
Introduction to Chiral Algebras

Nick Rozenblyum

Our goal will be to prove the fact that the algebra End(V ac) is commu-
tative. The proof itself will be very easy - a version of the Eckmann Hilton
argument - once the machinery of chiral algebras is set up.

1 Chiral Algebras

Let X be a smooth curve over C. A non-unital chiral algebra on X is a
D-module A along with a ”chiral bracket” map

µ : j∗j
∗(A�A)→ ∆!(A)

where j : U → X2 ← Z : ∆ are the inclusion of the complement of the
diagonal and the diagonal respectively. We require that µ be antisymmetric
and satisfy a version of the Jacobi identity:

• Antisymmetry: µ = −σ1,2 ◦ µ ◦ σ1,2, where σ1,2 is induced action on A
by permuting the variables of X2.

• Jacobi Identity: we have three maps µ1(23), µ(12)3 and µ2(13) : j∗j
∗(A�

A�A)→ ∆!(A) where (somewhat abusing notation) j is the inclusion
of the open in X3 which is the complement of all the diagonals and ∆
is the inclusion of X as the diagonal. We have that µ1(23) is defined as
the composition

j∗j
∗(A�A�A)→ ∆(x2=x3)!j∗j

∗(A�A)→ ∆!A

and the others are defined similarly. We then demand that

µ1(23) = µ(12)3 + µ2(13)
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Example 1. Let A = ωX . We then have the canonical exact sequence

0→ ωX � ωX → j∗j
∗(ωX � ωX)→ ∆!(ωX)→ 0

which gives ωX a chiral bracket. It is clearly antisymmetric. We need to
check that it satisfies the Jacobi identity. To do that, consider the Cousin
complex for ω�3

X on X3 for the stratification given by the diagonals. It gives
the exact sequence

0→ ω�3
X → j∗j

∗(ω�3
X )→

∆x1=x2!j∗j
∗(ω�2

X )
⊕

∆x1=x3!j∗j
∗(ω�2

X )
⊕

∆x2=x3!j∗j
∗(ω�2

X )

→ ∆!(ωX)→ 0

The three maps in the complex

j∗j
∗(ω�3

X )→ ∆!(ωX)

are exactly the maps in the Jacobi identity and the fact that the above Cousin
complex is a complex at the term between those is exactly the condition that
the Jacobi identity is satisfied.

We can now finish defining a chiral algebra.

Definition 2. A (unital) chiral algebra A is a non-unital chiral algebra to-
gether with a map of chiral algebras

ωX → A

such that the restriction of the chiral bracket

µ : j∗j
∗(ωX �A)→ ∆!(A)

is the canonical map coming from the complex

0→ ωX �A → j∗j
∗(ωX �A)→ ∆!(A).

As with any kind of algebra, given a chiral algebra A, we can consider
modules over it.
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Definition 3. Let A be a chiral algebra. A chiral A module is a D-module
M on X together with an action map

ρ : j∗j
∗(A�M)→ ∆!(M)

satisfying the unit and Lie identity:

• Unit: we require that the restriction of ρ to ωX

ρ : j∗j
∗(ωX �M)→ ∆!(M)

be the canonical map.

• Lie action:

ρ(µ� id) = ρ(id� ρ)− σ12 ◦ ρ((id� ρ) ◦ σ12)

as maps
j∗j
∗(A�A�M)→ ∆!(M).

Example 4. Let A be a chiral algebra. Then A is canonically a chiral A
module.

Let M be a D-module on X. Then the canonical map

j∗j
∗(ω �M)→ ∆!(M)

makes M into a chiral ω module. In fact, because of the unit axiom, this is
the unique structure of a chiral ω module onM. Thus we have an equivalence
of categories

{D-modules} ∼−→ {chiral ω modules}.

For our purposes, we will assume that A is flat as an OX module. How-
ever, we will not make a similar assumption on M. For instance, we will
often be interested in modules supported at a point x ∈ X. A typical exam-
ple of this is the vacuum module M = ix!i

!
x(A)[1].

Recall that for D-modules we have the deRham functor

h : D-mods→ {sheaves}
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given by modding out by the action of vector fields:

h(M) =M/M ·Θ.

Now, for a chiral algebra A, consider the composition

A�A → j∗j
∗(A�A)→ ∆!(A).

Applying the deRham functor, we get

h(A) � h(A)→ ∆∗(h(A))

which by adjunction gives the map

h(A)⊗ h(A)→ h(A)

which makes h(A) into a sheaf of Lie algebras.

