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The main purpose of this talk is to introduce the abstract formalism
of groups acting on categories, and certain related notions: weak and strong
equivariance, the adjoint localization/globalization functors and convolution.

We will often find ourselves in the following general setting: suppose we
have a fixed base field k and two k−linear abelian categories C and C ′. How
do we make sense of the category C ⊗ C ′ 1? In general, this category is gen-
erated by objects C ⊗ C ′ for C ∈ C and C ′ ∈ C ′. The actual meaning of the
word “generated” is in some general triangulated sense, and we won’t bother
ourselves with this general definition.

However, in all of our examples we only encounter tensor products of the
form A-mod⊗ C, where A is a k−algebra and C is a k linear category. This
has a simpler description: objects of this tensor category are by definition
objects of C with an A-module structure. In other words,

A-mod⊗ C = {(C, φ)| C ∈ C, φ : A −→ Endk(C)}.
The above definition can be naturally generalized to the case when A-mod
is replaced by QCoh or D-mod.

Example 1 We have k-mod = Vect. Since C is abelian, there is a natural
identification k-mod ⊗ C = C.

Example 2 Let B be another k−algebra. Then by the above definition:

A-mod⊗B-mod = {(C, φ)| C ∈ B-mod, φ : A −→ EndB(C)} =

1All tensor products are over the fixed base field k
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= {(C, φ, φ′)| C ∈ Vect, φ : A −→ Endk(C), φ′ : B −→ Endk(C)

such that φ and φ′ commute} = (A⊗B)-mod.

Example 3 Given M ∈ A-mod and C ∈ C, let us show how to form the
object M ⊗C ∈ A-mod⊗C. By definition, M is a vector space endowed with
a morphism of algebras A −→ Endk(M). Then we simply form the object
M ⊗ C ∈ Vect⊗ C = C, and let the action map be:

A −→ Endk(M)⊗ IdC ⊂ Endk(M ⊗ C).

Let G be a group scheme and let C be an abelian category. A weak action
of G on C is a functor:

act∗ : C −→ QCohG ⊗ C,

which is unital :

act∗|1↪→G = Id : C −→ C, (1)

and multiplicative, in the sense that we are given an identification between
the two compositions of the following diagram:

C act∗−−−→ QCohG ⊗ C

act∗

y yId⊗act∗

QCohG ⊗ C
mult∗⊗Id−−−−−→ QCohG ⊗QCohG ⊗ C.

(2)

We can generalize the above to the case when G is a group ind-scheme. A
weak action of G on C consists of functors:

act∗|S : C −→ QCohS ⊗ C, (3)

functorially in S
ϕ−→ G. We further ask act∗ to be unital and multiplicative,

by analogy with (1) and (2). Alternatively, the datum of (3) is the same as

asking for an S−linear action of G(S) on QCohS⊗C, functorially in S
ϕ−→ G.
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Example 4 The trivial weak action of G on C is

triv∗|S : C −→ QCohS ⊗ C, C −→ OS ⊗ C.

To get an idea of how the object OS ⊗ C looks like, see Example 3.

Example 5 Let A be a topological associative algebra, acted on by G. This
induces a weak G action on the category A-mod of discrete A modules. In
particular, when A = U(g) this gives a weak action of G on g-mod.

Example 6 Let Y be an ind-scheme, acted on by G. This induces a weak
G action on the category QCoh∗(Y). If Y = Spec A is affine, this reduces to
the previous example.

Given a weak action of G on a category C, we say that an object C ∈ C
is weakly equivariant if it comes equipped with an isomorphism:

act∗(C) ∼= triv∗(C) (4)

This should be perceived as a functorial family of isomorphisms act∗(C)|S ∼=
triv∗(C)|S for all ϕ : S −→ G, respecting the unit and associativity con-
straints. We write Cw,G for the category of weakly equivariant objects.

Example 7 For the trivial action of G on Vect, the category Vectw,G is
precisely the category of G−representations (vector spaces V equipped with a
map G −→ GLk(V )).

Example 8 In the setting of Example 5, we have

Ob(A-mod)w,G = {(M ∈ A-mod, ξ : G −→ Aut(M)}, (5)

such that:

M
a−−−→ M

ξ(g)

y yξ(g)
M

g·a−−−→ M

(6)

for any a ∈ A, g ∈ G. This map ξ is precisely what one needs to trivialize
the module M over G.
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For a group ind-scheme G, we let G(1) = Spf(C ⊕ ε · g∗) denote the first

infinitesimal neighborhood of the unit 1 ∈ G, and we let Ĝ1 be the formal
completion of G at the unit. A weak action of G on C is called strong if
either of the following equivalent conditions are satisfied:

• We are given have functorial isomorphisms between the functors (3)
for any pair of infinitesimally close points ϕ, ϕ′ : S −→ G, satisfying
certain compatibility conditions.

• We are given functorial trivializations of the functor (3) for any ϕ :

S −→ Ĝ1, respecting the unit, the multiplication, and the adjoint
action of G on Ĝ1.

