
Outline. Today we quantize. First step is the local picture: we’ll recall from
Andrei’s first talk the local Hitchin map and its interpretation in terms of the action
of G(K̂x) on BunG,x; then we will do the local quantization using the central
extension and determinant line bundle of my first talks and the twisted Harish-
Chandra machinery of Sam’s third talk. But this local quantization is really just a
stepping stone to the global quantization, and there’s where the crystallography of
Jacob’s talks comes in: it turns out that the global story falls out once we do the
local story “in families”, letting x move around: we will get a crystal of stories over
X whose fiber at x is the local story and whose flat sections are the global story.

These notes are organized as follows: the first half consists of literal notes — a
fairly faithful transcript of what I said in the talk (or maybe, rather, what I planned
to say in the talk); but then the second half delivers the details and technicalities
which I dodged during the course of the talk by repeatedly promising that they
would be in the “notes”.

I. Literal Notes.

The Local Hitchin Map. Let x ∈ X be our pointed curve, and G our con-
nected reductive group (and throw in whatever assumptions we really need...) Re-
call that there is an action of G(K̂x) on BunG,x by changing the gluing data in the
formal punctured disk; on the level of Lie algebras, this gives a map

g⊗ K̂x −→ Γ(BunG,x, TBunG,x
),

inducing

Sym(g⊗ K̂x) −→ Γ(T ∗BunG,x,O),

which descends to

hcl
x : Sym(g⊗ K̂x/g⊗ Ôx)G( cOx) −→ Γ(T ∗BunG,O),

since BunG is the quotient of BunG,x by the action of G(Ôx). And recall from
Andrei’s talk that hcl

x is nothing but the local Hitchin map: we can identify

Zcl
x := Sym(g⊗ K̂x/g⊗ Ôx)G( cOx)

with the functions on

Hitchx := Γ(Spec(Ôx), Cω) = (g∗ ⊗ ωcOx
)//G(Ôx),

essentially because K̂x/Ôx is dual (in the sense of llcvs), under the residue pairing,
to the canonical bundle ωcOx

. Recall that C = g∗//G, and that Cω stands for the ω-

twist of the constant Gm-space C×X over X, or ditto with X replaced by Spec(Ôx).

The Local Quantization. Now we will quantize the above, replacing symmet-
ric algebras by universal enveloping algebras and functions on the cotangent space
by (twisted) differential operators. Recall the central extension G̃(Kx) of G(K̂x)
and its action on the line bundle p∗ω, where p : BunG,x → BunG is the quotient
by G(Ôx). Then, just as above, we have

U ′ −→ Γ(BunG,x,Dp∗ω),
1
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where U ′ is the quotient of the universal enveloping algebra of g̃⊗Kx by setting the
central C to equal the scalars C, and Dp∗ω stands for differential operators acting
on the line bundle p∗ω. And again, just as above, this induces

(U ′/(U ′ · g⊗ Ôx))G( dOx) −→ Γ(BunG,Dω)

Now, both sides here are filtered, the LHS by PBW and the RHS by order of the
differential operator, and the map respects the filtration. This gives a quantization
of hcl

x in the sense that the induced map on associated gradeds embeds into hcl
x ;

but unfortunately there is a pretty big kink in the LHS making this quantization
uninteresting: that natural embedding

gr
(

(U ′/(U ′ · g⊗ Ôx))G( cOx)
)
↪→
(
gr(U ′/(U ′ · g⊗ Ôx))

)G( cOx)

= Zcl
x ,

is far from an isomorphism: the LHS is one-dimensional. To fix this we need
to twist: instead of requiring a central t ∈ C to act as the scaclar t, we make
it act by − 1

2 t, and instead of differential operators on ω, we need to consider
differential operators on ω−1/2, which makes formal sense since we can twist the
ring of differential operators on a line bundle by arbitrary scalars.

