category
of Hecke functors in order to properly state the eigensheaf condition. Given the above, seemingly ad-hoc
description, it would appear impossible to give a reasonable description of this category. In fact, however,
such a description exists and is very naturally given in terms of the affine grassmannian GrG, which we will
review and generalize in this lecture. Recall that for any group G, the affine grassmannian is the functor,
defined on affine schemes S = SpecR as:

GrG(S) =

{
(T , t)

∣∣∣∣∣ T is a G-torsor on the formal disk SpecR[[z]] = DS

t : T 0 → T is a trivialization of T on DS \ {0}S = D◦S

}
(1)

and that the group ind-scheme G(K̂x) acts on it by changing the trivialization. ({0}S means the closed
subscheme S ⊂ DS corresponding to z = 0.) Here and hereafter, K̂x is the complete local field of X at x,
the fraction field of the completed local ring Ôx, and we will often identify Ôx

∼= C[[z]] and K̂x
∼= C((z))
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by choosing a uniformizing parameter z near x; when this happens, we will just write K̂ and Ô. In this
notation, then,

GrG = G(K̂)/G(Ô). (2)

For any group G, not just GLn, we define the Hecke stack at x, where we simply let α be anything at all
so long as it is an isomorphism away from x.

Hx(S) =

{
(T1, T2, α)

∣∣∣∣∣ Ti are G-torsors on XS

α : T1 → T2 is an isomorphism on XS \ {x}S

}
.

There is again a convolution diagram

BunG

←−
h x←−−Hx

−→
h x−−→ BunG .

For any point of BunG(C) (that is, a G-torsor T1 on X), the fiber of
←−
h over T1 is noncanonically identified

with GrG. Indeed, if we (noncanonically) pick a trivialization of T1 on D, then T2, restricted to D◦, can vary
over all possible G-torsors and α over all trivializations, since T1 is now trivial (this is the Beauville–Laszlo
theorem, which says that we can always glue on T1 away from x to complete T2).

It is not hard to show (using this same logic) that Hx is actually a GrG-bundle over BunG, where the
structure group is in fact G(Ôx); we will return to this more precisely next time. Therefore, the G(Ôx)-orbits
on GrG induce a global stratification of Hx; it turns out that their various closures are exactly the strange
Hecke stacks considered before.

Recall the definition of equivariance of a D-module with respect to the action of a group on the underlying
space; in the case of G(Ôx) acting on GrG, it means that the two pullbacks

G(Ôx)×GrG GrG

a //

pr
//

are isomorphic, with the isomorphism subject to some natural conditions. Any such D-module F can be
extended along Hx to a “twisted pullback” F̃ ; for M∈ D-mod(BunG), set

M �̃F = (
←−
h x)∗M⊗ F̃ HFx (M) = (

−→
h x)!(M �̃F);

this is the uniform definition of the Hecke functors. We see, therefore, that the Hecke category of Hecke
functors is simply the category D-modG( bOx)(GrG) or, as we will call it later, Sph.

One further modification is possible. If x ∈ X(C) is not fixed but allowed to vary, or to multiply to
several points, then there arise relative and higher Hecke stacks HXn = Hn defined by

Hn(S) =

{
(~x, T1, T2, α)

∣∣∣∣∣ ~x ∈ Xn(S), Ti are G-torsors on XS

α : T1 → T2 is an isomorphism on XS \
⋃

Γ(xi)

}
.

Here, Γ(xi) is the graph of xi : S → X inside XS . There are diagrams

BunG

←−
h n←−−Hn

−→
h n−−→ BunG×Xn

and the fiber of
←−
h n is something we have not seen yet but which we will introduce presently: the “factoriz-

able” grassmannian.