Remark 1 The second condition above is actually equivalent to a weaker
version. It is enough to be given a trivialization not on Ĝ1, but on G(1):

act|G(1)
∼= triv|G(1) , (7)

which is compatible with the unit and the Lie algebra structure. This is why
strong actions are sometimes called infinitesimally trivial.

In this strong case, if we have a weakly equivariant object C ∈ Cw,G, then
(4) and (7) give us two isomorphisms:

act∗(C)|G(1)
∼= triv∗(C)|G(1) .

If these isomorphisms coincide, then we call C a strongly equivariant
object. We denote the subcategory of strongly equivariant objects by CG.

Example 9 For the trivial action of G on Vect, the category VectG is just
the category of G/G0−representations, where G0 is the connected component
of the identity in G.

Example 10 Let G be a group ind-scheme acting on a topological associative
algebra A via a map G −→ Aut(A), whose derivative is:

g −→ Der(A).

We claim that the induced action of G on A-mod from Example 5 is strong
if and only if the above Lie algebra map factors through the algebra of inner
derivations via a G−equivariant morphism ζ:
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g //

ζ

��

Der(A)

A

inner

;;wwwwwwwww

(8)

The objects of (A-mod)G are pairs as in (5) such that the diagram commutes:

g
dξ

//

ζ

��

End(M)

A

action

;;vvvvvvvvv

(9)

Example 11 If A = U(g), then condition (8) holds automatically, so we
can try to figure out how weak and strong equivariant g-modules look like. By
Example 8, we know that weakly equivariant modules are pairs of a g-module
a : g −→ End(M) and a group homomorphism ξ : G −→ Aut(M). Diagram
(6) precisely requires that:

a([x, y]) ·m = [dξ(x), a(y)] ·m, (10)

for all x, y ∈ g, m ∈M . Therefore,

Ob(g-mod)w,G = {M ∈ g-mod, ξ : G −→ Aut(M)},

which satisfy property (10). For strongly equivariant objects, relation (9)
forces a = dξ, and therefore:

Ob(g-mod)G = G-mod.

Example 12 Let G be a group scheme acting on a smooth affine scheme
of finite type Y. Then D-mod(Y) = DY-mod, and we are in the situation
of Example 10. As we have seen there, the corresponding action of G on
DY-mod is strong if and only if its derivative

g −→ Der(DY)

factors through DY . But the factor map is precisely the derivative g −→ DY
of the action of G on Y we started with! The same claim holds in the more
general setting of a group ind-scheme acting on a smooth ind-scheme, but we
haven’t yet defined the relevant categories.
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The above two examples are quite closely related. Indeed, in the setup of
Example 12 we have the natural localization and globalization functors:

g-mod
loc−→ D-mod(Y), loc(V ) = DY ⊗g V,

D-mod(Y)
Γ−→ g-mod, Γ(M) = Γ(Y ,M).

The globalization Γ is the right adjoint of the localization loc, and both
functors respect the strong G−actions on the categories in question. This
means that the action maps (3) are compatible with these functors, as is the
identitication (7).

Example 13 Let K ⊂ G be a pair of group ind-schemes. We can take the
category g-mod, and the restricted action of K to this category. Then:

g-modK ∼= (g, K)-mod,

where the category on the right denotes Harish-Chandra modules.

In the next lecture, we will also need a twisted version of the above.
Namely, suppose we have a central extension 0 −→ C −→ g′ −→ g −→ 0,
which induces an extension of the formal completions at the unit:

1 −→ Ĉ −→ Ĝ′1 −→ Ĝ1 −→ 1

The object on the left denotes the completion of C at 0. The weak notions
of action and equivariance stay the same as before. Now suppose our weak
action of G on C comes with a trivializion α on Ĝ′1. If this trivialization
satisfies:

Ψ : triv∗Ĉ

α|Ĉ∼= act∗Ĉ
∼= triv∗Ĉ, Ψ(1⊗ C) = et ⊗ C, (11)

for all f(t) ∈ OĈ = C[[t]], then we call the action twisted strong 2.

We would like to define twisted strongly equivariant objects now, but we
can only do so for a subgroup H ⊂ G over which the central extension of Lie
algebras splits. For X ∈ Cw,H , we have two trivializations of it to Ĥ ′1: one

provided by (4) and one provided by the trivialization to Ĝ′1 of the previous

2The second isomorphism above just reflects the fact that the map Ĉ −→ Ĝ1 is trivial
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paragraph. If these two trivializations satisfy relation (11) (in particular,

if their composition comes from Ĉ), then we call X a twisted strongly
H−equivariant object.

Throughout the above discussion, we have mostly dealt with a weak/strong
action of G on an abelian category C. However, this always induces a
weak/strong action on the category of complexes C(C), and from there to a
weak/strong action on the derived categories D(C),D+(C),D−(C),Db(C). In
fact, many important constructions (such as convolution) work best at the
level of the derived categories.