Now suppose that M is a chiral A module supported at a point x ∈ X.
Let M = i!x(M) be the underlying vector space. Pushing forward the action
map

j∗j
∗(A�M)→ ∆!(M)

along the first projection we get

DR(X − x,A)⊗M →M

which is an action of the Lie algebra DR(X − x,A) on M . In fact, we can
shrink the curve X to get an action of the topological Lie algebra DR(D◦x,A)
on M where

DR(D◦x,A) = lim
←

i!x(jx∗j
∗
x(A)/Aξ)

where the inverse limit is taken over submodules Aξ ⊂ jx∗j
∗
x(A) such that

the quotient jx∗j
∗
x(A)/Aξ is supported at x and jx is the inclusion the open

set X − x.

2 Factorization

There is another equivalent description of chiral algebras in terms of factor-
ization which given what we’ve been doing in the seminar might be more
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familiar.

For the moment, let X be a topological space. We can then consider the
Ran space of X defined as

Ran(X) = {nonempty finite subsets of X}

It is topologized so that the maps Xn → Ran(X) are continuous. There is a
very important fact which will not be relevant for now, but is very important
when dealing with homology of chiral algebas.

Theorem 5. If X is connected, the topological space Ran(X) is weakly con-
tractible.

We will be interested in doing algebraic geometry on Ran(X) for X an
algebraic curve. Unfortunately, it is not possible to define Ran(X) as any
kind of algebraic space but we will be able to make sense of quasi-coherent
sheaves on Ran(X). So let’s return to X being an algebraic curve over C.

Definition 6. A quasi-coherent sheaf F on Ran(X) is a collection of quasi
coherent sheaves F I for each finite set I together with isomorphisms

ν(π) : ∆(J/I)∗FJ
∼→ FI

for every surjection π : J � I, where ∆J/I : XI → XJ is the corresponding
diagonal. We require that the ν(π) be compatible with composition of surjec-
tions. Moreover, we demand that the F (I) have no sections supported on the
diagonals.

Remark 7. Because of the condition requiring no sections supported on the
diagonals, quasi-coherent sheaves on Ran(X) do not form an abelian cate-
gory.

Definition 8. A non-unital factorization algebra B is a quasi-coherent sheaf
on Ran(X) along with isomorphisms

cα : j∗α(�B(Ii))
∼→ j∗α(B(I))

for a partition α : I = I1 t . . .t In a partition of I and jα is the inclusion of
the open set

U = {xi 6= xj if i and j are in different Ij}.

We require that the cα be compatible with subpartitions and with the ν(π).
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Example 9. Let O be the non-unital factorization algebra given by O(I) =
OXI . This is a factorizable algebra in the obvious way. It is the unit factor-
ization algebra.

Definition 10. A (unital) factorization algebra B is a non-unital factoriza-
tion algebra equipped with a map of non-unital factorization algebras

O → B

such that locally for every section b ∈ B(1), 1 � b ∈ j∗j∗(B(1) � B(1)) lies in
B(2) ⊂ j∗j

∗(B(1) �B(1)) and ∆∗(1 � b) = b.

Remark 11. In the definition of a factorization algebra, we required that the
unit give a map

B(1) �OX → B(2)

compatible with restriction to the diagonal. In fact, we leave it to the reader
to check that this implies that we have canonical maps

B(I1) �OXI2 → B(I1tI2)

compatible with factorization and restrictions to the diagonals. This fol-
lows from the condition requiring no sections supported on the diagonals for
quasi-coherent sheaves on Ran(X). If we consider dg-factorization algebras,
then we need to specify all these maps as part of the data of a unital dg-
factorization algebra.

Theorem 12. There is an equivalence of categories

{factorization algebras} ∼→ {chiral algebras}

given by
B 7→ B(1) ⊗ ωX

Proof. Let B be a factorization algebra. Let’s show that each B(I) has a
canonical structure of a left D-module. Giving B(I) such a structure is equiv-
alent to giving an isomorphism between B(I) � OXI and OXI � B(I) on the
formal completion of the diagonal in XI ×XI . The unit gives maps

B(I) �OXI → B(ItI) ← OXI � B(I)
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which are isomorphisms on the formal neighborhood of the diagonal XI giv-
ing the canonical connection.