The factorizable grassmannian

Recall the “global” version of GrG: for a fixed choice of x ∈ X(C), we have:

GrG(S) =

{
(T , t)

∣∣∣∣∣ T is a G-torsor on XS

t is a trivialization of T on XS \ {x}S

}
.
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This has the same relationship to x as does Hx, and the dependency problem is solved in the same way by
defining unrestricted and relative versions:

GrG,Xn(S) = Grn(S) =

{
(~x, T , t)

∣∣∣∣∣ T is a G-torsor on XS

t is a trivialization of T on XS \
⋃

Γ(xi)

}
.

Note that X can be any smooth curve in this definition, not necessarily complete (or, indeed, even algebraic).
These are all ind-proper schemes overXn, and they have a number of relationships comprising the factorizable
structure:

• For n,m ∈ N, let p be a partition of [1, n] into m parts and ∆p be the corresponding copy of Xm inside
Xn. Then there are isomorphisms

Grn |∆p
∼= Grm

which are compatible with refinement of the partition p;

• Let p be a partition as above and suppose its parts pi have sizes ni; let Up be the open subset of Xn

consisting of coordinates (x1, . . . , xn) such that if xi = xj , then i, j are in the same part of p. Then
there are isomorphisms

Grn |Up
∼=
(∏

Grni

)∣∣∣
Up

compatible with refinement of the partition p (together with, of course, further restrictions to finer
Up’s). Furthermore, these isomorphisms are compatible with those above when restricting both to
some diagonal, and away from others, in either order.

• For any n, an equivariance structure for the action of the symmetric group Sn onXn which is compatible
with both of the above classes of isomorphisms.

It is possible to give a precise statement of the nature of these compatibilities, but as it provides rather little
reward for the necessary work, it is in the appendix. The proofs are simple:

• We construct the factorization maps along the diagonals. If we have coordinates x1 = · · · = xn1 , . . . ,
xn−nm+1 = · · · = xn, then we may set xij = yi for all j ∈ pi, where ~y : S → Xm has just the distinct
coordinates. Then

⋃
j Γ(xj) =

⋃
i Γ(yi); since XS is the same in both cases, the possible G-torsors on

XS are the same in both cases, so Grn |∆p
= Grm.

• Suppose we again single out a partition, but this time, none of the maps xi in different parts intersect.
Thus, the Di =

⋃
j∈pi

Γ(xj) are disjoint, for i = 1, . . . , n; denote by Ui the complement of all the Dj

other than Di and Vi = XS \Di. Then Ui and Vi are an open cover of XS and we may define a G-torsor
Ti on XS by gluing T |Ui to the trivial torsor T 0|Vi along the isomorphism t on Ui ∩Vi = XS \

⋃
Γ(xi).

Ti has a natural trivialization ti on X \ Ui and the triple ((xj)j∈pi
, Ti, ti) is in Grni

(S).

Conversely, given such a collection, let T be the torsor obtained by gluing Ti|Ui over the open cover
{Ui} of XS , where on Ui ∩ Uj , Ti is identified with Tj via tj ◦ t−1

i , which obviously satisfy the cocycle
condition on triple intersections. Then T has a natural trivialization t on

⋂
Ui = XS \

⋃
Γ(xi) coming

from the ti, and (~x, T , t) ∈ Grn(S).

• For the Sn-equivariance, it is clear that in a point (x, T , φ), both T and φ are independent of the order
of the coordinates of x.

Just like GrG, there is a description of Grn as a quotient of some “loop group” by some “arc group”,
both of them now in factorizable forms. Namely, they are

G(Ô)n(S) =
{

(~x, g)
∣∣∣~x ∈ Xn(S), g ∈ G(X̂S,x)

}
G(K̂)n(S) =

{
(~x, g)

∣∣∣~x ∈ Xn(S), g ∈ G
(
X̂S,x \

⋃
Γ(xi)

)}
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where X̂S,x refers to the schemy formal neighborhood of D =
⋃

Γ(xi),

X̂S,x = SpecXS
(ÔXS ,D).