To go on any further, we have to define D−modules on an ind-scheme Y .
Today we will only present the general idea, sweeping the categorical details
under the rug until a future date. We always assume our ind-scheme is good,
i.e. that we can write it as:

Y = lim−→
i

Yi,

where Yi are schemes (possibly of infinite type) such that:

Yi = lim←−
j

Yij, (12)

where Yij are schemes of finite type. The definition of “good” further requires
that the injective limit is defined via closed embeddings ψii′ : Yi ↪→ Yi′
(for i < i′), that the ideal of Yi inside Yi′ is finitely generated, and that
the projective limit is given with respect to smooth, surjective morphisms
φijj′ : Yij′ � Yij (for j′ > j).

We define the category of D-modules on the scheme (12) by:

D-mod(Yi) := lim←−
j

D-mod(Yij),

with respect to the maps φijj′∗. Then we define the category of D-modules
on the good ind-scheme Y as:

D-mod(Y) := lim←−
i

D-mod(Yi), (13)
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with respect to the maps ψii
′!. The detail we are sweeping under the rug

is the definition of these maps, but it’s not hard to believe that they are
somehow induced from the closed embeddings ψii

′
.

Now suppose G is a group ind-scheme acting strongly on an abelian cat-
egory C. We will now define twisted products and convolution, but we need
to make a compromise: though all the subsequent results hold for group ind-
schemes G, we can so far only state them rigorously for a group scheme G.
Therefore, we define the twisted product functor as:

D-mod(G)× C −→ D-mod(G)⊗ C,

(S, X) −→ S�̃X := S ⊗OG
act∗G(X).

The fact that the action of G on C is strong implies the fact that the objects
act∗(X) come equipped with a connection along G. In other words, they
naturally sit inside D-mod(G)⊗C, and thus the above tensor product makes
sense as a tensor product of D-modules.

The projection π : G −→ pt induces a push-forward map:

π∗ = HDR(G, ·) : D-mod(G) −→ D-mod(pt) = Vect,

and therefore naturally a functor we denote by the same letter:

HDR(G, ·) : D-mod(G)⊗ C −→ C.
This finally gives rise to the convolution functor:

D-mod(G)× C −→ C,

S ∗ C := HDR(G,S�̃C).

Finally, let us note that the natural setting for this whole construction is at
the level of the derived categories:

D+(D-mod(G))×D+(C) ∗−→ D+(C).

The above discussion also has equivariant versions: first of all, let us start
with a subgroup H ⊂ G. Our first goal is to produce an equivariant convo-
lution functor:
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D+(D-mod(G))H ×D+(C)H −→ D+(C). (14)

In the left, we take equivariant modules with respect to the action of H on
G by right multiplication. We have the following proposition:

Proposition 1 For any reasonable ind-scheme Y acted on by a group ind-
scheme H, there is a natural equivalence of categories:

D(D-mod(Y))H ∼= D(D-mod(Y/H)).

The isomorphism is given by pull-back under the projection map Y −→ Y/H.

With this, defining a functor (14) becomes equivalent to defining:

D+(D-mod(G/H))×D+(C)H −→ D+(C). (15)

Given S ∈ D+(D-mod(G/H)) and X ∈ D+(C)H , we can form their twisted
product over H:

S�̃HX := S ⊗OG/H
act∗G(X) ∈ D+(D-mod(G/H))⊗ C. (16)

The above makes sense because the object act∗G(X) is stronglyH−equivarient,
and thus can be descended to a D-module on G/H (tensor C). The desired
convolution S ∗X of (15) is then just the push-forward under G/H −→ pt
of the object (16).

Let us now take another subgroup H ′ ⊂ G, acting on the group via left
multiplications. If S ∈ D+(D-mod(G/H)) of (16) is stronglyH ′−equivariant,

then so will S�̃HX. It therefore descends to an object:

S�̃
H′

H X ∈ D(D-mod(H ′\G/H))⊗ C.
If we push this object forward via H ′\G/H −→ pt, then we obtain the doubly
equivariant convolution product:

D+(D-mod(G))H
′,H ×D+(C)H −→ D+(C)H′ , (17)

or, which is equivalent by Proposition 1,

D+(D-mod(H ′\G/H))×D+(C)H −→ D+(C)H′ .
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Example 14 The first example of convolution comes along for G = C((t)),
H = H ′ = C[[t]] and C = D-mod(GrG). Then

D-mod(G/H)H
′
= CH = CH′ = Sph,

and the convolution Sph× Sph −→ Sph defined by (17) is just the standard
multiplication on Sph.

Example 15 More generally, suppose we have a group ind-scheme G acting
on an ind-scheme Y, and take any subgroup H ⊂ G. Consider:

G×H Y
a−−−→ Y

p

y
G/H

In his Feb 16 talk, Ryan used this diagram to introduce a convolution functor:

D-mod(G/H)×D-mod(Y)H −→ D-mod(Y),

(S, X) −→ a∗(p
∗S ⊗ X̃).

This is just the particular case of our construction in the case C = D-mod(Y).

Example 16 In the setting of Examples 10 and 12, recall that the categories
g-mod and D-mod(Y) both carry strong G actions, and the functors loc and
Γ between them respect this action. Because these functors respect the strong
G action, they also respect the convolution product:

loc(S ∗ V ) = S ∗ loc(V ),

Γ(S ∗M) = S ∗ Γ(M).
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