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Last time, we introduced a lot of general stuff about group actions on
categories, equivariant objects and convolution. We will apply all that to
a very concrete setting: let G be a reductive group and X be a projective
curve. Our main focus for this lecture will be the group G((t)) (and its in-

carnations G(K̂x) for x ∈ X), and the many categories it acts on.

For example, G((t)) acts on the affine Grassmannian GrG via left multi-
plication, and thus induces an action of G((t)) on the category D′-mod(GrG)
(the prime means “critically twisted”). The subcategory of G[[t]] strongly
equivariant objects, D′-mod(GrG)G[[t]], is by definition the spherical category
SphG introduced by Ryan on Feb 16. Then the general convolution functor
we defined last time coincides with the one Ryan introduced back then:

∗̃ : SphG × SphG −→ SphG.

Of course we can consider fancier convolution functors. For any x ∈ X,
G(K̂x) acts on Bun∞,xG by changing the level structure at x, and we have seen

that BunG = Bun∞,xG /G(Ôx). Therefore, the general setup of the previous
lecture produces a convolution functor:

∗x : SphG ×D′-mod(BunG) −→ D′-mod(BunG).

The above can also be defined in a family over X, and we get the convolution
functor:

∗ : SphG,X ×D′-mod(BunG) −→ D′-mod(X × BunG). (1)

We can realize the latter geometrically by using the global Hecke stack H.
By definition, this stack represents the functor:
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S −→ H(S) = {(x, T1, T2, α), x : S −→ X,

T1, T2 are G− torsors on X × S, T1|X×S−Γx
α−→ T2|X×S−Γx}.

The projections onto the T1 and the (T2, x) components, respectively, give
rise to the following two morphisms:

H
←
h

||xxxxxxxx →
h

%%KKKKKKKKKK

BunG X × BunG

By patiently unwinding the definition, one sees that the convolution functor
of (1) coincides with:

S ∗M =
→
h !(S̃ ⊗

←
h∗(M)).

Recall the Satake equivalence of categories:

RepGL
∼= SphG, V −→ SV .

Any GL−local system σ̃ on X can be tensored up with any V ∈ RepGL , to
give a D−module Vσ̃ on X. In other words, σ̃ is a tensor functor from RepGL
to D-mod(X).

Definition 1 In this lecture, a Hecke eigensheaf with eigenvalue σ̃ is a
D′−module M on BunG, together with a compatible collection of isomor-
phisms:

SV ∗M ∼= Vσ̃ �M ∈ D′-mod(X × BunG), (2)

for all V ∈ RepGL, which are unital and multiplicative. Unital means that
the above isomorphism is the identity when V = C. Multiplicative means
that the following diagram must commute for all V,W ∈ RepGL:

SV⊗W ∗M
∼= //

∼=
��

(SV ∗ SW ) ∗M
∼= // SV ∗ (SW ∗M)

∼=
��

(V ⊗W )σ̃ �M ∼=
// Vσ̃ ⊗ (Wσ̃ �M) ∼=

// SV ∗ (Wσ̃ �M)
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Remark 1 The actual definition of Hecke eigensheaf is a bit stronger: it
requires compatible families of isomorphisms as in (2) for each n ≥ 1, where
Sph and H are replaced by Ryan’s Sphn and Hn. We require this data to be
“factorizable”, i.e. possess appropriate compatibilities as n varies.

Opers give us some very nice candidates for eigenvalues: recall the space
of global opers OpGL(X) = Spec z(X). In the first semester, we struggled to
produce a map z(X) −→ Γ(BunG, D

′) called the quantum Hitchin integrable
system. Under this map, any D′−module over BunG acquires a z(X)−module
structure. Therefore, for any point σ ∈ OpGL(X), we can look at:

D′σ := D′ ⊗z(X) kσ ∈ D′-mod(BunG),

where kσ = z(X)/mσ. Our job for today is to prove the following:

Theorem 1 For any oper σ, D′σ is a Hecke eigensheaf with eigenvalue σ.

Before we jump into the proof of the Theorem, let’s take a minute to
understand its scope. This theorem produces a particular Hecke eigensheaf,
with eigenvalue any given local system σ which admits an oper structure.
We cannot and do not yet say anything about general local systems.

The proof relies heavily on our earlier study of opers, and also the notion
of localization-globalization. We need the latter in the following setting:

(ĝ′-mod)G[[t]] loc−→ D′-mod(BunG), loc(V ) = D′ ⊗ĝ′ V,

D′-mod(GrG)
Γ−→ (ĝ′-mod)G[[t]], Γ(M) = Γ(GrG,M).

These functors commute with the convolution action SphG × · −→ ·.

Lemma 1 Recall that the vacuum module is V′ = Indĝ′

g[[t]]⊕C(C), and let δ1

be the δ−function at the unit 1 ∈ GrG. Then we have:

loc(V′) = D′, (3)

V′ = Γ(δ1), (4)

S ∗ V′ = Γ(S), (5)

for any S ∈ SphG.
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The proof of the above lemma is immediate from the definitions. For our
next ingredient, let us fix a point x ∈ X, and let its formal neighborhood be
Dx ↪→ X. Consider the following closed embeddings:

σ � � // OpGL(X) � � // OpGL(Dx)

Spec z(X) � � // Spec zx

Now we can take the universal opers on the above spaces (twisted by V ∈
RepGL), each of which is the restriction of the one on its right:

Vσ|Dx

��

Vg|Dx

��

V l

��

σ ×Dx � � // OpGL(X)×Dx � � // OpGL(Dx)×Dx

The letters g and l stand for global and local. Meanwhile, Vσ is the D′-
module on X that appears in (2). Restrict all these bundles to the closed
point x ∈ Dx:

Vσ|x

��

Vg
x

��

V l
x

��

σ � � // OpGL(X) � � // OpGL(Dx)

In particular, we see that V l
x is a zx-module. The following result was proved

in Sam’s talk.

Theorem 2 For any point x ∈ X and any local coordinate at x, we have an
identification zx ∼= End(V′). With this in mind, we have:

Γ(SV ) ∼= V l
x ⊗zx V′.

Moreover, these isomorphisms are unital and multiplicative in V .

Proof of Theorem 1: Start by using (3), (4) and (5):

SV ∗D′|x = loc(SV ∗ V′) ∼= loc(Γ(SV )).
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Then we can apply Theorem 2 and again (3):

SV ∗D′|x ∼= loc(V l
x ⊗zx V′) = V l

x ⊗zx D
′ = Vg

x ⊗z(X) D
′.

The last equality takes place because zx acts on D′ through its quotient z(X).
Now let’s twist the above by kσ, i.e. restrict to the fiber above σ:

SV ∗D′σ|x = (SV ∗D′)|x ⊗z(X) kσ = (Vg
x ⊗z(X) D

′)⊗z(X) kσ =

= (Vg
x ⊗z(X) kσ)⊗kσ (D′ ⊗z(X) kσ) = Vσ|x ⊗D′σ.

All the above identifications respect the crystal structure of D-modules on X,
and therefore give an isomorphism SV ∗D′σ ∼= Vσ �D′σ. These isomorphisms
are unital and multiplicative because so are the isomorphisms of Theorem 2.
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