Then Grn = G(K̂)n/G(Ô)n, and thus both groups act on Grn; this follows, as for the affine grassmannian,
from the Beauville–Laszlo theorem. This is so similar to GrG that one is entitled to ask what the relationship
is, and the answer is simply that Gr1 is a GrG-bundle over X, where the structure group is the group Aut(Ô).
Indeed, if we choose on some Zariski-open subset U of X a regular function z which is a local parameter at
every point, then z identifies each Ox with Ô = C[[z]] and thus identifies G(Ô)1 and G(K̂)1 with G(K̂)× U
and G(Ô)× U , and thus their quotient with GrG×U . The transition maps are obviously given by elements
of Aut(Ô). This is a useful conceptual notion, but its most practical form is that if X is, as we will take it
sometimes, a small complex disk (in the analytic topology), then Gr1

∼= GrG×X.
The relative loop and arc groups G(Ô)n and G(K̂)n are factorizable in the same way as Grn (as made

precise in the appendix).

Convolution and the geometric Satake equivalence

Now we introduce the main object of study: the Hecke category.

Definition 1. The n’th big Hecke category, denoted Sphn, is the category of spherical, or G(Ô)n-equivariant
D-modules on Grn; the regular Hecke category Sph is the category of G(Ô)-equivariant D-modules on GrG.

We will generally talk just about Sph1 and Sph, and in the end we will state (without proof) the
appropriate generalizations to Sphn. The most important property of these categories is that they have
convolution products, which are obtained by certain convolution diagrams. The most natural way of defining
convolution is to do it on G(K̂) (or, indeed, G(K̂)n), via the multiplication map

G(K̂)×G(K̂) m−→ G(K̂). (3)

For any complexes A•, B• of D-modules on G(K̂), the formula

A• ∗B• = m!(A• �B•)

is the geometric analogue of convolution of functions, (f1 ∗ f2)(g) =
∫

G
f(h)g(h−1g) dh. Unfortunately, this

definition is not amenable to analysis since G(K̂) is so wild. But suppose that we have sheaves F1,F2 ∈ Sph,
and denote q : G(K̂) → GrG; then q∗(F1) ∗ q∗(F2) can be computed on a much better space. Indeed, the
q∗Fi are G(Ô)-equivariant on both the left and the right (which are different since G is not, in general,
commutative) and thus (3), along with the objects on it, descends to the diagram:

ConvG = G(K̂)×G( bO) GrG
m−→ GrG . (4)

ConvG is called the “convolution diagram”. There is one projection pr : ConvG → GrG; it and m are defined
by the formulas (referring to definitions (2) and (1)):

pr(g, (T , t)) = g mod G(Ô) m(g, (T , t)) = (T , g · t).

These maps in fact express ConvG as the product GrG×GrG, but we will not want this identification.
Rather, for F ∈ Sph, we define F̃ to be the descent of pr∗2(q∗F) from the left-hand side of (3) to ConvG,
and for F1,F2 ∈ Sph,

F1 �̃F2 = pr∗ F1 ⊗ F̃2. (5)

Then the convolution of F1,F2 ∈ Sph is

F1 ∗ F2 = m∗(F1 �̃F2). (6)
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Note that, a priori, this is merely a complex of D-modules and, indeed, makes sense for any equivariant
complexes in the derived category. Later, we will show that it indeed sends Sph× Sph to Sph.

