
CLASSICAL VS. GEOMETRIC LANGLANDS

DAVID KAZHDAN

Notes by Sam Raskin.

1. Introduction

So far in the seminar there has been no discussion of the arithmetic aspects of
the Langlands program which originally motivated the development of a geometric
program. Therefore, we will give an introduction to the arithmetic setting and how
it relates to the geometric setting we have been studying this semester.

The Langlands correspondence gives an equivalence between two very different
pictures, and some things which are very difficult to resolve on one side are easily
resolved on the other.

This lecture is intended to be an informal overview, so technical analytic and
algebraic conditions are disregarded.

2. Class field theory

2.1. We will begin with a discussion of local class field theory. Note that even
though a local story may sometimes seem more natural, sometimes in relating the
local with the global the former is made more clear.

2.2. First, at the “0-level,” let us recall that for k = Fq, the absolute Galois group

Gal(k/k) = Ẑ and is generated by the Frobenius x 7→ xq.

2.3. Now let us describe what the abelianized Galois group is for F a non-archimedean
local field with ring of integers OF a complete DVR with maximal ideal MF and
residue field OF/MF = k = Fq. For a fixed separable closure F of F , there ex-
ists a maximal unramified extension Fun giving rise to Gal(F/F ) � Gal(Fun/F ) =

Gal(k/k) = Ẑ. We have the isomorphism F×/O×F
κ−→ Z given by the valuation νF .

The main theorem of local class field theory says that there is a lift κ which is
almost an isomorphism:

F×
κ //

��

Gal(F/F )ab

��

F×/O×F
κ // Gal(k/k)
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For the same reason that Z 6= Ẑ, κ is not quite an isomorphism. We will ignore such

things in the future, and forget for example that Z 6= Ẑ.

2.4. As stated, this is too unpolished. We must know how to characterize κ
uniquely and how to construct κ. Both of these questions admit several answers,
some of which stay entirely within the local world. We will answer the first through
the global picture, giving the first instance of the general remark made at the be-
ginning of this section.

2.5. Let K be a global field and let pK be its set of its (finite or infinite) places. For
v ∈ pK , we have the completion Kv. The adèles AK are the restricted direct product∏′

v∈pK
Kv which comes equipped with the natural diagonal embedding K ↪→ AK

realizing K as a discrete subring. This induces Gm(K) ↪→ Gm(AK). We denote
by Aint

K the integral adèles, which are just the direct product over the finite places∏
v∈pfinite

K
OKv . For A∞K the product of the completions of K at its infinite places,

Gm(A∞K )o denotes the connected component of Gm(A∞K ).
Global class field theory gives an isomorphism:

Gm(Aint
K )Gm(A∞K )o\Gm(AK)/Gm(K)

κK−→ Gal(K/K)ab

This isomorphism is more easily characterized uniquely than its local counterpart.
One requires that for every L/K a finite abelian extension and a (finite) place
v ∈ pK unramified in this extension that the invertible adèle (. . . , 1, tv, 1, . . .) which
is 1 away from Kv and a uniformizer there is sent to the Frobenius Frv at v in
Gal(L/K). Cebotarev density immediately implies that if such an isomorphism
exists, then it is unique.

2.6. With this, let us return to the local setting. For E/F a finite abelian extension,
should have κE/F : F× −→ Gal(E/F ). Choose L/K an extension of global fields
with v ∈ pK having a unique place w ∈ pL over it and such that Lw/Kv is isomorphic
to E/F . Then κE/F should make the following diagram commute:

K×v = F×

��

κE/F // Gal(E/F )

'
��

Gm(Aint
K )\Gm(AK)/Gm(K) // Gal(L/K)

where the map Gal(E/F ) ↪→ Gal(L/K) should be the realization of Gal(E/F ) as
the decomposition group at v of Gal(L/K). Requiring this diagram to commute
evidently defines κE/F . If one can show that κE/F is independent of the choice of
L/K, this implies that one has a construction and unique characterization of the lo-
cal class field theory isomorphism. One can prove this independence by formulating
and proving a purely local characterization of the isomorphism.
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Note that now we can formulate our problem in its entirety, even if we can’t prove
it yet!