Now, let A(I) = B(I)⊗ωXI be the corresponding right D-modules and let
A = A(1). We then have the Cousin complex for A(2):

0→ A(2) → j∗j
∗(A�A)→ ∆!(A)→ 0

which gives the chiral bracket. It is clearly antisymmetric and the unit ax-
iom is satisfied. The Cousin complex for A(3) with stratification given by
the diagonals in X3 gives the Jacobi identity. Thus, we have a functor from
factorization algebras to chiral algebras.

Let us now construct the inverse functor. Let A be a chiral algebra. On
XI consider the Chevalley-Cousin complex:

C•I =

j∗j∗(A� · · ·�A︸ ︷︷ ︸
I-times

)→
⊕

α∈Part|I|−1(I)

∆α!(j∗j
∗(A� · · ·�A))→ . . .∆!(A)


where Partn(I) is the set of partitions of I into n subsets and ∆α for
α ∈ Partn(I) is the corresponding n dimensional diagonal. The terms with n
copies of A are in degree −n and the differentials are given by the various chi-
ral brackets. This complex is called the Chevalley-Cousin complex because
it is the Chevalley complex from the point of view of the chiral algebra, and
it is the Cousin complex (for the stratification given by the diagonals) from
the point of view of the factorization algebra.

Evidently, these complexes are factorize and are compatible with restriction
to diagonals, i.e. we have isomorphisms

ν(π) : ∆(J/I)!C•J
∼→ C•I

for surjections π : J � I and

cα : j∗α(�C•Ii)
∼→ j∗α(C•I )

for partitions I = I1 t . . . t In.

We will show that Hn(C•I ) = 0 unless n = −|I| by induction on |I|. For
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|I| = 1, the complex is just given by A and there is nothing to prove. Now,
for a general I, consider a codimension one diagonal

i : XI′ ↪→ XI ←↩ U : v

and a given decomposition I = I ′ t [1], with U the complement of XI′ . The
open set U is affine and we have a short exact sequence of complexes

0→ i!(C
•
I′)→ C•I → v∗v

∗(C•I )→ 0.

By induction, Hn(i!(C
•
I′)) = 0 unless n = −|I ′| = −|I|+ 1 and by induction

and factorization Hn(v∗v
∗(C•I )) = 0 unless n = −|I| since U is a union of

complements of diagonals. Thus we need to show that the map

H−|I|+1(i!(C
•
I′))→ H−|I|+1(C•I )

vanishes. Let

Z := H−|I|+1(C•I′) = Ker(C
−|I′|
I′ → C

−|I′|+1
I′ )

We have a canonical exact sequence with respect to the decomposition XI =
XI′ ×X

0→ Z � ωX → v∗v
∗(Z � ωX)→ i!(Z)→ 0.

Furthermore, we have a commutative diagram

v∗v
∗(Z � ω) //

����

C
−|I|
I

d
��

i!(Z) // C
−|I|+1
I

where the top map is given by the unit. It follows that the map

H−|I|+1(i!(C
•
I′))→ H−|I|+1(C•I )

is indeed zero.

Now, let B(I) := H−|I|(C•I ) ⊗ ω−1
XI . By above, it is a factorization algebra.

Furthermore, it gives the inverse functor

{chiral algebras} → {factorization algebras}.
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The factorization perspective on chiral algebras is a very useful one. Sup-
pose that B1 and B2 are factorization algebras. Then B(I) = B(I)

1 ⊗ B
(I)
2 is

also a factorization algebra in the obvious way. In this way, we can consider
tensor products of chiral algebras.

Another important aspect of factorization algebra is that they admit a non-
linear analogue of factorization spaces. This will allow us to construct chiral
algebras from geometry.

Definition 13. A factorization space G is a collection of (ind-) schemes GI
over XI for each finite set I along with isomorphisms

(GJ)|XI ' GI

for every diagonal embedding XI ↪→ XJ and for every partition I = I1t . . .t
In factorization ismorphisms

GI |U ' (×GIi) |U

where U is the open set corresponding to the partition. We require that these
isomorphisms be compatible in the usual way.

A factorization space is unital if in addition we have maps

XI1 × GI2 → GI2tI2

compatible with factorization and restrictions to diagonals.

We have already seen an example of a unital factorization space, namely
the Beilinson-Drinfeld Grassmannian. Let G be an algebraic group. Recall
that the Beilinson-Drinfeld Grassmannian GrI(G) → XI is defined as the
moduli space of the following triples (in what follows we omit reference to G
in the notation)

GrI = {P ∈ BunG(X), (x1, . . . , xI) ∈ XI , φ : P|X−{(xi)} ' P triv|X−{(xi)}}

where P triv ∈ BunG(X) is the trivial G-bundle.