The program established above is easily generalized to Gr1 and to the Grn in general. Using the same
words, the product on G(K̂)n,

G(K̂)n ×Xn G(K̂)n
m−→ G(K̂)n (3′)

descends to the double quotient by actions of G(Ô)n to a map from the convolution diagram

G(K̂)n ×G( bO)n
Grn

m−→ Grn . (4′)

The left-hand side is denoted Convn and admits, as before, one projection pr : Convn → Grn. When n = 1,
this map is naturally identified with that of (4) over every point of X. For F ∈ Sphn (or indeed, any
equivariant complex), there is a twisted pullback F̃ on Convn, and we set

F1 �̃F2 = (pr∗ F1 ⊗ F̃2)[−n] F1 ∗ F2 = m∗(F1 �̃F2). (5′, 6′)

As for (6), these are merely complexes of D-modules for now; we will return later to the question of how
these convolutions are related to that of (6). Returning to the ordinary grassmannian GrG, the theorem
which is the subject of these lectures is the geometric Satake equivalence:

Theorem 2. The convolution ∗ admits a commutativity constraint making Sph into a rigid tensor (“Tan-
nakian”) category. There exists a faithful, exact tensor functor Sph→ Vect inducing an equivalence (modulo
a sign in the commutativity constraint) of Sph with Rep(LG) as tensor categories, where LG is the Lang-
lands dual group of the reductive group G, whose weights are the coweights of G and vice versa.

Once the equivalence Sph ∼= Rep(LG) is established as categories, the convolution becomes less impor-
tant, and is replaced by another form of factorizability related to convolution on the Sphn. We will digress
from the proof in order to formulate a generalization of the above theorem.

Just as the Grn are factorizable, the categories Sphn on them have a factorizable structure as well.
Imprecisely, this structure consists of the following data:

• For any partition p of [1, n] into m parts, there is a direct image functor

∆∗ : Sphm → Sphn

corresponding to the identification of the restriction of Grn along ∆p with Grm. This functor is
right-exact and in fact has a right adjoint ∆! in the derived category.

• Suppose (for simplicity) that p is the partition n = n1 +n2 and that Up is the corresponding open set.
Over Up there is a category Sphp of D-modules on Up which are equivariant with respect to the action
of (G(Ô)n1 ×G(Ô)n2)|Up

, and a diagram

Sphn → Sphp ← Sphn1 × Sphn2 .

Here the first map is restriction from Xn to Up. For Fi ∈ Sphni
, their image under the second map is

(F1 � F2)|Up
. As before, these maps admit right adjoints and, when n = 2, are actually exact.

• There is a version of the above point for finer partitions, and both of these maps are compatible with
convolution in Sphn.

The factorizable structure of the Sphn corresponds to a factorizable notion of LG-representation. To
separate the notion from LG, let H be any group. If F ∈ D-mod(Xn), then we say that H acts factorizably
on F if for every partition p of n into m parts, there is an action of Hm on F|Up

, and these actions are
consistent with refinement of p. This consistency is exemplified by the following situation: let n = 3, and
say that p is the partition 3 = 2 + 1 (in that order); then Up = X3 \ (∆13 ∪ ∆23). Let q be the complete
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partition 3 = 1 + 1 + 1, so that Uq is the complement of all the diagonals. On Uq, H3 acts on F , and on
Up, H2 acts on F ; we require that restricted to Uq, the first factor of H2 act as the diagonal of the first
two factors of H3, while the last factors act identically. We will denote by Repn(H) the category of such
factorizable representations of H in D-mod(Xn).

The categories Repn(H) have the same factorizable structure as the Sphn: a direct image along di-
agonals, and restriction and product maps away from the diagonals. Finally, we can state the big Satake
equivalence:

Theorem 3. There are equivalences of categories identifying all the Sphn with the Repn(LG); this equiv-
alence respects their factorizable structures as well as convolution.

We will only prove Theorem 2; Theorem 3 follows in a totally formal manner from it.

The fusion product

The convolution product (6′) is in fact a generalization of that (6) on GrG, at least as long as the objects
being convolved are D-modules rather than complexes. The connection is via a local computation on X:
suppose that X is a small complex disk with center denoted x, so that Gr1

∼= GrG×X. For F ∈ Sph, let

F ′ = pr∗GrG
F [1]

be its extension, along this product, to Gr1. (It should be noted that the product decomposition of Gr1 is
canonical only up to the action of Aut(Ô). However, it can be shown, in a manner not depending on the
fusion product, that any element of Sph has a unique structure of Aut(Ô)-equivariance, so that in fact this
does not interfere with the arguments.)