Also, observe that as formulated, it is unclear that the local isomorphism

2.7. A serious problem is how to construct the maximal abelian extensions Fab/F
and Kab/K explicitly, along with the reciprocity map. For F , this problem was
solved by Lubin and Tate. For K = Q this is given by the Kronecker-Weber theorem
and for K = Q[

√
−a], (a > 0), this is given by the theory of complex multiplication.

However, already for Q[
√

2] there is no clear solution. This problem is also solved
geometrically when the characteristic of K > 0. For example, if K is the function
field of a projective curve X over a finite field k, then the unramified part of the
abelianized Galois group is given explicitly by Pic(X)(k).1

3. L-functions

3.1. Before proceeding, we need to discuss L-functions of Galois representations in
the local and global settings.

3.2. First, suppose F is non-archimedean and let ρ : Gal(Fun/F ) −→ Aut(V ) be
an unramified representation for V a finite dimensional Q`-vector space.2 Then let
Lρ,F (s) = det(1− qsρ(Fr))−1.

Next, suppose F as before and let ρ : Gal(F/F ) −→ Aut(V ) a possibly ramified

representation. Then Gal(Fun/F ) acts on V Gal(F/Fun), and we define Lρ,F to be the
L-function for this unramified representation.

For F archimedean local, there is a notion of L-function which we do not discuss.
Finally, for ρ : Gal(K/K) −→ Aut(V ), we set Lρ(s) =

∏
v∈pK

Lρv(s) where ρv is

given by composition with Gal(Kv/Kv) −→ Gal(K/K).

Example 3.1. If K = Q and ρ is the trivial representation, then Lρ is the Riemann
ζ-function (or the completed ζ-function if one includes the infinite primes).

3.3. Many important questions in number theory can be reduced to an understand-
ing of the analytic behaviour of Lρ(s). For example, we know of Riemann’s old work
relating the distribution of the prime numbers to the zeros of ζ(s). Langlands’ cor-
respondence is compelling in its description of L-functions of Galois representations.

1The Lang isogeny for Pic(X) defines a Galois cover of Pic0(X) with group Pic(X)(k) and so
a map π1(Pic0(X)) −→ Pic(X)(k). A choice of base-point in X gives us an Abel-Jacobi map
X −→ Pic0(X). Since the unramified part of the abelianized Galois group of K is given by
π1(X)ab, it is clear at least how to define the map.

2If we were being more precise, we might worry that ` is equal to the residue characteristic of
F .
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4. Langlands’ conjectures

4.1. We restrict to the case G = GLn throughout. Let us remind the reader that
we are ignoring technical aspects, so many of the statements below are untrue as
stated.

4.2. First, let us give a moral understanding of Langlands’ conjecture in the local
setting. There should be something of an equivalence between n-dimensional rep-
resentations of Gal(F/F ) and irreducible representations of GLn(F ). For example,
in the class field theory setting n = 1, we saw that characters of the Galois group
were equivalent to characters of F× = Gm(F ), which are exactly the irreducible
representations because the group is commutative.

4.3. Now let us discuss the local equivalence in more detail. When discussing class
field theory before, we proceeded from the unramified local setting to the general
local setting by way of the global theory. We proceed similarly here. An irreducible
representation GLn(F ) −→ Aut(W ) of GLn(F ) is unramified if WGLn(OF ) 6= 0.

The unramified local equivalence tells us to expect an equivalence between un-
ramified semisimple3 representations of Gal(F/Fun) and irreducible unramified rep-
resentations π : GLn(F ) −→ Aut(W ). Such an equivalence is provided by the
Satake equivalence, which we will briefly describe.

The Satake equivalence can be constructed explicitly as follows. It is clear that
the data of unramified semisimple Galois representations are classified by unordered

n-tuples z = (z1, . . . , zn) ∈ Q×` /Sn, given by taking the eigenvalues of the image of
Frobenius. Let B ⊂ GLn(F ) be the Borel subgroup of upper triangular matrices
and let T be the torus B/[B,B] of diagonal matrices. To such z, we set χz be the

character of the Borel defined by taking the character diag(a1, . . . , an) 7→
∏
z
νF (ai)
i of

T and pulling it back to B via B � T . Here diag(a1, . . . , an) is the diagonal matrix

with entries {ai}. Then Ind
GLn(F )
B χz has a unique quotient which is an irreducible

unramified representation, and this is our representation π.