Now, suppose we are given a unital factorization space G and a ”lineariza-
tion functor”, i.e. a rule for obtaining a sheaf on XI from each GI which
preserves factorization then we can obtain a factorization algebra. Examples
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of such ”linearization functors” are global sections and pushforward of some
canonically defined sheaf.

In the case of the Beilinson-Drinfeld Grassmannian, consider for each I, SI
the sheaf of D-module δ functions along the unit section XI → GrI . Now
let VI be the pushforward of SI to XI as a quasi-coherent sheaf. These form
a factorization algebra with fibers given by the vacuum module for every
x ∈ X. We could also consider δ functions as a twisted D-module and in
the same way obtain a factorization algebra with fibers given by the vacuum
module at the corresponding level.

In addition to describing chiral algebras in factorization terms, we can also
describe modules.

Definition 14. Let B be a factorization algebra. A factorization B module
M is a collection of D-modules M Ĩ on X Ĩ for each finite set I, where Ĩ =
I t {?}. For every surjection π : J̃ � Ĩ such that π(?) = ?, we have the

corresponding diagonal X Ĩ ↪→ X J̃ and we are given isomorphisms

M(J̃)|X Ĩ 'M(Ĩ)

and for every partition I = I1 t . . . t In, we are given factorization isomor-
phisms

MĨ |U ' ( ⊗
0<i<n

BIi ⊗MĨn)|U

where U ⊂ X Ĩ is the open set corresponding to the partition Ĩ = I1 t . . . t
In−1 t Ĩn. We require that the isomorphisms be mutually compatible.

Theorem 15. Let A be a chiral algebra and B be the corresponding factor-
ization algebra. There is an equivalence of categories

{factorization B-modules} ' {chiral A-modules}

As a consequence, we can consider tensor products of chiral modules: let
B1 and B2 be factorization algebras andM1 andM2 respective factorization
modules. ThenM =M1⊗M2 is a factorization module for the factorization
algebra B = B1 ⊗ B2.
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3 Lie-* algebras

A Lie-* algebra L is a D-module on X along with a ”Lie-*” bracket

µ : L� L→ ∆!(L)

satisfying the Jacobi identity (in the same way as in the definition of a chiral
algebra).

Remark 16. Suppose that a Lie-* algebra L is holonomic as a D-module.
In this case, we have the functor ∆∗ which is left adjoint to ∆! = ∆∗. In this
case, we can consider the *-tensor product L⊗∗ L := ∆∗(L�L) and being a
Lie-* algebra is equivalent to being a Lie algebra

µ : L⊗∗ L→ L

in the tensor category of holonomic D-modules with the *-tensor product.

An advantage of considering Lie-* algebras is that it is relatively easy to
construct examples. Suppose g is a Lie algebra. Then g ⊗ DX is a Lie-*
algebra. In fact, we could implement this construction for any Lie algebra
in the category of quasi-coherent sheaves on X by instead tensoring over OX .

Let A be a chiral algebra. Then the composition

A�A → j∗j
∗(A�A)→ ∆!(A)

makes A into a Lie-* algebra. In fact this functor has a left adjoint.

Theorem 17. The above functor

{chiral algebras} → {Lie-* algebras}

has a left adjoint L 7→ A(L) called the ”chiral envelope”.

Proof (Sketch). The statement is local on the curve so we can assume with-
out loss of generality that X is affine.

Given a Lie-* algebra, we will construct a factorization algebra using aux-
iliary Lie algebras. For a finite set I, consider the space XI × X and let
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pi for i = 1, 2 be the two projection maps to XI and X respectively. Let
j : U ↪→ XI ×X be the open subset given by

U = {((xi), x) ∈ XI ×X|xi 6= x for i ∈ I}.

Now, consider

L̃
(I)
0 = p1∗p

∗
2(L)⊗ ω−1

XI and L̃(I) = p1∗j∗j
∗p∗2(L)⊗ ω−1

XI .

These are Lie algebras in the category of left D-modules on XI . We have
that the fibers of L̃

(I)
0 and L̃(I) are given by

L̃
(I)
0 (x1,...,xI) = HdR(X,L) and L̃

(I)
(x1,...,xI) = HdR(X − {x1, . . . , xI}, L).

By construction, we have that

B(L)(I) = U(L̃(I))/U(L̃(I)) = IndL̃
(I)

L̃
(I)
0

OXI

is a factorization algebra (here U(L) denotes the universal enveloping algebra
of the Lie algebra L). Let A(L) be the corresponding chiral algebra.