In this section, we will show that convolution on Sph has values again in Sph and that it has a natural
commutativity constraint. The key is the following claim, which establishes convolution in Sph as a fusion
product, so called because convolution at a point x ∈ X is obtained via tensor product over two points
y, z ∈ X which come together (or “fuse”) at x.

Lemma 4. Let Fi ∈ Sph, and F ′i their extensions as above to Gr1. Let j : X2 \∆→ X2 be the inclusion,
and identify j∗Gr2

∼= j∗(Gr1×Gr1) by factorization. Then

F1 ∗ F2 =
(

∆∗j!∗j∗(F ′1 � F ′2)[−1]
)∣∣∣

x
[−1].

Note that this product depends only on the factorization structure of Gr2.

One of the properties of j!∗ is that if ∆: X → X2 is the inclusion of the diagonal, then ∆∗j!∗(M)[−1] is
a D-module for any D-moduleM (rather than, as it is a priori, a complex on X). This immediately implies
that F1 ∗ F2 is a D-module. It also gives a commutativity constraint for ∗, coming from the isomorphism

sw∗(F ′1 � F ′2) = sw∗(pr∗1 F ′1 ⊗ pr∗2 F ′2) = pr∗2 F ′1 ⊗ pr∗1 F ′1 ∼= pr∗1 F ′2 ⊗ pr∗2 F ′1 = F ′2 � F ′1

where sw: X2 → X2 swaps the coordinates and, of course, sw ◦∆ = ∆, so the above isomorphism indeed
gives an isomorphism of F1 ∗ F2 with F2 ∗ F1. Lemma 4 shows why it is necessary to work in the abelian
category Sph, rather than the derived category in which the definitions of convolution also make sense: the
operation j!∗ is only a functor on D-modules.

Thus, we need only prove Lemma 4. In order to set up the core theoretical argument, we introduce the
convolution grassmannian G̃r2. Once again, we give a quick (though correct) definition here and defer a tech-
nical development to the appendix. Recalling (4′), let G̃r2 be the closed subscheme of pairs ((~x, g), (~x, T , t))
in Conv2 with the following properties:

• As an element of G
(
X̂S,x \ (Γ(x1) ∪ Γ(x2))

)
, g extends to X̂S,x \ Γ(x1);
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• The trivialization t, defined on XS \ (Γ(x1) ∪ Γ(x2)), extends to XS \ Γ(x2).

Both of these conditions are invariant under multiplication by G(Ô)2, so do in fact define a subfunctor. It
is evident from this definition that over X2 \∆, there is a natural identification of G̃r2 with Gr1×Gr1, and
that G̃r2|∆ ∼= Conv1. Furthermore, the map m of (4′) induces a map, likewise called m, from G̃r2 to Gr2.

There is a “cheap” inclusion X ×Gr1 ↪→ Gr2, sending a pair (x, (y, T , t)) to ((x, y), T , t); likewise, there
is an inclusion of Gr1×X in Gr2. Using them, we construct a twisted product F1 �̃F2 for any Fi ∈ Sph1

in the following way:

• Let F ′i = pr∗Gr1
Fi[1] on Gr1×X and X ×Gr1 respectively, considered as objects of Sph2;

• The tensor product (q∗F ′1 � q∗F ′2)[−2] on G(K̂)2 ×X2 G(K̂)2 is G(Ô)2-biequivariant and so descends
to Conv2;

• The descended D-module F1 �̃F2 happens to live on G̃r2.

Definition 5. The outer convolution of F1,F2 ∈ Sph1 is F1 ∗o F2 = m∗(F1 �̃F2).