If we make this change, then a theorem of Feigin and Fenkel, whose proof we’re
postponing till the spring, shows that the above embedding is actually an isomor-
phism:

Theorem. Let Zx = (U ′/(U ′ · g⊗ Ôx))G( dOx), where here now U ′ stands for the
quotient of the universal enveloping algebra of g̃⊗Kx by setting the central C to
equal −1/2 of the scalars C. Then the natural map

gr(Zx) ↪→ Zcl
x

is an isomorphism, and hence the above-constructed map

hx : Zx → Γ(BunG,Dω−1/2)

quantizes the local Hitchin map in the fullest sense: we have gr(hx) = hcl
x . (The

fact that gr(Γ(BunG,Dω−1/2) ↪→ Γ(T ∗BunG,O) is an isomorphism, while not au-
tomatic, follows from the Feigin-Fenkel claim and the fact that hcl

x is surjective on
components of BunG.)

In-Families. Now we let x ∈ X move in families. Let’s start with the classical
picture, i.e. the Hitchin fibration. We can make the definition of Hitchx work in
families, and in fact we already have: it is simply Jets(Cω), the jet construction
applied to the X-scheme Cω. This is a crystal of affine schemes over X whose fiber
at x is Hitchx and whose flat sections are the global Hitch = Γ(X,Cω), by the
adjointness property of the jet construction. Then we can define

Zcl = O(Jets(Cω));

it is a crystal of (trivial) poisson algebras over X, and the Hitchin map can be
interpreted as a map of such

hcl : Zcl −→ Γ(T ∗BunG,O)⊗O(X),

the RHS being a constant crystal of poisson algebras. Again, this recovers the local
Hitchin map as the fiber at any x ∈ X and the global Hitchin map as flat sections.
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Now we will quantize hcl by simply redoing the local quantization in families.
This requires defining the central extension of G(K̂x) in families, that is, defining
a canonical Gm-extension L̃G of the loop group LG → X introduced in Jacob’s
talk. For this one proceeds as in my first talk; what’s required is to make sense of
the notion of a family of llcvs over an arbitrary scheme, and redo the determinant
construction in this generality. See the notes for the details. But once this is done,
we get an action of L̃G on the line bundle p∗ω, where p : BunG,x → BunG × X
is the forgetful map from the in-families version of BunG,x to the constant scheme
BunG over X.

Then we can run the Harish-Chandra formalism as above, and the result is that
we have a filtered associative algebra Z over X whose fiber at x is the Zx from
above, and a map of filtered associative algebras over X

h : Z −→ Γ(BunG,Dω−1/2)⊗O(X).

But moreover, since these constructions only depended on the formal neighborhood
of any X-points, the above is actually canonically a map of filtered crystals of asso-
ciative algebras (on the right constant once again); and we claim that this quantizes
the above map hcl of crystals of Poisson algebras. For this we just need that the
map gr(Z) → Zcl is an isomorphism; but this is actually something we can check
on closed points, so it follows from the above Feigin-Fenkel theorem.

Global Quantization. Since the global Hitchin map was obtained from hcl :
Zcl → Γ(T ∗BunG,O) ⊗ O(X) by taking flat sections, to get its quantization we
ought to take flat sections of h : Z → Γ(BunG,Dω−1/2) ⊗ O(X). But for this to
make sense we need for Z and Γ(BunG,Dω−1/2) to be commutative. Fortunately,
this is true; we will argue for it following BD.

First of all, it will suffice to see that Zx is commutative for every C-point x ∈ X;
indeed, we can argue that this implies that Z is commutative, but moreover, since
the local Hitchin map is surjective components of BunG, so is its quantized version,
and therefore the commutativity of Γ(BunG,Dω−1/2) follows from the commutativ-
ity of Zx for any x ∈ X.

Now, somewhat perversely, to prove this local fact we use the global map h : Z→
Γ(T ∗BunG,Dω−1/2)⊗O(X): as a first step, we claim that the map [hx(−), hx(−)] :
Zx ⊗ Zx → Γ(T ∗BunG,Dω−1/2) is trivial, and for this we note that the existence
of the global map implies that the set of y ∈ X for which the map [hx(−), hy(−)]
is trivial is closed; therefore it will suffice to show that if x 6= y then [hx, hy] = 0.
This can be proved as follows: there is a scheme BunG,x,y parametrizing G-bundles
on X with formal trivialization at x and y, and a forgetful map BunG, which is
just a quotient by G(Ôx)×G(Ôy), and we can rerun the local quantization in this
situation to get a map Zx ⊗ Zy → Γ(T ∗BunG,Dω−1/2) restricting to hx and hy on
the factors; and this implies that the images commute, as desired.