Note that we have an exact sequence of D-modules on X

0→ L̃
(1)
0 → L̃(1) → L⊗ ω−1

X → 0

which gives a map L → A(L). The fact that it’s a map of Lie-* algebras
follows from a similar exact sequence on X2.

Now suppose A is a chiral algebra and we have a map of Lie-* algebras
L→ A. Taking deRham cohomology of the action map

j∗j
∗(L�A)→ ∆!(A)

along the first component makes B(1) := A⊗ω−1
X into a Lie L̃(1) module. The

unit section of B(1) gives a map of left D-modules

U(L̃(1))→ B(1).

Furthermore, the following diagram commutes

L̃(1) //

��

Ã(1)

��
L⊗ ω−1

X
// A⊗ ω−1

X
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where Ã(1) = p1∗j∗j
∗p∗2(A)⊗ω−1

XI . It follows that L̃
(1)
0 kills the unit section in

B(1). This gives us the desired map A(L) → A. A similar argument on X2

shows that it’s a map of chiral algebras.

Consider the case where L = g⊗DX . In this case, we have that the fibers
A(L)x at x ∈ X are given by

A(L)x = Ind
H0

dR(X−x,g⊗DX)

H0
dR(X,g⊗DX)

C.

Since we have a Cartesian square

H0
dR(X, g⊗DX) //

��

H0
dR(X − x, g⊗DX)

��
H0
dR(Dx, g⊗DX) = g(Ox) // H0

dR(D◦x, g⊗DX) = g(Kx)

it follows that
A(L)x = Ind

g(Kx)
g(Ox)C = V acx.

Thus in this case the fibers are given by the vacuum module for g. In fact, this
chiral algebra agrees with the one we constructed before using the Beilinson-
Drinfeld Grassmannian.

For Lie-* algebras, we can consider two types of modules:

Definition 18. Let L be a Lie-* algebra.

• A Lie-* L module is a D-module M on X along with an action map

ρ : L�M→ ∆!(M)

satisfying the Lie action identity.

• A chiral L module is a D-module M on X along with a chiral action
map

ρ : j∗j
∗(L�M)→ ∆!(M)

satisfying the following condition. For j′ : U → X2×X the complement
of the diagonals {x1 = x} and {x2 = x}, we have (similarly to the case
of chiral modules over a chiral algebra) the maps

ρ1(23) : j′∗j
′∗(L� L�M)

id�ρ−→ ∆23!j∗j
∗(L�M)→ ∆!(M)
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with ρ(12)3 and ρ2(13) defined similarly. We demand that

ρ(12)3 = ρ1(23) − ρ2(13).

We have the following important fact about chiral modules over a Lie-*
algebra.

Theorem 19. Let L be a Lie-* algebra. Then there is an equivalence of
categories

{chiral L-modules} ' {chiral A(L)-modules}.
Now, suppose M is a chiral L-module. We have a forgetful functor to

Lie-* modules given by the composition

L�M→ j∗j
∗(L�M)→ ∆!(M).

This functor has a left adjoint

Ind : {Lie-* L-modules} → {chiral L-modules}

given as follows. Let M be a Lie-* L-module. Taking deRham cohomology
of the action map

L�M → ∆!(M)

along the first component, we see that M ′ := M ⊗ ω−1
X is a Lie L̃

(1)
0 -module.

Now, let

Ind′(M)(Ĩ) = IndL̃
Ĩ

L̃Ĩ
0

p∗(M ′)

for a finite set I where p : X Ĩ → X is the projection to the last component.
We have that

Ind′(M) := {Ind′(M)Ĩ}
is a factorization module for the factorization algebra corresponding to A(L).
We then define Ind(M) to be the corresponding chiral L-module.

4 Commutative Chiral Algebras

Let A be a chiral algebra. We say that A is commutative if the composition

A�A → j∗j
∗(A�A)→ ∆!(A)

vanishes.

We have the following characterization of commutative chiral algebras.
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Theorem 20. There is an equivalence of categories

{commutative chiral algebras} ' {commutative left DX-algebras}

given by
A 7→ A⊗ ω−1

X .

Proof. Recall that we have a canonical exact sequence

0→ A�A → j∗j
∗(A�A)→ ∆!(A⊗! A)→ 0.

It follows that for a commutative chiral algebra, we have a map

m : A⊗! A → A.

In fact, as we’ll see m makes Al := A ⊗ ω−1
X a commutative algebra in the

category of left D-modules. Commutativity of m (on Al) clearly follows
from anti-commutativity of the chiral bracket. Furthermore, the unit gives
the unit section

η : OX → Al.