Clearly, F1 ∗ F2 = ∆∗(F1 ∗o F2)[−1], so to prove Lemma 4, it suffices to prove (going back to Fi ∈ Sph)

F ′1 ∗o F ′2 = j!∗j
∗(F ′1 � F ′2). (7)

To do this, we introduce a catalyst in the form of the unipotent nearby and vanishing cycles functors; rather
than giving a detailed discussion of them, we refer the reader to the notes [2] on Beilinson’s paper [1]. Here,
only the following properties are important (once again, the D-modules are holonomic):

• For any scheme Y and Cartier divisor D ⊂ Y with open complement U , there is a functor of unipotent
nearby cycles around D, Ψun

D : D-mod(U)→ D-mod(D), together with an endomorphism (unipotent
on each Ψun

D (F)) called the monodromy. There is likewise a functor Φun
D : D-mod(Y ) → D-mod(D)

of unipotent vanishing cycles.

• Let j : U → Y be the inclusion. Suppose that F ∈ D-mod(Y ) and that Ψun
D (j∗F) has trivial mono-

dromy; then a necessary and sufficient condition that F ∼= j!∗(j∗F) is that Φun
D (F) = 0. If F is a free

OY -module, then it has both of these properties. When this happens, then i∗F [−1] = i!F [1] = Ψun
D (F),

where i is the inclusion of D. (This is the only one of these facts that relies on the theory from Beilin-
son’s paper.)

• Ψun
D is local on D in that for any open set V and F ∈ D-mod(U), we have Ψun

D (F)|V ∼= Ψun
D (F|V ),

and this isomorphism respects the monodromy. This is likewise true for Φun
D and F ∈ D-mod(Y ).

• Nearby and vanishing cycles respect products, as follows: let Z = Y × F , set E = pr−1
Y (D), and let

FY ∈ D-mod(Y ), FF ∈ D-mod(F ). Then we have Ψun
E (FY � FF ) ∼= Ψun

D (FY ) � FF and likewise for
Φun, and this isomorphism respects the monodromy.

• If p : Z → Y is a proper morphism and E = p−1(D), then p ◦ Ψun
E
∼= Ψun

D ◦ p (nearby cycles commute
with proper direct image) and this isomorphism respects the monodromy. Likewise, vanishing cycles
commute with proper direct image.

The glue that makes this all stick together is the following easy lemma:

Lemma 6. Let F1,F2 ∈ D-mod(GrG), F ′i ∈ D-mod(Gr1) their extension to Gr1. Then F ′1 � F ′2 has no
vanishing cycles and its nearby cycles have trivial monodromy.

Proof. We continue to identify Gr1
∼= GrG×X, and we write pr to mean (in this proof) the projection

Gr1×Gr1 → (GrG)2. Then we have

F ′1 � F ′2 = pr∗(F1 � F2)[2].
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Take Y = X2, D = ∆, and F = Gr2 in the statement that the cycles functors respect products, and let FY

be OX2 with the trivial D-module structure. Then it has no vanishing cycles or nearby-cycles monodromy;
thus, the same is true of the tensor product (which, to be precise, we take to be FF ).

The proof of (7) is now just chaining together the above properties. It turns out (one can argue directly,
or see the appendix; either way, this is analogous to the fact that ConvG

∼= GrG×GrG) that G̃r2 is locally
isomorphic to Gr1×Gr1. Thus, Lemma 6 applies, so Φun

∆ (F ′1 �̃F ′2) = 0 and the monodromy action on
Ψun

∆ (F ′1 �̃F ′2) is trivial. Since m is a proper map, m∗ preserves these properties, so the same is true of
F ′1 ∗o F ′2, and the criterion for it to equal the minimal extension of its own restriction applies. To complete
the proof, we note that j∗(F ′1 ∗o F ′2) = j∗(F ′1 � F ′2) by the factorizability of G̃r2 away from ∆.