So, by that first step we have that if a ∈ Zx is a commutator, then hx(a) = 0.
Now, hx is not injective, but it does have a slightly weaker property: if we let d
denote the degree of a, then we necessarily have a = 0 from hx(a) = 0 provided that
the natural map H0(X;ωX)→ ωcOx

/md
xωcOx

is surjective. Indeed, we can view the
symbol σa of a as a function on g∗ ⊗ (ωcOx

/md
xωcOx

), and the fact that hcl
x (σa) = 0

implies that a vanishes on the image of H0(X; g∗ ⊗ ωX)→ g∗ ⊗ (ωcOx
/md

xωcOx
).
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Of course, this surjectivity condition won’t always be satisfied, but we can
nonetheless finish the proof by the following feint: since the formal neighborhoods
of any points on any curves are isomorphic and Zx depends only on this formal
neighborhood, we are free to replace x ∈ X by any pointed curve we like, in par-
ticular one for which the condition holds, and we conclude as desired. Thus Zx is
commutative, and hence so are both Z and Γ(BunG,Dω−1/2), as explained above.

Thus h is actually a map of filtered crystals of commutative algebras, and we can
take flat sections (I mean conformal blocks, what would be flat sections on Spec),
getting

Γflat(h) : Γflat(Z) −→ Γ(BunG,Dω−1/2).
Now, recall that if A is a crystal of commutative algebras, the unit map A →
Γflat(A)⊗O(X) is surjective (geometrically, a section being flat is a closed condi-
tion); therefore, given a filtration on A we get an induced one on Γflat(A)⊗O(X);
but since a subcrystal of a constant crystal is constant, this is equivalent to having
a filtration on Γflat(A) itself. Moreover we have a canonical surjection

Γflat(gr(A)) � gr(Γflat(A))

by taking Γflat ◦ gr of the above unit map; thus, to prove that Γflat(h) is a global
quantization, we just need to show that this surjection is also an injection for
A = Z. But this is simple: in that case, the map h itself shows that the surjec-
tion Γflat(gr(Z)) � gr(Γflat(Z)) is a factoring of the classical global Hitchin map
Γflat(gr(Z))→ Γ(T ∗BunG,O), which we already know to be injective.

So we’ve done what we promised: h is a map of filtered crystals of commuta-
tive algebras whose gr is hcl; moreover this story gives a quantization of the local
Hitchin map on fibers and of the global Hitchin map on flat sections.

II. Details and Technicalities.

Let X be a smooth, proper, connected curve over an algebraically closed field k
of characteristic zero, and G a connected reductive group over k.

Let S denote the category of sheaves of groupoids on Affk in the etale topology.
Recall the following fact:

Lemma 1. If A ∈ Affk with largest reduced quotient Ared, then the functor B 7→
B ⊗A A

red = Bred establishes an equivalence between the etale site over A and the
etale site over Ared.

This implies in particular that the deRham space XdR from Jacob’s talk lies in S.
Recall also the map π : X → XdR and the functors π∗ : S/XdR → S/X (underlying
space) and π∗ : S/X → S/XdR (jet construction), as well as the map p : XdR → ∗
and the functors p∗ : S → S/XdR (constant crystal) and p∗ : S/XdR → S (flat
sections).

Level Structures. First step: define BunG,x in families (over X).

Definition 1. Let BunG,lvl denote the pullback

BunG,lvl p∗BunG

π∗X π∗(BG×X),

//

��
//

��
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and let Glvl = π∗(G×X); here we consider everything as living in S/XdR.

Theorem 1. We have:
(1) There is an action of Glvl on BunG,lvl → p∗BunG making it a Glvl-torsor;
(2) Glvl and BunG,lvl are both relative schemes over XdR.

Proof. For (1), it suffices to show the same for the bottom map π∗X → π∗(BG×X)
of the diagram defining BunG,lvl. There the action comes by functoriality from the
action of G on pt → BG, and to show the torsor claim it suffices to show that
π∗ preserves torsors. This follows formally from the fact that π∗ commutes with
taking B of a group sheaf, which is a consequence of the fact that π∗ (of presheaves)
commutes with sheafification, which comes from Lemma 1.