Note that we can factor the chiral bracket as

j∗j
∗(A�A) = (Al �Al)⊗ j∗j∗(ωX � ωX)→ (Al �Al)⊗∆!(ωX) =

= ∆!(Al ⊗Al)⊗∆!(ωX)→ ∆!(Al)⊗∆!(ωX) = ∆!(A).

Thus for a section

((a� b)⊗ s2) ∈ Al �Al ⊗ j∗j∗(ωX � ωX)

we have
µ((a� b)⊗ s2) = (a · b)⊗ µω(s2)

where (a · b) := m(a, b) and µω is the chiral bracket for ω. In these terms,
the Jacobi identity for A becomes

(a · (b · c))⊗ µω1(23)(s3) = ((a · b) · c)⊗ µω(12)3(s3) + (b · (a · c))⊗ µω2(13)(s3)

for a section

(a� b� c)⊗ s3 ∈ (Al �Al �Al)⊗ j∗j∗(ωX � ωX � ωX).
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From the Jacobi identity for ω, we deduce that all three terms on the left
side of the tensors are equal. Thus, the product m on Al is associative.

Now, suppose that B is a commutative left DX-algebra. We can define a
chiral bracket on A = B ⊗ ωX by

µ : j∗j
∗(A�A)→ ∆!(A⊗! A)→ ∆!(A)

where the first map is the canonical map and the second is the one given by
the multiplication map on B. By a similar argument as above, this makes A
into a chiral algebra.

Now, suppose that B is a commutative left DX algebra. We will describe
B modules in terms of the corresponding chiral algebra.

Definition 21. Let A be a chiral algebra. A commutative A-module is a
chiral A-module M such that the composition

A�M→ j∗j
∗(A�M)→ ∆!(M)

vanishes.

Suppose B is a commutative left DX algebra and A the corresponding
commutative chiral algebra. We then have an equivalence of categories

{(DX-B)-modules} → {commutative A-modules}

given by
M 7→ M := M ⊗ ωX

with the chiral action map given by the composition

j∗j
∗(A�M)→ ∆!(A⊗!M)→ ∆!(M)

where the last map comes from the action map B ⊗M →M .

Now, for a commutative DX algebra B, we can describe the correspond-
ing chiral algebra in factorization terms as follows. Let Z = Spec(Bl). Then
Z is a DX-scheme. In this situation, we can construct a counital factoriza-
tion space ZI → XI by considering multijets. An S point of ZI is given by
a map φ : S → XI along with a horizontal section X̂S → Z, where X̂S is the
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completion of X × S along the subscheme given by the union of the graphs
of φ. When Z is an affine DX-scheme, each ZI is an affine DXI -scheme.

Let (B)I be the left DXI -module of global sections of ZI . As quasi-coherent
sheaves, these form a factorization algebra. LetA be the corresponding chiral
algebra.

Claim 22. The chiral algebra A is commutative and the chiral bracket is
given by the multiplication map on B.

To prove the claim, we will make use of the Eckmann-Hilton argument.
We will write down a formal algebraic proof, but here’s the basic idea of the
proof, which is extremely simple. Suppose you wanted to explain to someone
that addition was commutative. For instance, say you wanted to show that
7 + 15 = 15 + 7. Well, 7 + 15 is the number of marbles you have if you have
two piles of marbles - 7 marbles in the left pile and 15 marbles in the right
pile. Well, 15 + 7 is what you would get by moving one pile of marbles past
the other. This is essentially the argument. A slightly more sophisticated
version of this argument says that a monoid in the category of monoids is
a commutative monoid. In this case, one can denote one multiplication as
vertical composition and the other as horizontal and essentially carry out
the same argument as with the marbles, moving one multiplication past the
other. This is the Eckmann-Hilton argument and it shows for instance that
higher homotopy groups of a topological space are commutative. In our
context, we have the following theorem.

Theorem 23. Let A be a chiral algebra with a compatible unital binary
operation

m : A⊗! A → A
Then A is a commutative chiral algebra, m makes Al into a commutative
algebra and the chiral bracket on A factors through m.