Appendix: the convolution grassmannian

In this appendix, we discuss the convolution grassmannian more formally. There are in fact many variations,
but we only need one:

G̃r2(S) =

(x1, x2, T1, T2, t, α)

∣∣∣∣∣∣∣
xi ∈ X(S), Ti are G-torsors on XS

t is a trivialization of T1 on XS \ Γ(x1)
α is an isomorphism T1

∼= T2 on XS \ Γ(x2)

 .

The reason for its existence is that it admits the diagram (4′):

Gr1
pr←− G̃r2

m−→ Gr2 .

Clearly, G̃r2 resembles a product of Gr1 with itself, but that product does not admit a map such as m. The
existence of m is evident from the definition of G̃r2, though: just set

m(x1, x2, T1, T2, t, α) = ((x1, x2), T2, α ◦ t).

Likewise, pr sends such a point to (x1, T1, t). Just like the Grn, G̃r2 is ind-proper, hence m is a proper map.
Although it is not actually the product Gr1×Gr1, the projection map pr is in fact a Gr1-bundle over

Gr1. To see this, we define the following functor:

G̃(Ô)1(S) =

{
(x1, x2, T , t1, t2)

∣∣∣∣∣ (x1, T , t1) ∈ Gr1(S)

t2 is a trivialization of T on X̂S,x2

}
.

It is easy to see that Gr1×G(Ô)1 acts, over Gr1×X, on this by altering t2, and that this action is a torsor.
The claim is that G̃r2 is the bundle associated to this torsor with fiber Gr1. This means that there is a map:

G̃(Ô)1 ×X Gr1 → G̃r2. (8)

To construct it, suppose we have a pair of points

(x1, x2, T , t1, t2) ∈ G̃(Ô)1(S) (x2, T ′, t3) ∈ Gr1(S)

(note the equality of X-coordinates); let T1 = T and t = t1. The restriction of t2 to X̂S,x2 \ Γ(x2) is a
trivialization of T , and the like restriction of t3 is a trivialization of T ′; let T2 be the G-torsor obtained
by gluing to T1 the restriction of T ′ to X̂S,x2 along t3 ◦ t−1

2 , using the Beauville–Laszlo theorem. Then by
definition, T2 has an isomorphism α with T1 away from Γ(x2), and so

(x1, x2, T1, T2, t, α) ∈ G̃r2(S).
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This gives the map (8). To see that it is surjective, take a point such as the one above and let T ′ be T2 glued,
via α ◦ t, to the trivial torsor away from Γ(x1) ∪ Γ(x2), thus obtaining a trivialization t3 away from Γ(x2)
and a point (x2, T ′, t3) ∈ Gr1(S). As before, we take T = T1, but it is not necessarily possible to trivialize it
on X̂S,x2 . However, since T is a torsor, there is an open cover of S on which such trivializations exist, and
we pick one t2 (arbitrarily) on each set U of this cover and take t1 = t; then (x1, x2, T , t1, t2) ∈ G̃(Ô)1(U).
Thus, (8) is surjective as a map of Zariski sheaves (let alone fppf sheaves). Finally, in the course of showing
this we have already identified each fiber with G(X̂U,x2), as desired.

Let π be the projection onto Gr1 from the left-hand side of (8). If F ∈ Sph1, then π∗(F) is G(Ô)1-
equivariant and therefore descends to a D-module F̃ on G̃r2; as before, for F1,F2 ∈ Sph1, we define the
twisted product F1 �̃F2 = pr∗ F1 ⊗ F̃2.

Appendix: factorizable structure

In this appendix, we give a rigorous description of the factorizable structure on the Grn. This requires some
abstract nonsense with partitions of finite sets; thus, we introduce the additional notation: for any finite sets
I and J (thought of as “index sets”), a partition of I into J parts is a surjection p : I → J . We will write
pj = p−1(j) for the j’th part of this partition. We define two kinds of refinements r : p′ → p:

• For p′ : I ′ → J , a first refinement is a partition r1 : I → I ′ such that p = p′ ◦ r1;

• For p′ : I → J ′, a second refinement is a partition r2 : J ′ → J such that p = r2 ◦ p′.