4.4. Next, we will discuss the global setting. In fact, the local Langlands corre-
spondence may be characterized in a purely local way, though the proof of the local
Langlands correspondence for general n requires global methods. In any case, we
will prefer to characterize it globally.

First, let us remark that any irreducible representation π ofGLn(AK) =
∏′

v∈pK
GLn(Kv)

admits a factorization ⊗′v∈pK
πv where πv is unramified for all but finitely many

v ∈ pK .
We say that an irreducible representation π : GLn(AK)→ Aut(W ) is automorphic

if there exists a GLn(AK)-equivariant embedding W ↪→ L2(GLn(AK)/GLn(K)).
The strong multiplicity one theorem (which is special to G = GLn) says that such
an embedding is unique up to scaling.

3That is, where Fr ∈ Gal(F/Fun) is sent to a semi-simple matrix.
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4.5. Let π = ⊗′v∈pK
πv be an automorphic representation “motivic at its infinite

places” (this corresponds to modding out by Gm(A∞K )o in Section 2.5) and let S ⊂ pK
be a finite set such that πv is unramified for v 6∈ S. Then the global Langlands cor-
respondence predicts that there should exist ρπ : Gal(K/K) −→ GLn(Q`) such
that for v 6∈ S, ρπ,v is unramified and corresponds to πv under the Satake equiv-
alence. Cebotarev density tells us that such a representation is unique because
characteristic 0 representations are determined by their characters. Similarly, to
any ρ : Gal(K/K) −→ GLn(Q`), there should correspond such an automorphic
representation paired by Satake away from a finite set S containing the ramified
places.

4.6. Now let us return to the local setting, permitting ramification. This is formu-
lated now exactly as for class field theory.

Given τ : Gal(F/F ) −→ Aut(V ) with V n-dimensional, we want to construct
πτ : GLn(F ) −→ Aut(W ) irreducible. Choose L/K an infinite Galois extension
with K a global field with places w ∈ pL over v ∈ pK so that Lw/Kv is isomorphic
to F/F . Then Gal(L/K) = Gal(F/F ), so that we have the Galois representation ρ
for the group K arising as the composition:

Gal(K/K) −→ Gal(L/K) ' Gal(F/F )
τ−→ Aut(V )

Global Langlands predicts the existence of some corresponding automorphic repre-
sentation πρ = ⊗′v∈pK

πρ,v. Then our representation of GLn(F ) corresponding to τ
should be πρ,v. Note that one should show that this is independent of the choice of
L/K, which as in the class field theory setting may be proved by giving a purely
local characterization of the correspondence.

4.7. What is known about the local and global Langlands correspondences (for
G = GLn)? The local Langlands conjectures are known by the work of Harris and
Taylor. Global Langlands is known for function fields4 A great deal is known for
K = Q and n = 2, though it cannot be said that the Langlands conjectures are
known.

5. Applications

5.1. Let us describe the relationship to L-functions as introduced above. First, we
need to explain the notion of a L-function attached to a representation. Let πF be an
unramified representation of GLn(F ) corresponding to z = (z1, . . . , zn) ∈ (C×)n/Sn
via Satake. Then one defines:

LπF
(s) =

1

(1− (qz1)−s) . . . (1− (qzn)−s)

If π is ramified, there still exists a good notion of Lπ(s) which we do not discuss.
For π = ⊗′v∈pK

, we set Lπ(s) =
∏

v∈pK
Lπv(s).

4As formulated above, i.e., non-categorically.
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5.2. If π is an automorphic representation corresponding to ρ by the global Lang-
lands correspondence, then Lπ(s) and Lρ(s) are essentially equal. In particular, one
admits a holomorphic or meromorphic extension to all of C if and only if the other
does. But one knows:

Theorem 5.1. Lπ(s) is a meromorphic function of s. Moreover, Lπ(s) is holomor-
phic if π is “cuspidal” (which implies that it lives in the subspace of functions rapidly
decreasing at infinity).

This theorem is due to Godement-Jacquet and it is proved by imitating Tate’s
proof of the holomorphicity of L-functions attached to Hecke characters. It could
conceivably have been given in the course of the lecture, but the talk went in a
different direction.