Proof. Clearly, it suffices to show that the chiral bracket factors through m.
Compatibility of chiral bracket with the binary operation means that the
following diagram is commutative (i.e. m is a map of chiral algebras):

j∗j
∗((A⊗! A) � (A⊗! A)) //

��

∆!(A⊗! A)

��
j∗j
∗(A�A) // ∆!(A)
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We have two unit maps
α, β : ωX → A

for the chiral bracket and the binary operation respectively. Let’s show that
these agree. From the commutativity of the above diagram and the unit
axioms, we have the following commutative diagram

j∗j
∗((ωα ⊗! ωβ) � (ωβ ⊗! ωα)) // //

����

∆!(ωβ ⊗! ωβ) = ∆!(ωβ)

++WWWWWWWWWW

∆!(A)

j∗j
∗(ωα � ωα) // // ∆!(ωα)

33ffffffffffffff

It follows that the two units agree. Now, we can construct a section

s : j∗j
∗(A�A)→ j∗j

∗((A⊗! A) � (A⊗! A))

given by

s : j∗j
∗(A�A) = j∗j

∗((A⊗! ω) � (ω ⊗! A)→ j∗j
∗((A⊗! A) � (A⊗! A))

It follows that we the chiral bracket factors as

j∗j
∗(A�A)→ ∆!(A⊗! A)→ ∆!(A)

where the last map is given by ∆!(m).

Remark 24. We can actually strengthen the above theorem slightly by not
imposing the condition that A is a chiral algebra. All that is necessary is that
there is a unital chiral operation

µ : j∗j
∗(A�A)→ ∆!(A)

and a unital binary operation

m : A⊗! A → A

which are compatible. In this case, µ makes A into a commutative chiral
algebra, m makes Al into a commutative left DX-algebra and one determines
the other. We leave the proof as an exercise for the reader.

Let us now return to considering multijets. In this case, B is a com-
mutative left DX algebra, and A is the chiral algebra corresponding to the
factorization space given by multijets of Spec(B). As a right DX-module, we
clearly have A = B⊗ωX , and the multiplication on B is compatible with the
chiral bracket. It follows by Eckmann-Hilton that A is a commutative chiral
algebra and the chiral bracket is given by the multiplication map.
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5 Factorization Modules on Higher Powers

Let A be a chiral algebra. Thus far, we have considered chiral modules
supported at a point and chiral modules on the curve. We can also define
modules on higher powers of X. We do so in factorization terms. Let B be
the corresponding factorization algebra.

Definition 25. Let I0 be a finite set. A factorization B moduleM on XI0 is
a collection DX Ĩ -modules {MĨ} for finite sets I with Ĩ := I t I0. For every

surjection π : J̃ � Ĩ such that π|I0 = id, we have the corresponding diagonal

X Ĩ ↪→ X J̃ are we are given isomorphisms

M(J̃)|X Ĩ 'M(Ĩ)

and for every partition I = I1 t . . . t In, we are given factorization isomor-
phisms

MĨ |U ' ( ⊗
0<i<n

B(Ii) ⊗MĨn)|U

where U ⊂ X Ĩ is the open set corresponding to the partition Ĩ = I1t . . .t Ĩn.
We require that the isomorphisms be mutually compatible.

One can also give a definition of factorization modules on XI0 in terms of
chiral operations similarly to the definition of chiral modules on X. In fact
as in the case of chiral modules on X, we have that the forgetful functor

{factorization B-modules on XI0} → {DXI0 -modules}

if faithful. Furthermore, the category of factorization modules on XI0 is an
abelian category.

Example 26. 1. For any I0, B(I0) is a factorization module on XI0.

2. Suppose M is a module on XI0, and for a finite set J0 = J t I0, we
have that N =M(J0) is a factorization module on XJ0.

3. Suppose M is a factorization module on XI0 then for any surjection
π : J0 � I0, we have the corresponding diagonal i : XI0 ↪→ XJ0. We
then have i∗(M) is a factorization module on XJ0. Similarly, if N is a
factorization module on XJ0, i∗(N ) is a factorization module on XI0.
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4. Suppose M is a factorization module on XI0 and N is a factorization
module on XJ0, then j∗j

∗(M�N ) is a factorization module on XI0tJ0,
where

j : U = {(xi), (yj) | xi 6= yj} ↪→ XI0 ×XJ0 .

The last example above allows us to define a pseudo-tensor structure on
the category of chiral A-modules on X by setting

Hom({M1,M2}, N) = Hom(j∗j
∗(M1 �M2),∆∗(N))

for M1,M2, N factorization A modules on X, where the Hom on the right-
hand side is in the category of factorization A-modules on X2.