Note the directions of the maps. Let Part be the category of partitions whose morphisms are generated
by the refinements of both types. There is a natural bifunctor Un: Part×Part → Part sending a pair of
partitions p1 : I1 → J1 and p2 : I2 → J2 to their union p : I1 ∪ I2 → J1 ∪ J2; this functor admits a natural
commutativity constraint.

Let X be a scheme (it may as well be our curve). For an index set I, let XI =
∏

i∈I X be the unordered
power of X corresponding to this finite set. For any partition p : I → J , there is an induced closed immersion
ip : XJ → XI sending xj to the coordinates (xi | i ∈ pj), with image ∆p. There is also a corresponding open
subset Up of XI (not its complement) consisting of all points (xi) such that if xi1 = xi2 , then p(i1) = p(i2);
let jp : Up → XI be the open immersion. For any partition p′ : I ′ → J ′ and morphism r : p → p′ in Part,
there is a locally closed immersion lr : Up′ → Up defined as follows for the refinements:

• If r = r1 is a first refinement, let lr = ir1 ◦ jp′ , which clearly sends Up′ into Up;

• If r = r2 is a second refinement, let lr = jr2 , which again clearly has image in Up.

One should check that for any p, p′, we have UUn(p,p′) ⊂ Up × Up′ .
Let PSch (“schemes over partitions”) be the category, fibered over Part, such that for any partition p,

the fiber PSchp is Sch/Up, the category of schemes over Up, and let the cartesian morphisms (pullbacks
along morphisms r) be given by restriction along lr. There is again a bifunctor Pr: PSch×PSch→ PSch
sending X1/Up1 and X2/Up2 to (X1 × X2)|UUn(p1,p2), admitting a natural commutativity constraint. If
π : PSch → Part is the structure functor, then π identifies Pr with Un. In more usual terms, the two
categories are braided monoidal categories and π is a braided monoidal functor.

Definition 7. An sf-scheme (“symmetric factorizable scheme”) is a braided monoidal section functor F of
π. This means:

1. We have π ◦ F = id exactly (not up to isomorphism);

2. For every morphism r : p′ → p, there is an isomorphism of r∗F (p) with F (p′) as schemes over Up′ , and
these isomorphisms are functorial in r;
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3. There is the additional datum of an isomorphism of functors making the square commute:

PSch×PSch PSch

Part×Part Part

Pr //

Un
//

F×F

OO

F

OO

4. This isomorphism is required to be compatible with the commutativity constraints in the sense that if
Sw is the functor swapping factors in either product category of the above diagram, then the following
diagram of functors and natural transformations commutes:

Pr ◦ Sw Pr

Un ◦Sw Un

//
OO OO

//

If for every index set I, having cardinality #I = n, we have F (I → {1}) = GrG,Xn , then F is a factorizable
structure on Grn, and in the main text we have described one such structure. The correspondence between
the above properties and the ones given before is:

• The existence of factorization along diagonals ∆p (the first factorization property) is a special case of
(2) when r = r1 is a first refinement and p is the trivial partition I → {1} with only one part (so
Up = XI).

• Factorization on diagonal complements (the second factorization property) is a combination of (3) and
the special case of (2) with r = r2 a second refinement and p the trivial partition.

• The Sn-equivariance is special case of (2) in which p is the trivial partition and p′ = p, so that r is an
automorphism of I.

• Compatibility of the three structures above is the stipulation in (2) that the isomorphisms be functorial,
together with the functoriality of Pr and the fact that π is a monoidal functor. The role of (4) is to
ensure that the data of Sn-equivariance on Grn is compatible with the natural S2-equivariance of a
product Grn1 ×Grn2 when both are identified on Up (here p is the partition n = n1 + n2).
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