It follows from class field theory that Lρ(s) admits a meromorphic continuation to
the whole complex plane. The Langlands conjectures would imply Artin’s conjecture
that for ρ irreducible they admit holomorphic continuation to the whole complex
plane.

5.3. Let us give a reason to care about Artin’s conjecture. Let E be an elliptic
curve over K. Let S ⊂ pK be a finite set such that E has good reduction at v 6∈ S,
i.e., E is defined over Ov and its reduction to kv = Ov/Mv is smooth.

Hasse’s theorem for elliptic curves, a basic instance of the Weil conjectures, says
that:

|Ev(kv)| = |kv|+ 1− |kv|
1
2 (αv + α−1

v )

for |αv| = 1. Assume End(E) = Z. Then the Sato-Tate conjecture says the set of
conjugacy classes of the matrices diag(αv, α

−1
v ) are equidistributed in SU(2)/conjugacy.

The Sato-Tate conjecture follows by standard arguments if one knows that the
L-functions of the symmetric powers of the `-adic Tate modules of E (which are
easily seen to be irreducible representations) are all analytic.

Remark 5.2. The Sato-Tate conjecture is known for K = Q, or even K totally real,
by the work of Taylor et al.

6. Functoriality

6.1. Let us briefly mention functoriality in our limited setting.

6.2. Let τ : GLn −→ GLN be a homomorphism and let π be an automorphic rep-
resentation of GLn(AK). The Langlands conjectures predict that π gives rise to a
n-dimensional Galois representation, which via τ gives a N -dimensional Galois rep-
resentation, which Langlands predicts corresponds to a automorphic representation
π′ of GLN(AK). It is unknown how to construct such a π′ directly!
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7. Questions

7.1. We will give a brief probably largely unfaithful summary of some of the ques-
tions and remarks made at the end of the lecture. I should emphasize that I (Sam)
poorly recorded any aspects of the dialogue and this is intended more to capture
the mathematical remarks being made.

7.2. Kisin: Over function fields, one shows that Galois representations are motivic
and deduces analytic continuation from this. The automorphy of the constructed
representations is deduced from converse theorems and can be viewed almost as an
afterthought. Perhaps this is evidence that proving automorphy of Galois represen-
tations is not the only way of proving Artin’s conjecture?

Kazhdan: Over finite fields we have a good cohomology theory, but there is no
glimpse of such a thing for number fields. If people found such a thing, we might
have more natural, i.e. less representation-theoretic, proofs of many statements
in the Langlands theory, nevermind proofs of things like the Riemann hypothesis.
However, because L-functions are not rational functions, there is necessarily non-
trivial analysis involved in the construction of any such theory.

7.3. Some remarks on the geometric setting: The geometric Langlands conjectures
in the case of function fields relate to the arithmetic setting as follows. Grothendieck’s
sheaves to functions correspondence tells how to assign a function on the Fq-points of
a variety. So, e.g., in the unramified setting that this seminar is focused on, the geo-
metric Langlands conjectures predict that for a projective curve X/Fq with function
field K the existence of ”automorphic perverse sheaves” on BunGLn corresponding
to n-dimensional unramified Galois representations (i.e., rank n-local systems on
X) whose associated function on BunGLn(Fq) = GLn(Aint

K )\GLn(AK)/GLn(K) gen-
erates the automorphic representation corresponding via the arithmetic Langlands
conjectures.

7.4. Applications of the categorical language over C: for k = C, all local systems
are trivial on the disc. However, if one formulates statements correctly categorically,
one can still get useful statements. A useful analogy is that one can glue trivial vector
bundles to get non-trivial vector bundles: at the level of isomorphism classes, this
is difficult to work with, but with categories it is clear what one is doing. Similarly,
one can formulate the unramified local geometric Langlands conjectures categorically
(“geometric Satake”) in a way which is useful for the characterization of the global
equivalence.

7.5. Etingof: Are there any applications of this geometric story to arithmetic?
Kazhdan: I don’t know of any applications to the global setting. However, for

example for the fundamental lemma (a local statement), logic reduces the statement
to a positive characteristic statement and then Ngo tells us how to use geometric
methods to prove it there.
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