6 Chiral Algebra of Endomorphisms

Let A be a chiral algebra and B the corresponding factorization algebra. We
have seen that each B(I) is a factorization B-module on XI . Let

REnd(B)(I) = RHom(B(I),B(I))

where RHom is in the derived category of factorization B-modules on XI .
Let

REnd(A)(I) = REnd(B)(I) ⊗ ωXI

be the corresponding right D-modules.

We have that REnd(B) is a dg-factorization algebra. Namely, for a diag-
onal ∆ : XI ↪→ XJ , we have

L∆∗(REnd(B)(J)) ' REnd(B)(I)

and for a partition I = I1 t . . .t In and j : U ↪→ XI the corresponding open
set

j∗(REnd(B)(I)) ' j∗(�REnd(B)(Ii)).

Suppose that we are given a decomposition I = I0 t J . For the factorization
B module on XI0 M = BI0 , we have that MI = BI . It follows that we have
maps

p∗(REnd(B)I0) = REnd(B)(I0) �OXJ → REnd(B)(I)

which makes REnd(B) into a unital dg-factorization algebra. It is coconnec-
tive, i.e. it has no cohomology in negative degrees.
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Lemma 27. Let B be a coconnective unital dg-factorization algebra. Then
(B0)

(I) = H0(B(I)) is a unital factorization algebra.

Proof. Let A(I) = B(I) ⊗ ωXI and A(I)
0 = B(I)

0 ⊗ ωXI be the corresponding
right D-module. The Cousin complex for A(2) gives the triangle

A(2) → j∗j
∗(A(2))→ ∆!(A(1)).

The long exact sequence in cohomology gives the exact sequence

0→ A(2)
0 → j∗j

∗(A(2)
0 )→ ∆!(A(1)

0 ).

The unit gives a commutative diagram

0 // A(2)
0

// j∗j
∗(A(2)

0 ) // ∆!(A(1)
0 )

0 // A
(1)
0 � ωX

//

OO

j∗j
∗(A

(1)
0 � ωX) //

OO

∆!(A(1)
0 ) // 0

It follows that j∗j
∗(A(2)

0 ) = j∗j
∗(A(1)

0 �A(1)
0 )→ ∆!(A(1)

0 ) is surjective. Similar

considerations on higher powers of X shows that A(1)
0 is a chiral algebra with

B0 the corresponding factorization algebra.

For a chiral algebra A with corresponding factorization algebra B, let
End(A) be the chiral algebra corresponding to the factorization algebra given
by H0(REnd(B)). Composition of morphisms gives us an algebra map

End(A)⊗! End(A)→ End(A)

which is compatible with the chiral algebra structure. It follows that End(A)
is a commutative chiral algebra.

Let Ag be the chiral envelope of the Lie-* algebra DX ⊗ g for a Lie alge-
bra g. We want to show that the algebra of endomorphisms of the vacuum
module of Ag supported at a point is commutative. Even though the chiral
algebra End(A) is commutative for any chiral algebra A, the corresponding
statement for the vacuum module supported at a point is not necessarily
true. However, it is true in the case of vertex operator algebras.
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Definition 28. A vertex operator algebra V is an assignment X 7→ VX of
a chiral algebra VX on every smooth curve X, along with compatible isomor-
phisms

φ∗(VY ) ' VX

for etale maps φ : X → Y .

Example 29. The chiral algebra Ag is defined for any smooth curve X and
these form a vertex operator algebra.

Now, let’s show that in the case of a vertex operator algebra V , the
algebra of endomorphisms of the vacuum module is commutative. Since the
statement is etale local, we can restrict ourselves without loss of generality
to the case that X = A1. Since V is a vertex operator algebra, we have that
A := VA1 is a translation equivariant D-module on A1. Let i : {0} → A1 be
the inclusion map and

V acA := i!i
!(A)[1]

be the vacuum module supported at {0}. We have that the algebra of endo-
morphisms of V acA is given by

End(V acA) = End(H0(Ri!(A)[1])) = H0(REnd(Ri!(A)[1])) = H1(REnd(Ri!(A))).

The Grothendieck spectral sequence gives the exact sequence

0→ H1(Ri!(REnd(A)))→ H1(REnd(i!(A)))→ i!(H1(REnd(A))).

SinceA is translation equivariant so isH1(REnd(A)). In particular, H1(REnd(A))
is flat. It follows that i!(H1(REnd(A))) = 0 and therefore

H1(Ri!(REnd(A))) ' H1(REnd(i!(A))) ' End(V acA).

By commutativity of End(A), the algebra H1(Ri!(REnd(A))) is commuta-
tive and therefore so is End(V acA).
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