For (2), the fact that Glvl is schematic follows from Jacob’s lecture: he showed
that π∗ sends schemes to schemes from X being smooth. For BunG,lvl, we first
reduce to G = GLr: represent G as a closed subgroup of some GLr, say G→ GLr.
Then in the commutative diagram

BunG,lvl Bunr,lvl

p∗BunG p∗Bunr,

//

��
//

��

we have by (1) that the left map is schematic and the right map is separated;
furthermore the bottom map is schematic since BunG → Bunr is schematic (as we
showed in the course proving representability of BunG), and it then follows that
the top horizontal map is schematic as well, allowing for the reduction.

To handle Bunr,lvl, note first that by Jacob’s talk it is sufficient to establish
schematicity of π∗Bunr,lvl → X, or just of π∗Bunr,lvl. We will do this as in Nir’s
talk, using the map f : π∗Bunr,lvl → Bunr ×X. Here are the steps:

(1) Define the system . . . → Bunr,lvl2 → Bunr,lvl1 → Bunr,lvl0 with in-
verse limit π∗Bunr,lvl, affine transition maps, and compatible maps fn :
Bunr,lvln → Bunr ×X for all n, each inducing f (we will actually do this
for any G);

(2) Define the suitable open cover Um,m′ of Bunr ×X with the property that
for every m,m′ we can argue that f∗N (Um,m′) ⊆ Bunr,lvlN is a scheme for
some N .

These two steps will finish the job: they give that for every m and m′ the functor
f∗(Um,m′) is a scheme, and moreover these guys cover π∗Bunr,lvl.

For (1), we note that the definition of BunG,lvl, upon applying π∗, gives the
pullback square

π∗BunG,lvl BunG ×X

X J(BG×X),

//

��
//

��

Now, in Jacob’s talk, we learned that J(BG×X) is the inverse limit of functors
J (n)(BG×X), where

J (n)(Y ) = π
(n)
2∗ π

(n)∗
1 (Y ),

denoting by X(n) the nth infinitesimal neighborhood of the diagonal of X and by
π

(n)
1 , π

(n)
2 : X(n) → X the two projections. To unravel a bit, just as in the proof of
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(1) of this theorem we can deduce from this that

J (n)(BG×X) = BH(n),

where H(n) = π
(n)
2∗ (G×X(n)).

This then pulls back to an inverse limit expression for BunG,lvl in terms of, call
them BunG,lvln , of the desired form. And the transition maps are pullbacks of
diagonals of maps BH(n+1) → BH(n), so to finish (1) it suffices to show that
these diagonals are affine. This amounts to the following: if A ∈ Affk with
Spec(A) → X and P(n+1)

1 and P(n+1)
2 are H(n+1)-bundles on Spec(A), then the

map Isom(P(n+1)
1 ,P(n+1)

2 ) → Isom(P(n)
1 ,P(n)

2 ) is affine, where by P(n) we mean
the induced H(n)-bundle.

We can thus finish by showing that all of these Isom’s are affine over A. This
follows from the groups H(n) being affine over X, a consequence of the general fact
that restriction of scalars along a finite locally free map preserves affineness.

Now we turn to (2), specializing to G = GLr. Recall from Nir’s lecture the
subfunctors Um,m′ of Bunr×X: a pair (E , x) ∈ (Bunr×X)(A) consisting of a rank-
r vector bundle E on X × Spec(A) and a section x of q : X × Spec(A)→ Spec(A)
lies in Um,m′ if and only if the following three conditions are satisfied:

(1) q∗q∗E(m)→ E(m) is surjective;
(2) Rq1(E(m)) = 0;
(3) q∗(E(−m′)) = 0.

Here we twist with respect to the line bundle OX(x), which is relatively ample
over Spec(A) by Riemann-Roch. The fact that these conditions in conjunction
are stable under base-change (and hence that each Um,m′ is actually a subfunctor)
follows from cohomology and base-change. Moreover, each of the above conditions
is open, and any (E , x) satisfies them for some m,m′ as a consequence of Serre
vanishing; thus {Um,m′} is indeed an open cover.

... To be continued... �

The Loop Group and Change of Trivialization.

The Central Extension and Determinant Line Bundle.

etc. etc. etc...


